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Abstract 

Proteins are a diverse class of biomolecules responsible for wide-ranging cellular functions, from 

catalyzing reactions and recognizing pathogens to forming dynamic cellular structure. The ability 

to evolve proteins rapidly and inexpensively towards improved properties is a common objective 

for protein engineers. Powerful high-throughput methods like fluorescent activated cell sorting 

(FACS) and next-generation sequencing (NGS) have dramatically improved directed evolution 

experiments. However, it is unclear how to best leverage this data to characterize protein fitness 

landscapes more completely and identify lead candidates. In this work, we develop a simple yet 

powerful framework to improve protein optimization by predicting continuous protein properties 

from simple directed evolution experiments using interpretable machine learning. Evaluated 

across five diverse protein engineering tasks, continuous properties are consistently predicted from 

readily available deep sequencing data. To prospectively test the utility of this approach, we 

generated a library of stapled peptides and applied the framework to predict and optimize both 

affinity and specificity. We coupled integer linear programming with the interpretable machine 

learning model coefficients to identify new variants from experimentally unseen sequence space 

that have desired properties. This approach represents a versatile tool for improved analysis and 

identification of protein variants across many domains of protein engineering. 
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Introduction 

A longstanding goal of biochemistry has been to map the sequence of a protein to its 

structure and function.1 However, the complex biophysics that govern the protein fitness 

landscape, including how a protein folds and how its structure influences function, make the 

coupling of sequence to function an extremely difficult task. Protein engineers thus often focus on 

a much smaller subdomain of the protein fitness landscape, using the confined resources of 

experimental protein science to explore variants close to a known functional protein with the goal 

of incrementally improving function. A common and extremely powerful approach is directed 

evolution, where a protein is encoded by DNA, expressed by cells, and assayed by magnetic or 

fluorescent activated cell sorting (MACS or FACS) and, more recently, next generation 

sequencing (NGS) to identify variants with improved fitness. While these techniques represent 

powerful tools in the protein engineering arsenal, it is unclear how to best leverage information 

from deep sequencing towards the optimization of protein variants. A method capable of 

generating both fitness estimates from directed evolution experiments and predictions of sequences 

with higher activity would greatly expand the power and efficiency of directed evolution 

experiments. 

 The combination of directed evolution and next generation sequencing (NGS) has enabled 

protein engineers to rapidly evaluate millions to billions of protein variants in a highly focused 

manner. With maintenance of the genotype-phenotype connection, any technique that manipulates 

DNA in a high-throughput manner can be applied to design focused protein variant libraries and 

assay protein function.2,3 Techniques like mRNA display and phage display can evaluate the 

largest libraries, although their small size precludes them from sorting approaches such as FACS.4 

Cell surface display techniques, which use bacteria or yeast, enable facile measurement of the 

interaction between protein variants with soluble proteins which can be used for assaying binding 

affinity in high-throughput sorting and sequencing technologies.5 Coupling FACS with cell surface 

display technologies allows for the selection of rare protein variants among a large library with 

extreme selectivity.6,7 These techniques have enabled a wide range of protein engineering 

campaigns, from affinity maturation of protein-protein interactions to highly enantioselective 

enzymes.8,9 However, one challenge with these large libraries is how to identify the best lead 

molecules from the hundreds to thousands of observed sequences in the final sorted population. 

Traditional approaches for lead molecule identification select variants according to their 
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abundance in the enriched library under the assumption that higher enrichment is indicative of 

higher function.10–12 One downside to this approach is that optimal rare variants are excluded from 

selection and more complex descriptions of how mutations contribute to protein function are 

difficult to ascertain.11 Application of NGS to the output pool of a protein variant sort improves 

the accuracy of clone frequency, but frequency rarely correlates with protein properties directly.13–

15 These challenges arise from sources of error that are difficult to eliminate: variation in cell-to-

cell growth, PCR/cloning biases, sequencing errors, and FACS instrument noise.16,17 With 

additional sequencing of the input library, enrichment ratios can be calculated, which improves the 

accuracy of protein property prediction.18,19 Despite these improvements, there is still little 

consensus on the best experimental design and analysis of these directed evolution experiments. 

Several approaches have been proposed to mitigate these sources of error and enable the 

prediction of quantitative protein properties from high-throughput sorting experiments. Deep 

mutational scanning (DMS) measures the enrichment of many variants. However, several 

challenges exist; their accuracy in resolving affinity is often limited to a narrow linear region 

(~10X dynamic range), the results are sensitive to the sorting conditions, stability, and expression 

effects, and the outcomes can differ from true quantitative measurements of binding affinity 

(equilibrium dissociation constants or KD’s).20,21 Sort-seq aims to address noise from sorting by 

using multiple bins across the entire fluorescent channel, followed by deep sequencing, to infer 

the distribution of each sequence in fluorescent space.22 These techniques, while often successful, 

require more sorting time and 8-12 fold increased deep sequencing throughput and still have a 

narrow range of resolution. Several more sophisticated sorting techniques address these issues: 

SORTCERY creates a rank ordering of affinities by sorting cells according to their binding and 

expression at a single concentration;23 amped SORTCERY further improves this technique by 

converting rank order to free energy changes by adding titration standards;24 TiteSeq sorts protein 

variants at multiple ligand concentrations and fits the affinity to the fraction bound.21 These 

methods leverage additional sorting and sequencing to improve the predicted outcomes. In this 

work, we seek to utilize deep sequencing with interpretable machine learning approaches to 

determine if we can predict continuous protein properties (like affinity) from binary sorting data 

(positive versus negative sorting). 

Methods 

Curation of NGS Data for Validation  
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Five datasets were used to test the simple method of using binary labels to predict continuous 

properties. The datasets and brief descriptions are given below. 

1. Adams et al. 201621 

NGS data was downloaded from their GitHub repository:   

https://github.com/jbkinney/16_titeseq. The read counts and CDR1H and CDR3H sequences 

for each clone were extracted and aligned using in-house python scripts. Read counts were 

converted to frequencies. 

2. Starr et al. 2022 and Greaney et al. 202125,26 

NGS data was downloaded from their GitHub repository:   

https://github.com/jbloomlab/SARS-CoV-2-RBD_DMS_variants. The data for the Delta 

mutation is stored in a different repository: https://github.com/jbloomlab/SARS-CoV-2-

RBD_Delta. Due to limits in Illumina paired end reading length, each sequence was given 

a unique molecular barcode, which was sequenced in high depth, but each full-length 

sequence was sequenced with its unique barcode separately. The sequences and their 

TiteSeq profiles were associated with their corresponding barcodes and read counts were 

converted to frequencies. In the current method, sequences with more than one mutation 

were not discarded. 

3. Makowski et al. 202227 

Processed data was downloaded from their GitHub repository: https://github.com/Tessier-

Lab-UMich/Emi_Pareto_Opt_ML. Raw data was available from their repository. 

4. Sarkisyan et al. 201628 

Like Starr et al. 2022, the GFP sequence is too long for high-depth Illumina sequencing, 

and therefore the authors gave each sequence a unique molecular barcode. We downloaded 

the accurate full length protein sequences, their matching unique barcodes, and the high-

depth sequencing of Sort-seq data from their repository:   

https://figshare.com/articles/dataset/Local_fitness_landscape_of_the_green_fluorescent_

protein/3102154. The read accuracy on the barcodes was low and the authors used a 

Levenshtein distance of <= 1 to connect barcodes that were close but not identical to the 

full protein sequence. We used the Levenshtein module with in-house python scripts to 

cluster sequences to their barcodes, which were available at 

https://pypi.org/project/python-Levenshtein/. After clustering, sequences and their 
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barcodes were merged with their Sort-Seq distributions like Starr et al. Read counts were 

converted to frequencies. 

5. Jenson et al. 201824 

NGS data was obtained from their GitHub repository:  

https://github.com/KeatingLab/sortcery_design. The peptides’ short lengths permitted 

high depth deep sequencing and thus counts were directly converted to frequencies without 

further preprocessing. 

 

Binarization of FACS/NGS Data 

 The variety of factors that influence the design of an experiment makes it challenging to 

generalize a sorting and sequencing workflow for any given protein engineering campaign. Each 

of these projects were analyzed by a different group, using different cell sorters, expression 

platforms, sequencing instruments, and protein types among other parameters (see Table S1 for 

dataset property summaries). Thus, controlling each of those parameters in our data processing 

workflow was an important consideration towards the application of this approach to existing 

datasets and new targets alike. Many of the experiments use sophisticated sorting techniques to 

infer quantitative protein properties. We simulated a simple binary sort experiment by truncating 

the dataset such that it only includes the top or bottom 20% of sorted sequences (or as close as 

possible). This subsample of sequencing data approximates a simple sorting campaign from these 

quantitative sorting techniques. For example, Sarkisyan et al. contains sequencing data of GFP 

variants that were sorted into 8 bins; to simulate a simple binary sort, we aggregated the top two 

bins as positive and the bottom two bins as negative. For TiteSeq experiments (Starr 2022, Greaney 

2021, and Adams 2016) we only included data from sorts that used ligand concentrations near the 

average KD of the library (10-9, 10-9 , and 10-8 M respectively). Because the KD of a library can be 

readily obtained from low-throughput flow cytometry experiments, sorting at the KD of the library 

is a feasible approach to yield the largest separation between high and low affinity variants.17 This 

was 10-8 M  for  the COVID datasets, this was 10-8 M and 10-9 M, respectively. For the Makowski 

dataset, data was provided as a positive and negative dataset with varying cutoffs for each 

selection.  

Machine Learning Method 
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 In all cases, in-house python scripts were used to perform the data preparation and 

modeling on each of the datasets. Scikit-learn (https://scikit-learn.org/stable/) was used for linear 

discriminant analysis (LDA), one-hot encoding, scaling label vectors, and other pre-processing 

steps. Pandas (https://pandas.pydata.org/) and NumPy (https://numpy.org/) were used to handle 

sequencing and numerical data. PyTorch (https://pytorch.org/) was used to train neural network 

models. 

First, sequences were one-hot encoded, eliminating positions that were not randomized in 

the study or appeared with very low abundance. Then, we calculated the frequencies of each 

sequence for the high- and low- protein property, and a multi-sequence alignment (MSA) was 

performed to ensure every vector was the same length and columns corresponded to the correct 

residues. The data was split into positive and negative groups by computing the ratio of high- and 

low- frequency of each clone and selecting a percentile cutoff. Initial percentiles were chosen as 

the top or bottom 20% of sequences, setting any sequences that contained zero frequency in the 

low property pool to the maximum ratio observed and any sequences that contained zero frequency 

in the high property pool to the minimum ratio observed. Positive (‘1’) and negative (‘0’) labels 

were assigned accordingly. The one-hot encoded protein sequences and their labels were then split 

into an 80:20 training:test split. The test set was held aside until all analyses were complete and 

used to validate the model training process. In later analyses, to explore the hyperparameter space 

of these cutoff parameters, we tested all combinations of the read count, replicate count, and ratio 

percentile and measured the change in modeling performance. Sensitivity to training:test splitting 

and the ratio of positive negative labels was tested by performing five-fold cross validation using 

SciKit Learn’s ShuffleSplit function. 

We selected linear discriminant analysis for several reasons. First, this method has 

previously been shown to predict continuous properties from binary sorting data.27 Next, 

hyperparameter optimization for this model was straightforward, as the Sci-Kit Learn 

implementation of LDA has very few parameters, including the solver (‘svd’ was the only one to 

converge consistently), n_components (which is fixed to 1 for projection to a single dimension to 

correlate with protein properties), and tol (which did not change the outcome). Another benefit of 

using LDA is its simplicity; the linear nature of the model allows for the direct interpretation of 

how certain residues contribute to function. While we also evaluated several other models that can 

create an internal continuous representation for classification (such as support vector classifiers, 
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with the option of using different kernels), we found that LDA models trained much faster. The 

transform method was used to project data into the 1-dimensional LDA projection after training. 

Because LDA is a classification model and does not have a regression analog, we used ridge 

regression, a modified version of linear regression that penalizes large weights, to compare LDA 

projections to models trained on continuous data. Furthermore, ridge regression did not result in 

extreme overfitting that was observed by regular linear regression (data not shown). Finally, ridge 

regression has been shown to be a powerful modeling technique for protein engineering tasks.29  

Neural network models were used to evaluate whether non-linear models would capture 

additional useful information that linear models are unable of modeling, as proposed previously.27 

Standard fully connected, feed forward networks were used with dropout p = 0.5 as shown to be 

effective in the literature.30 The hidden size (32-256) and number of layers (1-3) did not 

dramatically affect the results and we ultimately chose the midpoint for both, 128 and 2 

respectively (data not shown). We used 700 epochs and a batch size of 32 was for all datasets. 

Binary Cross Categorical Entropy Loss was used as the loss function, and Stochastic Gradient 

Descent optimizer with a learning rate of 0.01 was used for all datasets. Training was done on a 

Nvidia Tesla V100 and typically took between 5 minutes and 2 hours depending on the size and 

complexity of the dataset. 

 

Stapled peptide cell sorting, sequencing, and flow cytometry 

 Experimental stapled peptide libraries targeting B cell lymphoma 2 (Bcl-2) proteins were 

used to evaluate the computational methods on novel datasets. These libraries were sorted and 

sequenced as described previously. (Case 2023, manuscript in progress) In brief, a computational 

library of BIM mutants (a non-specific anti-apoptotic peptide) was designed and transformed into 

bacteria that displays stapled peptides (see Table S2 for mutagenesis codons, Table S3 for sampled 

amino acids, and Table S4 for library primers).31,32 This library was sorted using a combination of 

MACS and FACS as follows: one round of expression MACS, two rounds of affinity MACS, two 

rounds of affinity FACS, and two rounds of specificity FACS. Two of such libraries were sorted 

in parallel: one towards Bcl-xL and another towards Mcl-1. These libraries were deep sequenced 

using Illumina NovaSeq S4, demultiplexed, merged using NGMerge, and analyzed using in-house 

python scripts (see Table S5 for NGS primers).33 Each peptide sequence was identified by aligning 

the DNA with the scaffold eCPX protein and then translating the peptides in the corresponding 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2023. ; https://doi.org/10.1101/2023.06.09.544229doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.09.544229
http://creativecommons.org/licenses/by-nd/4.0/


 9 

open reading frame. Peptide sequences and their frequencies were aligned across all rounds of 

sorting, and sequences that had mutations not specified by the original library design were removed 

(~10% of all sequences). Sequences from the four rounds of FACS were denoted as ‘hits’ and 

sequences from the expression sort were denoted as ‘not hits’ (see Table S1 for dataset summary). 

Then, the ratio of each round of FACS to the expression was computed and fed into the machine 

learning pipeline. LDA models were trained identically to the other datasets. 

 A smaller number of peptide sequences were expressed on the surface of bacteria and 

measured in low-throughput flow cytometry experiments. To evaluate whether LDA projections 

were predictive of continuous properties, we expressed 57 stapled peptides on the surface of 

bacteria from various rounds of sorting (Mcl-1 FACS 2, 3, or 4, and Bcl-xL FACS 2 or 4) to capture 

a wider distribution of specificities: peptides from later in the rounds of sorting should have more 

specificity while those from earlier rounds should be less specific if sorting enriched towards 

higher performing sequences. We then measured their binding at the approximate KD of the wild 

type sequence in triplicate (1nM and 10nM for Mcl-1 and Bcl-xL respectively). Fraction bound 

was calculated by normalizing to expression and dividing by a saturated binder (BIM-p5 at 

250nM).32 LDA projections were calculated and compared to continuous values identically to the 

other datasets.  

 

SORTCERY 

To get continuous estimates of binding properties from cell sorting, peptides from the final 

round of FACS for both Mcl-1 and Bcl-xL were evaluated using SORTCERY. Peptides were 

incubated with either Mcl-1 or Bcl-xL at 1nM and sorted into twelve bins following the protocol 

from Reich et al.23 Briefly, cells labeled with target Bcl-2 protein and anti-HA display tag were 

sorted into twelve bins along the ‘axis of affinity’, the diagonal gates that resolves the fraction 

bound. To compare the SORTCERY value with those measured from binary sorting, we computed 

the gate score of each sequence as described in the original work.23 Each of these gates were 

collected individually and processed for deep sequencing as described previously. The deep 

sequencing data from these experiments was processed identically to the stapled peptide libraries 

as above. 

 

Sequence Optimization via Integer Linear Programming 
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To optimize protein sequences, we applied integer linear programming (ILP), an approach 

that solves an objective problem given discrete input variables and constraints. Compared to other 

techniques that maximize an objective given an input, ILP scales more efficiently with a large 

number of samples and does not rely on iterative predict and test loops that require additional 

experimental resources.34–36 Furthermore, ILP is directly amenable to multi-objective optimization 

through the addition of inequality requirements.24 We set up this problem using the PuLP python 

module.37 First, we defined the objective as maximizing the dot product of the model coefficient 

vector and the positions and amino acid constraints as defined by the library design. This objective 

is the maximization of the confidence of binding for a given sequence. Next, we constrained the 

optimization by only allowing one amino acid at each position, requiring that each peptide had two 

azidohomoalanine residues (responsible for peptide stapling), and that the two stapled residues 

were at a distance as specified by the library design (i,i+7). Finally, we formulated the problem as 

a multi-objective problem by adding the additional constraint that the dot product of the off-target 

coefficients and peptide sequence was in the non-binding regime.

Results 

Overview of Method  

Despite significant efforts to gather quantitative data from high throughput sorting, most 

directed evolution campaigns rely on basic metrics of protein fitness. We utilized a simple 

workflow to extract continuous protein properties from NGS datasets while keeping the 

experimental design simple and affordable (Figure 1). To accomplish this task, we generated 

binary labels from enrichment ratios, trained machine learning models using these binary labels to 

infer continuous protein properties,27 and optimized protein sequence and function beyond 

experimentally sampled space into unseen sequence space.24 We hypothesized that continuous 

protein properties can be obtained from simple sorting and sequencing analyses for three primary 

reasons. First, because cell sorting is a stochastic process, cells sorted into discrete bins are sampled 

from an underlying continuous distribution. Thus, cells sorted in a binary manner may allow 

inference of this distribution.38 Second, biased sampling towards the most and least functional 

variants may allow models to ‘interpolate’ function of intermediate fitness. Finally, sampling many 

epistatically interacting motifs may allow inference between them.39 We also hypothesized this 

approach would work across multiple protein engineering objectives, including affinity 

maturation, fluorescence, deep mutational scanning, and specificity.  
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To validate the approach, we aggregated data from multiple protein engineering campaigns that 

fulfilled two criteria: 1. they had many data points of multi-mutant proteins from a sorting 

campaign and 2. they had measured many continuous protein properties among these variants. 

These datasets were the fitness landscape of GFP,28 the directed evolution of a fluorescein-binding 

scFv,21 and the fitness landscape of SARS-COV-2 Spike protein .25,26 Because the co-optimization 

of multiple properties is often needed, we also gathered datasets that design high-affinity and high-

specificity monoclonal antibodies27 and highly specific peptides between three B cell lymphoma 

2 (Bcl-2) proteins.24  

 

 

Figure 1: Overview of the protein engineering workflow. A library of protein variants is expressed on the surface of cells and 

sorted according to its fluorescent property (binding fluorescent labeled molecules, intrinsic fluorescence, etc.). Sorted cells are 

deep sequenced, and using machine learning, continuous scores for each mutation and the overall sequence are calculated. 

Finally, these data are used to inform protein fitness landscapes and optimization of protein properties in engineering efforts. 

Data processing pipeline for varying protein variant libraries and sorting schemes 
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Figure 2: Deep sequencing, data pre-processing, and machine learning overview. The most and least functional protein variants 

from the binary sort are sequenced (A) and the ratio of sequence reads in the positive versus negative gate is calculated (B). Binary 

labels are assigned to each sequence according to its ratio (C); the label thresholds are easily modified depending on the library 

construction, sorting strategy, and sequencing data quality. Protein sequences are one hot encoded for machine interpretability (D) 

before being used to train a Linear Discriminant Analysis (LDA) model (E), which is evaluated on a hold-out test set (F). Then to 

calibrate the LDA model, continuous protein properties are obtained either from a quantitative sort (SORTCERY, Sort-Seq, or 

TiteSeq) or from low throughput measurements (flow cytometry titrations, ELISA, etc.) (G,H). Finally, the projections from the 

LDA model are used to predict continuous protein properties (I). 

The modular data processing and machine learning pipeline to analyze multiple protein 

variant libraries consists of multiple steps (Figure 2). First, a library of protein variants is sorted, 

and the ratio of the positive to negative gate frequencies is calculated for all sequences based on 
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the deep sequencing data. If a sequence found in the positive gate but was unobserved in the 

negative gate, the ratio was set to the maximum observed; conversely, if a sequence found in the 

negative gate was unobserved in the positive gate, the ratio was set to 0. We hypothesized this 

ratio scheme balances the information gained from enrichment ratios while still including clones 

that were overwhelmingly enriched or depleted. Labels (‘1’ for high performing variants and ‘0’ 

for low performing variants) were assigned by determining a cutoff based on the average ratio 

(percentile ≥0.8 and ≤0.2 respectively) across how many replicates they appeared in (≥2). We 

hypothesized that while splitting the positive and negative labels at the 50th percentile would 

increase the data size, sorting noise around the midpoint would confound information gained from 

binary ratios (Figures S1-5). We also hypothesized that removing sequences with 1 replicate would 

further reduce noise from sorting. Initial estimates of these parameters were chosen to balance the 

size of the dataset, the strictness of inclusion, and the confidence of the sequencing data. Having 

easily modifiable parameters for label assignment serves as both a tool for sequencing quality 

processing and a powerful hyperparameter in the subsequent machine learning steps (see Figures 

S1-5 for hyperparameter effect on dataset size). 

 Armed with a dataset of sequences and binary function labels, a linear discriminant analysis 

(LDA) machine learning model was trained because it fulfilled two criteria: it could perform 

classification of sequence with its function label, and it had an internal continuous measurement 

that could be used to correlate with continuous properties. Because LDA models project high 

dimensional sequence data to maximize class separation, the final projection is a continuous 

representation that has been previously shown to correlate with continuous properties.27 The model 

was trained and tested by splitting the sequencing data into train and test sets randomly (80:20 

train:test). To evaluate whether the weights learned by the LDA model correlated to meaningful 

continuous properties, a subset of the sequences were assayed for their property from a lower 

throughput but more accurate technique. For all but the Makowski dataset, this was a quantitative 

cell sorting experiment, and otherwise a low throughput measurement of affinity or specificity via 

flow cytometry with individual sequences. We then predicted the continuous properties of proteins 

by comparing the projections from LDA with actual continuous measurements. 

 

Binary labels predict protein properties with equal correlation power 
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Figure 3: Predictions from models trained on binary data are highly correlated with continuous protein properties and 

equally powerful as models trained on continuous data. Evaluated on the Sarkisyan data, LDA models trained on binary data 

(A, left)  or Ridge models trained on continuous data (A, right) are correlated with fluorescence. Across five protein engineering 

datasets, models trained on binary data are equally predictive of continuous properties (B). 
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To evaluate whether the LDA models trained on binary sorting data inferred meaningful 

features of the protein properties, we curated five datasets as described in the methods (see Table 

S1 for dataset summaries). Using data from each of the these, we compared the measured 

continuous properties of protein variants to their predicted values from LDA models trained on 

binary sorting data, as shown in Figure 3A (left) for the Sarkisyan et al. dataset.  We next sought 

to determine the performance of a comparable model trained on continuous data. Continuous data 

is more expensive and/or complicated to obtain but presumably is more information rich. 

Therefore, we hypothesized models trained on continuous data would have stronger correlative 

power. To evaluate this hypothesis, we trained Ridge regression models, which have been 

previously shown to be powerful linear models that are not prone to over-fitting.29 We then 

compared the ability for both LDA and Ridge models to predict continuous properties (Figure 3A, 

right). Surprisingly, for the Sarkisyan 2016 dataset, the LDA models performed similarly to the 

Ridge regression models as evidenced by a similar Spearman’s  (0.846 for the LDA model and 

0.855 for the Ridge regression model). 

We then tested whether the other four datasets had similar performance. First, we observed 

that LDA models achieved high classification performance on the held-out test set for all datasets 

(see Table S6 for accuracy, precision, recall and F1 score) and were not overfit as evidenced by 

similar performance on the training and test sets. Next, we observed that LDA projections were 

highly correlated with continuous measurements, as evidenced by Spearman’s  between 0.5 and 

0.85 (Figure 3B, additionally see Figures S1-5 for hyperparameter effect on performance). To get 

an estimate of model sensitivity to dataset splitting, we performed 5-fold cross validation (see 

Methods) on each training dataset (Figure S6).  Strikingly, for each of the datasets, we observed 

no significant difference in the correlation (significance was measured as a t-test on the unbounded 

Z transform of the Spearman ).40 Encouraged by the success of correlation, we also sought to 

explain the magnitude of correlation, which was consistently high but had two outliers. Adams 

2016 dataset had a significantly lower predictive value of ~0.5. We suspect this decrease in 

performance has two sources: noise in the dataset due to an abundance of unresolvable low affinity 

variants (see Figure S8 for correlation plots for each dataset), and the lack of discrimination 

between binding affinity and expression level in the experimental sorting design, which can 

attribute higher affinity to sequences with higher display and vice versa.17 The Makowski 2022 
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specificity dataset also had lower than average performance; we hypothesize this model suffered 

due to the difficult nature of measuring antibody off-target binding.27,41,42  

To test whether linear models were limiting the predictive capabilities of continuous 

properties, we also tested fully connected, feed forward neural networks, which have been shown 

to similarly identify continuous values from binary data.27 While non-linear models may capture 

higher order epistatic behavior, these models generally performed as strongly as LDA models 

(Figure S7). Over this wide range of protein engineering objectives, this approach consistently 

predicts continuous properties and has comparable accuracy to models trained on state-of-the-art 

sequencing and sorting data. 
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Prediction of stapled peptide affinity and specificity from binary labels 

Figure 4: Prospective analysis of B cell lymphoma 2 (Bcl-2) pro-apoptotic stapled peptides via bacterial surface display, 

deep sequencing, and machine learning. A combinatorial mutagenesis library of stapled BIM variants was designed including  

staple locations (left) and sequence (red positions fixed, blue positions variable, right) (A), transformed into bacteria (B), sorted 

using a combination of magnetic activated cell sorting (MACS) (C) and fluorescent activated cell sorting (FACS) towards Bcl-xL 

and Mcl-1 (two members of the Bcl-2 family) in parallel. The library was next generation sequenced (NGS) to calculate frequencies 

of each unique sequence along the sorting progression (D). Finally, a LDA model was trained on the binary labels from NGS and 

used to predict the continuous binding of 57 peptide variants, which were selected randomly from FACS 2-4 for both Mcl-1 (E) 

and Bcl-xL (F). 

 To apply this method prospectively to a new dataset following the promising retrospective 

analysis, we chose B cell lymphoma 2 (Bcl-2) stapled peptide antagonists as our design case. In 

addition to requiring non-natural amino acids, making it incompatible with modeling approaches 
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based on naturally evolved proteins, these peptides are well suited for this approach because we 

can evaluate not just a single property but the tradeoff between affinity and specificity. We 

generated a dataset of B cell lymphoma 2 (Bcl-2) stapled peptide variants that were sorted over 

several rounds (Figure 4A) using the bacterial cell surface display.31,32 This library was designed 

based on naturally occurring peptide sequences, SPOT arrays of BIM mutants, and previously 

designed high-affinity or specificity BH3 variants (Case 2023, manuscript in progress) (see Table 

S2-4)24,43,44 Because bacterial surface display libraries are highly limited by size compared to the 

theoretical diversity of BH3 peptides (~1030), mutations were prioritized that were predicted to 

govern specificity between Mcl-1 and Bcl-xL. The final library of ~109 was transformed into 

bacteria (Figure 4B) and sorted against either Mcl-1 or Bcl-xL with a combination of three 

magnetic and four fluorescent activated cell sorting (MACS/FACS) (Figure 4C). The magnetic 

cell sorting was performed until the library was sufficiently reduced in diversity for analysis with 

FACS, which offers more precise control over property selection. We deep sequenced these pools 

to isolate highly active peptides (Figure 4D), which enabled an understanding of sequence trends 

that governed high affinity and specificity (see Figure S9 for sequence trends) and provided a 

source of data to train and evaluate the capabilities of LDA models to predict peptide function 

(Figure 4E-F). We observed high correlation between for both Mcl-1 and Bcl-xL LDA models 

(Spearman’s  of 0.893 for Mcl-1 and 0.708 for Bcl-xL). 

To generate training data, we aggregated all four rounds of FACS and the expression 

positive MACS sorts, hypothesizing that would provide additional confidence for ‘hits’ and 

expressing but non-binding sequences. The ratio of these counts was computed as described above 

and used to generate labels for LDA training and testing (see Figure S9 for logoplots of negative 

and positive sequences). First, we observed that LDA models had high classification performance 

and were not overfit (see Table S7 for performance statistics and Figure S10 for hyperparameter 

effect). We then tested the performance of LDA to predict continuous properties by randomly 

sampling 57 sequences among the FACS sorts, measuring their continuous binding via flow 

cytometry, and measuring the correlation between predicted LDA binding and the sequences’ 

actual binding (Figure 4E-F) (see Figure S11 for sequences and data). We observed a strong 

correlative power between LDA projections and continuous measurements of peptide affinity: 

spearman ρ of ~0.7 and ~0.8 for Mcl-1 and Bcl-xL respectively (p < 0.00001). Finally, we sorted 

the final round of sorted cells via SORTCERY for a comparison with high-throughput, semi-
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quantitative measurements of binding affinity. Surprisingly, the binary sorting data coupled with 

an LDA model trained with NGS data had better performance than selecting clones from the final 

2 rounds of sorting for Mcl-1 specificity (Figure S12), suggesting that the information contained 

from simple sorting experiments provides a powerful method to predict continuous protein 

properties. 

 

Optimization of stapled peptides using machine learning and integer linear programming

 

Figure 5: Extrapolation of interpretable ML model weights to generate novel, highly specific Mcl-1 inhibitors. Of 20 

sequences randomly selected from the final two rounds of sorting towards Mcl-1, many did not display high levels of specificity 

towards Mcl-1 when measured in low throughput binding assays (A). We hypothesized the weights from linear discriminant 

analysis (LDA) machine learning could be used to design peptides with high affinity to Mcl-1 (B) or Bcl-xL (C). To optimize the 

sequences, we applied integer linear programming (ILP) (C) to maximize the likelihood a peptide binds Mcl-1 while minimizing 

its binding to Bcl-xL (D). ILP identified numerous sequences that were predicted to be highly specific (E) that were not among the 
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105 sequences assayed experimentally. Two variants were randomly chosen among this set and were found to be as specific as the 

best clones identified from sorting (F). 

 While directed evolution campaigns may yield the desired properties after sorting, 

sequencing, and modeling, it is also possible that further optimization is necessary. In such cases, 

protein engineers rely on a combination of manual and automated approaches to further optimize 

lead candidates.24,34–36 We sought to explore how our modeling workflow could not only score 

entire sequences, but how the contributions of individual amino acids contributed, potentially 

enabling the generation of new, unsampled sequences. Because linear models have associated 

weights for each amino acid and sequence position, the same scoring tools to find the best 

measured clones can also be used to score sequences that have never been evaluated 

experimentally. We therefore applied an optimization approach that can optimize discrete inputs 

for continuous properties and explore unseen sequence space: integer linear programming (ILP) 

(Figure 5),  which has previously been applied to design specific linear peptides towards the Bcl-

2 proteins.24 To establish the baseline of specificity from sorting, we further characterized variants 

from the final round of sorting that were predicted to be specific for Bcl-xL and Mcl-1. 

Interestingly, most peptides from the Bcl-xL library were highly specific (Figure S13), while fewer 

from Mcl-1 performed favorably (~80% had significant off-target binding, Figure 5A). We 

hypothesized we could recover specific Mcl-1 clones by optimizing sequences from sorting and 

sequencing data that otherwise yielded mixed results. We solved the ILP model three times, once 

for Bcl-xL specific peptides, once for Mcl-1 specific peptides, and once more for bispecific 

peptides (see Methods for more details). Out of many sequences predicted to have high activity 

for Mcl-1 (Figure S14), we randomly selected XXX sequences for low-throughput flow cytometry 

analysis (Table S8). Strikingly, we observed that the optimized Mcl-1 sequences displayed similar 

or improved specificity compared to the highest activity clones assayed experimentally.  

Sequences initially identified by minimizing Mcl-1 binding while maximizing Bcl-xL 

binding resulted in peptides that did not bind either Mcl-1 or Bcl-xL (Figure S15 and Table S8); it 

has been previously shown that subtle differences in ILP set up can affect the efficiency of 

outcome.24 We suspect this failure was due to the model being overly sensitive to mutation at Asp 

at position 4b, which was the only mutation consistently sampled that had a high score for both 

Bcl-xL and Mcl-1 but was slightly higher for Mcl-1. To address this issue, we maximized Bcl-xL 

binding then chose the sequences which had the lowest Mcl-1 scores, which preserved Bcl-xL 

binding and resulted in highly specific peptides (Table S9 and Figure S16). While our sorting 
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campaign was originally designed to identify highly specific peptides, we also pursued bispecific 

peptides, which serve as proof that the model can interpolate in sequence-function space but could 

also serve as therapeutics in diseases driven by both Bcl-2 proteins. Sequences were identified by 

maximizing both Mcl-1 and Bcl-xL binding, yielding peptides with relatively high affinity for both 

targets that had significant sequence difference from wild type (BIM) (Figure S17). 

 To show generalizability of ILP to generate functional protein variants, we additionally set 

up the optimization problem using the Makowski dataset (Figure S18). We defined the objective 

of this optimization as the minimization of off-target binding, subject to the maintenance of 

affinity. We solved the model and compared the highest functional sequences according to our 

predictions to those described in the original manuscript. We found that the predicted sequences 

were extremely close to those identified as co-optimal by Makowski and co-authors.

Discussion 

 In this work, we developed a method to utilize NGS data from simple binary sorting results 

with machine learning to infer continuous protein properties. These results can also be utilized to 

extend the sequence space beyond sequences directly observed in the library (Figure 1).  The 

workflow consists of two important parts: the label assignment process from deep sequencing data, 

and the use of linear machine learning models to predict continuous protein properties from binary 

data (Figure 2). Currently, there is a lack of consensus on how to best analyze directed evolution 

data for lead molecule selection and protein optimization. This lack of consensus likely arises from 

variations in how experiments are set up, which depends on surface display platform, sequencing 

instrumentation, FACS instrumentation, the design of sort gates, sequencing depth, among other 

factors. This technique provides a practical but powerful method compared to typical enrichment 

ratio analysis through a simple binary classification from any sorting experiment. By defining a 

ratio of frequencies based on any two gates (positive/negative sort, input/output sort, etc.) and 

binarizing the ratios into ‘1’ and ‘0’, any directed evolution experiment can be transformed into a 

dataset for downstream analysis. The transformation to binary labels is important because the next 

component of the workflow is the use of linear machine learning models that can be used to predict 

continuous properties from directed evolution data (linear discriminant analysis, LDA).27 The 

noise in enrichment ratios is likely mitigated by binarization, and the information contained from 

labels and sorted protein sequences facilitates the continuous transformation yielded by machine 

learning models.  
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 To test our method, we curated data from five large protein engineering campaigns: the 

fluorescent landscape of avGFP,28 the directed evolution of a fluorescein-binding scFv,21 the RBD 

affinity  landscape towards SARS-COV-2 Spike protein,25,26 high-affinity and high-specificity 

Fabs,27 and the design of highly specific peptides against B cell lymphoma 2 (Bcl-2) proteins 

(Figure 3).24 Proteins in these data vary in complexity from short alpha helical peptides to large 

globular proteins and in objective from protein fluorescence to multi-objective affinity and 

specificity optimization. Furthermore, each of these datasets varied in both sorting strategy and 

complexity: Makowski et al. sorted for the top ~5% of antibody variants while Adams et al. 

quantified the binding of an entire family of fluorescein binders. While many of the projects relied 

on complex sorting techniques to obtain quantitative protein labels, we simulated simple binary 

sorting experiments by limiting the sequencing data (see Methods). We then evaluated the 

predictive power of LDA models trained on these simple sorting experiments and observed both 

impressive classification performance and strong prediction of continuous properties from LDA 

binary projections. Interestingly, models trained on binary data were highly correlated with 

continuous data (Spearman correlation coefficients ranged from 0.5-0.9). Furthermore, when we 

compared the predictive power of LDA models trained on binary data to regression models trained 

on continuous data, we observed no increase in rank order performance, suggesting that models 

trained on simple sorting experiments yield comparable information to models trained on data 

from experiments that generate hundreds to thousands of continuous measurements.21,23,24  

 Next, we sought to explore how this workflow could be used for prospective analysis in 

addition to retrospective analysis (Figure 4). We hypothesized that because the workflow is 

agnostic to protein type and display platform, any directed evolution campaign with sufficient 

sorting and sequencing data is a suitable environment for testing. As such, we chose to analyze 

libraries of stapled peptides, an important class of protein formed by a covalent crosslinking of 

two amino acids.45 Stapled peptides are being explored as therapeutics for previous ‘undruggable’ 

disease related proteins, owing to their location inside the cell and untargetable by small molecule 

drugs.46 Stabilized Peptide Engineering by E. coli Display (SPEED) has previously been 

demonstrated to accelerate the development of stapled peptides by displaying them on the surface 

of bacteria, where libraries of peptides varying in sequence and staple location simultaneously can 

be optimized for protein-peptide interactions.31,32 One additional challenge in the optimization of 

stapled peptides is their reliance on non-natural amino acids, which generally results in the 
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incompatibility of models trained on naturally occurring sequences.47–50 We built on previous work 

by generating a library of randomized stapled peptides towards two B cell lymphoma 2 proteins 

(Bcl-2), an important class of apoptosis regulatory proteins that is responsible for cancer cells 

immortality.51 We sorted this library against two important members: Mcl-1 and Bcl-xL,52 each of 

which drives immortality in different diseases.53 Selective targeting among Bcl-2 proteins is an 

outstanding goal in drug targeting but is difficult due to the highly homologous nature of these 

proteins.[ref] After several rounds of cell sorting and subsequent deep sequencing, we trained LDA 

models on a subset of the binary sequencing data, evaluated the model on both the hold-out test 

set, and generally observed high classification performance. We then measured the binding of 57 

sequences from various rounds of sorting with low throughput flow cytometry experiments and 

observed that many of the clones did not demonstrate favorable affinity or specificity properties 

when sampling from these enriched libraries. However, we did observe a high degree of correlative 

power between LDA projections and continuous peptide binding. Finally, these models were able 

to identify molecules within the set of experimentally observed sequences that were highly specific 

but may not have been selected for lead compounds due to their rarity.11 Several sequences along 

the Pareto frontier, or the boundary of co-optimality where an increase in one property leads to a 

decrease in the other, were translated into bacteria and assayed via flow cytometry. We also 

characterized several clones that were bispecific, which could have applications in specific 

diseases, but also serves as a test case if the model can interpolate function where it wasn’t directly 

engineered via cell sorting. The specificities of these peptides agreed with model predictions, 

indicating the model was able to identify functional and rare peptides from across the specificity 

landscape. 

Finally, we sought to use the interpretive nature of the linear machine learning models to 

explore unseen sequence space and generate highly diverse and novel sequences (Figure 5). To 

accomplish this task, we used integer linear programming and the coefficients from machine 

learning to mathematically optimize peptide sequences beyond the properties that were 

experimentally observed (from deep sequencing or flow cytometry).24 We hypothesized that such 

an approach could recover functional peptides with consistency where sorting did not; while the 

final round of Bcl-xL sorting yielded consistently high affinity and specificity variants (Figure 

S13), the Mcl-1 sort had a small fraction of sequence variants with desired properties (Figure 5A). 

We thus prioritized the design of Mcl-1 binders and identified a new peptide sequence that 
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improved peptide properties beyond the experimentally measured Pareto front. Importantly, this 

variant demonstrated specificity at least as potent as the most specific clone identified from 

experimental work. 

To test whether our sequence optimization workflow generalizes beyond small alpha 

helices, we also applied ILP to the Makowski dataset (Figure S18). While antibodies have been 

the subject of optimization using highly sophisticated models,54–57 we hypothesized that the high 

performance from linear ML models would make it amenable to ILP optimization. Like Bcl-2 

inhibitors, antibodies need to demonstrate properties beyond high affinity to be considered 

therapeutic, and ILP is uniquely suited to tackle co-optimization.58 We observed that the set of 

sequences predicted to be co-optimal by ILP are similar to their most optimal clones identified 

experimentally. Furthermore, their lead antibody identified as co-optimal (EM1) was among the 

set of antibodies predicted by ILP. Makowski and co-authors designed a comparatively small 

library (~106) for their experimentally measured sequences (~104), resulting in a more confident 

sampling of mutated amino acids experimentally. In contrast, the library of stapled peptides we 

designed had a much larger ratio of design space (~109) to experimentally measured sequences 

(~105), making this library suitable for extrapolation beyond experimentally measured space using 

machine learning. For protein variant libraries where mutations are sufficiently independent 

(minimal higher order epistatic interactions), a strategic subsampling of design space can be 

advantageous for subsequent protein optimization with linear models59,60 and help to de-risk 

sorting campaigns, as exploration through the full design space can improve function beyond those 

originally assayed. 

The use of ML with NGS data from binary sorting campaigns has many advantages, but 

the approach also has a few limitations. It is important to note that LDA projections are correlated 

with, but not predictive of, continuous measurements. Therefore, LDA-informed properties may 

not match 1:1 with continuous properties. However, because many protein engineering campaigns 

do not seek to quantify the exact magnitude of fitness, but rather seek to maximize or minimize a 

property or trade-off between properties, this correlation can still provide direct insight into protein 

fitness and accelerate optimization efforts. We also found that ILP optimization was sensitive to 

model weights as evidenced by the initial failure of generating highly specific Bcl-xL peptides. 

Two approaches to address this are incorporating uncertainty into model predictions that could 

yield more confident extrapolation into unseen sequence space,34 or selecting a range of sequences 
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from multiple modes of optimization simultaneously.24 Despite identifying peptides with high 

specificity towards Mcl-1 and Bcl-xL, more work is needed to yield effective peptide therapeutics: 

it is equally important to show these peptides do not bind the other 3 Bcl-2 members.53 Lacking 

knowledge of the sequence space of high affinity binders, we were unable to explore this aspect 

of peptide design; future work includes designing stapled peptides against the entire Bcl-2 family, 

which play additional roles in off-target toxicity and are responsible for immortality in other 

cancers.  Because this approach is amenable to higher dimension multi-objective optimization, we 

expect that optimizing specificity for five proteins with this approach is possible.  

Despite these limitations, the ability to score sequences beyond those observed 

experimentally is important because drug-like properties not easily assayable by high-throughput 

techniques (immunogenicity, stability, cell permeability, etc.) are often highly dependent on 

sequence and may need further optimization.58,61–63 For example, minimization of positive charge 

in CDR regions of antibodies has been shown to minimize off-target binding,42 while selective 

placement of hydrophobicity and positive charge has been shown to improve cell penetration for 

stapled peptides.62,64 This combined machine learning and optimization approach provides a 

powerful method to identify highly functional protein variants if experimentally measured clones 

did not meet fitness criteria or further sequence optimization is necessary. 

In summary, the data processing and modeling workflow designed in this work is a 

versatile tool towards the improved analysis and identification of protein variants across many 

domains of protein engineering by utilizing machine learning and NGS data to predict 

continuous properties from binary sorting data.

 

References 

1. Anfinsen, C. B. Principles that Govern the Folding of Protein Chains. Science (1979) 181, 

223–232 (1973). 

2. Cobb, R. E., Chao, R. & Zhao, H. Directed evolution: Past, present, and future. AIChE 

Journal 59, 1432–1440 (2013). 

3. Lerner, S. A., Wu, T. T. & Lin, E. C. C. Evolution of a catabolic pathway in bacteria. 

Science (1979) 146, 1313–1315 (1964). 

4. Roberts, R. W. & Szostak, J. W. RNA-peptide fusions for the in vitro selection of peptides 

and proteins. Biochemistry vol. 94 www.pnas.org. (1997). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2023. ; https://doi.org/10.1101/2023.06.09.544229doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.09.544229
http://creativecommons.org/licenses/by-nd/4.0/


 26 

5. Smith, G. P. Filamentous Fusion Phage: Novel Expression Vectors That Display Cloned 

Antigens on the Virion Surface. Science (1979) 228, 1315–1317 (1984). 

6. Freudl, R., MacIntyre, S., Degen, M. & Henning, U. Cell Surface Exposure of the Outer 

Membrane Protein OmpA of Escherichia coli K-12. J Mol Biol 188, 491–494 (1985). 

7. Boder, E. T. & Wittrup, K. D. Yeast surface display for screening con1binatorial 

polypeptide libraries. http://www.nature.com/naturebiotechnology (1997). 

8. Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for 

protein engineering. Nat Methods 16, 687–694 (2019). 

9. Liu, B. Yeast surface display: Methods, protocols, and applications. Yeast Surface 

Display: Methods, Protocols, and Applications vol. 1319 (2015). 

10. Barreto, K. et al. Next-generation sequencing-guided identification and reconstruction of 

antibody CDR combinations from phage selection outputs. Nucleic Acids Res 47, (2019). 

11. D’Angelo, S. et al. From deep sequencing to actual clones. in Protein Engineering, 

Design and Selection vol. 27 301–307 (Oxford University Press, 2014). 

12. Ravn, U. et al. By-passing in vitro screening - Next generation sequencing technologies 

applied to antibody display and in silico candidate selection. Nucleic Acids Res 38, (2010). 

13. Rubin, A. F. et al. A statistical framework for analyzing deep mutational scanning data. 

Genome Biol 18, (2017). 

14. Kowalsky, C. A. et al. Rapid fine conformational epitope mapping using comprehensive 

mutagenesis and deep sequencing. Journal of Biological Chemistry 290, 26457–26470 

(2015). 

15. Fowler, D. M., Araya, C. L., Gerard, W. & Fields, S. Enrich: Software for analysis of 

protein function by enrichment and depletion of variants. Bioinformatics 27, 3430–3431 

(2011). 

16. Derda, R. et al. Diversity of phage-displayed libraries of peptides during panning and 

amplification. Molecules vol. 16 1776–1803 Preprint at 

https://doi.org/10.3390/molecules16021776 (2011). 

17. Chao, G. et al. Isolating and engineering human antibodies using yeast surface display. 

Nat Protoc 1, 755–768 (2006). 

18. Kelil, A., Gallo, E., Banerjee, S., Adams, J. J. & Sidhu, S. S. CellectSeq: In silico 

discovery of antibodies targeting integral membrane proteins combining in situ selections 

and next-generation sequencing. Commun Biol 4, (2021). 

19. Maranhão, A. Q. et al. Discovering Selected Antibodies From Deep-Sequenced Phage-

Display Antibody Library Using ATTILA. Bioinform Biol Insights 14, (2020). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2023. ; https://doi.org/10.1101/2023.06.09.544229doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.09.544229
http://creativecommons.org/licenses/by-nd/4.0/


 27 

20. Fowler, D. M. & Fields, S. Deep mutational scanning: A new style of protein science. 

Nature Methods vol. 11 801–807 Preprint at https://doi.org/10.1038/nmeth.3027 (2014). 

21. Adams, R. M., Mora, T., Walczak, A. M. & Kinney, J. B. Measuring the sequence-affinity 

landscape of antibodies with massively parallel titration curves. Elife 5, 1–27 (2016). 

22. Kinney, J. B., Murugan, A., Callan, C. G. & Cox, E. C. Using deep sequencing to 

characterize the biophysical mechanism of a transcriptional regulatory sequence. 107, 

(2010). 

23. Reich, L., Dutta, S. & Keating, A. E. SORTCERY - A High-Throughput Method to 

Affinity Rank Peptide Ligands. J Mol Biol 427, 2135–2150 (2015). 

24. Jenson, J. M. et al. Peptide design by optimization on a data parameterized protein 

interaction landscape. Proc Natl Acad Sci U S A 115, E10342–E10351 (2018). 

25. Greaney, A. J. et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-

binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host 

Microbe 29, 463-476.e6 (2021). 

26. Starr, T. N. et al. Shifting mutational constraints in the SARS-CoV-2 receptor-binding 

domain during viral evolution. Science (1979) 377, 420–424 (2022). 

27. Makowski, E. K. et al. Co-optimization of therapeutic antibody affinity and specificity 

using machine learning models that generalize to novel mutational space. Nat Commun 

13, (2022). 

28. Sarkisyan, K. S. et al. Local fitness landscape of the green fluorescent protein. Nature 

533, 397–401 (2016). 

29. Hsu, C., Nisonoff, H., Fannjiang, C. & Listgarten, J. Learning protein fitness models from 

evolutionary and assay-labeled data. Nat Biotechnol 40, 1114–1122 (2022). 

30. Srivastava, N., Hinton, G., Krizhevsky, A. & Salakhutdinov, R. Dropout: A Simple Way to 

Prevent Neural Networks from Overfitting. Journal of Machine Learning Research vol. 15 

(2014). 

31. Navaratna, T. et al. Directed Evolution Using Stabilized Bacterial Peptide Display. J Am 

Chem Soc 142, 1882–1894 (2020). 

32. Case, M., Navaratna, T., Vinh, J. & Thurber, G. M. Rapid Evaluation of Staple Placement 

in Stabilized Alpha Helices using Bacterial Surface Display. ACS Chem Biol (2023). 

33. Gaspar, J. M. NGmerge: Merging paired-end reads via novel empirically-derived models 

of sequencing errors. BMC Bioinformatics 19, 1–9 (2018). 

34. Romero, P. A., Krause, A. & Arnold, F. H. Navigating the protein fitness landscape with 

Gaussian processes. Proc Natl Acad Sci U S A 110, (2013). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2023. ; https://doi.org/10.1101/2023.06.09.544229doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.09.544229
http://creativecommons.org/licenses/by-nd/4.0/


 28 

35. Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for 

protein engineering. Nature Methods vol. 16 687–694 Preprint at 

https://doi.org/10.1038/s41592-019-0496-6 (2019). 

36. Wu, Z., Jennifer Kan, S. B., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine 

learning-assisted directed protein evolution with combinatorial libraries. Proc Natl Acad 

Sci U S A 116, 8852–8858 (2019). 

37. Mitchell, S. et al. Optimization with PuLP. Preprint at (2009). 

38. Trippe, B. L. et al. Randomized gates eliminate bias in sort-seq assays. Protein Science 

31, (2022). 

39. Somermeyer, L. G. et al. Heterogeneity of the GFP fitness landscape and data-driven 

protein design. bioRxiv 1–54 (2021). 

40. Raghunathan, T. E., Rosenthal, R. & Rubin, D. B. Comparing Correlated but 

Nonoverlapping Correlations. Psychological Methods vol. 1 (1996). 

41. Makowski, E. K., Wu, L., Desai, A. A. & Tessier, P. M. Highly sensitive detection of 

antibody nonspecific interactions using flow cytometry. MAbs 13, (2021). 

42. Makowski, E. K. et al. Reduction of therapeutic antibody self-association using yeast-

display selections and machine learning. MAbs 14, (2022). 

43. Dutta, S. Determinants of BH3 binding specificity for Mcl-1 vs. Bcl-xL. J Mol Biol 398, 

747–762 (2011). 

44. Dutta, S. et al. Potent and specific peptide inhibitors of human pro-survival protein bcl-xl. 

J Mol Biol 427, 1241–1253 (2015). 

45. Loren D. Walensky et al. Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 

Helix. Science (1979) 23, 1–7 (2004). 

46. Walensky, L. D. & Bird, G. H. Hydrocarbon-stapled peptides: principles, practice, and 

progress. J Med Chem 57, 6275–6288 (2014). 

47. Rives, A. et al. Biological structure and function emerge from scaling unsupervised 

learning to 250 million protein sequences. Proceedings of the National Academy of 

Sciences 118, e2016239118 (2021). 

48. Alley, E. C., Khimulya, G., Biswas, S., AlQuraishi, M. & Church, G. M. Unified rational 

protein engineering with sequence-based deep representation learning. Nat Methods 16, 

1315–1322 (2019). 

49. Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative models of genetic 

variation capture the effects of mutations. Nat Methods 15, 816–822 (2018). 

50. Shin, J. E. et al. Protein design and variant prediction using autoregressive generative 

models. Nat Commun 12, 1–11 (2021). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2023. ; https://doi.org/10.1101/2023.06.09.544229doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.09.544229
http://creativecommons.org/licenses/by-nd/4.0/


 29 

51. Adams, J. M. & Cory, S. The Bcl-2 Protein Family: Arbiters of Cell Survival. Science 

(1979) 281, 1322–1326 (1998). 

52. Shamas-Din, A., Kale, J., Leber, B. & Andrews, D. W. Mechanisms of action of Bcl-2 

family proteins. Cold Spring Harb Perspect Biol 5, 1–21 (2013). 

53. Czabotar, P. E., Lessene, G., Strasser, A. & Adams, J. M. Control of apoptosis by the 

BCL-2 protein family: Implications for physiology and therapy. Nature Reviews 

Molecular Cell Biology vol. 15 49–63 Preprint at https://doi.org/10.1038/nrm3722 (2014). 

54. Hie, B. L. et al. Efficient evolution of human antibodies from general protein language 

models. Nat Biotechnol (2023) doi:10.1038/s41587-023-01763-2. 

55. Kang, Y., Leng, D., Guo, J. & Pan, L. Sequence-based deep learning antibody design for 

in silico antibody affinity maturation. (2021). 

56. Ruffolo, J. A., Gray, J. J. & Sulam, J. Deciphering antibody affinity maturation with 

language models and weakly supervised learning. (2021). 

57. Amimeur, T. et al. Designing Feature-Controlled Humanoid Antibody Discovery 

Libraries Using Generative Adversarial Networks. (2020) 

doi:10.1101/2020.04.12.024844. 

58. Jain, T. et al. Biophysical properties of the clinical-stage antibody landscape. Proc Natl 

Acad Sci U S A 114, 944–949 (2017). 

59. Taguchi, A. T. et al. Comprehensive Prediction of Molecular Recognition in a 

Combinatorial Chemical Space Using Machine Learning. ACS Comb Sci 22, 500–508 

(2020). 

60. Mason, D. M. et al. Optimization of therapeutic antibodies by predicting antigen 

specificity from antibody sequence via deep learning. Nat Biomed Eng 5, (2021). 

61. Chu, Q. et al. Towards understanding cell penetration by stapled peptides. Medchemcomm 

6, 111–119 (2015). 

62. Bird, G. H. et al. Biophysical determinants for cellular uptake of hydrocarbon-stapled 

peptide helices. Nat Chem Biol 12, 845–852 (2016). 

63. Bird, G. H. et al. Hydrocarbon double-stapling remedies the proteolytic instability of a 

lengthy peptide therapeutic. Proceedings of the National Academy of Sciences 107, 

14093–14098 (2010). 

64. Chandramohan, A. et al. Design-Rules for Stapled Alpha-Helical Peptides with On-Target 

In Vivo Activity: Application to Mdm2/X dual antagonists. Biorxiv 1–55 (2023) 

doi:10.1101/2023.02.25.530030. 

  

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2023. ; https://doi.org/10.1101/2023.06.09.544229doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.09.544229
http://creativecommons.org/licenses/by-nd/4.0/

