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Abstract
Proteins are a diverse class of biomolecules responsible for wide-ranging cellular functions, from

catalyzing reactions and recognizing pathogens to forming dynamic cellular structure. The ability
to evolve proteins rapidly and inexpensively towards improved properties is a common objective
for protein engineers. Powerful high-throughput methods like fluorescent activated cell sorting
(FACS) and next-generation sequencing (NGS) have dramatically improved directed evolution
experiments. However, it is unclear how to best leverage this data to characterize protein fitness
landscapes more completely and identify lead candidates. In this work, we develop a simple yet
powerful framework to improve protein optimization by predicting continuous protein properties
from simple directed evolution experiments using interpretable machine learning. Evaluated
across five diverse protein engineering tasks, continuous properties are consistently predicted from
readily available deep sequencing data. To prospectively test the utility of this approach, we
generated a library of stapled peptides and applied the framework to predict and optimize both
affinity and specificity. We coupled integer linear programming with the interpretable machine
learning model coefficients to identify new variants from experimentally unseen sequence space
that have desired properties. This approach represents a versatile tool for improved analysis and

identification of protein variants across many domains of protein engineering.
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Introduction
A longstanding goal of biochemistry has been to map the sequence of a protein to its

structure and function.! However, the complex biophysics that govern the protein fitness
landscape, including how a protein folds and how its structure influences function, make the
coupling of sequence to function an extremely difficult task. Protein engineers thus often focus on
a much smaller subdomain of the protein fitness landscape, using the confined resources of
experimental protein science to explore variants close to a known functional protein with the goal
of incrementally improving function. A common and extremely powerful approach is directed
evolution, where a protein is encoded by DNA, expressed by cells, and assayed by magnetic or
fluorescent activated cell sorting (MACS or FACS) and, more recently, next generation
sequencing (NGS) to identify variants with improved fitness. While these techniques represent
powerful tools in the protein engineering arsenal, it is unclear how to best leverage information
from deep sequencing towards the optimization of protein variants. A method capable of
generating both fitness estimates from directed evolution experiments and predictions of sequences
with higher activity would greatly expand the power and efficiency of directed evolution
experiments.

The combination of directed evolution and next generation sequencing (NGS) has enabled
protein engineers to rapidly evaluate millions to billions of protein variants in a highly focused
manner. With maintenance of the genotype-phenotype connection, any technique that manipulates
DNA in a high-throughput manner can be applied to design focused protein variant libraries and
assay protein function.?® Techniques like mRNA display and phage display can evaluate the
largest libraries, although their small size precludes them from sorting approaches such as FACS.*
Cell surface display techniques, which use bacteria or yeast, enable facile measurement of the
interaction between protein variants with soluble proteins which can be used for assaying binding
affinity in high-throughput sorting and sequencing technologies.® Coupling FACS with cell surface
display technologies allows for the selection of rare protein variants among a large library with
extreme selectivity.®’” These techniques have enabled a wide range of protein engineering
campaigns, from affinity maturation of protein-protein interactions to highly enantioselective
enzymes.®® However, one challenge with these large libraries is how to identify the best lead
molecules from the hundreds to thousands of observed sequences in the final sorted population.

Traditional approaches for lead molecule identification select variants according to their
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abundance in the enriched library under the assumption that higher enrichment is indicative of
higher function.%*2 One downside to this approach is that optimal rare variants are excluded from
selection and more complex descriptions of how mutations contribute to protein function are
difficult to ascertain.’* Application of NGS to the output pool of a protein variant sort improves
the accuracy of clone frequency, but frequency rarely correlates with protein properties directly.*
15 These challenges arise from sources of error that are difficult to eliminate: variation in cell-to-
cell growth, PCR/cloning biases, sequencing errors, and FACS instrument noise.®!’ With
additional sequencing of the input library, enrichment ratios can be calculated, which improves the
accuracy of protein property prediction.’®® Despite these improvements, there is still little
consensus on the best experimental design and analysis of these directed evolution experiments.
Several approaches have been proposed to mitigate these sources of error and enable the
prediction of quantitative protein properties from high-throughput sorting experiments. Deep
mutational scanning (DMS) measures the enrichment of many variants. However, several
challenges exist; their accuracy in resolving affinity is often limited to a narrow linear region
(~10X dynamic range), the results are sensitive to the sorting conditions, stability, and expression
effects, and the outcomes can differ from true quantitative measurements of binding affinity
(equilibrium dissociation constants or Kp’s).2%?! Sort-seq aims to address noise from sorting by
using multiple bins across the entire fluorescent channel, followed by deep sequencing, to infer
the distribution of each sequence in fluorescent space.?? These techniques, while often successful,
require more sorting time and 8-12 fold increased deep sequencing throughput and still have a
narrow range of resolution. Several more sophisticated sorting techniques address these issues:
SORTCERY creates a rank ordering of affinities by sorting cells according to their binding and
expression at a single concentration;?® amped SORTCERY further improves this technique by
converting rank order to free energy changes by adding titration standards;?* TiteSeq sorts protein
variants at multiple ligand concentrations and fits the affinity to the fraction bound.?! These
methods leverage additional sorting and sequencing to improve the predicted outcomes. In this
work, we seek to utilize deep sequencing with interpretable machine learning approaches to
determine if we can predict continuous protein properties (like affinity) from binary sorting data

(positive versus negative sorting).

Methods
Curation of NGS Data for Validation
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Five datasets were used to test the simple method of using binary labels to predict continuous

properties. The datasets and brief descriptions are given below.

1. Adams et al. 2016
NGS data was downloaded from their GitHub repository:
https://github.com/jbkinney/16 _titeseq. The read counts and CDR*" and CDR3" sequences

for each clone were extracted and aligned using in-house python scripts. Read counts were
converted to frequencies.

2. Starr et al. 2022 and Greaney et al. 2021252
NGS data was downloaded from their GitHub repository:
https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS _variants. The data for the Delta
mutation is stored in a different repository: https://github.com/jbloomlab/SARS-CoV-2-

RBD_Delta. Due to limits in [llumina paired end reading length, each sequence was given
a unique molecular barcode, which was sequenced in high depth, but each full-length
sequence was sequenced with its unique barcode separately. The sequences and their
TiteSeq profiles were associated with their corresponding barcodes and read counts were
converted to frequencies. In the current method, sequences with more than one mutation
were not discarded.

3. Makowski et al. 202227

Processed data was downloaded from their GitHub repository: https://github.com/Tessier-

Lab-UMich/Emi_Pareto_Opt ML. Raw data was available from their repository.
4. Sarkisyan et al. 2016
Like Starr et al. 2022, the GFP sequence is too long for high-depth Illumina sequencing,

and therefore the authors gave each sequence a unique molecular barcode. We downloaded
the accurate full length protein sequences, their matching unique barcodes, and the high-
depth sequencing of Sort-seq data from their repository:

https://figshare.com/articles/dataset/Local fitness landscape of the green fluorescent

protein/3102154. The read accuracy on the barcodes was low and the authors used a

Levenshtein distance of <= 1 to connect barcodes that were close but not identical to the
full protein sequence. We used the Levenshtein module with in-house python scripts to
cluster ~ sequences to  their  barcodes, which  were available at
https://pypi.org/project/python-Levenshtein/. After clustering, sequences and their
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barcodes were merged with their Sort-Seq distributions like Starr et al. Read counts were
converted to frequencies.

5. Jenson et al. 2018%
NGS data was obtained from their GitHub repository:
https://github.com/KeatingLab/sortcery design. The peptides’ short lengths permitted

high depth deep sequencing and thus counts were directly converted to frequencies without

further preprocessing.

Binarization of FACS/NGS Data

The variety of factors that influence the design of an experiment makes it challenging to
generalize a sorting and sequencing workflow for any given protein engineering campaign. Each
of these projects were analyzed by a different group, using different cell sorters, expression
platforms, sequencing instruments, and protein types among other parameters (see Table S1 for
dataset property summaries). Thus, controlling each of those parameters in our data processing
workflow was an important consideration towards the application of this approach to existing
datasets and new targets alike. Many of the experiments use sophisticated sorting techniques to
infer quantitative protein properties. We simulated a simple binary sort experiment by truncating
the dataset such that it only includes the top or bottom 20% of sorted sequences (or as close as
possible). This subsample of sequencing data approximates a simple sorting campaign from these
quantitative sorting techniques. For example, Sarkisyan et al. contains sequencing data of GFP
variants that were sorted into 8 bins; to simulate a simple binary sort, we aggregated the top two
bins as positive and the bottom two bins as negative. For TiteSeq experiments (Starr 2022, Greaney
2021, and Adams 2016) we only included data from sorts that used ligand concentrations near the
average Kp of the library (10, 10 , and 10 M respectively). Because the Kp of a library can be
readily obtained from low-throughput flow cytometry experiments, sorting at the Kp of the library
is a feasible approach to yield the largest separation between high and low affinity variants.!’ This
was 10® M for the COVID datasets, this was 10 M and 10° M, respectively. For the Makowski
dataset, data was provided as a positive and negative dataset with varying cutoffs for each
selection.

Machine Learning Method
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In all cases, in-house python scripts were used to perform the data preparation and

modeling on each of the datasets. Scikit-learn (https://scikit-learn.org/stable/) was used for linear

discriminant analysis (LDA), one-hot encoding, scaling label vectors, and other pre-processing
steps. Pandas (https://pandas.pydata.org/) and NumPy (https://numpy.org/) were used to handle

sequencing and numerical data. PyTorch (https://pytorch.org/) was used to train neural network

models.

First, sequences were one-hot encoded, eliminating positions that were not randomized in
the study or appeared with very low abundance. Then, we calculated the frequencies of each
sequence for the high- and low- protein property, and a multi-sequence alignment (MSA) was
performed to ensure every vector was the same length and columns corresponded to the correct
residues. The data was split into positive and negative groups by computing the ratio of high- and
low- frequency of each clone and selecting a percentile cutoff. Initial percentiles were chosen as
the top or bottom 20% of sequences, setting any sequences that contained zero frequency in the
low property pool to the maximum ratio observed and any sequences that contained zero frequency
in the high property pool to the minimum ratio observed. Positive (‘1’) and negative (‘0’) labels
were assigned accordingly. The one-hot encoded protein sequences and their labels were then split
into an 80:20 training:test split. The test set was held aside until all analyses were complete and
used to validate the model training process. In later analyses, to explore the hyperparameter space
of these cutoff parameters, we tested all combinations of the read count, replicate count, and ratio
percentile and measured the change in modeling performance. Sensitivity to training:test splitting
and the ratio of positive negative labels was tested by performing five-fold cross validation using
SciKit Learn’s ShuffleSplit function.

We selected linear discriminant analysis for several reasons. First, this method has
previously been shown to predict continuous properties from binary sorting data.?’” Next,
hyperparameter optimization for this model was straightforward, as the Sci-Kit Learn
implementation of LDA has very few parameters, including the solver (‘svd’ was the only one to
converge consistently), n_components (which is fixed to 1 for projection to a single dimension to
correlate with protein properties), and tol (which did not change the outcome). Another benefit of
using LDA is its simplicity; the linear nature of the model allows for the direct interpretation of
how certain residues contribute to function. While we also evaluated several other models that can

create an internal continuous representation for classification (such as support vector classifiers,
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with the option of using different kernels), we found that LDA models trained much faster. The
transform method was used to project data into the 1-dimensional LDA projection after training.
Because LDA is a classification model and does not have a regression analog, we used ridge
regression, a modified version of linear regression that penalizes large weights, to compare LDA
projections to models trained on continuous data. Furthermore, ridge regression did not result in
extreme overfitting that was observed by regular linear regression (data not shown). Finally, ridge
regression has been shown to be a powerful modeling technique for protein engineering tasks.?®
Neural network models were used to evaluate whether non-linear models would capture
additional useful information that linear models are unable of modeling, as proposed previously.?’
Standard fully connected, feed forward networks were used with dropout p = 0.5 as shown to be
effective in the literature.®® The hidden size (32-256) and number of layers (1-3) did not
dramatically affect the results and we ultimately chose the midpoint for both, 128 and 2
respectively (data not shown). We used 700 epochs and a batch size of 32 was for all datasets.
Binary Cross Categorical Entropy Loss was used as the loss function, and Stochastic Gradient
Descent optimizer with a learning rate of 0.01 was used for all datasets. Training was done on a
Nvidia Tesla V100 and typically took between 5 minutes and 2 hours depending on the size and

complexity of the dataset.

Stapled peptide cell sorting, sequencing, and flow cytometry

Experimental stapled peptide libraries targeting B cell lymphoma 2 (Bcl-2) proteins were
used to evaluate the computational methods on novel datasets. These libraries were sorted and
sequenced as described previously. (Case 2023, manuscript in progress) In brief, a computational
library of BIM mutants (a non-specific anti-apoptotic peptide) was designed and transformed into
bacteria that displays stapled peptides (see Table S2 for mutagenesis codons, Table S3 for sampled
amino acids, and Table S4 for library primers).3-% This library was sorted using a combination of
MACS and FACS as follows: one round of expression MACS, two rounds of affinity MACS, two
rounds of affinity FACS, and two rounds of specificity FACS. Two of such libraries were sorted
in parallel: one towards Bcl-x. and another towards Mcl-1. These libraries were deep sequenced
using lllumina NovaSeq S4, demultiplexed, merged using NGMerge, and analyzed using in-house
python scripts (see Table S5 for NGS primers).>3 Each peptide sequence was identified by aligning
the DNA with the scaffold eCPX protein and then translating the peptides in the corresponding
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open reading frame. Peptide sequences and their frequencies were aligned across all rounds of
sorting, and sequences that had mutations not specified by the original library design were removed
(~10% of all sequences). Sequences from the four rounds of FACS were denoted as ‘hits’ and
sequences from the expression sort were denoted as ‘not hits’ (see Table S1 for dataset summary).
Then, the ratio of each round of FACS to the expression was computed and fed into the machine
learning pipeline. LDA models were trained identically to the other datasets.

A smaller number of peptide sequences were expressed on the surface of bacteria and
measured in low-throughput flow cytometry experiments. To evaluate whether LDA projections
were predictive of continuous properties, we expressed 57 stapled peptides on the surface of
bacteria from various rounds of sorting (Mcl-1 FACS 2, 3, or 4, and Bcl-x. FACS 2 or 4) to capture
a wider distribution of specificities: peptides from later in the rounds of sorting should have more
specificity while those from earlier rounds should be less specific if sorting enriched towards
higher performing sequences. We then measured their binding at the approximate Kp of the wild
type sequence in triplicate (1nM and 10nM for Mcl-1 and Bcl-x. respectively). Fraction bound
was calculated by normalizing to expression and dividing by a saturated binder (BIM-p5 at
250nM).32 LDA projections were calculated and compared to continuous values identically to the

other datasets.

SORTCERY

To get continuous estimates of binding properties from cell sorting, peptides from the final
round of FACS for both Mcl-1 and Bcl-x. were evaluated using SORTCERY. Peptides were
incubated with either Mcl-1 or Bcl-x. at 1nM and sorted into twelve bins following the protocol
from Reich et al.® Briefly, cells labeled with target Bcl-2 protein and anti-HA display tag were
sorted into twelve bins along the ‘axis of affinity’, the diagonal gates that resolves the fraction
bound. To compare the SORTCERY value with those measured from binary sorting, we computed
the gate score of each sequence as described in the original work.?® Each of these gates were
collected individually and processed for deep sequencing as described previously. The deep
sequencing data from these experiments was processed identically to the stapled peptide libraries

as above.

Sequence Optimization via Integer Linear Programming
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To optimize protein sequences, we applied integer linear programming (ILP), an approach
that solves an objective problem given discrete input variables and constraints. Compared to other
techniques that maximize an objective given an input, ILP scales more efficiently with a large
number of samples and does not rely on iterative predict and test loops that require additional
experimental resources.®*2¢ Furthermore, ILP is directly amenable to multi-objective optimization
through the addition of inequality requirements.?* We set up this problem using the PuLP python
module.®” First, we defined the objective as maximizing the dot product of the model coefficient
vector and the positions and amino acid constraints as defined by the library design. This objective
is the maximization of the confidence of binding for a given sequence. Next, we constrained the
optimization by only allowing one amino acid at each position, requiring that each peptide had two
azidohomoalanine residues (responsible for peptide stapling), and that the two stapled residues
were at a distance as specified by the library design (i,i+7). Finally, we formulated the problem as
a multi-objective problem by adding the additional constraint that the dot product of the off-target

coefficients and peptide sequence was in the non-binding regime.

Results
Overview of Method

Despite significant efforts to gather quantitative data from high throughput sorting, most
directed evolution campaigns rely on basic metrics of protein fitness. We utilized a simple
workflow to extract continuous protein properties from NGS datasets while keeping the
experimental design simple and affordable (Figure 1). To accomplish this task, we generated
binary labels from enrichment ratios, trained machine learning models using these binary labels to
infer continuous protein properties,?’” and optimized protein sequence and function beyond
experimentally sampled space into unseen sequence space.?* We hypothesized that continuous
protein properties can be obtained from simple sorting and sequencing analyses for three primary
reasons. First, because cell sorting is a stochastic process, cells sorted into discrete bins are sampled
from an underlying continuous distribution. Thus, cells sorted in a binary manner may allow
inference of this distribution.® Second, biased sampling towards the most and least functional
variants may allow models to ‘interpolate’ function of intermediate fitness. Finally, sampling many
epistatically interacting motifs may allow inference between them.3® We also hypothesized this
approach would work across multiple protein engineering objectives, including affinity

maturation, fluorescence, deep mutational scanning, and specificity.
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To validate the approach, we aggregated data from multiple protein engineering campaigns that
fulfilled two criteria: 1. they had many data points of multi-mutant proteins from a sorting
campaign and 2. they had measured many continuous protein properties among these variants.
These datasets were the fitness landscape of GFP,?® the directed evolution of a fluorescein-binding
scFv,?! and the fitness landscape of SARS-COV-2 Spike protein .2>?® Because the co-optimization
of multiple properties is often needed, we also gathered datasets that design high-affinity and high-

specificity monoclonal antibodies?” and highly specific peptides between three B cell lymphoma
2 (Bcl-2) proteins.?*
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Figure 1: Overview of the protein engineering workflow. A library of protein variants is expressed on the surface of cells and
sorted according to its fluorescent property (binding fluorescent labeled molecules, intrinsic fluorescence, etc.). Sorted cells are
deep sequenced, and using machine learning, continuous scores for each mutation and the overall sequence are calculated.
Finally, these data are used to inform protein fitness landscapes and optimization of protein properties in engineering efforts.

Data processing pipeline for varying protein variant libraries and sorting schemes
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Figure 2: Deep sequencing, data pre-processing, and machine learning overview. The most and least functional protein variants
from the binary sort are sequenced (A) and the ratio of sequence reads in the positive versus negative gate is calculated (B). Binary
labels are assigned to each sequence according to its ratio (C); the label thresholds are easily modified depending on the library
construction, sorting strategy, and sequencing data quality. Protein sequences are one hot encoded for machine interpretability (D)
before being used to train a Linear Discriminant Analysis (LDA) model (E), which is evaluated on a hold-out test set (F). Then to
calibrate the LDA model, continuous protein properties are obtained either from a quantitative sort (SORTCERY, Sort-Seq, or
TiteSeq) or from low throughput measurements (flow cytometry titrations, ELISA, etc.) (G,H). Finally, the projections from the
LDA model are used to predict continuous protein properties (1).

The modular data processing and machine learning pipeline to analyze multiple protein
variant libraries consists of multiple steps (Figure 2). First, a library of protein variants is sorted,

and the ratio of the positive to negative gate frequencies is calculated for all sequences based on
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the deep sequencing data. If a sequence found in the positive gate but was unobserved in the
negative gate, the ratio was set to the maximum observed; conversely, if a sequence found in the
negative gate was unobserved in the positive gate, the ratio was set to 0. We hypothesized this
ratio scheme balances the information gained from enrichment ratios while still including clones
that were overwhelmingly enriched or depleted. Labels (‘1° for high performing variants and ‘0’
for low performing variants) were assigned by determining a cutoff based on the average ratio
(percentile >0.8 and <0.2 respectively) across how many replicates they appeared in (>2). We
hypothesized that while splitting the positive and negative labels at the 50" percentile would
increase the data size, sorting noise around the midpoint would confound information gained from
binary ratios (Figures S1-5). We also hypothesized that removing sequences with 1 replicate would
further reduce noise from sorting. Initial estimates of these parameters were chosen to balance the
size of the dataset, the strictness of inclusion, and the confidence of the sequencing data. Having
easily modifiable parameters for label assignment serves as both a tool for sequencing quality
processing and a powerful hyperparameter in the subsequent machine learning steps (see Figures
S1-5 for hyperparameter effect on dataset size).

Armed with a dataset of sequences and binary function labels, a linear discriminant analysis
(LDA) machine learning model was trained because it fulfilled two criteria: it could perform
classification of sequence with its function label, and it had an internal continuous measurement
that could be used to correlate with continuous properties. Because LDA models project high
dimensional sequence data to maximize class separation, the final projection is a continuous
representation that has been previously shown to correlate with continuous properties.?’ The model
was trained and tested by splitting the sequencing data into train and test sets randomly (80:20
train:test). To evaluate whether the weights learned by the LDA model correlated to meaningful
continuous properties, a subset of the sequences were assayed for their property from a lower
throughput but more accurate technique. For all but the Makowski dataset, this was a quantitative
cell sorting experiment, and otherwise a low throughput measurement of affinity or specificity via
flow cytometry with individual sequences. We then predicted the continuous properties of proteins

by comparing the projections from LDA with actual continuous measurements.

Binary labels predict protein properties with equal correlation power
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Figure 3: Predictions from models trained on binary data are highly correlated with continuous protein properties and
equally powerful as models trained on continuous data. Evaluated on the Sarkisyan data, LDA models trained on binary data
(A, left) or Ridge models trained on continuous data (A, right) are correlated with fluorescence. Across five protein engineering
datasets, models trained on binary data are equally predictive of continuous properties (B).
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To evaluate whether the LDA models trained on binary sorting data inferred meaningful
features of the protein properties, we curated five datasets as described in the methods (see Table
S1 for dataset summaries). Using data from each of the these, we compared the measured
continuous properties of protein variants to their predicted values from LDA models trained on
binary sorting data, as shown in Figure 3A (left) for the Sarkisyan et al. dataset. We next sought
to determine the performance of a comparable model trained on continuous data. Continuous data
IS more expensive and/or complicated to obtain but presumably is more information rich.
Therefore, we hypothesized models trained on continuous data would have stronger correlative
power. To evaluate this hypothesis, we trained Ridge regression models, which have been
previously shown to be powerful linear models that are not prone to over-fitting.?®> We then
compared the ability for both LDA and Ridge models to predict continuous properties (Figure 3A,
right). Surprisingly, for the Sarkisyan 2016 dataset, the LDA models performed similarly to the
Ridge regression models as evidenced by a similar Spearman’s p (0.846 for the LDA model and
0.855 for the Ridge regression model).

We then tested whether the other four datasets had similar performance. First, we observed
that LDA models achieved high classification performance on the held-out test set for all datasets
(see Table S6 for accuracy, precision, recall and F1 score) and were not overfit as evidenced by
similar performance on the training and test sets. Next, we observed that LDA projections were
highly correlated with continuous measurements, as evidenced by Spearman’s p between 0.5 and
0.85 (Figure 3B, additionally see Figures S1-5 for hyperparameter effect on performance). To get
an estimate of model sensitivity to dataset splitting, we performed 5-fold cross validation (see
Methods) on each training dataset (Figure S6). Strikingly, for each of the datasets, we observed
no significant difference in the correlation (significance was measured as a t-test on the unbounded
Z transform of the Spearman p).*° Encouraged by the success of correlation, we also sought to
explain the magnitude of correlation, which was consistently high but had two outliers. Adams
2016 dataset had a significantly lower predictive value of p~0.5. We suspect this decrease in
performance has two sources: noise in the dataset due to an abundance of unresolvable low affinity
variants (see Figure S8 for correlation plots for each dataset), and the lack of discrimination
between binding affinity and expression level in the experimental sorting design, which can

attribute higher affinity to sequences with higher display and vice versa.l’” The Makowski 2022
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specificity dataset also had lower than average performance; we hypothesize this model suffered
due to the difficult nature of measuring antibody off-target binding.?"442

To test whether linear models were limiting the predictive capabilities of continuous
properties, we also tested fully connected, feed forward neural networks, which have been shown
to similarly identify continuous values from binary data.?” While non-linear models may capture
higher order epistatic behavior, these models generally performed as strongly as LDA models
(Figure S7). Over this wide range of protein engineering objectives, this approach consistently
predicts continuous properties and has comparable accuracy to models trained on state-of-the-art

sequencing and sorting data.
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Prediction of stapled peptide affinity and specificity from binary labels
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Figure 4: Prospective analysis of B cell lymphoma 2 (Bcl-2) pro-apoptotic stapled peptides via bacterial surface display,
deep sequencing, and machine learning. A combinatorial mutagenesis library of stapled BIM variants was designed including
staple locations (left) and sequence (red positions fixed, blue positions variable, right) (A), transformed into bacteria (B), sorted
using a combination of magnetic activated cell sorting (MACS) (C) and fluorescent activated cell sorting (FACS) towards Bcl-x.
and Mcl-1 (two members of the Bcl-2 family) in parallel. The library was next generation sequenced (NGS) to calculate frequencies
of each unique sequence along the sorting progression (D). Finally, a LDA model was trained on the binary labels from NGS and
used to predict the continuous binding of 57 peptide variants, which were selected randomly from FACS 2-4 for both Mcl-1 (E)
and Bcl-x. (F).

Bcl-x_ LDA Projection

To apply this method prospectively to a new dataset following the promising retrospective
analysis, we chose B cell lymphoma 2 (Bcl-2) stapled peptide antagonists as our design case. In

addition to requiring non-natural amino acids, making it incompatible with modeling approaches
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based on naturally evolved proteins, these peptides are well suited for this approach because we
can evaluate not just a single property but the tradeoff between affinity and specificity. We
generated a dataset of B cell lymphoma 2 (Bcl-2) stapled peptide variants that were sorted over
several rounds (Figure 4A) using the bacterial cell surface display.31*2 This library was designed
based on naturally occurring peptide sequences, SPOT arrays of BIM mutants, and previously
designed high-affinity or specificity BH3 variants (Case 2023, manuscript in progress) (see Table
S2-4)244344 Because bacterial surface display libraries are highly limited by size compared to the
theoretical diversity of BH3 peptides (~10%°), mutations were prioritized that were predicted to
govern specificity between Mcl-1 and Bcl-x.. The final library of ~10° was transformed into
bacteria (Figure 4B) and sorted against either Mcl-1 or Bcl-x. with a combination of three
magnetic and four fluorescent activated cell sorting (MACS/FACS) (Figure 4C). The magnetic
cell sorting was performed until the library was sufficiently reduced in diversity for analysis with
FACS, which offers more precise control over property selection. We deep sequenced these pools
to isolate highly active peptides (Figure 4D), which enabled an understanding of sequence trends
that governed high affinity and specificity (see Figure S9 for sequence trends) and provided a
source of data to train and evaluate the capabilities of LDA models to predict peptide function
(Figure 4E-F). We observed high correlation between for both Mcl-1 and Bcl-x. LDA models
(Spearman’s p of 0.893 for Mcl-1 and 0.708 for Bcl-xL).

To generate training data, we aggregated all four rounds of FACS and the expression
positive MACS sorts, hypothesizing that would provide additional confidence for ‘hits’ and
expressing but non-binding sequences. The ratio of these counts was computed as described above
and used to generate labels for LDA training and testing (see Figure S9 for logoplots of negative
and positive sequences). First, we observed that LDA models had high classification performance
and were not overfit (see Table S7 for performance statistics and Figure S10 for hyperparameter
effect). We then tested the performance of LDA to predict continuous properties by randomly
sampling 57 sequences among the FACS sorts, measuring their continuous binding via flow
cytometry, and measuring the correlation between predicted LDA binding and the sequences’
actual binding (Figure 4E-F) (see Figure S11 for sequences and data). We observed a strong
correlative power between LDA projections and continuous measurements of peptide affinity:
spearman p of ~0.7 and ~0.8 for Mcl-1 and Bcl-x. respectively (p < 0.00001). Finally, we sorted
the final round of sorted cells via SORTCERY for a comparison with high-throughput, semi-
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quantitative measurements of binding affinity. Surprisingly, the binary sorting data coupled with
an LDA model trained with NGS data had better performance than selecting clones from the final
2 rounds of sorting for Mcl-1 specificity (Figure S12), suggesting that the information contained
from simple sorting experiments provides a powerful method to predict continuous protein

properties.

Optimization of stapled peptides using

machine learning and integer linear programming
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Figure 5: Extrapolation of interpretable ML model weights to generate novel, highly specific Mcl-1 inhibitors. Of 20
sequences randomly selected from the final two rounds of sorting towards Mcl-1, many did not display high levels of specificity
towards Mcl-1 when measured in low throughput binding assays (A). We hypothesized the weights from linear discriminant
analysis (LDA) machine learning could be used to design peptides with high affinity to Mcl-1 (B) or Bcl-x. (C). To optimize the
sequences, we applied integer linear programming (ILP) (C) to maximize the likelihood a peptide binds Mcl-1 while minimizing
its binding to Bcl-x. (D). ILP identified numerous sequences that were predicted to be highly specific (E) that were not among the
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10° sequences assayed experimentally. Two variants were randomly chosen among this set and were found to be as specific as the
best clones identified from sorting (F).

While directed evolution campaigns may yield the desired properties after sorting,
sequencing, and modeling, it is also possible that further optimization is necessary. In such cases,
protein engineers rely on a combination of manual and automated approaches to further optimize
lead candidates.?*343¢ We sought to explore how our modeling workflow could not only score
entire sequences, but how the contributions of individual amino acids contributed, potentially
enabling the generation of new, unsampled sequences. Because linear models have associated
weights for each amino acid and sequence position, the same scoring tools to find the best
measured clones can also be used to score sequences that have never been evaluated
experimentally. We therefore applied an optimization approach that can optimize discrete inputs
for continuous properties and explore unseen sequence space: integer linear programming (ILP)
(Figure 5), which has previously been applied to design specific linear peptides towards the Bcl-
2 proteins.?* To establish the baseline of specificity from sorting, we further characterized variants
from the final round of sorting that were predicted to be specific for Bcl-x. and Mcl-1.
Interestingly, most peptides from the Bcl-x. library were highly specific (Figure S13), while fewer
from Mcl-1 performed favorably (~80% had significant off-target binding, Figure 5A). We
hypothesized we could recover specific Mcl-1 clones by optimizing sequences from sorting and
sequencing data that otherwise yielded mixed results. We solved the ILP model three times, once
for Bcl-xL specific peptides, once for Mcl-1 specific peptides, and once more for bispecific
peptides (see Methods for more details). Out of many sequences predicted to have high activity
for Mcl-1 (Figure S14), we randomly selected XXX sequences for low-throughput flow cytometry
analysis (Table S8). Strikingly, we observed that the optimized Mcl-1 sequences displayed similar
or improved specificity compared to the highest activity clones assayed experimentally.

Sequences initially identified by minimizing Mcl-1 binding while maximizing Bcl-x.
binding resulted in peptides that did not bind either Mcl-1 or Bcl-x. (Figure S15 and Table S8); it
has been previously shown that subtle differences in ILP set up can affect the efficiency of
outcome.?* We suspect this failure was due to the model being overly sensitive to mutation at Asp
at position 4b, which was the only mutation consistently sampled that had a high score for both
Bcl-xL and Mcl-1 but was slightly higher for Mcl-1. To address this issue, we maximized Bcl-x_
binding then chose the sequences which had the lowest Mcl-1 scores, which preserved Bcl-x.

binding and resulted in highly specific peptides (Table S9 and Figure S16). While our sorting
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campaign was originally designed to identify highly specific peptides, we also pursued bispecific
peptides, which serve as proof that the model can interpolate in sequence-function space but could
also serve as therapeutics in diseases driven by both Bcl-2 proteins. Sequences were identified by
maximizing both Mcl-1 and Bcl-x. binding, yielding peptides with relatively high affinity for both
targets that had significant sequence difference from wild type (BIM) (Figure S17).

To show generalizability of ILP to generate functional protein variants, we additionally set
up the optimization problem using the Makowski dataset (Figure S18). We defined the objective
of this optimization as the minimization of off-target binding, subject to the maintenance of
affinity. We solved the model and compared the highest functional sequences according to our
predictions to those described in the original manuscript. We found that the predicted sequences

were extremely close to those identified as co-optimal by Makowski and co-authors.

Discussion
In this work, we developed a method to utilize NGS data from simple binary sorting results

with machine learning to infer continuous protein properties. These results can also be utilized to
extend the sequence space beyond sequences directly observed in the library (Figure 1). The
workflow consists of two important parts: the label assignment process from deep sequencing data,
and the use of linear machine learning models to predict continuous protein properties from binary
data (Figure 2). Currently, there is a lack of consensus on how to best analyze directed evolution
data for lead molecule selection and protein optimization. This lack of consensus likely arises from
variations in how experiments are set up, which depends on surface display platform, sequencing
instrumentation, FACS instrumentation, the design of sort gates, sequencing depth, among other
factors. This technique provides a practical but powerful method compared to typical enrichment
ratio analysis through a simple binary classification from any sorting experiment. By defining a
ratio of frequencies based on any two gates (positive/negative sort, input/output sort, etc.) and
binarizing the ratios into ‘1’ and ‘0’, any directed evolution experiment can be transformed into a
dataset for downstream analysis. The transformation to binary labels is important because the next
component of the workflow is the use of linear machine learning models that can be used to predict
continuous properties from directed evolution data (linear discriminant analysis, LDA).?” The
noise in enrichment ratios is likely mitigated by binarization, and the information contained from
labels and sorted protein sequences facilitates the continuous transformation yielded by machine

learning models.
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To test our method, we curated data from five large protein engineering campaigns: the
fluorescent landscape of avGFP,?8 the directed evolution of a fluorescein-binding scFv,?! the RBD
affinity landscape towards SARS-COV-2 Spike protein,?>?® high-affinity and high-specificity
Fabs,?” and the design of highly specific peptides against B cell lymphoma 2 (Bcl-2) proteins
(Figure 3).2* Proteins in these data vary in complexity from short alpha helical peptides to large
globular proteins and in objective from protein fluorescence to multi-objective affinity and
specificity optimization. Furthermore, each of these datasets varied in both sorting strategy and
complexity: Makowski et al. sorted for the top ~5% of antibody variants while Adams et al.
quantified the binding of an entire family of fluorescein binders. While many of the projects relied
on complex sorting techniques to obtain quantitative protein labels, we simulated simple binary
sorting experiments by limiting the sequencing data (see Methods). We then evaluated the
predictive power of LDA models trained on these simple sorting experiments and observed both
impressive classification performance and strong prediction of continuous properties from LDA
binary projections. Interestingly, models trained on binary data were highly correlated with
continuous data (Spearman correlation coefficients ranged from 0.5-0.9). Furthermore, when we
compared the predictive power of LDA models trained on binary data to regression models trained
on continuous data, we observed no increase in rank order performance, suggesting that models
trained on simple sorting experiments yield comparable information to models trained on data
from experiments that generate hundreds to thousands of continuous measurements.?:2324

Next, we sought to explore how this workflow could be used for prospective analysis in
addition to retrospective analysis (Figure 4). We hypothesized that because the workflow is
agnostic to protein type and display platform, any directed evolution campaign with sufficient
sorting and sequencing data is a suitable environment for testing. As such, we chose to analyze
libraries of stapled peptides, an important class of protein formed by a covalent crosslinking of
two amino acids.*® Stapled peptides are being explored as therapeutics for previous ‘undruggable’
disease related proteins, owing to their location inside the cell and untargetable by small molecule
drugs.*® Stabilized Peptide Engineering by E. coli Display (SPEED) has previously been
demonstrated to accelerate the development of stapled peptides by displaying them on the surface
of bacteria, where libraries of peptides varying in sequence and staple location simultaneously can
be optimized for protein-peptide interactions.33 One additional challenge in the optimization of

stapled peptides is their reliance on non-natural amino acids, which generally results in the
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incompatibility of models trained on naturally occurring sequences.*’~>° We built on previous work
by generating a library of randomized stapled peptides towards two B cell lymphoma 2 proteins
(Bcl-2), an important class of apoptosis regulatory proteins that is responsible for cancer cells
immortality.>! We sorted this library against two important members: Mcl-1 and Bcl-x.,>? each of
which drives immortality in different diseases.> Selective targeting among Bcl-2 proteins is an
outstanding goal in drug targeting but is difficult due to the highly homologous nature of these
proteins.[ref] After several rounds of cell sorting and subsequent deep sequencing, we trained LDA
models on a subset of the binary sequencing data, evaluated the model on both the hold-out test
set, and generally observed high classification performance. We then measured the binding of 57
sequences from various rounds of sorting with low throughput flow cytometry experiments and
observed that many of the clones did not demonstrate favorable affinity or specificity properties
when sampling from these enriched libraries. However, we did observe a high degree of correlative
power between LDA projections and continuous peptide binding. Finally, these models were able
to identify molecules within the set of experimentally observed sequences that were highly specific
but may not have been selected for lead compounds due to their rarity.!* Several sequences along
the Pareto frontier, or the boundary of co-optimality where an increase in one property leads to a
decrease in the other, were translated into bacteria and assayed via flow cytometry. We also
characterized several clones that were bispecific, which could have applications in specific
diseases, but also serves as a test case if the model can interpolate function where it wasn’t directly
engineered via cell sorting. The specificities of these peptides agreed with model predictions,
indicating the model was able to identify functional and rare peptides from across the specificity
landscape.

Finally, we sought to use the interpretive nature of the linear machine learning models to
explore unseen sequence space and generate highly diverse and novel sequences (Figure 5). To
accomplish this task, we used integer linear programming and the coefficients from machine
learning to mathematically optimize peptide sequences beyond the properties that were
experimentally observed (from deep sequencing or flow cytometry).?* We hypothesized that such
an approach could recover functional peptides with consistency where sorting did not; while the
final round of Bcl-x. sorting yielded consistently high affinity and specificity variants (Figure
S13), the Mcl-1 sort had a small fraction of sequence variants with desired properties (Figure 5A).

We thus prioritized the design of Mcl-1 binders and identified a new peptide sequence that
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improved peptide properties beyond the experimentally measured Pareto front. Importantly, this
variant demonstrated specificity at least as potent as the most specific clone identified from
experimental work.

To test whether our sequence optimization workflow generalizes beyond small alpha
helices, we also applied ILP to the Makowski dataset (Figure S18). While antibodies have been
the subject of optimization using highly sophisticated models,>*>" we hypothesized that the high
performance from linear ML models would make it amenable to ILP optimization. Like Bcl-2
inhibitors, antibodies need to demonstrate properties beyond high affinity to be considered
therapeutic, and ILP is uniquely suited to tackle co-optimization.>® We observed that the set of
sequences predicted to be co-optimal by ILP are similar to their most optimal clones identified
experimentally. Furthermore, their lead antibody identified as co-optimal (EM1) was among the
set of antibodies predicted by ILP. Makowski and co-authors designed a comparatively small
library (~10°) for their experimentally measured sequences (~10%), resulting in a more confident
sampling of mutated amino acids experimentally. In contrast, the library of stapled peptides we
designed had a much larger ratio of design space (~10°) to experimentally measured sequences
(~10°), making this library suitable for extrapolation beyond experimentally measured space using
machine learning. For protein variant libraries where mutations are sufficiently independent
(minimal higher order epistatic interactions), a strategic subsampling of design space can be
advantageous for subsequent protein optimization with linear models®*® and help to de-risk
sorting campaigns, as exploration through the full design space can improve function beyond those
originally assayed.

The use of ML with NGS data from binary sorting campaigns has many advantages, but
the approach also has a few limitations. It is important to note that LDA projections are correlated
with, but not predictive of, continuous measurements. Therefore, LDA-informed properties may
not match 1:1 with continuous properties. However, because many protein engineering campaigns
do not seek to quantify the exact magnitude of fitness, but rather seek to maximize or minimize a
property or trade-off between properties, this correlation can still provide direct insight into protein
fitness and accelerate optimization efforts. We also found that ILP optimization was sensitive to
model weights as evidenced by the initial failure of generating highly specific Bcl-x. peptides.
Two approaches to address this are incorporating uncertainty into model predictions that could

yield more confident extrapolation into unseen sequence space,* or selecting a range of sequences
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from multiple modes of optimization simultaneously.?* Despite identifying peptides with high
specificity towards Mcl-1 and Bcl-x., more work is needed to yield effective peptide therapeutics:
it is equally important to show these peptides do not bind the other 3 Bcl-2 members.>® Lacking
knowledge of the sequence space of high affinity binders, we were unable to explore this aspect
of peptide design; future work includes designing stapled peptides against the entire Bcl-2 family,
which play additional roles in off-target toxicity and are responsible for immortality in other
cancers. Because this approach is amenable to higher dimension multi-objective optimization, we
expect that optimizing specificity for five proteins with this approach is possible.

Despite these limitations, the ability to score sequences beyond those observed
experimentally is important because drug-like properties not easily assayable by high-throughput
techniques (immunogenicity, stability, cell permeability, etc.) are often highly dependent on
sequence and may need further optimization.®®%1-%3 For example, minimization of positive charge
in CDR regions of antibodies has been shown to minimize off-target binding,*> while selective
placement of hydrophobicity and positive charge has been shown to improve cell penetration for
stapled peptides.52®* This combined machine learning and optimization approach provides a
powerful method to identify highly functional protein variants if experimentally measured clones
did not meet fitness criteria or further sequence optimization is necessary.

In summary, the data processing and modeling workflow designed in this work is a
versatile tool towards the improved analysis and identification of protein variants across many
domains of protein engineering by utilizing machine learning and NGS data to predict

continuous properties from binary sorting data.
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