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Abstract

The revolution brought about by AlphaFold2 and the performance of AlphaFold2-Multimer
open promising perspectives to unravel the complexity of protein-protein interaction
networks. Nevertheless, the analysis of interaction networks obtained from proteomics
experiments does not systematically provide the delimitations of the interaction regions. This
is of particular concern in the case of interactions mediated by intrinsically disordered regions,
in which the interaction site is generally small. Using a dataset of protein-peptide complexes
involving intrinsically disordered protein regions that are non-redundant with the structures
used in AlphaFold2 training, we show that when using the full sequences of the proteins
involved in the interaction networks, AlphaFold2-Multimer only achieves 40% success rate in
identifying the correct site and structure of the interface. By delineating the interaction region
into fragments of decreasing size and combining different strategies for integrating
evolutionary information, we managed to raise this success rate up to 90%. Beyond the correct
identification of the interaction site, our study also explores specificity issues. We show the
advantages and limitations of using the AlphaFold2 confidence score to discriminate between
alternative binding partners, a task that can be particularly challenging in the case of small

interaction motifs.

Keywords: Interactomes, Intrinsically Disordered Regions, AlphaFold2, Coevolution, Binding

specificity
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Introduction

Protein interactions are crucial for a vast number of processes in living organisms. Strong evidence
points to the biological importance of interactions mediated by intrinsically disordered protein regions
(IDRs), such as short linear motifs, in particular for regulation, transport and signaling, and in a number
of human pathologies » % 3. Established resources exist to identify already annotated binding motifs,
such as the Eukaryotic Linear Motif (ELM) repository *, to visualize evolutionary properties ®> and to
screen full protein sequences for disordered stretches that might fold upon binding, as with the IlUPred

server ®.

Protein interactions are connected within complex networks called interactomes, which can be derived
from large amounts of experimental data such as proteomics. Much effort has been invested into
mapping and modeling interactions at the scale of these interactomes 7 2. In these networks, most
protein-protein interactions evolve under negative selection to maintain function and many of them
can rewire °, although at different evolutionary rates: stable protein complexes evolve more slowly

10

than most domain-motif interactions *°. Interactions in evolutionarily old, housekeeping protein

complexes are conserved across different contexts (cell types, tissues and conditions) while
evolutionarily young interactions and those mediated by disordered regions are more versatile 112,
Evolutionary conservation has long been recognized as relevant to detect binding motifs in disordered

regions, as reviewed in 3; however, the quality of the multiple sequence alignment (MSA) used for

detection is particularly crucial 4.

AlphaFold2 revolutionized structure prediction for single proteins by leveraging deep learning
approaches to extract signal from MSAs and output protein atomic 3D coordinates in an end-to-end
manner . AlphaFold2 structure predictions for the entire human proteome !¢ hinted that low
prediction quality could pinpoint regions likely to be intrinsically disordered. Subsequent studies

confirmed that AlphaFold2, although trained only on single proteins with a folded structure, can be
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used as an intrinsic disorder predictor by repurposing low-confidence residue predictions 7 1 19,
AlphaFold2 low-confidence predictions on protein surfaces might also be indicative of possible binding

regions %,

Very soon after its release, AlphaFold2 was also tested for its capacity to predict protein-protein
interactions. Despite not being designed for this purpose, AlphaFold2 outperformed traditional
methods for the structural prediction of complexes between globular protein domains, in terms of
both success rate and model quality 2% 2% 23 2425 26,27 A|phaFold-Multimer, specifically retrained on
protein complexes, displayed improved performance for interface modeling over the original
AlphaFold2 212228 At a wider scale, a systematic exploration of the yeast interactome used prefiltering
with a fast version of RoseTTAFold ?° followed by AlphaFold2 structure prediction 3°. This opened
exciting perspectives for the use of AlphaFold2 not only for complex structure prediction, but also as

an in silico screening tool for interactions.

AlphaFold2 predictions are sensitive to the input MSA and protein delimitations. For instance,
AlphaFold2 can be made to predict alternative conformational states for some proteins through
manipulation of the MSA either by subsampling 3! or by in silico mutagenesis 32. For complexes, the
generation of a paired MSA, where species are matched between homologs of the different protein
partners, was not found to be necessary for AlphaFold2 to pick up interaction signal 2 2%, although
combining unpaired and paired MSAs gave the best results 2. The AlphaPulldown package allows users
to select or screen protein fragments for modeling protein complexes, since some interactions cannot

be predicted if the full-length sequences are provided to AlphaFold2 33.

Interactions mediated by short peptides within disordered protein regions are quite specific and thus
require extra care for handling by AlphaFold2. Indeed, conformational versatility is even higher and
covariation signal is weaker than for globular complexes 3*. Traditional tools to predict protein-peptide
interactions include mostly docking approaches, recently reviewed in 3 3%; some of these also make

use of evolutionary information 3. Several recent studies have addressed the ability of AlphaFold2 to

4
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predict protein-peptide complexes. An early implementation already showed interesting predictive
capacity, including in cases where the peptide induces a large conformational change of the protein
and docking therefore most likely fails, and without the need for a peptide MSA ¥’. InterPepScore 3, a
graph neural network used to score protein-peptide complexes for improving Rosetta FlexPepDock

refinement 3°

, was also found beneficial to refine AlphaFold-Multimer models. Finally, AlphaFold-
Multimer performs better than AlphaFold2 at protein-peptide complex prediction, and sampling a

larger part of the conformational space by enforcing dropout at inference time in AlphaFold-Multimer

further increased the quality of protein-peptide complex models “°.

In the present study, we investigate how best to use AlphaFold2 to make the leap from interaction
networks to interfaces when dealing with binding partners containing intrinsically disordered regions
(Figure 1a). We carefully develop an unbiased benchmark of 42 protein-peptide complexes sharing no
similarity with any complex from the AlphaFold-Multimer training dataset and assess the performance
of AlphaFold-Multimer on this dataset using different MSA schemes. We show that performance is
limited when full-length protein sequences are used as input and considering delimited fragments
increases the success rate. We set the fragment size at 200 amino acids in order to scan potential
interacting regions within full-length sequences such as those derived from large-scale interactome
data. Our study also raises the issue of prediction specificity, which may require the enumeration and
ranking of potential anchoring sites, and assesses the usefulness of AlphaFold confidence scores in
discriminating between possible binding regions. Finally, we show a synergistic effect of combining

different MSA schemes and scores, allowing to reach 90% success rate on our benchmark dataset.
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Figure 1. General presentation of the benchmark dataset.

(a) Disentangling the complexity of a protein interaction network (sketched on the left) by
analyzing binary interactions between a central grey protein and its blue binding partners can
be complicated in case they contain intrinsically disordered regions. (b) General pipeline to
select the PDB entries that can be used as test complexes from those released after May
2018. They were required to share no sequence or structural redundancy with any of the
complex structures that were used for AlphaFold2-Multimer training. (¢) Example illustrating
filters used to assess the lack of redundancy between the candidate complex and structures
published before May 2018. Two filters were used, one based on sequence identity using a
30% seq. id. threshold and a second retrieving all complexes involving a receptor homolog
using PPI3D %0 and checking for lack of interface structural similarity using MM-align 52, (d)
Boxplots showing the cumulative size distribution of the 42 inputs (receptor+ligand) that were
processed by AlphaFold2, either in protocols where sequences were delineated following the
boundaries of the experimental structures or in those where full lengths of ligands and/or
receptors were used.
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Results

Selecting a test dataset of complexes not redundant with the training set of AF2-Multimer

To assess the performance of AlphaFold2 (AF2) in predicting the mode of association between a
protein (hereafter called the receptor) and a small binding motif within a structurally disordered
partner (the ligand), it is important to study cases of complexes that do not have homologs in the
database on which AlphaFold2 has been trained. An example of how AF2 models may be biased by
existing structures in the PDB is illustrated in Supp. Figure 1a. AF2-Multimer was trained on structures
released until 30 Apr 2018. An analysis of the structures released after that date revealed that nearly
2,500 structures of complexes involving small protein motifs had been deposited in the PDB (Figure
1b). A large number of these structures have significant similarities in sequence or structure with
structures released in the PDB before May 2018. Following a strict treatment of this sequence and
structure redundancy (Figure 1c, see Methods), we isolated a set of 42 complexes involving a receptor
and a small peptide ligand that could provide an unbiased estimate of AF2 performance in different
conditions. Among the 42 complexes, we observed a diversity of subunit lengths (Figure 1d) and a
representative occurrence of peptides with sizes ranging from 6 to 39 amino acids (Supp. Figure 1b)

that are binding their receptors as helices, strands, coils or combination of those (Supp. Figure 1c).

AF2 relies on multiple sequence alighments whose evolutionary depth on the ligand peptide region
may be limited due to the difficulty of identifying homologs from a short IDR sequence. Hence, for each
of the proteins in this dataset, we used the full-length sequences of the protein partners to construct
MSAs and subsequently delineate the interacting domains (Supp. Figure 2). These MSAs were
combined to generate mixed co-alighments in which partner sequences belonging to the same species
were paired while those with a single partner homolog present in a species were added as unpaired,
similarly to 1. When the receptor and ligand are considered in their integrality, the overall length of
the concatenated sequences is in majority between 1000 and 2000 amino acids, significantly larger

than when the size of the inputs is delimited to the boundaries used for structural determination
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(Figure 1c). As a first analysis, we assessed whether AlphaFold2 was able to identify the correct binding
site when proteins were considered in their full length. This is typical of a scenario where knowing that

two proteins are interacting, we have no initial indication of which regions are involved.

Success rates of AF2-Multimer for full-length and delimited input protein partners

For each run, 25 models were generated with AF2-Multimer parameters, following the reference
protocol 28, The AF2 model confidence score (noted AF2 confidence score below), consisting of an
80:20 linear combination of ipTMscore and pTMscore, was used to rank the models and identify the
best model. The accuracy of this best model was used to calculate the overall success rate for the 42
cases (see Methods). With full-length protein partners, we obtained a success rate of 40 % (Figure 2a),
rather low with respect to that reported in the evaluation of AF2-Multimer for protein complexes,
which was benchmarked using delimited sequence inputs 28. Analysis of the quality of the best model
as a function of the size of the modeled assembly (Supp. Figure 3a) shows that the performance tends
to decrease for large sizes above 1600 amino acids although it is still possible to observe good
predictions above this size threshold. Below 1500 amino acids, the success rates do not appear
correlated with the size of the assembly or the nature of the peptide secondary structure (Supp. Figure

3a).

Next, the sequences of each binding partner were delimited according to their boundaries as observed
in the experimental structure of the complex (Supp. Figure 2). When both the receptor and ligand were
delimited, the overall success rate was much higher, reaching 76% of the 42 complexes correctly
predicted (Figure 2a). In these first tests, the evolutionary information was integrated using the mixed
co-alighment mode described above. We also tested alignment conditions in which the co-MSA is
constructed from the same sequences but concatenated as an unpaired alignment. In this unpaired
mode (Supp. Figure 2), the success rate remained similar at 76 % (Figure 2a), suggesting that homolog
matching in the paired alignment does not provide a major gain. We assessed a third prediction mode

in which no evolutionary information is added in the peptide region, as performed in 3”%° (Supp. Figure
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1 2). With this third approach, the performance obtained without evolutionary information on the

2 peptide side remains high, with 69 % of correct models for the 42 cases (Figure 2a).
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Figure 2. AlphaFold2-Multimer success rates on the benchmark
dataset using different prediction modes.

Stacked barplots reporting the success rates of AlphaFold2 prediction
depending on the types of co-alignment used. All success rates are
presented as the percentage of test cases in which the best AF2-Multimer
model (best AF2 confidence score) is of Acceptable (light color), Medium
(medium color) or High (dark color) quality according to the CAPRI criteria
for protein-peptide complexes 4. (a) Success rates using (from left to
right): full-length partners with a mixed alignment generation mode (grey
grades), delimited partners with no evolutionary information for the peptide
(cyan grades), delimited partners with unpaired co-alignment (blue
grades), delimited partners with mixed alignment (blue grades). (b)
Success rates using (from left to right): delimited partners (blue grades)
(same as rightmost bar in panel a), peptides extended by 100 or 200
amino acids (purple grades), full-length partners (grey grades) (same as

3 leftmost bar in panel a).
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Such a good performance in the absence of any alignment associated with the peptide confirms that
the properties of the binding site in the receptor are often sufficient to guide the interaction mode of
the peptide 37 4%, Consistently, in a situation where the receptor is delimited but the ligand is
considered in its full-length sequence, the performance drops back to a lower level of 50 %, even when
using the MSA information on the ligand side (Supp. Figure 3b). Hence, one of the difficulties
encountered by AF2 in dealing with large IDR-containing proteins lies in its ability to identify the correct

interaction region within the partner protein.

The success rates calculated above were obtained by selecting only the model with highest AF2
confidence score among the 25 sampled models. Considering the entire set of 75 models (25 models
for every complex in the three alignment conditions: mixed, unpaired, no_ali) highlights a significant
Pearson’s correlation of 0.84 between the AF2 confidence score and the DockQ score, a commonly
used metrics to rate the accuracy of modeled interfaces with respect to the reference complex %
(Figure 3a). Grouping the models according to their CAPRI quality ranks (Acceptable/Medium/High)
(Figure 3b) using the stringent criteria used for protein-peptide complexes * (see Methods) highlights
that above an AF2 confidence score of 0.65, the predicted models are most often correct. There is also
a minority of cases with a score between 0.4 and 0.65 that are found correct (in the Acceptable
category) indicating that this twilight zone may be interesting to investigate if no alternative solution
has been detected. In any case, the graphs on Figure 3a and 3b confirm that the AF2 confidence score
(see Methods) can be used as a reliable proxy for estimating the reliability of a protein-peptide

interaction prediction.

10
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Figure 3. Model quality depending on the value of the AF2 model
confidence score.

(a) Distribution of DockQ scores 42 for 75 models for every binary protein-
peptide complex (25 models in the three alignment conditions: mixed,
unpaired, no_ali) as a function of the AF2 model confidence score. Data
points are colored according to the model quality as rated by the DockQ
score from low (white) to high (dark grey) values. Pearson’s correlation is
0.84. (b) Boxplots of the AF2 confidence score value distributions for the
same set of models, split by model quality category according to the
CAPRI protein-peptide criteria: High (dark grey), Medium (medium grey),
Acceptable (light grey), Incorrect (white).

Success rates of AF2-Multimer considering protein fragments of increasing size

When searching for an interaction site between two proteins, the region involved in the interaction is
usually not known precisely. In order to use AF2 to carry out this task, and given the lower performance
of AF2 with full-length proteins, we explored how AF2 predictions would be impacted by queries in

which the bound motif is not perfectly delineated and is embedded in a larger fragment that may

11
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contain 100 or 200 additional amino acids. Extending the sequence containing the binding motif of
each complex with up to 100 or 200 amino acids, and delimiting the alignments constructed in a mixed
alignment mode (Supp. Figure 2), we obtained a decrease by 3 to 11 points with success rates of 73 %
and 65 %, respectively for fragment size 100 and 200 (Figure 2b). The success rate of 65 %, obtained
for cases where the fragment extends the peptide motif by 200 amino acids, is substantially higher
than the 40 % obtained with full-length proteins. This result underscores the interest of fragment-
based searching to identify potential interaction motifs between two partners and to predict their
recognition mode. Previously (Figure 2a), we showed that the lack of evolution for the peptide was not
very detrimental for a significant number of correct predictions (69 %). This trend is less pronounced
when using fragments extended by 100 or 200 amino acids as shown in Supp. Figure 4. Without ligand
alignment, there is a loss of performance of nearly 20 points, which highlights the importance of
associating evolutionary information when the binding site identification involves a systematic search
within larger fragments. For fragments of length 200, without evolutionary information for the ligand,
the success rate is 45 %, almost as low as the success rates obtained for full-length proteins with

evolution.

Advantage of combining different alignment modes

The performance obtained using different alignment modes and input lengths suggests that some
complexes can be correctly predicted regardless of the protocol used, while others may be sensitive
to these input conditions. Overall, for 33 % (14 complexes), a correct model could be ranked first using
the AF2 confidence score with any of the input conditions, even using full-length alignments (Supp.
Figure 5). In contrast, other complexes could only be predicted correctly with a limited set of conditions
(Figure 4a), suggesting a potential interest for combining different strategies. Instead of considering
25 models generated with every protocol, we analyzed a pool of 100 models generated with four
different protocols and ranked them according to the highest AF2 confidence score. The resulting

success rate improves significantly, rising up to 88 % (Figure 4b). The AF2 model confidence score is

12
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sufficiently correlated with the accuracy of the models that it can be used to identify correct assemblies

in much larger model sets.
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Figure 4. Complementarity of the predictions made in different
prediction modes.
(a) UpSet diagram °¢ displaying the number of successful cases (out of
42) found by either a single or several prediction mode(s) among the
following: delimited peptide with no peptide alignment, peptide extended
by 100 residues with a mixed alignment, delimited peptide with a mixed
alignment, delimited peptide with an unpaired alignment. 5 cases that can
be identified in none of these conditions are highlighted in red. {b)
Success rates for the four protocols shown in panel a (values are the
same as in Fig 2) and for a combined protocol taking the best AF2
confidence score value out of 100 models (25 for each condition).

In an attempt to interpret the failures and successes of the tested protocols, we performed a detailed

analysis of complexes that specifically succeeded with only a subset of the protocols and those that

did not succeed with any. A typical case is when the conformation of the bound peptide is best

13
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predicted in the absence of evolutionary information. The absence of evolutionary information was
found to be favorable for complexes such as 6ICV or 6YNO that were not correctly predicted when MSA
was added to the peptide. In the case of 6ICV (Figure 5a), the peptide (blue) is predicted to adopt a
helix-and-turn conformation with high confidence when the evolutionary information of the MSA is
included. This local structure is incompatible with the extended bound conformation. In contrast, in
the absence of evolutionary information, the predicted structure of the peptide (light blue) is in very
good agreement with the experimental structure (red), suggesting that the geometric constraints have

been relaxed sufficiently for the peptide to sample an extended geometry that was well evaluated by

the AF2 confidence score.
a b
— Ref. Ligand A A
Mixed MSA v 3 e \\ et
— U Mixed MSA ¢
g Af — /':'

Ref. Ligand (6ICV) T~k

No MSA
for peptide Extended MSA
— (+200) < >
fo— A ¢ Ref. Receptor
o) (6lcv)
c d
] T M Moc
=™ Ref. Ligand
(6JLH)

Extended MSA j
Extended MSA (+200) < i

(+200) < T

Figure 5. Detailed analysis of complexes that succeed with only a subset of
the protocols.

The receptor is represented as a grey surface, the native ligand as a red cartoon,
the predicted peptides in shades of blue: bright blue for the predictions in mixed
alignment mode, and light blue for the prediction with no peptide alignment (panel
a) or for the peptide within the prediction of a fragment extended by 200 residues in
dark blue (panels b-d). PDB identifiers of represented cases are 6ICV (a), 7F2D
(b), 6ZWO (c) and 6JLH (d).
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Other differences between the tested protocols could be observed in case a motif, well predicted in a
short fragment, was not correctly predicted in longer ones. This is observed in 5 cases including PDB
cases 7F2D, 6ZWO0 and 6JLH illustrated in Figure 5b, 5c and 5d, respectively. For these systems,
considering the ligand peptide in the context of a larger fragment with 200 additional amino-acids
(dark blue models) never led to a correct prediction by AF2, while the delimited peptides (blue) were
always modeled in good agreement with the experimental reference structure (red). In almost all of
these complexes, the origin of the failure in the larger fragments seems to be due to the presence of
intramolecular contacts involving the peptide and surrounding regions. In the case of 7F2D and 6ZW0,
the peptide is located in the vicinity of a globular domain with which it forms contacts of relatively low
confidence. However, these appear to be sufficient to interfere with the generation of the native
complex. In the third case, 6JLH, the binding peptide is embedded in a longer coiled-coil that masks
the surface found to bind the receptor experimentally. This prediction would be consistent with the
experimental study that showed the interaction to be observed only in specific physiological contexts
4 This example together with another case also involving long coiled-coils (7MU2) highlights the value
of exploring different fragment lengths to reveal the appropriate binding epitopes. Therefore, in the
cases where prediction performance varies between alignment content and delineation protocols, a
common explanation is that the binding motif may be trapped or masked in a conformational state

that prevents prediction of its correct binding mode.

Five cases out of 42 failed, regardless of the alignment protocol. In two of these cases (PDB: 6J08 and
7CZM), the receptor itself was not quite well folded, which may have made it difficult to sample a
correct binding mode. For one case (PDB: 6A30) where none of the tested protocols converged to a
correct model, we tested whether reducing the size of the receptor itself would help. We reran this
case with the same alignments, testing if reduction in the size of the receptor could have an impact.
Splitting the receptor as two inputs of similar size led to the generation of a correct model with a high
AF2 confidence score with one of those inputs, reaching 0.8 when using the protocol with no peptide

alignment but below 0.5 with all the other protocols. With this additional complex, the percentage of
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cases that could be predicted using AF2 rises above 90 %. Hence, there is room for further
improvement by sampling simple alterations of the input MSAs and using the AF2 model confidence

score as a guide for identification of the correct protocol.

Specificity for similar binding motifs recognized by receptors

Out of the 42 cases in the test set, AF2 is able to correctly predict the binding mode of a peptide to its
receptor without any evolutionary information for the peptide in 69 % of the cases. Such a
performance suggests that the structural and evolutionary properties of the receptor match well with
the peptide sequence irrespective of its conservation pattern. This calls into question the ability of AF2
to distinguish cognate binding peptides from non-binding ones. This issue may be particularly difficult
in the challenging cases where two short fragments embedded in long disordered regions need to be
discriminated while they tend to adopt a similar local conformation. To address this issue, we
distinguished different classes of complexes based on the secondary structure adopted by the peptide
in its bound conformation in order to create 83 challenging cross-partners predictions between 23
receptors and cognate or non-cognate ligands selected from the 42 cases of our test set. We then
assessed whether AF2 could specifically predict the binding mode of receptors with their respective
peptides and distinguish them from potentially misleading peptides taken from unrelated structures

but sharing similar bound conformations.

In total, 7 categories of peptide conformations were considered (Supp. Figure 6). We distinguished
those binding through a small, medium, or long helix, those showing no canonical secondary structure
and those binding through the formation of a combination of helix and strand or a single or two beta-
strands (Supp. Figure 6a to 6g). To run the cross-partners interaction tests, we used the protocol with
no MSA in the peptide region. Over the 23 selected cases for cross-partners analysis, 16 were
successfully predicted by AF2 (70 %) in agreement with the performance obtained with this protocol
on the 42 test cases. In Figure 6a, the distribution of AF2 confidence scores obtained for the models

rated as correct using the CAPRI protein-peptide criteria (darker blue distribution) differs significantly
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from the distribution of the scores obtained with non-native peptide ligands (light blue distribution).
The AF2 confidence score of the specific peptide was superior to any of the non-specific peptides in 15
out of the 16 correctly predicted complexes. Figure 6b illustrates one of these 15 cases, using the
receptor of 7CFC, highlighting that even if the non-specific peptides tend to interact in the same region
as the specific one, the AF2 confidence score is higher for the specific peptide (reaching 0.75) and can

be used as a proxy to discriminate between several likely binders.

Based on the distribution in Figure 6a, a minority of models (approximately 10%) would give a
misleading assignment for AF2 confidence scores greater than 0.6 and could prevent identification of
a correct binding site. This is illustrated by the case of the 6IDX complex in Figure 6c in which an
incorrect binder (6KPB Ligand) is predicted to form a complex with the receptor with high confidence

(as indicated by an AF2 confidence score of 0.83) while the specific ligand was not correctly predicted

(AF2 confidence score=0.46 and wrong binding mode).
a

100

80
€ w0
=
2
£ (d) (b)
z

20+

0 T T u T
0 02 0.4 0.6 0.8 1
AF2 Combined Scores
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Lig.6IDX (specific)

Q’;/AFZSC =0.46

Lig.6JOW (specific)
AF2sc=0.53

Figure 6. Cross-partners evaluation assessing the specificity of the
binding predictions.

(a) Distribution of AF2 confidence scores obtained for the models involving
the native peptide and rated as correct using the CAPRI protein-peptide
criteria (darker blue distribution) for 16 out of 23 cases selected for cross-
partners evaluation and for the models obtained with non-native peptide
ligands (light blue distribution). Cross-partners predictions were performed
using delimited partners with no evolutionary information for the peptide.
Specific predictions illustrated in panels (b-d) are drawn from the relevant
distributions at the indicated score values. (b-d) lllustration of specific
cases discussed in the text for native PDB identifiers: 7CFC (b), 6IDX (c),
6JOW (d). The receptor is shown as a grey surface, the native peptide as a
red cartoon, the best predicted model involving the native peptide in bright
blue cartoon and the best predicted models involving non-native peptides in
light blue. AF2sc values indicate the best AF2 confidence score values
obtained for each complex.

Last, there are also alternative situations as illustrated in Figure 6d in which the score of the specific
binder is mild (below 0.6) but still among the highest scores obtained in the set of potential binders.
This was observed for 3 of the 16 cases where the specific receptor-ligand pair was correctly predicted
by AF2 (6YNO in Supp. Figure 6¢ and 7F2D, 6JOW in Supp. Figure 6f). With the 6J0W receptor (Figure
6d), the AF2 confidence score of the specific ligand is 0.53, whereas it reaches 0.54 with another non-
specific ligand of 7CZM. Such a situation highlights the specificity issue that may arise in the case where

the peptide is not accurately modeled in the receptor binding site. It can be noted in Supp. Figure 6f
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that the misleading 7CZM ligand tends to have higher AF2 confidence scores than the other ligands on
average with all the non-specific receptors. Such promiscuity indicates the risk that some sequences
may systematically bias the specificity analysis and that normalization or the use of an alternative
scoring scheme might be useful to further disentangle the complexity of protein-protein interaction

networks involving unstructured regions.
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Discussion

AF2 has shown remarkable performance for predicting the structure of multi-subunit machineries only
known so far through PPl maps 24 27:30_|n this study, we explored the potential of AlphaFold2 to further
exploit the wealth of data contained in proteomics experiments and to enable a more comprehensive
characterization of protein-protein interaction networks. We focused on interactions mediated by
unstructured regions that are a cornerstone of the functional and dynamic organization of most
cellular processes. The capacity of AF2 to perform well with small disordered regions binding a
structured domain was established on different datasets *® 3% built from the structures available in
the PDB “. However, in most proteomics experiments, the boundaries of the interacting regions are
not precisely known. In addition, physical interactions can be indirect and it is crucial to disentangle

the regions involved in direct interactions.

To further assess the use of AF2 for this purpose, we built a dataset of complexes consisting of a folded
receptor bound to a short protein fragment and evaluated several protocols representative of
challenges faced following proteomics analyses. Because AlphaFold2-multimer was trained on
complexes whose structures were published before May 2018, we carefully removed any homologs of
the complex to ensure that our conclusions could not be biased by similarities in sequence or 3D
geometry with the training dataset. For the 42 test cases selected in the benchmark, we first evaluated
the ability of AF2 to discriminate the binding site when proteins are provided in their full length as in
the output of a proteomic experiment. We achieved a success rate of 40% and noted that above 1600
amino acids, the method gave poorer predictions, with the exception of two impressive cases above
2500 amino acids. The use of input fragments delimited as in the experimental structures significantly
increased performance by more than 35 points and the combination of different MSA construction
modes led to an overall success rate of 90%. If the binding region is unknown, scanning multiple small
peptides can be computationally demanding and we found that a reasonable trade-off in accuracy

could be achieved with a fragment length of about 100 amino acids. For those lengths, evolutionary
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information was key to reaching the best results. For larger fragments involving more than 200 amino-
acids, a decrease in performance was observed, not necessarily due to an input size greater than 1600
amino acids. Our analysis rather suggests that the drop may also originate from intramolecular

contacts that tend to mask the binding region or hinder the sampling of the bound conformation.

In the case of delimited peptides, it is remarkable that evolutionary information in the peptide region
did not prove to be as crucial as for longer fragments for generating accurate models and scoring them
reliably. We found that in specific cases where the bound conformation of the peptide was rather
extended, the addition of evolutionary information was even detrimental to the identification of a
correct solution. Such a detrimental effect of MSA was also reported in “¢ for the structural prediction
of complexes between MHC receptors and various sets of short peptides by AF2. In these systems, the
local conformation of the bound peptides is also fully extended. Our analysis suggests that the inclusion
of the MSA for the disordered short peptide may lock the local conformations of the peptides and
prevent them from adopting a different bound conformation. However, we also found that as the size
of the disordered fragment increases beyond 100 amino acids, the requirement for evolutionary
information becomes more critical. In any case, sampling these different possibilities was considered
worthwhile, as the AF2 confidence score is sufficiently reliable to pick out the correct solution among

those sampled.

Beyond the remarkable ability of AF2 to generate correct conformations of protein-peptide complexes,
we confirmed the reliability of the combined ipTMscore and pTMscore as an estimate of model
accuracy. We also evaluated AF2 as a tool to discriminate a native ligand from other ligands potentially
difficult to discriminate because adopting the same local conformation. The obtained results were
satisfactory in a majority of cases where the AF2 confidence score correctly singled out the native
binding peptide, but also highlighted several misleading situations that call for vigilance in the
exploitation of specificity results. It certainly should be possible to reinforce the applicability of AF2 for

the exploitation of more complex interactomes in which the interaction with unstructured regions
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plays a major role. Recent efforts in that direction have shown that AF2 parameters which were trained
only with positive examples could be further fine-tuned for specificity combining positive and negative
examples of receptor-peptide interactions . So far, this fine-tuning was achieved in a receptor-specific
manner focusing on MHC, PDZ or SH3 domains, but it might be expanded further to address other

specificity issues.

The ability of AF2 to discriminate the native peptide from similar alternative binders when the native
bound conformation is correctly predicted supports the conclusions that an energetic function of the
protein structure has been learned by AF2 independently of evolutionary information #’. This ability to
discriminate specific native binders is also consistent with the principle of using AF2 to design high-
affinity binders for their targets ®%°. The fact that with larger fragments (>200), the ability to identify
the correct binding site decreases significantly and requires evolutionary information is also in
agreement with the proposal that AF2 needs coevolution data to search for global minima in the
learned function #’. To progress from interactomes to the identification of all potential binding sites
within disordered regions, a robust strategy would benefit from systematically scanning fragments of
sequences of limited length and sampling different types of evolutionary information, such as the four

combined in this study.
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Methods

Building the dataset of protein-peptide complexes non-redundant with the AF2 training structural

dataset.

An initial list of protein-peptide complexes was retrieved from the PDB server ° on April 1, 2022 with
the following request: 1) Release date after May 1st, 2018 to exclude complexes present in the
AlphaFold2 training set; 2) The longest protein (called the receptor) must contain at least 60 amino
acids and the smallest chain (called the peptide) must contain at most 40 amino acids. 3) The ‘Number
of Polymer Instances (Chains) per Assembly’ has to be between 2 and 4 and should contain
heteromeric assemblies. 4) The assemblies should not contain RNA or DNA chains. The initial request
led to 2484 potential candidates. Using a sequence identity threshold of 30 %, we discarded all
candidates for which a homolog of the receptor protein was released before May 1st, 2018 and bound
to a ligand partner in the same region. From the list of selected candidates, an additional filter was
used to check the absence of redundant assembly modes. For each of the selected complexes, the
receptor sequence was used as a query of the PPI3D server *°, in single sequence mode, to recover all
the PDB codes of complexes involving homologs of the receptor (date of PPI3D query August 2022, on
the PDB updated July 20, 2022). In PPI3D, distant receptor homologs were retrieved using PSI-BLAST
51 with 2 iterations and an E-value cutoff of 0.002. For every candidate complex, PPI3D provided a
detailed list of PDB codes with the chain ids involving the receptor or its homolog. We used the full list
of interactions provided by PPI3D, except when it exceeded 2500 interfaces in which case the clustered
list was chosen (95% sequence similarity and 50% similarity for residues in the binding region). Only
the interfaces annotated as ‘hetero’ or ‘hetero-peptide’ released before May 1, 2018 were considered
as potentially redundant. Their structures were compared to the candidate complex using the MM-
align program (Version 20191021) > (option "-a") and the maximum of the three TM-scores calculated
was considered. Receptor-peptide candidates with a TM-score greater than 0.5 with any other

potentially redundant interface extracted from the PPI3D results were considered redundant with a
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previously known structure and were discarded. This latter condition only applied to structures for
which MM-align successfully aligned at least 5 consecutive amino acids on the ligand side (detected by
":'in the output pair alignment corresponding to residue distance pairs < 5.0 Angstrom), otherwise the
interface was not considered redundant. In the end, we retained a set of 42 receptor-peptide cases to

form the reference database.

Generation of the alignments for the 42 database cases.

Sequences of all the chains in the dataset of 42 complexes were retrieved from the UniProt database
>3 and were submitted to three iterations of MMseqs2 % against the uniref30_2103 database *.. The
resulting alignments were filtered using hhfilter > using parameters (‘id’=100, ‘qid’=25, ‘cov’=50) and
the taxonomy assigned to every sequence keeping only one sequence per species. Full-length
sequences in the alighments were then retrieved and the sequences were realigned using MAFFT ¢
with the default FFT-NS-2 protocol. To build the so-called mixed co-alignments, sequences in the
alignment of individual partners were paired according to their assigned species and left unpaired in
case no common species were found *1. Unpaired alignments were obtained by unpairing the mixed
alignments and alignments with no evolutionary information for the ligand were obtained by leaving
the ligand region as a single sequence. The concatenated multiple sequence alignments (MSA) were
delimited using as input the MSA generated with the three protocols described above (mixed,
unpaired, single sequence). The sequence delimitations as defined in the SEQRES PDB parameter were
used to delineate the receptor and the peptide. In case the receptor was a heteromer or assembled as
a homodimer, the full complex was modeled. To generate the models extended by 100 or 200 amino
acids, the peptide sequence was extended in both directions unless a chain end was encountered in

which case the extension was pursued in only one direction.

Generation of input data for cross-partners evaluation

To generate the dataset mixing receptors and their non-cognate ligands, a subset of complexes that

could be clustered according to the similarity of the type and length of the secondary structure of their
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ligand (reported in Supp. Table 1) was defined (Supp. Table 2). We selected 23 complexes with a
monomeric receptor and a ligand that could be clustered into one of the 7 groups distinguished in
Supp Table 2. The MSA of each receptor was concatenated with each ligand in the same cluster without
adding MSA information on the ligand side. These alignments were used as input to generate structural

models by AlphaFold2 following the protocol described below.

Generation of the structural models.

The concatenated MSAs were used as input to run 5 independent runs of the AlphaFold2 algorithm

h 15, 28

with 3 recycles eac generating 5 structural models using a local version of ColabFold v1.3 *! with

28

the Multimer v.2.2 model parameters on NVidia A100 GPUs. Four scores were provided by
AlphaFold2 to rate the quality of the models, the pLDDT, the pTMscore *°, the ipTMscore and the model

confidence score (weighted combination of pTM and ipTM scores with a 20:80 ratio) 8. The scores

obtained for all the generated models are reported in Supp. Table 3.

Evaluation and visualization of the structural models.

The structural models generated with every alignment protocols were compared to their reference
structure defined in Supp. Table 1. The models were first delimited as in the reference experimental
structure to ensure proper superposition of receptors and ligands. The accuracy of the models was
assessed using two related measures (i) the DockQ score, which provides a continuous value between
0 and 1, with limits of 0.23, 0.49, and 0.8 defining Acceptable, Medium, and High quality thresholds for
protein-protein complexes #? (ii) the more stringent conditions established by the CAPRI community
to rate the specific cases of receptor-peptide complexes using ligand and interface Root-Mean-Square
Deviation (L- and iRMSD) and the Fraction of native contacts (fnat). Ranks are assigned depending on
the following criteria: High (fnat in [0.8, 1.0] and (L-RMSD < 1.0 A or iRMSD < 0.5 A)), Medium (fnat in
[0.5,0.8] and (L-RMSD < 2.0 A oriRMSD < 1.0 A) or fnat in [0.8, 1.0] and (L-RMSD>1.0 A and iRMSD>0.5
A)) and Acceptable (fnat in [0.2, 0.5] and (L-RMSD < 4.0 A or iRMSD < 2.0 A) or fnat [0.5, 1.0] and (L-

RMSD>2.0 A AND iRMSD>1.0 A)) 3. Additional analyses were performed following the standard metrics
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calculated by CAPRI assessors to rate the similarity between the models and their reference structure
(such as the fraction of interface residues FRIR or the fraction of non-native contacts FRNNAT) and are

also available in Supp. Table 3. 3D structures were visualized and represented using ChimeraX *’.

Data availability

The reference PDB files of the 42 test cases, the multiple sequence alignments built for all ten protocols
and the corresponding PDB files of the predicted models are available from ZENODO under accession

DOI code 10.5281/zenodo.7838024.

Code availability

The code for processing, analyzing and Vvisualizing the results is available at:

https://github.com/i2bc/SCAN_IDR
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Figure Legends

Figure 1. General presentation of the benchmark dataset.

(a) Disentangling the complexity of a protein interaction network (sketched on the left) by analyzing
binary interactions between a central grey protein and its blue binding partners can be complicated in
case they contain intrinsically disordered regions (b) General pipeline to select the PDB entries that
can be used as test complexes from those released after May 2018. They were required to share no
sequence or structural redundancy with any of the complex structures that were used for AlphaFold2-
Multimer training. (c) Example illustrating filters used to assess the lack of redundancy between the
candidate complex and structures published before May 2018. Two filters were used, one based on
sequence identity using a 30% seq. id. threshold and a second retrieving all complexes involving a
receptor homolog using PPI3D *° and checking for lack of interface structural similarity using MM-align
52 (d) Boxplots showing the cumulative size distribution of the 42 inputs (receptor+ligand) that were
processed by AlphaFold2, either in protocols where sequences were delineated following the
boundaries of the experimental structures or in those where full lengths of ligands and/or receptors

were used.

Figure 2. AlphaFold2-Multimer success rates on the benchmark dataset using different prediction
modes.

Stacked barplots reporting the success rates of AlphaFold2 prediction depending on the types of co-
alignment used. All success rates are presented as the percentage of test cases in which the best AF2-
Multimer model (best AF2 confidence score) is of Acceptable (light color), Medium (medium color) or
High (dark color) quality according to the CAPRI criteria for protein-peptide complexes *3. (a) Success
rates using (from left to right): full-length partners with a mixed alignment generation mode (grey
grades), delimited partners with no evolutionary information for the peptide (cyan grades), delimited
partners with unpaired co-alignment (blue grades), delimited partners with mixed alignment (blue

grades). (b) Success rates using (from left to right): delimited partners (blue grades) (same as rightmost
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bar in panel a), peptides extended by 100 or 200 amino acids (purple grades), full-length partners (grey

grades) (same as leftmost bar in panel a).

Figure 3. Model quality depending on the value of the AF2 model confidence score.

(a) Distribution of DockQ scores # for 75 models for every binary protein-peptide complex (25 models
in the three alignment conditions: mixed, unpaired, no_ali) as a function of the AF2 model confidence
score. Data points are colored according to the model quality as rated by the DockQ score from low
(white) to high (dark grey) values. Pearson’s correlation is 0.84. (b) Boxplots of the AF2 confidence
score value distributions for the same set of models, split by model quality category according to the
CAPRI protein-peptide criteria: High (dark grey), Medium (medium grey), Acceptable (light grey),

Incorrect (white).

Figure 4. Complementarity of the predictions made in different prediction modes.

(a) UpSet diagram >8 displaying the number of successful cases (out of 42) found by either a single or
several prediction mode(s) among the following: delimited peptide with no peptide alignment, peptide
extended by 100 residues with a mixed alighment, delimited peptide with a mixed alignment, delimited
peptide with an unpaired alignment. 5 cases that can be identified in none of these conditions are
highlighted in red. (b) Success rates for the four protocols shown in panel a (values are the same as in
Fig 2) and for a combined protocol taking the best AF2 confidence score value out of 100 models (25

for each condition).

Figure 5. Detailed analysis of complexes that succeed with only a subset of the protocols.
The receptor is represented as a grey surface, the native ligand as a red cartoon, the predicted peptides
in shades of blue: bright blue for the predictions in mixed alignment mode, and light blue for the

prediction with no peptide alighment (panel a) or for the peptide within the prediction of a fragment
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extended by 200 residues in dark blue (panels b-d). PDB identifiers of represented cases are 6ICV (a),

7F2D (b), 6ZWO0 (c) and 6JLH (d).

Figure 6. Cross-partners evaluation assessing the specificity of the binding predictions.

(a) Distribution of AF2 confidence scores obtained for the models involving the native peptide and
rated as correct using the CAPRI protein-peptide criteria (darker blue distribution) for 16 out of 23
cases selected for cross-partners evaluation and for the models obtained with non-native peptide
ligands (light blue distribution). Cross-partners predictions were performed using delimited partners
with no evolutionary information for the peptide. Specific predictions illustrated in panels (b-d) are
drawn from the relevant distributions at the indicated score values. (b-d) Illustration of specific cases
discussed in the text for native PDB identifiers: 7CFC (b), 6IDX (c), 6J0W (d). The receptor is shown as
a grey surface, the native peptide as a red cartoon, the best predicted model involving the native
peptide in bright blue cartoon and the best predicted models involving non-native peptides in light

blue. AF2sc values indicate the best AF2 confidence score values obtained for each complex.
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