
gcplyr: an R package for microbial growth curve data analysis

Michael Blazanin

Abstract

Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can
automate collection of high-throughput microbial growth curves, necessitating the development of
computational tools to handle and analyze these data to produce insights. However, existing tools are
limited. Many use parametric analyses that require mathematical assumptions about the microbial
growth characteristics. Those that use non-parametric or model-free analyses often can only quantify a
few traits of interest, and none are capable of importing and reshaping all known growth curve data
formats. To address this gap, here I present a newly-developed R package: gcplyr. gcplyr can flexibly
import growth curve data in every known format, and reshape it under a flexible and extendable
framework so that users can design custom analyses or plot data with popular visualization packages.
gcplyr can also incorporate metadata and generate or import experimental designs to merge with data.
Finally, gcplyr carries out model-free and non-parametric analyses, extracting a broad range of clinically
and ecologically important traits, including initial density, lag time, growth rate and doubling time,
carrying capacity, diauxie, area under the curve, extinction time, and more. In sum, gcplyr makes
scripted analysis of growth curve data in R straightforward, streamlines common data wrangling and
analysis steps, and easily integrates with common visualization and statistical analyses.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

Introduction

Characterization of microbial population growth dynamics has been of fundamental and applied interest
since nearly the dawn of microbiology (1). From bacterial interactions with antimicrobials to the effects
of mutations in yeast, growth curves are a ubiquitous technique to study microbial growth. Indeed,
modern automated platforms, including plate readers, can collect high-throughput growth data over
time on hundreds of samples simultaneously. Yet, this data-generation capacity has outpaced the
development of computational tools to handle and analyze microbial growth data, presenting new
challenges.

First and foremost, data are rarely output in the ideal format for analysis, visualization, or publication.
Reorganizing data manually can be tedious and fraught with the potential for introduction of errors.
Moreover, since output files vary between different plate readers, scripted reorganization may require
tailored code for each output format. Despite this, existing software tools provide limited utilities for
streamlined data wrangling and reorganization (Table S1).

Once data are reorganized, scientists face the challenge of converting raw data into quantitative
microbial traits. Typically, plate readers measure the optical density of a microbial culture, which
corresponds to the density of the population. To convert optical density measures over time into a
quantitative microbial trait, many groups have developed software with graphical user interfaces (Table
S1, (2–12)). Graphical user interfaces make the tools easy to use, with little or no programming.
However, these programs limit the degree to which users can customize their analyses, carry out
analyses beyond the options built into the software, or integrate their analyses with scripted approaches
to visualization or statistics.

In addition, many of the most popular computational tools use parametric analyses of microbial growth
curve data (Table S1, (2, 3, 5, 7, 9, 11–19)). Parametric analyses fit a mathematical model of microbial
population growth to observed data, then extract the fitted parameter values to quantify traits. While
this approach is useful, it has drawbacks. Namely, users must choose a model to fit, making specific
error-prone mathematical assumptions about the form the growth data should take. Moreover, users
must then validate that their data meet the assumptions of the model, and verify that optimization
algorithms converged on appropriate fits to their data. Most challengingly, some growth dynamics may
not fit any known models of microbial growth, leaving researchers with few to no options using
programs built on parametric analyses.

Given these drawbacks, in recent years some groups have developed software to analyze microbial
growth data with non-parametric or model-free approaches (Table S1, (2, 4, 6, 8, 10, 13–15, 17–24)).
These analyses make no specific mathematical assumptions about the form of the growth data, instead
extracting parameters of interest directly from the data itself or from non-parametrically smoothed
transformations of the data. However, the vast majority of these tools can only quantify a few traits of
interest, and all of them have limited data wrangling and reorganization capabilities.

To address these shortcomings, I present my newly-released R package, gcplyr. gcplyr is a software
package that can flexibly import growth curve data in all of the instrument output formats of which I am
aware. gcplyr is built in R, a popular scripting language for scientific data analysis and visualization. gcplyr
provides a framework for data reshaping that is flexible and extendable so that users can easily run
custom analyses or integrate gcplyr with existing visualization packages. gcplyr also allows incorporation

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

of metadata and experimental design information. Finally, gcplyr facilitates model-free and non-
parametric analyses, extracting a number of traits of interest, including initial density, lag time, growth
rate and doubling time, carrying capacity, diauxie, area under the curve, extinction time, and more. All of
these functionalities are extensively documented in tutorials and the user manual, such that only a basic
working knowledge in R is sufficient to use the package.

Results

Implementation

gcplyr is an open-source R package available on CRAN and GitHub, with source code available under the
permissive MIT License. Within R, gcplyr functions make it easy to import data, merge them with
experimental design information, smooth and calculate derivatives as necessary, and analyze curves to
produce a number of metrics (Fig 1). These metrics can be easily plotted using ggplot2, combined with
other non-growth curve experimental data, and statistically analyzed in R. gcplyr is usable with a basic
working knowledge of the R coding language, or by following the available step-by-step tutorials.

Fig 1. Workflow to use gcplyr to analyze microbial growth curve data. gcplyr functions import and
reshape data files into tidy-shaped data, then merge them with imported or user-input experimental
design information. Data and designs can then be smoothed and have derivatives calculated to extract
growth curve metrics. Metrics can be easily merged with other non-growth curve experimental data
before statistical analyses and visualization.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

Data reshaping

gcplyr can import a variety of input data formats and then reshape them into a uniform format ideal for
subsequent graphic and analysis steps. Every export format I am aware of from plate readers or other
similar instruments can be imported by gcplyr (Fig 2). This is an especially useful improvement for block-
shaped data, where data are arranged to match the physical layout of the plate it was read from and
each timepoint is saved separately. I am not aware of any previous software that could parse block-
shaped data files without requiring a custom script; gcplyr streamlines this process with a single
function. Once data are imported into R, they are reshaped into a ‘tidy’ format (also known as ‘long’
format) (25). Tidy-shaped data have all observations in a single column, with each unique datapoint with
its own row, and additional columns specifying the timepoint, well, and any added experimental design
information (e.g. bacterial strain). Tidy-shaped data is the best layout for most analyses (25), is
consistent with requirements of data repositories like Dryad, and is the expected input for a number of
popular R packages (26). By transforming data into a tidy-shape, gcplyr makes it easy for users to also
visualize their data using ggplot2 (27), manipulate their data using dplyr (28), or apply any of the other
tidyverse packages to their data (26).

Fig 2. Common microbial growth curve data export formats. Block-shaped data are organized to match
the physical layout of the multi-well plate from which they were generated, with each timepoint having
its own block. Wide shaped data contain one column for the timepoint and one column for each well
from a plate, with each row corresponding to a different timepoint. Tidy-shaped data feature one
column for the timepoint, one column for the well identifier, and one column containing all the
observations, so each unique data point (well-by-timepoint combination) has its own row. In tidy-shaped
data, additional columns (not shown) can contain experimental design information, other data, or both.

Incorporation of metadata and experimental designs

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

gcplyr can also incorporate metadata and experimental designs with growth curve data. Metadata from
input files can be incorporated during file reading. Experimental design information can be incorporated
in one of two ways. First, gcplyr can read designs from user-generated spreadsheet files. Second, users
can directly input experimental design information. gcplyr functions can also output designs to files for
reference or inclusion in a laboratory notebook.

Characterizing microbial growth

To quantify attributes of growth data without model fitting, gcplyr computes metrics of interest from
density data and its derivatives. gcplyr can calculate both the derivative and per-capita derivative of
density data (Fig 3). gcplyr can then identify features in the density data and its derivatives to quantify
traits of interest, including lag time, growth rate, doubling time, and carrying capacity (Table 1, Fig 4A).
gcplyr also has the novel ability to detect and quantify diauxic growth (Table 1, Fig 4B), a trait that is
common in many microbes but difficult to analyze using existing software tools.

Fig 3. Example of a growth curve, its derivative, and its per-capita derivative. Using an example
experimental bacterial growth curve, gcplyr was used to calculate the derivative and per-capita
derivative by fitting a linear regression to rolling windows of the plain or log-transformed density values,
respectively. These calculations used a window 75 minutes (five data points) wide.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

Table 1. Examples of microbial growth traits that can be quantified using gcplyr. Each trait is listed with
a brief description of the computational approach used by gcplyr to quantify the trait.

Trait Description gcplyr method
Growth rate The maximum rate of exponential growth per

unit time
Maximum of per-capita
derivative

Doubling time The amount of time it would take for the
population to double in size when growing
exponentially

Minimum of doubling time,
which is log(2) divided by per-
capita derivative

Area under the
curve

An overall measure of bacterial growth Area under the curve of density

Lag time The amount of time that passes between the
start of a growth curve and the beginning of
exponential growth

Projection of maximum growth
rate fit back to starting density

Carrying capacity The maximum density that can be reached in
the environment

Maximum of density

Diauxic shift The time when the microbe metabolically
shifts from growing on one resource to
growing on another (less-favored) one

Time of the first local minima of
derivative

Growth rate during
diauxie

The maximum rate of exponential growth per
unit time post diauxic shift

Maximum of per-capita
derivative after diauxic shift

Doubling time
during diauxic shift

The amount of time for it would take for the
population to double in size when growing
exponentially post diauxic shift

Minimum of doubling time
after diauxic shift

Peak density The peak density reached before declining
towards extinction, most frequently used to
quantify interactions with antagonists, like
between bacteria and phages

Density of first local maxima of
density

Peak time The time when density peaks before declining
towards extinction, most frequently used to
quantify interactions with antagonists, like
between bacteria and phages

Time of first local maxima of
density

Near-extinction
time

The time when density falls below some
threshold that denotes near or complete
extinction of the population

Time when density first drops
below threshold

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

Fig 4. Example of a growth curve demonstrating calculation of microbial traits. A. Depiction of the
calculation of lag time, maximum growth rate, and maximum density reached in 24 hours on an example
experimental bacterial growth curve. Maximum growth rate was determined by finding the maximum of
the per-capita growth rate (slope of the red line originating from the red points). Lag time was calculated
as the point where the red line intersects with the initial density on log-transformed axes (vertical
dashed line). Maximum density in 24 hours was simply the maximum density (horizontal dashed line). B.
Depiction of the identification of diauxic growth in an example experimental bacterial growth curve.
Diauxie was identified by using gcplyr’s local extrema finding function to find a local minimum in the
derivative curve, yielding an accurate identification of the time when the diauxic shift occurred (vertical
dashed line).

Characterizing bacterial growth in the presence of phages

Microbial growth curves can also be used to characterize interactions between bacteria and antagonists.
One frequent application of this is to quantify interactions with lytic phages (29–42), a use-case which
existing software has limited capacity to handle. In these curves, the phage densities cannot be directly
visualized, but changes in the bacterial density can be. The bacterial density tends to initially increase,
before peaking and declining due to phage lysis. Metrics like peak density, time until near-extinction,
and area under the curve can be used to, for example, compare the susceptibility of different bacterial
strains to a focal phage (33, 34, 37–39, 41). gcplyr can directly calculate all three metrics (Fig 5).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

Fig 5. Example of an experimental growth curve of bacteria in the presence of lytic phages. Peak
density and near-extinction time act as proxy measures for the bacterial strain’s sensitivity to the phage.
Peak density (red “X”) was identified by using gcplyr’s local extrema finding function to identify a local
maximum in the density data. Near-extinction time (vertical dashed line) was identified by finding the
first point the OD600 dropped below 0.1 using gcplyr’s threshold-detection function.

Dealing with noise in growth curve data

One frequent challenge with experimental growth curve data is the presence of noise. Noise can obscure
underlying traits of interest. gcplyr currently has two methods to deal with noise: 1) smoothing raw
density data, and 2) using fitting during derivative calculations.

In many cases, noise can be smoothed directly from the density data. gcplyr implements several well-
established smoothing algorithms (Fig 6A), including moving average, moving median, LOESS (43–46),
and GAM (47–50). Each of these algorithms is tunable by user-set parameters, and they can be applied
individually or in sequence.

In some cases, smoothing density data itself may not be necessary or sufficient. In particular, derivatives,
especially per-capita derivatives, are often sensitive to experimental noise. By default, gcplyr calculates
derivatives for each pair of subsequent points. However, to deal with noisy data, gcplyr can calculate
derivatives by fitting a linear regression with a rolling window of multiple points (Fig 6B). The rolling
regression approach has been implemented elsewhere, and can improve accuracy and reduce the effects
of noise on calculated derivatives (21).

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

Fig 6. gcplyr methods for dealing with noisy data. Example data is an experimental bacterial growth
curve with added simulated noise. A. Example of growth curve with added noise demonstrating
smoothing algorithms. Noisy density data (points) was smoothed with each algorithm (red line) using
gcplyr’s data smoothing function. Moving median and moving average were smoothed using windows of
5 data points (75 minutes), LOESS was used with a span of 0.2, and GAM was used with 20 knots. B.
Example of fitting during derivative calculation to reduce the effects of noise. The derivative of the data
points in A was calculated using gcplyr’s derivative calculation function with rolling windows of 2, 5, 9, or
13 data points (30, 75, 135, or 195 minutes).

Discussion

Modern technology has accelerated the generation of high-throughput microbial growth data,
necessitating new computational tools capable of handling and analyzing this data to produce insights.
Here I introduced gcplyr, a new R package built specifically to address this need. gcplyr can flexibly
import growth curve data in every format of which I am aware, combine data with experimental design
information, reshape data for analysis and use with other popular R packages, and compute a number of
growth curve metrics using model-free and non-parametric analyses.

gcplyr improves on existing computational tools by implementing improved data wrangling capabilities.
gcplyr’s input format requirements are less restrictive and more flexible than existing tools, freeing users
from the need to reformat files manually. Moreover, gcplyr’s capacity for data reorganization goes well
beyond that of existing tools (Table S1). This data organization framework provides a number of benefits
over existing implementations:

1. It allows users to integrate as many pieces of experimental design information as desired.
2. It allows users to easily integrate their growth curve analyses with existing visualization and

statistics packages in R.
3. It allows users to merge growth curve data analyses with other sources of data.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

4. It allows users to leverage the general-use functions in gcplyr and other packages to generate
custom analyses to identify unique features in their data.

Additionally, gcplyr improves on existing computational tools by providing an expanded array of traits
that can be quantified using model-free and non-parametric approaches. Previous tools had fit
parametric mathematical models of microbial growth to observed data (2, 3, 5, 7, 9, 11–19), an approach
that requires validation of model assumptions and fails when data do not fit the chosen model. Instead,
gcplyr and some recent tools quantify traits directly from the data itself (2, 4, 6, 8, 10, 13–15, 17–24). In
comparison to most existing tools, gcplyr expands on the number of possible traits to be quantified and
facilitates analyses of a greater diversity of growth curve phenomena.

Growth curves are a widespread experimental approach in the microbial sciences. From bacterial
interactions with antimicrobials to investigating the effects of genetic manipulations in yeast, growth
curves are used to study microbial growth. However, until now, tools capable of wrangling and doing
model-free analysis of growth curve data were limited. By enabling these steps, gcplyr lubricates high-
quality model-free analysis for a wide range of applied and fundamental research on microbial growth.

Materials and Methods

Availability and dependencies of gcplyr

gcplyr is written in the open-source R programming language (46), and is available for free to use. gcplyr
can be installed from the centralized CRAN repository (https://CRAN.R-project.org/package=gcplyr) with
the built-in install.packages function, or from GitHub (https://github.com/mikeblazanin/gcplyr).
Installation requirements will continue to adjust as active development on gcplyr continues, but are
always listed on the CRAN page. gcplyr has been written to minimize the number of external
dependencies, thus simplifying the installation.

Documentation

Extensive documentation for gcplyr is available online (https://mikeblazanin.github.io/gcplyr/) and in the
vignettes and user manual bundled with installations of gcplyr, including tutorials that walk through each
step of an analysis.

Inputs.

gcplyr can import files in any tabular file format (e.g. .csv, .xls, .xlsx, .tsv). gcplyr can also import data and
design files regardless of whether they are block-shaped, wide-shaped, or tidy-shaped, which includes
every instrument output format I am aware of (Fig 2).

Data reshaping.

Once data is imported, gcplyr extends the functionality of dplyr (28) to transform block-shaped and
wide-shaped data and designs into tidy-shaped data and designs.

Incorporating experimental design information.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

gcplyr can import experimental designs from user-created tabular files, or can generate designs within R.
Designs generated within R can include as many experimental design fields as desired, and can be output
to a spreadsheet file. Regardless of how designs are generated, they can then be merged with data.

Calculation of derivatives.

Growth curve metrics can be calculated in a model-free way by identifying features of the density data
and its derivatives. To facilitate this, gcplyr can calculate both plain and per-capita derivatives. Plain
derivatives are calculated simply as the slope of the density data over time. Per-capita derivatives can be
calculated as the plain derivative divided by the density, or as the slope of the log-transformed density
over time. By default, gcplyr uses each pair of subsequent points to calculate derivatives. However,
gcplyr can also calculate derivatives by fitting a linear regression to all points within a window centered
at each data point, with user-set parameters determining the width of the window. The package
documentation discusses best practices for setting derivative parameters and calculating derivatives.

Smoothing data.

Model-free analyses can be sensitive to experimental noise in growth curve data. To smooth noise in raw
density data, gcplyr implements several well-established smoothing functions, including moving average,
moving median, loess (43–46), and GAM (47–50). Smoothing functions are tuned by user-set
smoothness parameters. The package documentation discusses best practices for setting smoothness
parameters and smoothing data.

Analysis functions.

A number of growth curve metrics can be quantified by identification of local extrema (Table 1). gcplyr
includes a function that can identify local extrema by iteratively searching a window centered at each
data point for the maximum and minimum data in the window until the algorithm converges. User-set
parameters determine the width and height of the window, tuning the sensitivity of the algorithm to
narrower and shallower peaks and valleys, respectively. The package documentation discusses best
practices for setting local extrema finding parameters and identifying local extrema.

Threshold-crossing events represent another important class of growth curve metrics. For example, the
near-extinction time of a bacterial population can be estimated as the time required for optical density
to drop below a threshold value (Table 1). To identify such events, gcplyr includes a general threshold-
crossing finding function that finds times when the data or derivative crosses the user-defined threshold
in the direction(s) specified by the user.

gcplyr also includes some specialized analysis functions for specific metrics. Lag time is calculated using
an established approach (51, 52): finding the maximum per-capita growth rate, then projecting that rate
as a tangent line from the point of maximum growth until it intersects with the initial density on a log-
transformed y-axis (Fig 4). Area under the curve is simply calculated using the trapezoid rule to get an
exact definite integral.

Example microbial growth data

To generate experimental microbial growth curve data for examples, Pseudomonas fluorescens SBW25
(53) was grown at 28 °C in King’s B media: 10g/L LP0037 Oxoid Bacteriological Peptone, 15 g/L glycerol,
1.5 g/L potassium phosphate, and 0.6 g/L magnesium sulfate. Bacteria were inoculated in a total volume

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

of 200 µL to an initial density of 105 cfu/mL, then grown shaking in a BioTek Epoch 2 microplate
spectrophotometer. For the phage-bacteria co-culture growth curve, phage Phi2 (54) was inoculated at
an initial MOI of 0.01.

For experimental microbial growth curve data demonstrating diauxic growth, I pulled growth curve data
of ancestral Pseudomonas fluorescens SBW25 from (55). To summarize their methods, 4 µL of an
overnight bacterial culture was added to a 96 well plate with 146 µL of modified King’s B media: 2.5g/L
LP0037 Oxoid Bacteriological Peptone, 3.75 g/L glycerol, 0.75 g/L potassium phosphate, and 0.3 g/L
magnesium sulfate. Bacteria were grown overnight at 29°C while shaking with the OD600 read every 15
minutes.

All data and code to generate the plots in this paper are available at
https://github.com/mikeblazanin/gcplyr/tree/master/manuscript.

Acknowledgements

Thanks to Paul Turner for supporting me while I worked on the project. Thanks to Jyot Antani, Alita
Burmeister, Noah Houpt, and Jordan Lewis for feedback on drafts of this paper. Thanks to Emma Vasen
for collecting the example growth curve data. Thanks to a number of alpha and beta testers who
provided feedback on the package before release.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

References

1. Monod J. 1949. The Growth of Bacterial Cultures. Annual Review of Microbiology 3:371–394.

2. Wirth NT, Funk J. 2023. QurvE: Robust and User-Friendly Analysis of Growth and Fluorescence

Curves. https://CRAN.R-project.org/package=QurvE.

3. Coutin NPJ, Giaever G, Nislow C. 2020. Interactively AUDIT Your Growth Curves with a Suite of R

Packages. G3 10:933–943.

4. Swain PS, Stevenson K, Leary A, Montano-Gutierrez LF, Clark IBN, Vogel J, Pilizota T. 2016. Inferring

time derivatives including cell growth rates using Gaussian processes. 1. Nat Commun 7:13766.

5. Bukhman YV, DiPiazza NW, Piotrowski J, Shao J, Halstead AGW, Bui MD, Xie E, Sato TK. 2015.

Modeling Microbial Growth Curves with GCAT. Bioenergy Research 8:1022–1030.

6. Fernandez-Ricaud L, Kourtchenko O, Zackrisson M, Warringer J, Blomberg A. 2016. PRECOG: A tool

for automated extraction and visualization of fitness components in microbial growth phenomics.

BMC Bioinformatics 17:249.

7. Huang L. 2014. IPMP 2013 — A comprehensive data analysis tool for predictive microbiology.

International Journal of Food Microbiology 171:100–107.

8. Jung PP, Christian N, Kay DP, Skupin A, Linster CL. 2015. Protocols and Programs for High-Throughput

Growth and Aging Phenotyping in Yeast. PLoS ONE 10:e0119807.

9. Liu Y, Wang X, Liu B, Yuan S, Qin X, Dong Q. 2021. Microrisk Lab: An Online Freeware for Predictive

Microbiology. Foodborne Pathogens and Disease 18:607–615.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

10. Olsen B, Murakami CJ, Kaeberlein M. 2010. YODA: Software to facilitate high-throughput analysis of

chronological life span, growth rate, and survival in budding yeast. BMC Bioinformatics 11:141.

11. Veríssimo A, Paixão L, Neves AR, Vinga S. 2013. BGFit: Management and automated fitting of

biological growth curves. BMC Bioinformatics 14.

12. Vervier K, Browne HP, Lawley TD. 2019. CarboLogR: a Shiny/R application for statistical analysis of

bacterial utilisation of carbon sources. bioRxiv https://doi.org/10.1101/695676.

13. Sprouffske K, Wagner A. 2016. Growthcurver: An R package for obtaining interpretable metrics from

microbial growth curves. BMC Bioinformatics 17:17–20.

14. Petzoldt T. 2022. growthrates: Estimate Growth Rates from Experimental Data. https://CRAN.R-

project.org/package=growthrates.

15. Vaas LAI, Sikorski J, Hofner B, Fiebig A, Buddruhs N, Klenk HP, Göker M. 2013. Opm: An R package for

analysing OmniLog® phenotype microarray data. Bioinformatics 29:1823–1824.

16. Garre A, Koomen J, Besten H den, Zwietering M. 2022. biogrowth: Modelling of Population Growth.

https://CRAN.R-project.org/package=biogrowth.

17. Cuevas DA, Edwards RA. 2017. PMAnalyzer: A new web interface for bacterial growth curve analysis.

Bioinformatics 33:1905–1906.

18. Cuevas DA, Garza D, Sanchez SE, Rostron J, Henry CS, Vonstein V, Overbeek RA, Segall A, Rohwer F,

Dinsdale EA, Edwards RA. 2016. Elucidating genomic gaps using phenotypic profiles. F1000Research

https://doi.org/10.12688/f1000research.5140.2.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

19. Osthege M, Tenhaef N, Zyla R, Müller C, Hemmerich J, Wiechert W, Noack S, Oldiges M. 2022. bletl -

A Python package for integrating BioLector microcultivation devices in the Design-Build-Test-Learn

cycle. Engineering in Life Sciences 22:242–259.

20. Midani FS, Collins J, Britton RA. 2021. AMiGA: Software for Automated Analysis of Microbial Growth

Assays. mSystems 6:e00508-21.

21. Hall BG, Acar H, Nandipati A, Barlow M. 2014. Growth rates made easy. Molecular Biology and

Evolution 31:232–238.

22. Tonner PD, Darnell CL, Bushell FML, Lund PA, Schmid AK, Schmidler SC. 2020. A Bayesian non-

parametric mixed-effects model of microbial growth curves. PLOS Computational Biology

16:e1008366.

23. Tonner PD, Darnell CL, Engelhardt BE, Schmid AK. 2017. Detecting differential growth of microbial

populations with Gaussian process regression. Genome Res 27:320–333.

24. Hemmerich J, Wiechert W, Oldiges M. 2017. Automated growth rate determination in high-

throughput microbioreactor systems. BMC Research Notes 10:617.

25. Wickham H. Tidy Data. Journal of Statistical Software 10.

26. Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, Grolemund G, Hayes A, Henry L,

Hester J, Kuhn M, Pedersen TL, Miller E, Bache SM, Müller K, Ooms J, Robinson D, Seidel DP, Spinu V,

Takahashi K, Vaughan D, Wilke C, Woo K, Yutani H. 2019. Welcome to the tidyverse. Journal of Open

Source Software 4:1686.

27. Wickham H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.

https://ggplot2.tidyverse.org.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

28. Wickham H, François R, Henry L, Müller K. 2023. dplyr: A Grammar of Data Manipulation.

https://CRAN.R-project.org/package=dplyr.

29. Sørensen PE, Ng DYK, Duchateau L, Ingmer H, Garmyn A, Butaye P. 2021. Classification of In Vitro

Phage–Host Population Growth Dynamics. 12. Microorganisms 9:2470.

30. Maillard J-Y, Beggs T s., Day M j., Hudson R a., Russell A d. 1996. The use of an automated assay to

assess phage survival after a biocidal treatment. Journal of Applied Bacteriology 80:605–610.

31. Glonti T, Pirnay J-P. 2022. In Vitro Techniques and Measurements of Phage Characteristics That Are

Important for Phage Therapy Success. 7. Viruses 14:1490.

32. Martinez-Soto CE, Cucić S, Lin JT, Kirst S, Mahmoud ES, Khursigara CM, Anany H. 2021. PHIDA: A High

Throughput Turbidimetric Data Analytic Tool to Compare Host Range Profiles of Bacteriophages

Isolated Using Different Enrichment Methods. 11. Viruses 13:2120.

33. Rajnovic D, Muñoz-Berbel X, Mas J. 2019. Fast phage detection and quantification: An optical

density-based approach. PLOS ONE 14:e0216292.

34. Ceballos RM, Stacy CL. 2020. Quantifying relative virulence: when μ max fails and AUC alone just is

not enough. J Gen Virol 102:jgv001515.

35. Rajnovic D, Mas J. 2020. Fluorometric detection of phages in liquid media: Application to turbid

samples. Analytica Chimica Acta 1111:23–30.

36. Borin JM, Avrani S, Barrick JE, Petrie KL, Meyer JR. 2021. Coevolutionary phage training leads to

greater bacterial suppression and delays the evolution of phage resistance. Proc Natl Acad Sci USA

118:e2104592118.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

37. Xie Y, Wahab L, Gill J. 2018. Development and Validation of a Microtiter Plate-Based Assay for

Determination of Bacteriophage Host Range and Virulence. Viruses 10:189.

38. Konopacki M, Grygorcewicz B, Dołęgowska B, Kordas M, Rakoczy R. 2020. PhageScore: A simple

method for comparative evaluation of bacteriophages lytic activity. Biochemical Engineering Journal

161:107652.

39. Storms ZJ, Teel MR, Mercurio K, Sauvageau D. 2020. The Virulence Index: A Metric for Quantitative

Analysis of Phage Virulence. PHAGE 1:27–36.

40. Cooper CJ, Denyer SP, Maillard JY. 2011. Rapid and quantitative automated measurement of

bacteriophage activity against cystic fibrosis isolates of Pseudomonas aeruginosa. Journal of Applied

Microbiology 110:631–640.

41. Turner PE, Draghi JA, Wilpiszeski R. 2012. High-throughput analysis of growth differences among

phage strains. Journal of Microbiological Methods 88:117–121.

42. Henry M, Biswas B, Vincent L, Mokashi V, Schuch R, Bishop-Lilly KA, Sozhamannan S. 2012.

Development of a high throughput assay for indirectly measuring phage growth using the OmniLog

TM system. Bacteriophage 2:159–167.

43. Savitzky A, Golay MJ. 1964. Smoothing and differentiation of data by simplified least squares

procedures. Analytical chemistry 36:1627–1639.

44. Cleveland WS, Devlin SJ. 1988. Locally weighted regression: an approach to regression analysis by

local fitting. Journal of the American statistical association 83:596–610.

45. Cleveland WS. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the

American statistical association 74:829–836.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

46. R Core Team. 2022. R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing, Vienna, Austria. https://www.R-project.org/.

47. Trevor Hastie, Robert Tibshirani. 1986. Generalized Additive Models. Statistical Science 1:297–310.

48. Wood SN. 2003. Thin-plate regression splines. Journal of the Royal Statistical Society (B) 65:95–114.

49. Wood SN. 2017. Generalized Additive Models: An Introduction with R, 2nd ed. Chapman and

Hall/CRC.

50. Wood SN. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of

semiparametric generalized linear models. Journal of the Royal Statistical Society (B) 73:3–36.

51. Swinnen IAM, Bernaerts K, Dens EJJ, Geeraerd AH, Van Impe JF. 2004. Predictive modelling of the

microbial lag phase: a review. International Journal of Food Microbiology 94:137–159.

52. Yates GT, Smotzer T. 2007. On the lag phase and initial decline of microbial growth curves. Journal of

Theoretical Biology 244:511–517.

53. Rainey PB, Travisano M. 1998. Adaptive radiation in a heterogeneous environment. Nature 394:69–

72.

54. Buckling A, Rainey PB. 2002. Antagonistic coevolution between a bacterium and a bacteriophage.

Proceedings of the Royal Society B 269:931–6.

55. Blazanin M, Moore JP, Olsen S, Travisano M. 2023. Fight not flight: parasites drive the bacterial

evolution of resistance, not avoidance. bioRxiv https://doi.org/10.1101/2023.04.29.538831.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

Table S1. Comparison of gcplyr with other available microbial growth curve analysis software and code.

Software Citation Available as Scriptable Imports Data reshaping
Incorporate

designs Plotting
Parametric

fitting & analysis Smoothing
Non-parametric

analysis
gcplyr This

paper
R package Yes Block, wide, tidy Yes, into wide or

tidy
Yes With

ggplot2
No Yes Yes

QurvE (2) GUI or R package Yes Wide, specialized
formats

From specialized
formats into wide

Yes Built-in Yes Yes Yes

growthcurver (13) R package Yes Wide No No Built-in Yes No Minimally
growthrates (14) R package Yes Tidy No No With

ggplot2
Yes Yes Minimally

opm (15) R package Yes Specialized formats Yes, into opm-
specific class

Yes Built-in Yes (but defunct) Yes Minimally

AUDIT (3) GUI, R-based No Tidy, specialized formats From specialized
formats into tidy

Yes Built-in Yes Yes No

growr (part of
AUDIT)

(3) R package Yes Tidy N/A N/A With
ggplot2

Yes Yes No

mtpview1
(part of
AUDIT)

(3) R package Yes Tidy N/A N/A Built-in N/A N/A N/A

biogrowth (16) R package Yes Wide No No Built-in Yes No No
AMiGA (20) Python package

or command line
Some Wide No Yes Built-in No Yes Yes

PMAnalyzer (17, 18) bash, R and
Python-based

No Wide No No Built-in Yes No Minimally

GrowthRates (21) Command line No Wide, specialized
formats

Yes No No No No Yes

bletl (19) Python package Yes Specialized formats Yes Yes Built-in Minimally Yes Yes
fitderiv (4) GUI or Python

package
Some Wide No No Built-in No Yes Yes

phenom (22) Python code Yes Wide No Yes No No Yes Yes
B-GREAT (23) Python code Yes Wide No Yes No No Yes Yes
Hemmerich et
al code

(24) MATLAB code Yes One well at a time No No No No No Yes

GCAT (5) GUI, R-based No Wide No Yes Built-in Yes No No
PRECOG (6) GUI No Wide No No Built-in No Yes Yes
IPMP 2013 (7) GUI, Python-

based
No Wide No No Built-in Yes No No

GATHODE (8) GUI, Python-
based

No Wide No Minimally Built-in No Yes Yes

Microrisk Lab (9) GUI, R-based No Wide No No Built-in Yes No No
YODA (10) Webpage via

server
No Wide No No No No No Yes

BGFit (11) Webpage No Wide No No Built-in Yes No No
CarboLogR (12) GUI, R-based No Specialized formats No Yes Built-in Yes No No

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.04.30.538883doi: bioRxiv preprint

https://doi.org/10.1101/2023.04.30.538883
http://creativecommons.org/licenses/by/4.0/

