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Abstract

Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino
acids to modulate the transition-state free energy. However, the role of conformational dynamics remains
poorly understood due to lack of experimental access. This shortcoming is evident with E. coli dihydro-
folate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is
unknown how the enzyme regulates the different active site environments required to facilitate proton
and hydride transfer. Here, we present ligand-, temperature-, and electric-field-based perturbations dur-
ing X-ray diffraction experiments that enable identification of coupled conformational changes in DHFR.
We identify a global hinge motion and local networks of structural rearrangements that are engaged by
substrate protonation to regulate solvent access and promote efficient catalysis. The resulting mecha-
nism shows that DHFR’s two-step catalytic mechanism is guided by a dynamic free energy landscape
responsive to the state of the substrate.

Keywords: Protein Dynamics, Allostery, Catalysis, DHFR, X-ray Crystallography, Conformational Selection,
Excited States

Introduction

Enzymes serve essential cellular functions by selectively enhancing the rates of chemical reactions. This
catalysis is often explained through precise positioning of substrates and functional groups to stabilize
the transition state of a reaction [1, 2]. Proteins, however, contain many rotatable bonds with energetic

barriers that can be crossed by thermal motion. Therefore, proteins exhibit conformational dynamics best
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described by an ensemble of structures [3, 4]. Since even sub-angstrom changes in important interactions
are, in principle, sufficient to impact the energetics of catalytic steps or their allosteric regulation [3, 5-8],
conformational changes can be small enough to be overlooked by existing methods, yet key to understanding
enzyme function. A central question therefore remains—how do the conformational dynamics of enzymes
relate to the chemical reaction coordinate? Better understanding of this relation would have far-reaching
implications for the rational design of artificial enzymes, for understanding how function constrains evolution,
and in the design of pharmacological modulators of enzyme activity.

Critical gaps in our understanding of the interplay of conformational dynamics and the chemical steps
of enzyme catalysis are evident for even the best-studied enzymes. Dihydrofolate reductase (DHFR) from
FEscherichia coli (hereafter, ecDHFR) has been studied intensively for decades [9-16]. DHFR catalyzes the
stereospecific transfer (Fig. 1A) of a hydride (H™) from reduced nicotinamide adenine dinucleotide phosphate
(NADPH) to dihydrofolate (DHF), yielding NADP™ and tetrahydrofolate (THF), an essential precursor
for purine synthesis [10]. Kinetic isotope effect measurements support a stepwise catalytic mechanism for
ecDHFR in which protonation of DHF at the N5 atom precedes hydride transfer [17] (Fig. 1A). A key
active-site loop, the Met20 loop, adopts two different conformations depending on the bound ligands: the
closed conformation is associated with the Michaelis complex—the catalytically competent state in which
the enzyme is bound to its cofactor and substrate, as shown in Fig. 1B. The occluded conformation is,
instead, adopted by product complexes to promote exchange of the spent NADP™ cofactor [9].

Although ordered water is not observed in the active site of the Michaelis complex, the rotamer state of
Met20 is hypothesized to regulate access of a water molecule to the N5 atom of DHF based on conforma-
tional heterogeneity in high-resolution structures [18]. Proton transfer directly from the solvent is further
supported by molecular dynamics (MD) simulations and neutron diffraction [18-21]. Whereas proton trans-
fer requires transient solvent access to the active site [18, 21], the presence of water near the N5 atom
of DHF would destabilize the partial positive charge on the C6 carbon, inhibiting hydride transfer [22].
These observations, therefore, raise a more specific question: how does the enzyme regulate solvent access
to tune the electrostatic environment of its active site to promote successive chemical steps with conflict-
ing requirements—protonation which requires solvent access and hydride transfer for which solvent access
is inhibitory.

Here, we apply new crystallographic methods to resolve conformational changes in ecDHFR, revealing
rearrangements critical to the enzyme’s active site. First, by room-temperature X-ray diffraction, we observe
extended conformational heterogeneity within the closed Met20 loop. By perturbing the active site with a
modified substrate analog, we show direct coupling between the Met20 sidechain and the proton-donating
water site. To assess the effect of larger-scale protein motions on the active site, we use new types of
multi-temperature and electric-field stimulated [23] X-ray diffraction experiments. These methods resolve

a surprising array of conformational motions—a global hinge motion that constricts the active site cleft
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and influences the Met20 sidechain, along with local networks of coupled backbone and sidechain motions
affecting the active site. We validate this allosteric coupling by MD simulations and find that the protonated
intermediate engages these motions by conformational selection to shield the active site from bulk solvent—
a rapid rearrangement of the active site that follows substrate protonation to promote hydride transfer. We
discuss several biological implications of this mechanism. For example, it explains a “dynamic knockout”
mutant of ecDHFR—a mutant of which the effects on hydride transfer rate were proposed to result from
altered dynamics alone, and not from a change in ground state structure [24]. We also describe how the
mechanism appears to have constrained the evolution of the enzyme.

The approach taken here, combining advanced X-ray diffraction experiments with MD simulations, iden-
tifies global and local conformational dynamics that promote efficient catalysis. We expect that for many
natural and designed proteins, this approach will similarly reveal important conformational rearrangements

and answer fundamental questions about how these proteins work.

Results

The closed Met20 loop exhibits distinct substates

Structural, kinetic, and computational studies, combined with mutagenesis, have led to a basic understanding
of how the active site of ecDHFR supports the chemical steps of catalysis. In this model, the Met20 sidechain
regulates solvent access to the N5 atom of DHF to allow for substrate protonation (Fig. 1B) [17, 18]. To begin
characterizing the conformational dynamics of the Michaelis complex, we used a widely employed model of
the DHFR Michaelis complex with NADPT and folate (FOL) as cofactor and substrate analogs, respectively,
as the true Michaelis complex is not stable for the timescales necessary for crystallization [9]. The crystal
form we used is also compatible with all steps of the catalytic cycle [9]. We first solved a structure of the
model Michaelis complex to 1.04 A at 290 K. Consistent with previous structures [9, 16, 18], the protein
adopts the closed Met20 loop conformation, in which FOL and NADP™ are in close proximity (3.2 A; Fig.
1B). Inspection of the electron density map (blue mesh, 2mF, — DF,) near the Met20 sidechain shows
electron density for two rotamers that differ in their x; dihedrals and the placement of the terminal methyl
group. In addition, there is a large, 6.50 peak in the difference electron density map between observed data
and the refined model (green mesh, mF, — DF,.). This peak partially overlaps with one of the Met20 rotamer
states (Fig. 1B), and can be identified as the proton-donating water by comparison with a previous X-ray
diffraction study [18]. Together, these electron density features can be interpreted as a superposition of two
Met20 sidechain conformations: a “gate open” Met20 rotamer can let water into the active site and a “gate
closed” rotamer excludes water. This structure supports a solvent-gating role for Met20, and its analysis
recapitulates the features observed by Wan et al. [18].

3
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102 Our data, however, reveal additional conformational heterogeneity in the Met20 loop. The backbone
03 amide between Pro21 and Trp22 adopts two distinct conformations, offset by approximately 90° (arrows, Fig.
e 1C). These alternate backbone orientations can be thought of as substates of the closed loop conformation,
s and can be classified by the Trp22-¢ dihedral angle with the two states centered at —150° (blue arrow) and
ws  —75° (red arrow). Although this heterogeneity has not been previously noted, we find a range of values for
w7 Trp22-¢ consistent with these states in published structures of ecDHFR (Fig. 1D).

108 To assess whether the two substates represent dynamic exchange within the closed conformation of the
100 Met20 loop, we ran MD simulations of the model Michaelis complex. When running the simulations in the
uo  context of the crystal lattice to recapitulate the impact of crystal contacts, we observe rapid sampling of
m  transitions between the two substates, supporting that the crystallographic observation represents dynamic
u2  exchange. Based on classification using the Trp22-¢ dihedral of each protein molecule in the simulation, we
us  see that the substate at —75° is populated approximately 2-fold more than the other substate (Fig. 1D).
us By fitting the simulation data to a Gaussian mixture model (see Methods) we can assign the populations as
s 66+3% and 344+3% (mean + standard error; N=72 trajectories), respectively, corresponding to AAG =~ —0.4
us  keal/mol (-0.7 kgT). This difference is similar to the relative density for the two states observed in the
ur  electron density map (Fig. 1C). This equilibrium also exists in MD simulations run in a waterbox, indicating
us  that it is not an artifact of the crystal context. However, in a solvated system, the thermodynamics between
uo  the two substates inverts relative to that of the crystal lattice (Fig. 1D) with populations of 32 + 2% and
120 68+£2% (mean =+ standard error; N=20 trajectories), respectively, corresponding to AAG = 0.4 kcal/mol (0.8
w1 kgT).The crystal lattice therefore biases the thermodynamics between these states by about 0.8 kcal/mol
w (1.5 kgT).

s A modified substrate analog resolves the solvent gating mechanism

122 The model presented in Figure 1B suggests that the Met20 sidechain state regulates the occupancy of the
s proton-donating water. To test this hypothesis directly, we sought to bias the rotamer distribution of Met20
s with a modified substrate analog, 10-methylfolate (MFOL). This compound has a methyl substituent on the
17 N10 nitrogen (dashed circle in Fig. 2A) that makes close contact with the Met20 sidechain. We determined
e the structure of the ecDHFR:NADP+:MFOL complex to 1.14 A (Table S1). As anticipated, this methyl
o group shifts the Met20-y; rotamer equilibrium (Fig. 2B). This structural change is accompanied by the
10 appearance of an ordered water in the electron density map within 3.6 A of the N5 nitrogen of MFOL (arrow
w  in Fig. 2B), consistent with the location of the unmodeled difference density in Fig. 1C.

132 To identify the structural changes induced by the methyl substituent in more detail, we used the Fy;ror —
s Frop, difference map, which can sensitively detect changes in electron density (Fig. 2C). Strong difference
1 density is visible near the added methyl group (Fig 2C inset; labeled a). This 10-methyl group displaces two
s ordered waters from the folate-bound structure (labeled b), induces a shift in the Met20 rotamer distribution

4
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(labeled c¢), and causes the pterin ring to shift away from the Met20 residue (labeled d). Accompanying
these changes, electron density for an ordered water increases near the N5 nitrogen (labeled e). That is, the
10-methyl substituent shifts the Met20 rotamer equilibrium, increasing solvent access to the N5 atom of the

substrate.

Multi-temperature diffraction resolves a global hinge motion

The structural changes observed in the 10-methylfolate complex validate the solvent-gating role of the Met20
sidechain, but were strongly localized near the 10-methyl substituent. Because the FOL-bound structure
at 290 K and the MD simulations suggest additional conformational heterogeneity in the active site, we
sought to bias the population of states of the enzyme using multi-temperature X-ray diffraction experiments.
Because pre-existing equilibria that involve entropic change will be sensitive to temperature, these experi-
ments can uncover correlated motions by observing structural states that change together as a function of
temperature.

The earliest diffraction experiments to investigate the dependence of conformational heterogeneity on
temperature used atomic displacement parameters as a reporter [25-27]. Since those early studies, multi-
temperature X-ray crystallography has been applied to probe conformational changes caused by temperature
with atomic detail in order to understand the dynamics of enzymes [28-30]. However, these experiments often
probe a broad range of temperatures—from cryogenic to physiological—which can complicate analysis due
to cryocooling artifacts and imperfect isomorphism [16]. Here, we collected 23 high-resolution datasets from
crystals from 270 K to 310 K, in 10 K increments, including multiple datasets at each temperature to assess
the uncertainty of any observations (Tables S2 to S6). We also inferred consensus datasets by combining data
from the multiple crystals collected at each temperature (Fig. 3A and Table S7). To identify temperature-
dependent structural changes within this physiological range, we adopted an automated refinement strategy
yielding consistent models for each dataset. This approach enables detailed biophysical comparison across
temperature.

To interpret overall conformational change, we computed the pairwise distances between the C, atoms
in each refined structure for the consensus models at each temperature, and used singular value decompo-
sition (SVD) to determine the primary temperature-dependent modes of structural change (see Methods
for details). The resulting singular vectors describe the weights of the pairwise distances and temperature
dependence for each structural mode. The first singular vector explains 88% of the variance of C, distances
across datasets, and depends monotonically on temperature (Fig. 3B). The corresponding heatmap depicts
the weight of each pairwise C,, distance (Fig. 3C) and emphasizes two regions that correspond to residues 38-
88 (orange bar) and residues 120-130 (yellow bar). These regions are colored on the structure of ecDHFR in
Fig. 3D: residues 38-88, shown in orange, comprise the adenosine binding subdomain and residues 120-130,

shown in yellow, span the end of the FG loop.
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170 To illustrate the temperature-dependent motion corresponding to the first singular vector, Fig. 3D depicts
w the displacements in C\, positions between the models refined to the 270 K and 310 K datasets. These are
12 rendered as arrows for displacements greater than 0.1 A and are enlarged 10x relative to the corresponding
i3 displacement. The arrows reveal a hinge motion that constricts the active site cleft. One of the strongest
s features in the pairwise distance heatmap corresponds to the distance between Asn23-C, and Pro53-C,,
ws  (hereafter: hinge distance), which increases with temperature (Fig. 3E). Together, this analysis reveals a
s dominant, temperature-dependent global hinge motion that constricts the active site cleft by about 0.5 A.
w7 Although this is a small-amplitude motion, the largest standard error in Fig. 3E is only 0.04 A among
s replicate datasets.

179 In addition to the hinge motion, the region comprising residues 120-130 shows significant temperature
180 dependence in Fig. 3C. In this region, Tyr128 adopts two shifted sidechain conformations, marked by distinct
w1 states for the amide backbone between Aspl27 and Tyrl28 (Fig. 3F). Accordingly, the refined electron
12 density maps show a titration of density from one backbone configuration to the other as a function of

3 increasing temperature, reaching equal occupancy at about 290 K (Fig. 3F).

s Temperature-resolved difference maps identify networks of correlated motions

155 The analysis of multi-crystal, multi-temperature diffraction experiments above identifies a global hinge-
16 bending motion and shifts in the conformational equilibrium of the loop containing Tyr128. This approach
17 'works best to detect such graded shifts of the dominant conformation. Inspired by time-resolved diffraction
s experiments [31, 32], we sought to improve the detection of excited states by conducting single-crystal
189 perturbation experiments, followed by analysis with isomorphous difference maps. In these experiments,
w0 we collected diffraction data at multiple temperatures from the same crystal (Fig. 3G). Difference maps
1 obtained this way showed reproducible and remarkably sensitive results (see Methods and Figure S1).

102 The temperature-resolved difference maps obtained from single-crystal experiments reveal a range of
13 conformational changes that were not readily detected by the multi-crystal, refinement-based analysis. The
104 Fhgor — F310Kx isomorphous difference map is relatively flat in the adenosine binding subdomain, but exhibits
s regions of paired positive and negative difference density in the loop subdomain (Fig. 3H), which identify
s networks of temperature-dependent motion propagating through the enzyme, in addition to the large-scale
17 hinge motion.

108 Three interesting regions of the protein have strong (> 50) peaks in the Fhgox — F310x difference map
w0 (Fig. 3H). As illustrated in Fig. 31, the most significant difference map peak (10.30) involves the oxidized
200 Cysl52 sidechain and the nearby rotamers of Aspl116. The paired difference density on the rotamers implies
20 a correlated shift in their occupancy, which can be rationalized based on the corresponding movement
22 of ordered water molecules found between these sidechains. A second network of temperature-dependent
203 changes (5.60 peak) runs through the active site including the Met20 loop (Fig. 3J). Paired difference

6
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density on the pterin ring of folate indicates that the ring settles deeper in the binding site with the
constriction of the active site cleft. Asp27, which coordinates the pterin ring, shifts accordingly along with
an ordered water bridging Asp27 and the Trp22 indole ring. Corresponding motions are observed in the
Met20 loop itself, with a small shift in Trp22 and stronger density for the gate-open Met20 rotamer at lower
temperature. Finally, the region from Phel25 to Tyrl128 again shows significant temperature-dependent
features in the difference map (5.50; Fig. 3K). The backbone amide between Aspl27 and Tyrl28 shows
strong, paired difference density, consistent with the differences observed during refinement (Fig. 3F). The
difference map, however, provides more detail, allowing the backbone carbonyl to be matched with the
corresponding Tyr128 sidechain conformation based on their shared temperature dependence. Furthermore,
strong difference density is observed for Pro126, Phel25, and Tyr100, highlighting an extended, contiguous
network of temperature-dependent conformational changes that spans about 15 A to the site of hydride
transfer. Previous studies support the significance of these residues in catalysis. Tyr100 plays an important
electrostatic role in hydride transfer [33], and the Y100F mutation decreases kpyq by ten-fold [17]. Similarly,
double-mutant studies implicate Phel25 as part of a network of residues coupled to hydride transfer [34, 35].

In summary, single-crystal temperature-resolved diffraction experiments reveal detailed views of three
extended networks of correlated motions that propagate throughout the enzyme and involve key active site

residues.

Electric-field-dependent constriction of the active site cleft

Although temperature can effectively bias conformational equilibria to observe correlated changes by X-ray
diffraction, it impacts all states that differ entropically, possibly confounding a mechanistic interpretation
of observed conformational changes. To further resolve the coupling between observed motions, we used
electric-field-stimulated X-ray crystallography (EF-X). In an EF-X experiment, a strong electric field is used
to apply force on the charges and local dipoles within a protein crystal to induce motions. These motions can
then be observed by X-ray diffraction at room temperature (Fig. 4A). By using X-ray pulses at defined delays
after the onset of the electric field, the induced dynamics can be followed with nanosecond temporal and sub-
Angstrom spatial resolution. EF-X has been used to study a PDZ domain, and the observed motions were
consistent with proposed mechanisms of ligand-induced allostery [23]. Here, we used an updated apparatus
for EF-X as shown in Figure 4B and S2A (see Methods for details). At each orientation of the crystal we
collected 3 timepoints: an ‘Off’ reference timepoint in the absence of a high-voltage pulse, a 200 ns timepoint
during a 3.5 kV pulse, and a 200 ns timepoint during a —3.5 kV pulse. To collect a complete dataset, we
then rotated the sample, repeating the timepoints at each angle. This interleaved data collection ensures
similar accumulated X-ray exposure for each dataset (Fig. 4C). The data collection statistics are presented

in Table S11.
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237 The high-voltage pulse applied in an EF-X experiment is directional. Copies of ecDHFR in the crystal’s
2 unit cell are initially related by the symmetry operations of the P2; 2; 2; spacegroup. During the pulse,
20 these copies experience the electric field, and therefore patterns of forces, in different orientations (Fig. 4D).
20 In our case, two copies of ecDHFR experience the electric field in nearly the same direction (e.g., both
21 blue copies) while the other two molecules (both red copies) experience the opposite field. The resulting
22 deformations are therefore different for the red and blue copies. Notably, we can use the resulting symmetry
23 breaking to confirm that there is significant signal in the experiment (see Methods for details; Fig. S2B).

204 To interpret the structural changes during the high-voltage pulse, we refined models of the induced excited
x5 states (see Methods for details). Significantly, the copies of the model Michaelis complex seeing the electric
us field in opposite direction refined to different hinge distances (19.6 A for the ‘blue’ copy and 19.9 A for the
27 ‘red’ copy, Fig. 4E and S2C). These changes recapitulate the hinge motion observed using multi-temperature
us  diffraction experiments (Fig. 3). Accordingly, we chose the color scheme for the two protein molecules to
uo emphasize the comparison: the constricted copy is colored blue for “cold-like” and the extended copy is
»0  colored red for “hot-like”. The resulting electron density maps show clear electric-field dependent effects
51 in which positively charged sidechains, like Argl59, move with the electric field, and negatively charged
2 sidechains, like Glul34, move against the electric field (Fig. 4F, G), consistent with the expected movement
53 of charge in an applied electric field. We also observe several shifts in the active sites of the two molecules,
¢ including motions of Asp27, the ordered water, and the sidechain rotamer of Met20 (Fig. 4H), as well as a
25 flip in the backbone state of Pro21-Trp22 (Fig. 4H, inset). Because many residues in the Met20 loop lack a
»6  formal charge or significant charge dipole, these motions indicate conformational coupling of the Met20 loop
»s7 - with the rest of the enzyme. Furthermore, residues 125-128 display induced conformational rearrangements
»s  (Fig. 41), similar to the conformational exchange observed in the multi-temperature experiment. Indeed,
»9  despite the very different perturbations being used, the sets of conformational changes observed in the active
x0  site and Tyrl28 region for the multi-temperature and electric-field-dependent experiments are consistent in
% terms of the residues involved and the sign of the influence of the hinge distance. Together, this supports
%2 a common mechanism in which the global hinge motion is coupled to local rearrangements throughout the

263 enzyme on the nanosecond timescale.

x Allosteric coupling of hinge motion to active site dynamics

s MD simulations provide a means to directly validate the mechanistic model that the hinge motion alloster-
xs ically regulates the local conformational equilibria in the active site. Specifically, we can bias the hinge
%7 distance in simulation using an imposed distance restraint to observe its impact on other observables in the
s protein. To do so, we applied a distance restraint across the active site cleft with equilibrium values chosen
20 to span the crystallographically observed range (Fig. 5A). We ran 100 independent, 100 ns MD simulations
a0 at each hinge distance. These restraints successfully biased the sampled conformations to particular widths

8
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of the active site cleft (Fig. 5B). In response, the population of states of the Met20 loop backbone changes
monotonically (Fig. 5C, using the Trp22-¢ backbone dihedral as a reporter). Similarly, with increasing hinge
distance the Met20 sidechain shifts its rotamer distribution, as reported by a decrease of the population of
the x1 dihedral around y; = —160° (Fig. 5D). This change is consistent with the multi-temperature exper-
iment, in which the Met20-x; of approximately —160° was more populated at lower temperature (shorter
hinge distance; Fig. 3J). This is also consistent with the EF-X results, in which the copy with a shorter
hinge distance favored the Trp22 backbone and Met20 rotamer states observed in MD (Fig. 4H). These sim-
ulation results, therefore, corroborate the crystallographic analysis and confirm that the width of the active

site cleft is allosterically coupled to the occupancy of the Met20 loop substates.

Substrate protonation regulates active site solvent access

Do these global and local active site motions impact catalysis? As described, reduction of dihydrofolate
involves two sequential steps: substrate protonation and hydride transfer. To address the effect of protonation
on the reactive Michaelis complex (DHFR:NADPH:DHF'), we ran MD simulations of the deprotonated and
Nb5-protonated complexes. Statistical distributions of key structural parameters are shown in Figure 6. Upon
protonation, the average hinge distance decreases by approximately 0.5 A and the Trp22-¢ equilibrium
is further shifted towards the state near —150°. This combination of changes recapitulates the allosteric
mechanism identified above, and indicates that substrate protonation engages this dynamic mode.

The donor-acceptor distance for hydride transfer also decreases upon protonation (Fig. 6C). This distance
is the primary determinant of hydride transfer [36], and the change is consistent with the increase in the
partial charge assigned to the C6 of DHF upon protonation. Interestingly, protonation of the N5 nitrogen
also effectively eliminates water from its proximity by ordering the Met20 sidechain. Indeed, the radial
distribution function of water molecules around the N5 nitrogen indicates very little occupancy of the proton-
donating water site after protonation (Fig. 6D), consistent with findings in complementary simulation-based
studies [37, 38]. To visualize this change in the organization of the active site, we superpose frames from
the trajectories. Overlaying 20 ns of one representative trajectory shows heterogeneity in the Met20 rotamer
and frequent occupancy of the water site (dashed circle) for the deprotonated substrate (Fig. 6E), whereas
the protonated substrate coordinates the Met20 rotamer that occludes the water site (Fig. 6F).

Experimentally, we also observed that the network involving Tyr128, Phel25, and Tyr100 exhibits pro-
nounced temperature dependence (Fig. 3C) and motions extending from Tyr128 to the active site residue
Tyr100 (Fig. 3K). This network did not respond to variation in hinge distance in MD simulations (Fig. S4A)
but does respond to substrate protonation in MD (Fig. S4B). Most likely, then, this network of residues
contributes to electrostatic remodeling of the active site in response to protonation independently from the

enzyme’s hinge motion.
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304 In summary, before protonation the active site has a pre-existing equilibrium of states that permits
s solvent access to the N5 nitrogen. This equilibrium is allosterically coupled to the width of the active site
s cleft. This dynamic architecture allows the enzyme to quickly reorganize the active site in response to
s7  protonation of its substrate. This rearrangement facilitates hydride transfer by polarizing the C6 carbon,
s shortening the donor-acceptor distance, and inhibiting the competing deprotonation reaction by excluding

300 bulk solvent, consistent with a proposal by McTigue et al [22].

2 Discussion

sn By a combination of new X-ray diffraction experiments and analysis, we resolved the correlated motions of
sz an enzyme in atomic detail. Using room-temperature diffraction, we first identified extended conformational
a3 heterogeneity in the enzyme’s active site loop (Fig. 1C). We then used a substrate mimetic to demonstrate
sie  that the Met20 sidechain directly regulates solvent access to the active site (Fig. 2C). Multi-temperature
as  and EF-X experiments then uncovered a global hinge motion that constricts the enzyme’s active site and
a6 local networks of conformational rearrangements throughout the enzyme (Fig. 3 and 4). MD simulations
si7 - confirmed that the hinge motion has a direct allosteric effect on conformational equilibria within the active
as  site (Fig. 5). This coupling enables the protonated substrate to rapidly select an active site arrangement that
a0 favors the subsequent hydride transfer step over deprotonation (Fig. 6). The result is a model of catalysis by
20 ecDHFR in which the product of the first chemical step (a reaction intermediate) drives rapid rearrangments
a1 in the active site by conformational selection to favor the second chemical step. That is, the enzyme is wired
12 to undergo conformational change in response to completion of the first chemical step, just like it does after
33 substrate binding, product formation, and product release, a view that naturally extends the notion of a

2 dynamic free energy landscape as the organizing principle of enzyme catalysis [11].

» Functional significance of solvent gating in ecDHFR

2 Our work validates the proposed solvent-gating role of Met20 and resolves conformational dynamics in
27 ecDHFR that allosterically regulate the organization of the active site in response to substrate protonation.
28 But, how important is proper solvent gating for hydride transfer? An important case study for the role
20 of the Met20 loop in catalysis is the N23PP ecDHFR mutant (and the related N23PP/S148A mutant)
30 that introduces the double proline insertion found in the human enzyme. This mutation decreases the rate
s of hydride transfer (kp,q) by approximately 15-fold (Fig. 7A) with little apparent change in the overall
sz structure. Because relaxation-dispersion experiments showed that this variant no longer displays millisecond-
;3 dynamics of the Met20 loop, Bhabha et al. concluded that these motions influence the chemical step(s) of
13¢  catalysis in ecDHFR and classified the mutant as a “dynamic knockout” [24]. Adamczyk et al. disputed
335 this conclusion with arguments about the importance of electrostatic preorganization and MD simulations
16 showing no productive relationship between a putative coordinate for millisecond dynamics of the Met20 loop

10
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and the energy barrier for hydride transfer [39]. Loveridge et al. found that although the insertion mutant
showed a reduced rate of hydride transfer, the corresponding kinetic isotope effect and its temperature
dependence were largely unaffected [36]. They interpreted this as evidence that the mutation does not
alter direct dynamic contributions to hydride transfer. Based on our work, we believe that the N23PP
mutation impedes the solvent-gating activity of ecDHFR: Close inspection of the active site in the published
N23PP/S148A ecDHFR structure [24] shows that a water occupies the site typically occluded by Met20 in
the wildtype enzyme (Fig. 7B; PDB: 3QL0). The proline insertion increases the spacing between Met20 and
the subsequent a-helix by about 0.3 A (measured from Met20-C,, to Leu28-C,,), such that the methionine
sidechain no longer blocks solvent access to the substrate, trapping the protein in a gate-open state that
is less competent for hydride transfer. In this view, the solvent-gating function of Met20 mechanistically
underpins the effect of the N23PP mutation, providing a structural explanation for the prior notion that
the insertion disrupts the electrostatic environment of the ecDHFR active site [39].

Consistent with this inference, about six-fold of the catalytic activity of N23PP can be rescued by the
point mutation L28F (Fig. 7A), which introduces a larger residue on the adjacent a-helix [40] and likely
partially restores the capability to shield the substrate from solvent. These results are consistent with a

central role for solvent-gating in enhancing the hydride transfer rate of ecDHFR.

Dynamic modes and solvent-gating function are conserved in DHFR

Evolutionary conservation provides further perspective on the importance of the observed motions as DHFR
homologs catalyze the same reaction and face similar challenges. The hinge motion characterized here within
the model Michaelis complex resembles the conformational changes observed between substrate and product
ternary complexes [41] in terms of its associated changes in pairwise-distance between C,, atoms (Fig. 3C).
The latter motion reflects a small (<1 A) hinge motion, and has been described as a subdomain rotation
that alters the width of the active site cleft [9]. Notably, the human homolog exhibits a substantially larger
hinge motion (~3 A) upon product release [41], which was postulated to facilitate cofactor exchange in
versions of DHFR with a more rigid Met20 loop [41]. Consistently, the occluded state of the Met20 loop,
which facilitates cofactor release in e¢cDHFR, has not been observed in eukaryotic DHFRs [9, 10, 41].
Indeed, the Met20 loop of human DHFR does not exhibit the conformational flexibility observed for
the E. coli enzyme [9], and the analogous residue to Met20, Leu22, has well-resolved density for a single
conformation in models of the human DHFR Michaelis complex (Fig. 7C). Strikingly, however, the differences
between the modeled and observed electron density (mF, — DF.) for two previously deposited structures
of human DHFR both show clear evidence of an excited state rotamer of the Phe31 sidechain (Fig. 7C).
Accordingly, there is unmodeled positive difference density near the N5 nitrogen of folate, suggesting partial
occupancy by a proton-donating water as observed for ecDHFR (Fig. 1B). Together, these observations
strongly suggest that in human DHFR Phe31 is functionally analogous to ecDHFR, Met20, rather than the
11
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structurally homologous Leu22 residue. This functional analogy was first proposed by McTigue et al. [22] and
implies that solvent-gating is functionally conserved in the active sites of DHFR enzymes. Considering these
structural observations along with partial functional rescue of the N23PP mutation by the L28F mutation
in the E. coli enzyme, this suggests a mechanistic basis for the appearance of both mutations at a similar

point in evolutionary history [40].

Identifying functional networks of residues

The temperature-resolved difference maps produced in this work allowed us to trace networks of correlated
structural changes across multiple residues. We observe the pterin ring of folate adopt a deeper binding pose
in the active site with corresponding movement of the critical active site residues Met20, Trp22, Asp27, and
an ordered water molecule (Fig. 3J). EF-X corroborates this network of correlated rearrangements (Fig.
4T), which can mechanistically explain the allosteric coupling we observe between the hinge motion and
the active site (Fig. 5). Similarly, a network of functionally important residues including Tyr128, Phel25,
and Tyr100 moves in response to perturbations (Fig. 3K; Fig. 7A). Difference map-based analysis of these
diffraction experiments therefore now provides the sensitive detection of correlated motion needed to develop
mechanistic models. The atomic and temporal resolution of these experiments naturally complement MD
simulations in the development and testing of structural hypotheses.

In summary, the work presented here used ligand-, temperature-, and electric-field-dependent X-ray
diffraction experiments and MD simulations to resolve a conserved dynamic mode that allosterically influ-
ences local conformational equilibria in the active site of E. coli DHFR. This reveals an enzyme with
dynamics primed to respond to the protonation of its substrate. We believe the approach presented here will
have broad application. The protein crystals we used are equivalent to those used for decades (for example
in refs. [9, 15, 16]). However, the advances described here, building on improvements in hardware [23, 42],
data collection strategies [7, 43|, and analysis methods [44—46], enabled elucidation of the correlated motions
of an enzyme in atomic detail. We expect the presented methods and strategy will likewise permit identifi-
cation of the motions that underlie the function of a wide range of proteins, promoting the development of

new mechanistic models to explain protein function and its allosteric regulation.
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Fig. 1 The closed state of the Met20 loop contains two interconverting substates. (A) Schematic of the hydride
transfer reaction catalyzed by DHFR. Hydride transfer occurs from NADPH to dihydrofolate (DHF) with a stepwise mechanism:
protonation of DHF from water precedes hydride transfer. The N5 nitrogen and C6 carbon of DHF are labeled. (B) and (C)
2mF, — DF, map (blue mesh; 0.70), mF, — DF. (green mesh; +4.00), and refined model for a ecDHFR:NADP+:FOL structure
at 290 K. (B) The ecDHFR complex adopts the Met20 closed conformation and two rotamer states can be modeled for Met20
(both shown in stick representation), accompanied by unmodeled density. The bottom panel depicts how this electron density
can be interpreted as a superposition of a “Gate Open” state that allows water into the active site and a “Gate Closed”
state that occludes water. (C) The region composed of Met20, Pro21, and Trp22 adopts two conformations marked by distinct
backbone conformations between Pro21 and Trp22 (blue and red arrows). (D) Kernel density estimates of the Trp22-¢ dihedral
from MD simulations in the context of a crystal lattice and a solvated water box, and dash marks to indicate the Trp22-¢
dihedral in deposited structures of ecDHFR. The two states observed in (C) are shown with corresponding blue and red arrows,
and the inset structure indicates the Trp22-¢ dihedral. The 2mF, — DF. and mF, — DF. maps shown in (B) and (C) are
carved within 1.5 A and 3 A, respectively, of the indicated residues for clarity.
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Fig. 2 Ligand-dependent conformational changes illustrate Met20 solvent gating. (A) Chemical structures
of folate (FOL) and 10-methylfolate (MFOL). (B) Refined structure and 2mF, — DF. electron density map of the
ecDHFR:NADP*:MFOL complex. The 10-methyl group is in close contact with the Met20 sidechain, and a water (red sphere;
indicated by an arrow) can be resolved within 3.6 A of the N5 nitrogen of MFOL. The 2mF, — DF, map is contoured at
1o (blue mesh; carved within 1.5 A of shown atoms) and 0.8 (light blue mesh; carved within 1.5 A of shown water). (C)
Fyror — Fror isomorphous difference map, phased with the MFOL-bound model. The overview shows the difference electron
density induced by the 10-methyl substituent (+4c), and the inset highlights the structural differences observed in the active
site (£3.50, carved within 3.0 A of shown atoms). The added methyl group (label a) displaces an ordered water (label b), shifts
the rotamer distribution of Met20 (label c), rotates the pterin ring (label d), and leads to the introduction of an ordered water
near the N5 nitrogen (label e). The 10-methyl substituent is indicated with a dashed circle in each panel.
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Fig. 3 Caption on following page.
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Figure 3: Multi-temperature experiments reveal a global hinge motion and local rearrange-
ments. (A) Schematic of multi-crystal, multi-temperature diffraction experiment. (B) and (C) The primary
structural mode from singular value decomposition (SVD) of the pairwise C, distances describes 88% of the
variance among experimental structures. (B) Plot of the temperature dependence of the first left singular
vector. (C) Heatmap of the contribution of each pairwise distance in the first right singular vector. Residues
38-88 are indicated with an orange bar and residues 120-130 are indicated with a yellow bar. (D) Structure
of ecDHFR with arrows to depict displacements greater than 0.1 A of C,, atoms between 310 K and 270 K
refined models. The arrows are enlarged 10-fold relative to the corresponding displacements. Residues 38—88
are shown in orange, residues 120-130 are shown in yellow, and the distance between Asn23-C, and Pro53-
C,, (hinge distance) is shown as a dashed line. (E) Plot of the hinge distance as a function of temperature.
Data points are shown for each independent crystal and the mean + standard error at each temperature.
(F) Structure and 2mF, — DF, map for the 290 K consensus structure for Asp127 and Tyr128. The 1.0c
isocontour plot of the 2mF, — DF, map in the plane of the backbone carbonyl is shown for the consensus
structures at each temperature. (G) Schematic for the single-crystal, multi-temperature diffraction exper-
iment. (H) Overview of the temperature-resolved isomorphous difference map between the 280 K and 310
K datasets. (I-K) Insets highlighting regions of the difference map. All maps are carved within 2 A of the
displayed atoms, and arrows highlight the structural changes. See also Figure S1.
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Figure 4: Electric-field-dependent structural changes recapitulate hinge motion and influence
on active site residues. (A) Diagram of a possible pattern of force applied by an external electric field (E,
in magenta) to ecDHFR based on the distribution of charged residues. (B) Photograph of the experimental
apparatus for electric-field-stimulated X-ray crystallography (EF-X) at the BioCARS ID-B beamline; (inset)
zoom-in showing an ecDHFR crystal between two electrodes. (C) Schematic of the data collection strategy,
which included 3 consecutive X-ray pulses at each angle: OFF (no high voltage pulse), 200 ns into a +3.5 kV
pulse, and 200 ns into a -3.5 kV pulse. The crystal was rotated after each sequence of 3 diffraction images in
order to collect a complete dataset for each condition. (D) Unit cell of the ecDHFR crystal during the EF-X
experiments. During the OFF images, the crystal is in the P21212; spacegroup. The applied electric field
along the b-axis alters the symmetry of the crystal, rendering the crystal in a P12;1 spacegroup during the
high voltage pulses, with two copies in the new asymmetric unit (ASU; copies shown in red and blue). (E)
The ASU of the refined excited state model. The two copies in the ASU differ in hinge distance. The different
copies of the protein are colored in red and blue as an analogy to the multi-temperature experiment; red
represents the expanded active site cleft observed at hotter temperatures and blue represents the constricted
cleft observed at colder temperatures. (F) to (I) Superposed models and 2mF, — DF, maps from both protein
molecules of the excited state ASU highlight electric-field dependent motion of charged groups. Blue and red
arrows depict electric field vector for the blue and red models, respectively, and maps are contoured at 1.50
and carved within 1.5 A of shown atoms. (F) carboxylate sidechain of folate and (G) charged sidechains near
the C-terminus demonstrate electric-field-dependent structural changes consistent with the formal charges
of the residues. (H) Active site residues and Pro21 backbone carbonyl (inset; contoured at 1.00) differs
between protein molecules. (I) Conformational changes among residues 125 to 128. Structural differences in
panels F-I are also supported by composite omit maps, indicating that the results cannot be attributed to
model bias (Fig. S3). See also Figure S2.
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Fig. 5 MD simulations validate the influence of hinge motion on the substates of the closed Met20 loop. (A)
Simulation model of ecDHFR:NADPT:FOL highlighting the distance restraint applied in MD simulations between Asn23-Cl,
and Pro53-C,, (black dashed line) to model the effects of constricting (blue arrows, cold-like by analogy to the multi-temperature
experiment) or expanding (red arrows, hot-like) the active site cleft. Kernel density estimates of the (B) hinge distance being
restrained, (C) the Trp22-¢, and the (D) Met20-x1 dihedrals. The Trp22-¢ and Met20-x1 dihedrals, which report on the Met20
closed substates, show a monotonic response to the distance restraint. The kernel density estimates were produced from 100
independent simulations of 100 ns duration at each restraint distance.
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Fig. 6 Protonation of the substrate orders the Met20 sidechain in the Michaelis complex. 50 independent MD
simulations of the ecDHFR:NADPH:DHF complex, with and without protonation of the N5 nitrogen, were run for 100 ns each.
Kernel density estimates of the (A) hinge distance, (B) Trp22-¢, (C) donor-acceptor distance for hydride transfer change upon
protonation of the substrate. These kernel density estimates were computed for each trajectory independently and the mean
and 95% confidence interval is shown for each condition. (D) The density of water around the N5 nitrogen of DHF as a function
of distance from the N5 nitrogen (radial distribution function; RDF) mean and 95% confidence interval are shown. The first
50 frames (20 ns) from one trajectory are superimposed for the (E) deprotonated and (F) protonated substrate, depicting the
Met20 sidechain and all waters within 4.5 A of the N5 nitrogen of DHF. Only the initial frame is depicted for DHF and NADPH
for visual clarity.
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A Mutation(s) knya (s7')  Reference
Wildtype 203.9 £ 5.9 Loveridge and Allemann (2011)
N23PP 142+1 Bhabha et al. (2011)
N23PP + S148A 13.9+0.6 DBhabha et al. (2011)
N23PP + L28F 85 Liu et al. (2013)
Y100F 19.8 Liu et al. (2014a)
F125M 5.4440.03 Singh et al. (2014)

B N23PP+S148A ecDHFR

2W3M / £

Fig. 7 Functional importance and conservation of solvent gating in DHFR. (A) The rate of hydride transfer,
Enyd, for selected mutants of ecDHFR. (B) The structure of the N23PP/S148A mutant of ecDHFR (PDB: 3QL0) shows well-
supported density for an ordered water in the 2mF, — DF. map (blue mesh; 1.50). (C) Structures of human DHFR (PDB:
4M6K and PDB: 2W3M, molecule B) have unmodeled density consistent with partial-occupancy water within 3.5 A of the N5
nitrogen of FOL and evidence of an alternate rotamer for Phe31 (mF, — DF¢; green/red mesh; £3.50). A single rotamer is
supported for Leu22 in the 2mF, — DF, maps (blue mesh; 1.00) suggesting that Phe31 instead serves as the solvent-gating
residue in the human enzyme. Although only molecule B is presented for the 2W3M deposited structure, similar features are
observed in both protein molecules of the asymmetric unit. See also Figure S4.
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Methods

Protein Purification and Crystallization

We expressed, purified, and crystallized ecDHFR as described previously [43], with one modification. In order
to purify ecDHFR for the complex with 10-methylfolate, we modified the methotrexate-affinity chromatog-
raphy to include a wash with 200 mM potassium phosphate buffer (pH 6.0) with 1 M potassium chloride,
1 mM ethylenediaminetetraacetic acid (EDTA), and 1 mM dithiothreitol (DTT) and elution the protein
using a linear gradient with 50 mM potassium borate buffer (pH 10.15) and 2 M potassium chloride. The
high pH, high salt elution was necessary to avoid contamination of the purified protein with bound folate.
We used crystals of the model of the Michaelis complex, ecDHFR:FOL:NADP™, for the multi-temperature
X-ray diffraction experiments and the electric-field-stimulated X-ray diffraction (EF-X) experiments. We
co-crystallized the 10-methylfolate (No. 16.211, Schircks Laboratories) complex using the same conditions
as the e¢cDHFR:FOL:NADP* complex [43].

Monochromatic Data Collection

We collected the 10-methylfolate complex and multi-temperature datasets presented in this work at the
Stanford Synchrotron Radiation Lightsource (SSRL) beamline 12-1 at the SLAC National Accelerator
Laboratory. We collected the data during three beamtime allocations on July 20, 2021; November 10,
2021; and May 7, 2022. We looped all crystals at Harvard University using the MicroRT system (MiTe-
Gen) for room-temperature data collection, and shipped the looped crystals to SSRL 12-1 using the
SSRL in situ Crystallization Plate (M-CP-111-095, Crystal Positioning Systems) and a thermal shipping
container to maintain the samples at 277 K. The specialized plate was used for compatibility with the
robotic sample handling at SSRL 12-1, which supported remote data collection at regulated tempera-
tures and high humidity [47]; see also https://www-ssrl.slac.stanford.edu/smb-mc/content /users/manuals/
remote-access-at-elevated-temperatures-and-controlled-humidity.

For all monochromatic diffraction experiments we used helical data acquisition, translating along the
long-axis of the rod-shaped crystals to best distribute the radiation dose among the crystal volume. Unless

2 and 0.2% transmission. On average, the crystals

otherwise noted, the beam size was set to 50 x 50 pm
were 75 X 75 x 500 pum, and we collected 1440 images with a 1° oscillation angle and a 0.2 s exposure time.
SSRL BL12-1 is equipped with an Eiger 16M detector (Dectris) with a pixel size of 75 pm?. We began each
crystal at 295 K, and adjusted the environmental temperature to the desired set point at a ramp rate of

approximately 2 °/min.
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10-methylfolate Complex

We collected the diffraction data for the 10-methylfolate complex with a beam size of 50 x 7 pm? at 13.00

keV, a detector distance of 160 mm, and at 285 K.

Multi-temperature Diffraction Experiments

To investigate the conformational changes in DHFR across a range of physiological temperatures, we collected
4 datasets at 270 K, 5 datasets at 280 K, 5 datasets at 290 K, 1 dataset at 295 K, 5 datasets at 300 K, and 3
datasets at 310 K. For these experiments, we collected a single dataset at the desired temperature from each
crystal, using an incident beam energy of 15.00 keV and a detector distance of 160 mm. To facilitate the
use of isomorphous difference maps to identify structural differences, we also collected multiple datasets at
different temperatures from the same crystal. For one crystal, we collected successive datasets at 295 K, 280
K, 295 K, 310 K, and 295 K, and for another crystal we collected the reversed series at 295 K, 310 K, 295
K, 280 K, and 295 K. The repeated measurements at 295 K allowed us to assess hysteresis and to rule out

radiation damage, as indicated by the relatively flat isomorphous difference maps from successive datasets.

Data Reduction, Scaling, and Structure Refinement

We used DIALS to find and index strong spots, refine the experimental geometry, and integrate each
dataset at each temperature [44]. Each dataset was processed independently, using default parameters
in DIALS. During indexing we provided the space group, P2:212;, and used local index assignment
(index.assignment.method=local). This improved the indexing rate by reducing the sensitivity to small
crystal motions during the course of helical data acquisition. Following geometry refinement, the residuals
for spot prediction were approximately 0.2-0.3 px (RMSD).

The relative scale of each dataset is an important consideration when using difference maps to visual-
ize conformational changes between conditions. We used dials.scale with a common reference dataset,
collected during the same day at 295 K, to ensure a consistent relative scale across all of our data [48].
In addition to scaling and merging each dataset individually, we scaled and merged data collected at the
same temperature from multiple crystals to refine single, representative structures for each temperature.
High-resolution cutoffs were always chosen such that the half-dataset correlation coefficient of the high-
est resolution bin was greater than 0.3 [49]. In all cases, the high resolution cutoff was < 1.35 A, and the
majority of the crystals diffracted to between 1.05 and 1.15 A.

Due to the large number of diffraction datasets involved in this study, we chose an automated structure
refinement protocol. We used phenix.refine [50] to refine occupancies, anisotropic B factors for all non-
hydrogen atoms, and reciprocal space XYZ refinement to improve the atomic coordinates. Ligand geometry
restraints for NADP™T, folate, 10-methylfolate, and oxidized cysteine (cysteine sulfinic acid) were generated
using phenix.elbow using default parameters. Due to the high degree of similarity between each dataset, we
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initialized each refinement run by isomorphous replacement, and we found ten macrocycles to be sufficient
to converge the refinement R factors. Importantly, to ensure that R-factors were comparable between runs,

we used a common R-free set composed of 5% of the unique reflections.

Analysis of Multi-crystal, Multi-temperature Experiment

To identify temperature-dependent structural changes from refinement, we analyzed changes in pairwise
distances between refined C,, coordinates. For residues refined with alternate conformations, only the highest
occupancy conformer was included in the analysis. We used the SciPy library [51] to compute the pairwise
distances between coordinates. These distances were treated as features and computed for the consensus
structures at each temperature, yielding a N x d matrix with N datasets and d features. To prioritize analysis
of how the structures differed, we subtracted the mean of each pairwise distance from the corresponding
rows of the matrix. We then used singular value decomposition in NumPy [52] to analyze the primary

temperature-dependent mode among the datasets.

Isomorphous Difference Maps

This work presents weighted isomorphous difference maps across temperatures and between different ligand-

bound complexes. These maps used difference structure factor amplitudes, |[AFy/|, given by

|AFH| = WH (|FH,cond2| - |FH,condl|) (1)

where |Fi cond1| and |Fiy cond2| are the merged structure factor amplitudes for the first condition and second

condition, respectively, and wy are weights defined as follows [53]:

-1

(2)

To emphasize the high-resolution features of the difference maps, we excluded low resolution reflections (> 5.0
A) from the maps following Schmidt et al. [54]. To facilitate the reproducibility of these difference maps,
we added a command-line script, rs.diffmap, to the rs-booster command-line interface of reciprocalspaceship
[45]. The maps produced in this research used the arguments: -a 0.0, to achieve the weight function above,

and —dmazx 5.0, to exclude low-resolution reflections.

Validation of Temperature-resolved Difference Maps

To rule our artifacts, we used interleaved datasets collected at 295 K to assess radiation damage and
reversibility of temperature-dependent effects, and further used two crystals with reversed temperature
sequences to rule out hysteresis (Fig. S1A). Indeed, the refined hinge distance was reversible and did not
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depend on the order of temperature changes, suggesting our temperature ramps allowed sufficient equili-
bration time (Fig. S1B). Isomorphous difference maps between different temperatures obtained from single
crystals exhibited notably stronger difference density than maps computed between datasets collected at the
same temperature (Fig. S1C and S1D), confirming that the temperature difference explains the observed
effects. Equivalent temperature-resolved differences from two independent crystals were strongly correlated

(Fig. S1E), demonstrating reproducibility.

Electric-field-stimulated X-ray (EF-X) Diffraction

Experimental Apparatus and Data Collection

We conducted the EF-X experiments at BloCARS (Advanced Photon Source, Argonne National Laboratory)
using an experimental apparatus based on work by Hekstra et al. [23], with several important modifications
that reduced sample attrition. These improvements are summarized below, and will be described in detail
in an upcoming publication. The electrodes in the original experiment used wires threaded within glass
capillaries, which could become retracted during sample handling, damage the crystal, and result in an
osmotic mismatch with the crystal. To resolve this problem, we constructed solid state electrodes with flush
surfaces for crystal contact. We produced bottom electrodes by threading tungsten wire (41 pm diameter)
into glass microcapillaries (0.018 in O.D.,; 0.0035 in I.D.; 16 mm length; Drummond) and fusing the glass
around the tungsten with a Bunsen burner. We trimmed the protruding wires at the melted ends of the
capillaries, and polished the electrode tips using a series of fine grit sandpapers to make a flat, flush surface
with an exposed conductive patch. These bottom electrodes were placed in 3D-printed inserts compatible
with reusable goniobases (Mitegen, SKU: GB-B3-R-20).

In addition, the original apparatus used a top electrode with an integrated pneumatic pump to establish
liquid contact with the crystal [23]. This design required brief exposure of the crystal to the air as liquid
contact was being established, risking crystal dehydration. Here, we mounted crystals on the bottom elec-
trodes and used Sylgard 184 (Dow-Corning) to insulate their electrical contact as previously described [23];
however, we also pipetted a band of well solution in a polyester (PET) sleeve (MiTeGen) with approximately
10 pL of the crystal’s mother liquor (Fig. S2A). Prior to the experiment, we cut the sleeve above the liquid
band and brought the top electrode through the mother liquor, maintaining a high humidity environment
for the crystal for the duration of the experiment. Using an adjustable kapton sleeve fitted to the top elec-
trode, we created a small droplet of mother liquor at the end of the top electrode that we used to establish
liquid contact with the crystal.

Finally, we used a custom, dual-polarity pulse generator from FID GmbH (Burbach, Germany) to gen-
erate high-voltage pulses for EF-X experiments. This pulse generator is available at the BioCARS 14-ID-B
beamline. For the experiment presented here, we used the data collection strategy described in Hekstra et
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al. [23] with the following modifications. At each crystal orientation, we collected an X-ray diffraction image
without electric field (‘Off’), a diffraction image 200 ns after the application of a 250 ns high-voltage pulse
at +3.5 kV, and a third image 200 ns after the application of a 250 ns pulse at -3.5 kV. We included a one
second delay between images to permit crystal relaxation. After the three images at each crystal orientation,
we rotated the crystal and repeated the collection sequence to fully sample reciprocal space (Fig. 4C). We
collected the data reported here from 0° to 180° in 2° steps, from 181° to 361° in 2° steps, and from 361.5°
to 541.5° in 1° steps. This progression achieves rapid coverage of reciprocal space to ensure high complete-
ness while evenly distributing the radiation dose during acquisition. The Laue X-ray pulses had a 100 ps

duration and a spectrum from 1.02 — 1.18 A (approximately 5% energy bandwidth), peaked at 1.04 A.

Data Reduction and Analysis of Reciprocal Space Signal

We indexed, refined the experimental geometry, and integrated the diffraction data using Precognition (Renz
Research, Inc.). To scale and merge the time-resolved datasets while enforcing a common relative scale, we
used careless, which employs approximate Bayesian inference to learn a generative model for the observed
intensities and posterior estimates of the desired structure factor amplitudes [46]. We provided the image
numbers, inferred wavelength of each observation, observed Miller indices, the interplanar spacing, and the
observed spot centroid on the detector to careless as metadata. We chose a Student’s ¢-distribution with
v = 32 for the likelihood function based on the evaluation of values of v in the merging of the ‘Off’ dataset
in P212,2;. For processing with careless, we provided the ‘Off’ data in both P2;212; and the electric-field-
reduced-symmetry spacegroup, P2; and provided the +3.5 kV and -3.5 kV datasets in P2;. Data collection
and processing statistics for this EF-X dataset are presented in Table S10.

To evaluate the presence of electric-field-dependent structural changes in the time-resolved dataset,
we took advantage of the crystallographic symmetry operations that were broken by the electric field. In
particular, the two-fold screw axes along the a- and c-axes are broken, whereas the two-fold screw axis along
the b-axis is preserved due to the alignment of the crystal relative to the applied electric field. We can compare
the merged structure factor amplitudes between regions of reciprocal space that were formerly related by
crystallographic symmetry in order to identify electric-field-dependent signal. In the ‘Off” data, processed
in P2, this symmetry should be intact, resulting in a half-dataset correlation coefficient of zero for the
differences between the regions of reciprocal space. On the other hand, these differences should be measurable
and reproducible for the datasets collected in the presence of an applied electric field, yielding a positive
correlation coefficient. This metric, C'Clyn,, is analogous to the half-dataset anomalous correlation coefficients
(CCanom) used to evaluate anomalous signal, but measures breaking of a spacegroup symmetry operation,
here (z+%, 35—, Z), rather than Friedel’s law (7,7, z). We implemented CCjy,,, using reciprocalspaceship
[45] and the result is shown in Fig. S2B.
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Extrapolated Structure Factor Refinement

To refine the excited state structure induced by the application of an electric field, we used extrapolated
structure factor (ESF) refinement [23, 32]. To maximize the signal for our analysis, we refined the difference

between the +3.5 kV and the -3.5 kV timepoints (‘On’ state) as follows:

FgSF _ |n(F§3'5kV . F§3.5kv) + Fgff| (3)

where n is the extrapolation factor, F’ gf I are the ‘Off” state’s structure factor amplitudes, merged in P2y,
and FEB"%V and F§3'5kv are the structure factor amplitudes for the +3.5 kV and -3.5 kV HV pulses,
respectively. We scaled the Fff"skv and F§3'5kv datasets relative to the Fgff using SCALEIT [55], prior

to computing ESFs. We computed afISF

by propagating uncertainties in quadrature, and we took the
absolute value of the extrapolated structure factors to avoid negative values during refinement. This assumes
that the corresponding phase for the structure factor is flipped by 180°. For refinement of the excited
states, we constructed an appropriate reduced-symmetry space group by removing any crystallographic
symmetry axes not collinear with the electric-field [23]. In our experiment, the crystal was mounted with the
b-crystallographic axis offset by 24.1+0.5° (mean =+ std; N = 1089 images) relative to the electric field vector,
such that the field component along the b axis equals cos(24.1°) & 91% of the full field. In this approximation
we can treat the unit cell as consisting of two copies of a redefined asymmetric unit in the P1 2; 1 spacegroup.
To determine the extrapolation factor, we scanned values between 0 and 15 and ran automated structure
refinement beginning from a model refined to the ‘Off” data in P2,2:2;. We found that the two copies of
DHFR in the asymmetric unit refined to different hinge distances as a function of increasing n (Fig. S2C). The
difference in hinge distance increased linearly until n = 8 and then plateaued at a difference of approximately
0.2 A. As in Hekstra et al., we chose the extrapolation factor to compromise between map quality (best at
lower n) and the appearance of map features that correspond to strong peaks in the difference maps (stronger
features at higher n) [23]. We chose an extrapolation factor of n = 8 for further ESF refinement because
it was the lowest value (best map quality) at which the full difference in hinge distance between the two
copies was realized. We used phenix.refine for ESF refinement [50] using isotropic B factors, occupancies,
and reciprocal space-based refinement of coordinates. The refinement statistics for the ‘Off’ state from Laue
diffraction and the ESF refinement of the ‘On’ state are presented in Table S11. Although ESF refinement
yields higher refinement R-factors than expected for a model at 1.70 A resolution, the magnitude of these
R-factors is not a reliable measure of model quality because of the increased influence of measurement error
in the extrapolated structure factors. However, since the measurement error is unchanged during refinement,
relative changes in Ry and Rjype. are still useful to guide structure refinement [23]. To validate that

the observed structural differences between the protein molecules of the excited-state ASU could not be
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explained by modeling bias, we generated simulated annealing (SA; annealing type=cartesian) composite
omit maps using default settings in PHENIX [56, 57]. The SA composite omit maps are presented in Figure
S3.

Molecular Dynamics (MD) Simulations

To directly validate mechanistic models of the dynamics observed by X-ray diffraction, we used MD simu-
lations of DHFR in the crystal lattice and in solvated systems. These simulations were run using OpenMM
[58], using a custom library written to support these types of simulations (https://github.com/JBGreisman/
mdtools). We ran all simulations, unless otherwise noted, in an NPT ensemble at 298 K with a 2 fs timestep,
and used the Amber14SB forcefield for the protein and ions [59] and the TIP3P model for water [60]. We
parameterized Folate and dihydrofolate (with and without protonation on the N5 nitrogen) using the gen-
eral amber forcefield (GAFF) [61] and obtained amber-compatible NADP+ and NADPH parameters from
the Bryce group’s database of cofactors (http://amber.manchester.ac.uk) [62, 63]. We used a native SAD
structure of DHFR:NADP*:FOL, PDB: 7TLVC, as the starting model [43], which was prepared by removing
alternate conformations and protonating ionizable groups consistently with their local environments. We
ran initial simulations in a 65 A® waterbox, with 200 mM NaCl. We ran 20 independent simulations that
included 10 ns of equilibration followed by 500 ns production runs, outputting frames every 250 ps. We

analyzed the resulting trajectories using MDTraj [64].

MD Simulations of a DHFR Crystal

To simulate DHFR in its crystal context, we applied the P2;2:2; symmetry operations to the TLVC starting
model to build up the unit cell. We built a 3 x 2 x 1 supercell by repeating the unit cell three times along the
a axis and twice along the b axis. An important consideration for such simulations is the amount of water
needed to maintain the crystallographic volume. We determined this using NPT ”squeeze” runs, in which
waters are added to the simulation box and strong distance restraints are slowly tapered off. More waters
are then added or removed until the desired box volume is maintained within a user-determined tolerance
[65]. We automated this protocol in mdtools and used it to generate a 3 x 2 x 1 DHFR supercell within
0.05% of the experimental volume. Additionally, we added chloride ions to the simulation box to neutralize
the excess positive charge from the crystallographically observed manganese ions [43], which were included
in these simulations. To equilibrate the system, we ran 50 ns of MD in an NPT ensemble. We then initialized
production simulations in an NVT ensemble from the last frame of equilibration. We ran three independent
production simulations for 500 ns, outputting frames every 100 ps.
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Classification of Met20 loop substates in simulation

We quantified the population of the two Met20 loop substates using the Trp22-¢ dihedral as a reporter.
Since this dihedral exhibited two distinct states, we fit the data to a two-state Gaussian mixture model using
all frames from each trajectory. We used the Gaussian mixture model implemented in scikit-learn for this
analysis [66]. To estimate the uncertainty in this classification, we classified the frames of each trajectory
independently using the fit model and reported the mean and standard error across the trajectories. This
analysis was repeated for the simulations of the solvated and lattice systems. For the solvated system, we
used twenty independent trajectories to quantify the population of each substate. For the lattice system,
we treated each protein molecules in the simulation independently, yielding 72 independent trajectories (24

protein molecules x 3 simulations).

Biased MD Simulations in Bulk Solvent

To validate that the results observed from X-ray diffraction experiments are recapitulated outside of the
crystal context we ran MD simulations of the model of the DHFR Michaelis complex, using the same solvated
simulation system as our unbiased trajectories. In order to bias the sampling of the MD simulations based
on the hinge distance, we added a custom distance restraint between the C, atoms of Asn23 and Pro53
using the following functional form:

U= %k(d—do)Q (4)

where k was chosen to be 50.0 kcal/mol/A2, d is the distance between the C, atoms of Asn23 and Pro53
under the minimum periodic image convention, and dj is the desired equilibrium distance for the active site
cleft. We ran MD simulations with dy values of 18.8, 19.2, 19.6, 20.0, and 20.4 A in order to bias the sampling
across the range of crystallographically observed values. 100 independent simulations were equilibrated for

10 ns and then simulated for 100 ns for each value of dj.

MD Simulations of the Reactive Ternary Complex in Bulk Solvent

Using the 7TLVC starting model, we modeled NADPH and dihydrofolate (protonated and deprotonated) to
represent the reactive ternary complex of DHFR. We prepared the simulation system in a 65 A3 waterbox
with 200 mM of NaCl, and we ran 50 independent simulations with 10 ns of equilibration and then 100 ns

production simulations.
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Figure S1: Reversibility and reproducibility of multi-temperature diffraction experiments. (A)
Schematic of single-crystal, multi-temperature diffraction experiments. (B) Plots of the refined hinge dis-
tance versus temperature for both single-crystal experiments demonstrate that the experiment is reversible.
(C) Temperature-resolved difference maps between the first dataset from crystal 1 and the subsequent four
datasets. More significant density peaks are observed for maps generated from datasets collected at dif-
ferent temperatures. (D) Zoom-in on Tyr100 in the difference maps emphasizes that observed features are
temperature-dependent (carved within 2 A of Tyr100). (E) Heatmap of the Spearman correlation coeffi-
cients between difference structure factor amplitudes computed from independent single-crystal experiments.
Equivalent temperature changes yield strongly correlated difference amplitudes, while the opposite tempera-
ture changes produce strongly anti-correlated results. This demonstrates that the observed structural changes
in the single-crystal, multi-temperature experiments are reproducible between independent experiments.
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Fig. S2 Experimental apparatus and analysis for electric-field-stimulated X-ray diffraction of e¢cDHFR. (A)
Diagram of the revised experimental apparatus for EF-X. Liquid contact is made within a band of well solution that is
osmotically matched to the crystal, ensuring a high humidity environment for the duration of the experiment. (B) Plot of
CCsym versus resolution bin. CCsym is an indicator of the reproducibility of observed symmetry breaking during an EF-X
experiment. The 95% confidence interval from 5 random partitions of the diffraction images is shown. For the ‘Off’ dataset in
which the symmetry operation is preserved, no significant correlation between half-datasets is expected because differences for
symmetry-related observations should only reflect experimental error. The positive correlations for differences measured during
the high-voltage pulses indicates significant electric-field-dependent symmetry breaking.(C) Plot of the refined difference in
hinge distance between the two copies of DHFR in the P2; ASU as a function of extrapolation factor. With an extrapolation
factor of zero, the data is equivalent to ‘Off’ structure factor amplitudes processed in the reduced-symmetry spacegroup.
The difference in hinge distance increases linearly with extrapolation factor until a value of 8 and plateaus at a difference of
approximately 0.2 A. The extrapolation factor chosen for ESF refinement of the excited state is indicated with a red circle.
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Fig. S3 Composite omit maps validate modeling of EF-X excited state. (A) to (D) Comparison of 2mF, — DF,
maps from ESF refinement (left column) and corresponding simulated annealing (SA) composite omit maps (right column).
Superposed models and maps from both protein molecules of the excited-state ASU highlight electric-field induced structural
changes. Blue and red arrows depict electric field vector for the blue and red models, respectively, and maps are contoured
at 1.50 and carved within 1.5 A of shown atoms. (A) Carboxylate sidechain of folate and (B) charged sidechains near the C-
terminus demonstrate electric-field-dependent structural changes consistent with the formal charges of the residues. (C) Active
site residues and Pro21 backbone carbonyl (inset; contoured at 1.0c) differs between protein molecules. (D) Conformational
changes among residues 125 to 128. The similarity between the electron density maps from ESF refinement and the SA composite
omit maps indicates that the observed structural differences between the molecules of the excited-state ASU are not the result
of modeling bias.
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Fig. S4 Tyr128 backbone conformations in MD simulations. (A) Kernel density estimates of the Tyr128-¢ dihedral
from MD simulations at each imposed hinge distance restraint. The Tyr128-¢ dihedral does not exhibit a monotonic relationship
as a function of hinge distance. (B) Kernel density estimates of the Tyr128-¢ dihedral from MD simulations of the reactive
ternary complex (95% confidence interval is shown). The Tyr128-¢ dihedral distribution is altered by substrate protonation.
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Table S1 Summary statistics for
DHFR:NADP*:MFOL complex

PDB ID 8DAI
Temperature 285 K
Data Collection®
Wavelength (A) 0.9537
Spacegroup P212,2;
Cell dimensions (A)
a, b, c 34.25, 45.36, 98.85

Total observations 2,736,784
Unique observations 105,471

Resolution (A) 49.42 - 1.14
(1.16 - 1.14)
Multiplicity 25.9 (14.4)
Completeness (%) 97.2 (73.0)
Mean I/or 11.9 (0.4)
Rpim 0.028 (0.980)
CCy/2 0.999 (0.326)
Refinement?
Rwork (%) 12.68
Riree (%) 16.00
R.M.S. Deviations
Bonds (A) 0.013
Angles (°) 1.357
Wilson B (A?) 15.57
Mean B factor (A?)
Total 22.97
Macromolecules 21.07
Ligands 21.71
Water 39.71
Clashscore 2.23
Ramachandran
Favored (%) 98.70
Allowed (%) 1.30
Outliers (%) 0.00

T Reported by dials.scale in DIALS [44]
2 Reported by PHENIX [50]
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Table S2 Summary statistics for datasets at 270 K

Crystal 1 2 3 4
PDB ID 53SS 53ST 5SSU 5SSV
Data Collection”
Wavelength (A) 0.8265 0.8265 0.8265 0.8265
Spacegroup P212121 P212121 P212121 P212121
Cell dimensions (A)
a 34.11 34.08 34.10 34.12
b 45.34 45.29 45.18 45.26
c 99.11 99.00 99.09 99.06
Total observations 2,999,634 3,330,004 3,101,071 3,366,693
Unique observations 107,967 128,870 109,637 125,784
Resolution (A) 49.56 - 1.14 33.41 - 1.07 32.24 - 1.12 45.26 - 1.08
(1.16 - 1.14) (1.09 - 1.07) (1.14 - 1.12) (1.10 - 1.08)
Multiplicity 27.8 (28.1) 25.8 (27.6) 28.3 (29.5) 26.8 (27.7)
Completeness (%) 99.8 (99.9) 98.7 (96.6) 96.3 (93.6) 98.8 (96.5)
Mean I /o 13.7 (0.7) 22.5 (1.5) 18.6 (0.5) 19.7 (0.4)
Rpim 0.077 (2.382)  0.101 (2.200) 0.134 (2.876)  0.077 (3.610)
CCy /2 0.999 (0.400)  0.999 (0.551)  0.999 (0.415)  0.999 (0.309)
Refinement?
Rwork (%) 14.70 13.00 13.93 13.98
Rfree (%) 16.74 14.82 16.89 17.38
R.M.S. Deviations
Bonds (A) 0.010 0.007 0.008 0.012
Angles (°) 1.085 1.018 1.027 1.237
Wilson B (A?) 16.04 15.50 15.85 15.12
Mean B factor (A?)
Total 21.71 21.28 22.90 21.95
Macromolecules 20.11 19.64 21.16 20.29
Ligands 19.14 18.73 20.27 19.27
Water 37.28 36.80 39.62 38.19
Clashscore 1.57 1.27 0.94 1.57
Ramachandran
Favored (%) 99.35 99.35 99.35 99.35
Allowed (%) 0.65 0.65 0.65 0.65
Outliers (%) 0.00 0.00 0.00 0.00

T Reported by dials.scale in DIALS [44]
2 Reported by PHENIX [50]
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Table S3 Summary statistics for datasets at 280 K

Crystal 1 2 3 4 5
PDB ID 7FPL 7TFPM 7TFPN 7TFPO 7TFPP
Data Collection”
Wavelength (A) 0.8265 0.8265 0.8265 0.8265 0.8265
Spacegroup P212121 P212121 P212121 P212121 P212121
Cell dimensions (A)
a 34.12 34.16 34.14 34.18 34.20
b 45.50 45.51 45.44 45.55 45.47
c 99.05 99.08 99.04 99.08 99.09
Total observations 2,800,998 3,839,113 3,322,423 3484869 3,946,244
Unique observations 98,434 142,620 141,821 135,454 134,271
Resolution (A) 32.26 - 1.17 45.51 - 1.04 45.44 - 1.04 45.55 - 1.06 32.33 - 1.03
(1.19 - 1.17) (1.06 - 1.04) (1.06 - 1.04) (1.08 - 1.06) (1.05 - 1.03)
Multiplicity 28.4 (28.4) 26.9 (20.5) 23.4 (18.5) 25.7 (25.4) 29.4 (28.1)
Completeness (%) 97.8 (96.7) 99.5 (96.4) 99.2 (93.1) 99.9 (98.4) 90.6 (59.8)
Mean I/og 18.0 (0.7) 19.6 (0.4) 19.8 (0.4) 18.4 (0.5) 28.7 (0.5)
Rpim 0.054 (1.586)  0.061 (2.520) 0.212 (4.479) 0.106 (2.364) 0.018 (1.327)
CCy/2 0.999 (0.343)  0.999 (0.309) 0.998 (0.388) 0.999 (0.336) 0.999 (0.324)
Refinement?
Ruwork (%) 14.39 12.91 13.55 14.74 12.51
Riree (%) 16.53 15.31 15.84 17.07 14.90
R.M.S. Deviations
Bonds (A) 0.007 0.010 0.008 0.009 0.010
Angles (°) 0.970 1.156 1.031 1.133 1.154
Wilson B (A?) 16.14 14.76 15.35 15.41 14.82
Mean B factor (A?)
Total 21.99 21.06 21.84 22.07 21.36
Macromolecules 20.38 19.34 20.12 20.39 19.66
Ligands 19.42 18.54 19.03 19.30 18.60
Water 37.56 37.65 38.53 38.45 37.89
Clashscore 1.89 1.26 1.57 1.89 1.57
Ramachandran
Favored (%) 99.35 99.35 99.35 99.35 99.35
Allowed (%) 0.65 0.65 0.65 0.65 0.65
Outliers (%) 0.00 0.00 0.00 0.00 0.00

T Reported by dials.scale in DIALS [44]
2 Reported by PHENIX [50]
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Table S4 Summary statistics for datasets at 290 K

Crystal 1 2 3 4 5
PDB ID 7TFPR 7TFPS 7FPT 7TFPU TFPV
Data Collection”
Wavelength (A) 0.8265 0.8265 0.8265 0.8265 0.8265
Spacegroup P212121 P212121 P212121 P212121 P212121
Cell dimensions (A)
a 34.18 34.19 34.19 34.18 34.20
b 45.49 45.56 45.59 45.60 45.56
c 99.10 99.05 99.05 99.07 99.04
Total observations 3,627,079 2,149,046 3,640,008 3,834,528 3,765,323
Unique observations 125,984 80,476 123,429 132,517 142,372
Resolution (A) 32.31 - 1.07 49.53 - 1.26 32.32 - 1.07 32.31 - 1.05 41.39 - 1.04
(1.09 - 1.07) (1.28 - 1.26) (1.09 - 1.07) (1.07 - 1.05) (1.06 - 1.04)
Multiplicity 28.8 (29.4) 26.7 (23.3) 29.5 (30.2) 28.9 (27.8) 26.4 (20.7)
Completeness (%) 95.6 (92.8) 99.8 (98.4) 93.5 (90.4) 94.8 (80.5) 99.2 (95.4)
Mean I/og 23.7 (0.6) 18.6 (1.1) 25.8 (0.8) 24.5 (0.6) 27.8 (0.5)
Rpim 0.111 (2.284)  0.105 (1.704) 0.028 (1.401) 0.027 (1.713) 0.031 (1.101)
CCy/2 0.999 (0.312)  0.999 (0.357) 0.999 (0.555) 0.999 (0.349) 0.999 (0.364)
Refinement?
Ruwork (%) 12.37 13.17 11.84 12.25 12.60
Riree (%) 14.62 16.65 14.22 14.72 14.50
R.M.S. Deviations
Bonds (A) 0.008 0.009 0.009 0.009 0.007
Angles (°) 1.035 1.083 1.144 1.124 1.025
Wilson B (A?) 14.98 15.94 15.00 15.29 14.11
Mean B factor (A?)
Total 23.05 22.82 21.68 21.81 21.80
Macromolecules 21.04 20.95 19.93 20.10 19.84
Ligands 19.85 20.08 18.66 18.81 18.35
Water 42.52 40.85 38.81 38.55 41.08
Clashscore 1.26 2.20 1.57 1.57 1.89
Ramachandran
Favored (%) 99.35 99.35 99.35 99.35 99.35
Allowed (%) 0.65 0.65 0.65 0.65 0.65
Outliers (%) 0.00 0.00 0.00 0.00 0.00

T Reported by dials.scale in DIALS [44]
2 Reported by PHENIX [50]
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Table S5 Summary statistics for datasets at 300 K

Crystal 1 2 3 4 5
PDB ID TFPX TFPY TFPZ 7TFQO TFQ1
Data Collection”
Wavelength (A) 0.8265 0.8265 0.8265 0.8265 0.8265
Spacegroup P212121 P212121 P212121 P212121 P212121
Cell dimensions (A)
a 34.14 34.14 34.09 34.23 34.24
b 45.41 45.44 45.19 45.53 45.38
c 99.04 99.00 98.89 99.14 99.23
Total observations 3,350,065 2,995,768 1,824,827 2,913,593 2,666,016
Unique observations 134,806 114,032 69,305 104,829 95,421
Resolution (A) 49.52 - 1.06 99.00 - 1.12 49.44 - 1.32 45.53 - 1.15 32.36 - 1.18
(1.08 - 1.06) (1.14 - 1.12) (1.34 - 1.32) (1.17 - 1.15) (1.20 - 1.18)
Multiplicity 24.8 (24.7) 26.3 (26.9) 26.3 (26.8) 27.8 (28.3) 27.9 (28.4)
Completeness (%) 99.9 (98.7) 99.7 (99.7) 99.9 (99.9) 98.4 (97.7) 97.1 (96.3)
Mean I/og 20.6 (0.5) 18.7 (0.6) 15.7 (0.7) 25.0 (0.5) 22.0 (0.4)
Rpim 0.162 (5.383) 0.128 (3.646) 0.409 (1.023) 0.038 (1.358) 0.059 (1.140)
CCy/2 0.999 (0.346) 0.999 (0.364) 0.997 (0.443) 0.999 (0.334) 0.999 (0.312)
Refinement?
Ruwork (%) 12.90 14.11 14.34 13.28 14.19
Riree (%) 15.41 17.01 18.19 16.20 17.67
R.M.S. Deviations
Bonds (A) 0.014 0.011 0.007 0.006 0.006
Angles (°) 1.357 1.127 0.977 0.935 0.875
Wilson B (A?) 15.54 15.64 16.72 15.23 15.89
Mean B factor (A?)
Total 22.97 22.97 23.59 24.08 23.89
Macromolecules 21.12 21.14 21.68 21.91 21.99
Ligands 19.50 19.62 20.84 20.53 20.69
Water 41.23 40.98 42.02 45.20 42.40
Clashscore 2.52 1.89 1.89 1.57 1.26
Ramachandran
Favored (%) 99.35 99.35 99.35 99.35 99.35
Allowed (%) 0.65 0.65 0.65 0.65 0.65
Outliers (%) 0.00 0.00 0.00 0.00 0.00

T Reported by dials.scale in DIALS [44]
2 Reported by PHENIX [50]
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Table S6 Summary statistics for datasets at 310 K

Crystal 1 2 3
PDB ID TFQ3 TFQ4 TFQ5
Data Collection”
Wavelength (A) 0.8265 0.8265 0.8265
Spacegroup P212121 P212121 P212121
Cell dimensions (A)
a 34.18 34.15 34.19
b 45.49 45.23 45.30
c 99.33 99.22 99.25
Total observations 1,969,232 1,829,107 1,788,359
Unique observations 73,267 67,810 65,420
Resolution (A) 41.36 - 1.30 33.42 - 1.33 99.25 - 1.35
(1.32 - 1.30) (1.36 - 1.33) (1.37 - 1.35)
Multiplicity 26.9 (27.1) 27.3 (28.6) 27.3 (28.9)
Completeness (%) 99.4 (92.4) 99.1 (97.9) 99.5 (89.5)
Mean I /o 15.4 (0.4) 24.5 (0.6) 21.3 (0.5)
Rpim 0.310 (1.596) 0.080 (0.848) 0.108 (1.048)
CCy /2 0.997 (0.360) 0.999 (0.301) 0.999 (0.328)
Refinement?
Rwork (%) 15.24 14.61 14.96
Rtree (%) 18.66 18.57 18.96
R.M.S. Deviations
Bonds (A) 0.006 0.008 0.009
Angles (°) 1.001 1.037 1.007
Wilson B (A2) 17.48 15.77 17.55
Mean B factor (A?)
Total 23.71 24.37 25.03
Macromolecules 21.58 22.22 22.77
Ligands 20.69 21.76 21.86
‘Water 44.24 44.80 46.82
Clashscore 1.89 2.20 3.15
Ramachandran
Favored (%) 99.35 99.35 99.35
Allowed (%) 0.65 0.65 0.65
Outliers (%) 0.00 0.00 0.00

T Reported by dials.scale in DIALS [44]
2 Reported by PHENIX [50]
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Table S7 Summary statistics for multi-crystal, multi-temperature datasets
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Temperature 270 K 280 K 290 K 300 K 310 K
PDB ID 53SW TFPQ TFPW TFQ2 TFQ6
Number of Crystals 4 5 5 5 3
Data Collection®
Wavelength (A) 0.8265 0.8265 0.8265 0.8265 0.8265
Spacegroup P21212; P212,12; P212,2; P21212, P212,12;
Cell dimensions (A)
a 34.10 34.16 34.19 34.14 34.18
b 45.28 45.50 45.56 45.41 45.30
c 99.08 99.08 99.05 99.04 99.25
Total observations 14,601,731 19,116,204 19,028,898 17,134,249 6,176,809
Unique observations 133,686 147,105 142,798 131,221 74,931
Resolution (A) 49.54 - 1.06 45.50 - 1.03 49.53 - 1.04 99.04 - 1.07 99.25 - 1.29
(1.08 - 1.06) (1.05 - 1.03) (1.06 - 1.04) (1.09 - 1.07) (1.31 - 1.29)
Multiplicity 109.1 (107.6) 129.9 (87.0) 133.2 (101.9) 130.5 (128.3) 82.2 (84.7)
Completeness (%) 99.4 (96.5) 99.8 (96.3) 99.5 (96.0) 100.0 (100.0) 99.8 (94.0)
Mean I/or 36.9 (1.4) 45.5 (0.7) 44.0 (0.8) 38.5 (0.8) 31.6 (0.6)
Rpim 0.050 (2.423)  0.045 (3.530)  0.052 (15.696) 0.170 (1.657) 0.098 (0.839)
CCy /2 1.000 (0.446) 1.000 (0.429) 1.000 (0.398) 1.000 (0.557) 1.000 (0.326)
Refinement?
Rwork (%) 12.34 11.83 11.55 12.13 13.96
Riree (%) 14.39 13.84 13.52 14.38 17.89
R.M.S. Deviations
Bonds (A) 0.009 0.008 0.009 0.010 0.012
Angles (°) 1.137 1.072 1.167 1.146 1.161
Wilson B (Az) 15.47 15.24 14.64 15.13 18.97
Mean B factor (A?)
Total 21.22 21.27 21.71 23.43 25.21
Macromolecules 19.62 19.53 19.85 21.38 23.07
Ligands 18.63 18.61 18.14 19.53 22.40
Water 36.78 37.65 40.14 43.78 45.87
Clashscore 1.89 1.57 1.57 2.20 2.20
Ramachandran
Favored (%) 99.35 99.35 99.35 99.35 99.35
Allowed (%) 0.65 0.65 0.65 0.65 0.65
Outliers (%) 0.00 0.00 0.00 0.00 0.00

T Reported by dials.scale in DIALS [44]
2 Reported by PHENIX [50]
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Table S8 Summary statistics for single-crystal, multi-temperature datasets (crystal 1)

Temperature 295 K 310 K 295 K 280 K 295 K
Pass on Crystal 1 2 3 4 5
PDB ID TFEQT TFQ8 7TFQ9 TFQA 7FQB
Data Collection®
Wavelength (A) 0.8265 0.8265 0.8265 0.8265 0.8265
Spacegroup P212,12; P21212; P2:212, P2:212, P21212,
Cell dimensions (A)
a 34.26 34.29 34.27 34.20 34.22
b 45.59 45.65 45.63 45.46 45.47
c 98.96 99.03 98.97 98.99 99.02
Total observations 3,400,772 2,601,689 3,315,426 3,572,742 3,053,872
Unique observations 117,634 89,462 115,024 123,443 105,250
Resolution (A) 32.37 - 1.10 41.46 - 1.21 41.44 - 1.11 32.32 - 1.08 32.34 - 1.14
(1.12 - 1.10) (1.23 - 1.21) (1.13 - 1.11) (1.10 - 1.08) (1.16 - 1.14)
Multiplicity 28.9 (28.8) 29.1 (29.5) 28.8 (28.6) 28.9 (29.0) 29.0 (28.0)
Completeness (%) 96.7 (95.6) 97.6 (96.6) 97.1 (96.4) 96.5 (94.5) 96.6 (96.2)
Mean I/or 12.8 (0.3) 14.1 (0.4) 12.6 (0.3) 12.7 (0.3) 13.5 (0.4)
Rpim 0.027 (1.213)  0.037 (1.105) 0.029 (1.257) 0.025 (1.426) 0.028 (1.245)
CCy/2 0.999 (0.324)  0.999 (0.380) 0.999 (0.354) 0.999 (0.311) 0.999 (0.332)
Refinement?
Rwork (%) 12.80 12.64 13.13 13.11 13.36
Riree (%) 15.89 16.40 15.94 15.89 16.48
R.M.S. Deviations
Bonds (A) 0.008 0.011 0.007 0.005 0.006
Angles (°) 1.054 1.192 1.008 0.884 0.953
Wilson B (A?) 17.06 16.74 17.13 17.26 16.81
Mean B factor (A2)
Total 22.18 23.86 23.34 21.75 22.30
Macromolecules 20.38 21.68 21.54 20.09 20.46
Ligands 18.80 19.14 19.88 18.77 18.97
Water 39.94 45.87 41.17 38.11 40.38
Clashscore 1.26 2.20 1.26 1.26 1.89
Ramachandran
Favored (%) 99.35 99.35 99.35 99.35 99.35
Allowed (%) 0.65 0.65 0.65 0.65 0.65
Outliers (%) 0.00 0.00 0.00 0.00 0.00

T Reported by dials.scale in DIALS [44]
2 Reported by PHENIX [50]
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Table S9 Summary statistics for single-crystal, multi-temperature datasets (crystal 2)

Temperature 295 K 280 K 295 K 310 K 295 K
Pass on Crystal 1 2 3 4 5
PDB ID TFQC 7TFQD TFQE TFQF TFQG
Data Collection®
Wavelength (A) 0.9795 0.9795 0.9795 0.9795 0.9795
Spacegroup P212,12; P21212; P21212; P2:212, P21212,
Cell dimensions (A)
a 34.26 34.20 34.25 34.30 34.28
b 45.63 45.52 45.60 45.71 45.68
c 99.03 99.06 99.09 99.12 99.04
Total observations 2,722,807 2,756,746 2,721,740 2,438,928 2,674,944
Unique observations 97,218 99,044 97,041 86,426 95,020
Resolution (A) 49.52 - 1.18 49.53 - 1.17 49.55 - 1.18 49.56 - 1.23 49.52 - 1.19
(1.20 - 1.18) (1.19 - 1.17) (1.20 - 1.18) (1.25 - 1.23) (1.21 - 1.19)
Multiplicity 28.0 (23.7) 27.8 (21.2) 28.0 (23.8) 28.2 (28.4) 28.1 (26.5)
Completeness (%) 98.5 (94.9) 98.2 (91.2) 98.4 (94.4) 98.9 (98.2) 98.6 (95.5)
Mean I/or 13.0 (0.4) 12.8 (0.4) 12.6 (0.4) 12.3 (0.3) 12.1 (0.4)
Rpim 0.033 (1.029)  0.031 (1.107) 0.033 (1.127) 0.044 (1.404) 0.038 (1.220)
CCy/2 0.999 (0.359)  0.999 (0.308) 0.999 (0.308) 0.999 (0.321) 0.999 (0.333)
Refinement?
Rwork (%) 12.74 14.09 12.88 13.06 13.13
Riree (%) 16.00 16.17 16.38 16.91 16.41
R.M.S. Deviations
Bonds (A) 0.008 0.008 0.009 0.013 0.005
Angles (°) 1.028 1.030 1.114 1.238 0.905
Wilson B (A?) 17.21 17.63 17.19 17.08 16.96
Mean B factor (A2)
Total 22.47 21.53 22.56 25.06 22.56
Macromolecules 20.65 19.92 20.71 22.89 20.73
Ligands 19.14 18.95 19.18 20.60 19.09
Water 40.35 37.10 40.75 46.94 40.71
Clashscore 2.20 1.89 2.20 2.20 1.57
Ramachandran
Favored (%) 99.35 99.35 99.35 99.35 99.35
Allowed (%) 0.65 0.65 0.65 0.65 0.65
Outliers (%) 0.00 0.00 0.00 0.00 0.00

T Reported by dials.scale in DIALS [44]
2 Reported by PHENIX [50]
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Table S10 Data reduction statistics for DHFR EF-X from Laue diffraction
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Dataset Ooff Off (reduced sym.) 200 ns (+3.5 kV) 200 ns (-3.5 kV)
No. of Images 363 363 363 363
Spacegroup P212121 P21 P21 P21
Cell dim. (A)

a 34.29 34.29 34.29 34.29

b 45.53 45.53 45.53 45.53

c 99.00 99.00 99.00 99.00
Total obs. 723,372 723,372 710,019 709,472
Unique obs. 17,637 33,671 33,671 33,669
Resolution (A) 41.36 - 1.70 41.36 - 1.70 41.36 - 1.70 49.50 - 1.70

(1.76 - 1.70)  (1.76 - 1.70) (1.76 - 1.70) (1.76 - 1.70)

Multiplicity 35.53 (27.40) 18.63 (14.16) 18.35 (13.73) 18.34 (13.68)
Completeness (%)  99.5 (99.4) 99.4 (99.5) 99.4 (99.5) 99.4 (99.5)
Mean F/opt 39.38 (19.51)  28.54 (14.00) 28.85 (13.86) 28.85 (13.83)
CCy )t 0.991 (0.957)  0.987 (0.927) 0.989 (0.929) 0.988 (0.929)

! Statistics were computed based on output from careless [46]
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Table S11 Refinement statistics for DHFR

EF-X!

Dataset Ooff On
PDB ID 8G47Z 8G50
Spacegroup P2:12121 P24
Extrapolation factor N/A 8
Resolution (A) 1.70 1.70
Unique observations 17,636 33,646
Completeness 99.43 99.26
Rwork (%) 14.71 30.37
Riree (%) 19.53 34.98
R.M.S. Deviations

Bonds (A) 0.009 0.011

Angles (°) 1.15 1.09
Mean B factor (A?)

Total 8.53 5.54

Macromolecules 7.52 5.16

Ligands 7.74 4.81

Water 20.08 9.97
Clashscore 2.01 3.05
Ramachandran

Favored (%) 99.35 99.35

Allowed (%) 0.65 0.65

Outliers (%) 0.00 0.00

I Reported by PHENIX [50]
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