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Abstract 

Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can 
automate collection of high-throughput microbial growth curves, necessitating the development of 
computational tools to handle and analyze these data to produce insights. However, existing tools are 
limited. Many use parametric analyses that require mathematical assumptions about the microbial 
growth characteristics. Those that use non-parametric or model-free analyses often can only quantify a 
few traits of interest, and none are capable of importing and reshaping all known growth curve data 
formats. To address this gap, here I present a newly-developed R package: gcplyr. gcplyr can flexibly 
import growth curve data in every known format, and reshape it under a flexible and extendable 
framework so that users can design custom analyses or plot data with popular visualization packages. 
gcplyr can also incorporate metadata and generate or import experimental designs to merge with data. 
Finally, gcplyr carries out model-free and non-parametric analyses, extracting a broad range of clinically 
and ecologically important traits, including initial density, lag time, growth rate and doubling time, 
carrying capacity, diauxie, area under the curve, extinction time, and more. In sum, gcplyr makes 
scripted analysis of growth curve data in R straightforward, streamlines common data wrangling and 
analysis steps, and easily integrates with common visualization and statistical analyses. 
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Introduction 

Characterization of microbial population growth dynamics has been of fundamental and applied interest 
since nearly the dawn of microbiology (1). From bacterial interactions with antimicrobials to the effects 
of mutations in yeast, growth curves are a ubiquitous technique to study microbial growth. Indeed, 
modern automated platforms, including plate readers, can collect high-throughput growth data over 
time on hundreds of samples simultaneously. Yet, this data-generation capacity has outpaced the 
development of computational tools to handle and analyze microbial growth data, presenting new 
challenges. 

First and foremost, data are rarely output in the ideal format for analysis, visualization, or publication. 
Reorganizing data manually can be tedious and fraught with the potential for introduction of errors. 
Moreover, since output files vary between different plate readers, scripted reorganization may require 
tailored code for each output format. Despite this, existing software tools provide limited utilities for 
streamlined data wrangling and reorganization (Table S1). 

Once data are reorganized, scientists face the challenge of converting raw data into quantitative 
microbial traits. Typically, plate readers measure the optical density of a microbial culture, which 
corresponds to the density of the population. To convert optical density measures over time into a 
quantitative microbial trait, many groups have developed software with graphical user interfaces (Table 
S1, (2–12)). Graphical user interfaces make the tools easy to use, with little or no programming. 
However, these programs limit the degree to which users can customize their analyses, carry out 
analyses beyond the options built into the software, or integrate their analyses with scripted approaches 
to visualization or statistics.  

In addition, many of the most popular computational tools use parametric analyses of microbial growth 
curve data (Table S1, (2, 3, 5, 7, 9, 11–19)). Parametric analyses fit a mathematical model of microbial 
population growth to observed data, then extract the fitted parameter values to quantify traits. While 
this approach is useful, it has drawbacks. Namely, users must choose a model to fit, making specific 
error-prone mathematical assumptions about the form the growth data should take. Moreover, users 
must then validate that their data meet the assumptions of the model, and verify that optimization 
algorithms converged on appropriate fits to their data. Most challengingly, some growth dynamics may 
not fit any known models of microbial growth, leaving researchers with few to no options using 
programs built on parametric analyses. 

Given these drawbacks, in recent years some groups have developed software to analyze microbial 
growth data with non-parametric or model-free approaches (Table S1, (2, 4, 6, 8, 10, 13–15, 17–24)). 
These analyses make no specific mathematical assumptions about the form of the growth data, instead 
extracting parameters of interest directly from the data itself or from non-parametrically smoothed 
transformations of the data. However, the vast majority of these tools can only quantify a few traits of 
interest, and all of them have limited data wrangling and reorganization capabilities. 

To address these shortcomings, I present my newly-released R package, gcplyr. gcplyr is a software 
package that can flexibly import growth curve data in all of the instrument output formats of which I am 
aware. gcplyr is built in R, a popular scripting language for scientific data analysis and visualization. gcplyr 
provides a framework for data reshaping that is flexible and extendable so that users can easily run 
custom analyses or integrate gcplyr with existing visualization packages. gcplyr also allows incorporation 
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of metadata and experimental design information. Finally, gcplyr facilitates model-free and non-
parametric analyses, extracting a number of traits of interest, including initial density, lag time, growth 
rate and doubling time, carrying capacity, diauxie, area under the curve, extinction time, and more. All of 
these functionalities are extensively documented in tutorials and the user manual, such that only a basic 
working knowledge in R is sufficient to use the package. 

 

Results 

Implementation 

gcplyr is an open-source R package available on CRAN and GitHub, with source code available under the 
permissive MIT License. Within R, gcplyr functions make it easy to import data, merge them with 
experimental design information, smooth and calculate derivatives as necessary, and analyze curves to 
produce a number of metrics (Fig 1). These metrics can be easily plotted using ggplot2, combined with 
other non-growth curve experimental data, and statistically analyzed in R. gcplyr is usable with a basic 
working knowledge of the R coding language, or by following the available step-by-step tutorials. 

  

Fig 1. Workflow to use gcplyr to analyze microbial growth curve data. gcplyr functions import and 
reshape data files into tidy-shaped data, then merge them with imported or user-input experimental 
design information. Data and designs can then be smoothed and have derivatives calculated to extract 
growth curve metrics. Metrics can be easily merged with other non-growth curve experimental data 
before statistical analyses and visualization. 
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Data reshaping 

gcplyr can import a variety of input data formats and then reshape them into a uniform format ideal for 
subsequent graphic and analysis steps. Every export format I am aware of from plate readers or other 
similar instruments can be imported by gcplyr (Fig 2). This is an especially useful improvement for block-
shaped data, where data are arranged to match the physical layout of the plate it was read from and 
each timepoint is saved separately. I am not aware of any previous software that could parse block-
shaped data files without requiring a custom script; gcplyr streamlines this process with a single 
function. Once data are imported into R, they are reshaped into a ‘tidy’ format (also known as ‘long’ 
format) (25). Tidy-shaped data have all observations in a single column, with each unique datapoint with 
its own row, and additional columns specifying the timepoint, well, and any added experimental design 
information (e.g. bacterial strain). Tidy-shaped data is the best layout for most analyses (25), is 
consistent with requirements of data repositories like Dryad, and is the expected input for a number of 
popular R packages (26). By transforming data into a tidy-shape, gcplyr makes it easy for users to also 
visualize their data using ggplot2 (27), manipulate their data using dplyr (28), or apply any of the other 
tidyverse packages to their data (26).  

 

Fig 2. Common microbial growth curve data export formats. Block-shaped data are organized to match 
the physical layout of the multi-well plate from which they were generated, with each timepoint having 
its own block. Wide shaped data contain one column for the timepoint and one column for each well 
from a plate, with each row corresponding to a different timepoint. Tidy-shaped data feature one 
column for the timepoint, one column for the well identifier, and one column containing all the 
observations, so each unique data point (well-by-timepoint combination) has its own row. In tidy-shaped 
data, additional columns (not shown) can contain experimental design information, other data, or both. 

 

Incorporation of metadata and experimental designs 
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gcplyr can also incorporate metadata and experimental designs with growth curve data. Metadata from 
input files can be incorporated during file reading. Experimental design information can be incorporated 
in one of two ways. First, gcplyr can read designs from user-generated spreadsheet files. Second, users 
can directly input experimental design information. gcplyr functions can also output designs to files for 
reference or inclusion in a laboratory notebook. 

Characterizing microbial growth 

To quantify attributes of growth data without model fitting, gcplyr computes metrics of interest from 
density data and its derivatives. gcplyr can calculate both the derivative and per-capita derivative of 
density data (Fig 3). gcplyr can then identify features in the density data and its derivatives to quantify 
traits of interest, including lag time, growth rate, doubling time, and carrying capacity (Table 1, Fig 4A). 
gcplyr also has the novel ability to detect and quantify diauxic growth (Table 1, Fig 4B), a trait that is 
common in many microbes but difficult to analyze using existing software tools. 

 

 

Fig 3. Example of a growth curve, its derivative, and its per-capita derivative. Using an example 
experimental bacterial growth curve, gcplyr was used to calculate the derivative and per-capita 
derivative by fitting a linear regression to rolling windows of the plain or log-transformed density values, 
respectively. These calculations used a window 75 minutes (five data points) wide. 
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Table 1. Examples of microbial growth traits that can be quantified using gcplyr. Each trait is listed with 
a brief description of the computational approach used by gcplyr to quantify the trait. 

Trait  Description gcplyr method 
Growth rate The maximum rate of exponential growth per 

unit time 
Maximum of per-capita 
derivative 

Doubling time The amount of time it would take for the 
population to double in size when growing 
exponentially 

Minimum of doubling time, 
which is log(2) divided by per-
capita derivative 

Area under the 
curve 

An overall measure of bacterial growth Area under the curve of density 

Lag time The amount of time that passes between the 
start of a growth curve and the beginning of 
exponential growth 

Projection of maximum growth 
rate fit back to starting density 

Carrying capacity The maximum density that can be reached in 
the environment 

Maximum of density 

Diauxic shift The time when the microbe metabolically 
shifts from growing on one resource to 
growing on another (less-favored) one 

Time of the first local minima of 
derivative 

Growth rate during 
diauxie 

The maximum rate of exponential growth per 
unit time post diauxic shift 

Maximum of per-capita 
derivative after diauxic shift 

Doubling time 
during diauxic shift 

The amount of time for it would take for the 
population to double in size when growing 
exponentially post diauxic shift 

Minimum of doubling time 
after diauxic shift 

Peak density The peak density reached before declining 
towards extinction, most frequently used to 
quantify interactions with antagonists, like 
between bacteria and phages 

Density of first local maxima of 
density 

Peak time The time when density peaks before declining 
towards extinction, most frequently used to 
quantify interactions with antagonists, like 
between bacteria and phages 

Time of first local maxima of 
density 

Near-extinction 
time 

The time when density falls below some 
threshold that denotes near or complete 
extinction of the population 

Time when density first drops 
below threshold 
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Fig 4. Example of a growth curve demonstrating calculation of microbial traits. A. Depiction of the 
calculation of lag time, maximum growth rate, and maximum density reached in 24 hours on an example 
experimental bacterial growth curve. Maximum growth rate was determined by finding the maximum of 
the per-capita growth rate (slope of the red line originating from the red points). Lag time was calculated 
as the point where the red line intersects with the initial density on log-transformed axes (vertical 
dashed line). Maximum density in 24 hours was simply the maximum density (horizontal dashed line). B. 
Depiction of the identification of diauxic growth in an example experimental bacterial growth curve. 
Diauxie was identified by using gcplyr’s local extrema finding function to find a local minimum in the 
derivative curve, yielding an accurate identification of the time when the diauxic shift occurred (vertical 
dashed line). 

 

Characterizing bacterial growth in the presence of phages 

Microbial growth curves can also be used to characterize interactions between bacteria and antagonists. 
One frequent application of this is to quantify interactions with lytic phages (29–42), a use-case which 
existing software has limited capacity to handle. In these curves, the phage densities cannot be directly 
visualized, but changes in the bacterial density can be. The bacterial density tends to initially increase, 
before peaking and declining due to  phage lysis. Metrics like peak density, time until near-extinction, 
and area under the curve can be used to, for example, compare the susceptibility of different bacterial 
strains to a focal phage (33, 34, 37–39, 41). gcplyr can directly calculate all three metrics (Fig 5). 
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Fig 5. Example of an experimental growth curve of bacteria in the presence of lytic phages. Peak 
density and near-extinction time act as proxy measures for the bacterial strain’s sensitivity to the phage. 
Peak density (red “X”) was identified by using gcplyr’s local extrema finding function to identify a local 
maximum in the density data. Near-extinction time (vertical dashed line) was identified by finding the 
first point the OD600 dropped below 0.1 using gcplyr’s threshold-detection function. 

 

Dealing with noise in growth curve data 

One frequent challenge with experimental growth curve data is the presence of noise. Noise can obscure 
underlying traits of interest. gcplyr currently has two methods to deal with noise: 1) smoothing raw 
density data, and 2) using fitting during derivative calculations. 

In many cases, noise can be smoothed directly from the density data. gcplyr implements several well-
established smoothing algorithms (Fig 6A), including moving average, moving median, LOESS (43–46), 
and GAM (47–50). Each of these algorithms is tunable by user-set parameters, and they can be applied 
individually or in sequence. 

In some cases, smoothing density data itself may not be necessary or sufficient. In particular, derivatives, 
especially per-capita derivatives, are often sensitive to experimental noise. By default, gcplyr calculates 
derivatives for each pair of subsequent points. However, to deal with noisy data, gcplyr can calculate 
derivatives by fitting a linear regression with a rolling window of multiple points (Fig 6B). The rolling 
regression approach has been implemented elsewhere, and can improve accuracy and reduce the effects 
of noise on calculated derivatives (21). 
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Fig 6. gcplyr methods for dealing with noisy data. Example data is an experimental bacterial growth 
curve with added simulated noise. A. Example of growth curve with added noise demonstrating 
smoothing algorithms. Noisy density data (points) was smoothed with each algorithm (red line) using 
gcplyr’s data smoothing function. Moving median and moving average were smoothed using windows of 
5 data points (75 minutes), LOESS was used with a span of 0.2, and GAM was used with 20 knots. B. 
Example of fitting during derivative calculation to reduce the effects of noise. The derivative of the data 
points in A was calculated using gcplyr’s derivative calculation function with rolling windows of 2, 5, 9, or 
13 data points (30, 75, 135, or 195 minutes). 

 

Discussion 

Modern technology has accelerated the generation of high-throughput microbial growth data, 
necessitating new computational tools capable of handling and analyzing this data to produce insights. 
Here I introduced gcplyr, a new R package built specifically to address this need. gcplyr can flexibly 
import growth curve data in every format of which I am aware, combine data with experimental design 
information, reshape data for analysis and use with other popular R packages, and compute a number of 
growth curve metrics using model-free and non-parametric analyses. 

gcplyr improves on existing computational tools by implementing improved data wrangling capabilities. 
gcplyr’s input format requirements are less restrictive and more flexible than existing tools, freeing users 
from the need to reformat files manually. Moreover, gcplyr’s capacity for data reorganization goes well 
beyond that of existing tools (Table S1). This data organization framework provides a number of benefits 
over existing implementations: 

1. It allows users to integrate as many pieces of experimental design information as desired. 
2. It allows users to easily integrate their growth curve analyses with existing visualization and 

statistics packages in R. 
3. It allows users to merge growth curve data analyses with other sources of data. 
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4. It allows users to leverage the general-use functions in gcplyr and other packages to generate 
custom analyses to identify unique features in their data. 

Additionally, gcplyr improves on existing computational tools by providing an expanded array of traits 
that can be quantified using model-free and non-parametric approaches. Previous tools had fit 
parametric mathematical models of microbial growth to observed data (2, 3, 5, 7, 9, 11–19), an approach 
that requires validation of model assumptions and fails when data do not fit the chosen model. Instead, 
gcplyr and some recent tools quantify traits directly from the data itself (2, 4, 6, 8, 10, 13–15, 17–24). In 
comparison to most existing tools, gcplyr expands on the number of possible traits to be quantified and 
facilitates analyses of a greater diversity of growth curve phenomena.  

Growth curves are a widespread experimental approach in the microbial sciences. From bacterial 
interactions with antimicrobials to investigating the effects of genetic manipulations in yeast, growth 
curves are used to study microbial growth. However, until now, tools capable of wrangling and doing 
model-free analysis of growth curve data were limited. By enabling these steps, gcplyr lubricates high-
quality model-free analysis for a wide range of applied and fundamental research on microbial growth. 

 

Materials and Methods 

Availability and dependencies of gcplyr 

gcplyr is written in the open-source R programming language (46), and is available for free to use. gcplyr 
can be installed from the centralized CRAN repository (https://CRAN.R-project.org/package=gcplyr) with 
the built-in install.packages function, or from GitHub (https://github.com/mikeblazanin/gcplyr). 
Installation requirements will continue to adjust as active development on gcplyr continues, but are 
always listed on the CRAN page. gcplyr has been written to minimize the number of external 
dependencies, thus simplifying the installation.  

Documentation 

Extensive documentation for gcplyr is available online (https://mikeblazanin.github.io/gcplyr/) and in the 
vignettes and user manual bundled with installations of gcplyr, including tutorials that walk through each 
step of an analysis. 

Inputs. 

gcplyr can import files in any tabular file format (e.g. .csv, .xls, .xlsx, .tsv). gcplyr can also import data and 
design files regardless of whether they are block-shaped, wide-shaped, or tidy-shaped, which includes 
every instrument output format I am aware of (Fig 2). 

Data reshaping. 

Once data is imported, gcplyr extends the functionality of dplyr (28) to transform block-shaped and 
wide-shaped data and designs into tidy-shaped data and designs. 

Incorporating experimental design information. 
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gcplyr can import experimental designs from user-created tabular files, or can generate designs within R. 
Designs generated within R can include as many experimental design fields as desired, and can be output 
to a spreadsheet file. Regardless of how designs are generated, they can then be merged with data. 

Calculation of derivatives. 

Growth curve metrics can be calculated in a model-free way by identifying features of the density data 
and its derivatives. To facilitate this, gcplyr can calculate both plain and per-capita derivatives. Plain 
derivatives are calculated simply as the slope of the density data over time. Per-capita derivatives can be 
calculated as the plain derivative divided by the density, or as the slope of the log-transformed density 
over time. By default, gcplyr uses each pair of subsequent points to calculate derivatives. However, 
gcplyr can also calculate derivatives by fitting a linear regression to all points within a window centered 
at each data point, with user-set parameters determining the width of the window. The package 
documentation discusses best practices for setting derivative parameters and calculating derivatives. 

Smoothing data. 

Model-free analyses can be sensitive to experimental noise in growth curve data. To smooth noise in raw 
density data, gcplyr implements several well-established smoothing functions, including moving average, 
moving median, loess (43–46), and GAM (47–50). Smoothing functions are tuned by user-set 
smoothness parameters. The package documentation discusses best practices for setting smoothness 
parameters and smoothing data. 

Analysis functions. 

A number of growth curve metrics can be quantified by identification of local extrema (Table 1). gcplyr 
includes a function that can identify local extrema by iteratively searching a window centered at each 
data point for the maximum and minimum data in the window until the algorithm converges. User-set 
parameters determine the width and height of the window, tuning the sensitivity of the algorithm to 
narrower and shallower peaks and valleys, respectively. The package documentation discusses best 
practices for setting local extrema finding parameters and identifying local extrema. 

Threshold-crossing events represent another important class of growth curve metrics. For example, the 
near-extinction time of a bacterial population can be estimated as the time required for optical density 
to drop below a threshold value (Table 1). To identify such events, gcplyr includes a general threshold-
crossing finding function that finds times when the data or derivative crosses the user-defined threshold 
in the direction(s) specified by the user. 

gcplyr also includes some specialized analysis functions for specific metrics. Lag time is calculated using 
an established approach (51, 52): finding the maximum per-capita growth rate, then projecting that rate 
as a tangent line from the point of maximum growth until it intersects with the initial density on a log-
transformed y-axis (Fig 4). Area under the curve is simply calculated using the trapezoid rule to get an 
exact definite integral. 

Example microbial growth data 

To generate experimental microbial growth curve data for examples, Pseudomonas fluorescens SBW25 
(53) was grown at 28 °C in King’s B media: 10g/L LP0037 Oxoid Bacteriological Peptone, 15 g/L glycerol, 
1.5 g/L potassium phosphate, and 0.6 g/L magnesium sulfate. Bacteria were inoculated in a total volume 
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of 200 µL to an initial density of 105 cfu/mL, then grown shaking in a BioTek Epoch 2 microplate 
spectrophotometer. For the phage-bacteria co-culture growth curve, phage Phi2 (54) was inoculated at 
an initial MOI of 0.01. 

For experimental microbial growth curve data demonstrating diauxic growth, I pulled growth curve data 
of ancestral Pseudomonas fluorescens SBW25 from (55). To summarize their methods, 4 µL of an 
overnight bacterial culture was added to a 96 well plate with 146 µL of modified King’s B media: 2.5g/L 
LP0037 Oxoid Bacteriological Peptone, 3.75 g/L glycerol, 0.75 g/L potassium phosphate, and 0.3 g/L 
magnesium sulfate. Bacteria were grown overnight at 29°C while shaking with the OD600 read every 15 
minutes. 

All data and code to generate the plots in this paper are available at 
https://github.com/mikeblazanin/gcplyr/tree/master/manuscript. 
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Table S1. Comparison of gcplyr with other available microbial growth curve analysis software and code. 

Software Citation Available as Scriptable Imports Data reshaping 
Incorporate 

designs Plotting 
Parametric 

fitting & analysis Smoothing 
Non-parametric 

analysis 
gcplyr This 

paper 
R package Yes Block, wide, tidy Yes, into wide or 

tidy 
Yes With 

ggplot2 
No Yes Yes 

QurvE (2) GUI or R package Yes Wide, specialized 
formats 

From specialized 
formats into wide 

Yes Built-in Yes Yes Yes 

growthcurver (13) R package Yes Wide No No Built-in Yes No Minimally 
growthrates (14) R package Yes Tidy No No With 

ggplot2 
Yes Yes Minimally 

opm (15) R package Yes Specialized formats Yes, into opm-
specific class 

Yes Built-in Yes (but defunct) Yes Minimally 

AUDIT (3) GUI, R-based No Tidy, specialized formats From specialized 
formats into tidy 

Yes Built-in Yes Yes No 

growr (part of 
AUDIT) 

(3) R package Yes Tidy N/A N/A With 
ggplot2 

Yes Yes No 

mtpview1 
(part of 
AUDIT) 

(3) R package Yes Tidy N/A N/A Built-in N/A N/A N/A 

biogrowth (16) R package Yes Wide No No Built-in Yes No No 
AMiGA (20) Python package 

or command line 
Some Wide No Yes Built-in No Yes Yes 

PMAnalyzer (17, 18) bash, R and 
Python-based 

No Wide No No Built-in Yes No Minimally 

GrowthRates (21) Command line No Wide, specialized 
formats 

Yes No No No No Yes 

bletl (19) Python package Yes Specialized formats Yes Yes Built-in Minimally Yes Yes 
fitderiv (4) GUI or Python 

package 
Some Wide No No Built-in No Yes Yes 

phenom (22) Python code Yes Wide No Yes No No Yes Yes 
B-GREAT (23) Python code Yes Wide No Yes No No Yes Yes 
Hemmerich et 
al code 

(24) MATLAB code Yes One well at a time No No No No No Yes 

GCAT (5) GUI, R-based No Wide No Yes Built-in Yes No No 
PRECOG (6) GUI No Wide No No Built-in No Yes Yes 
IPMP 2013 (7) GUI, Python-

based 
No Wide No No Built-in Yes No No 

GATHODE (8) GUI, Python-
based 

No Wide No Minimally Built-in No Yes Yes 

Microrisk Lab (9) GUI, R-based No Wide No No Built-in Yes No No 
YODA (10) Webpage via 

server 
No Wide No No No No No Yes 

BGFit (11) Webpage No Wide No No Built-in Yes No No 
CarboLogR (12) GUI, R-based No Specialized formats No Yes Built-in Yes No No 
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