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geplyr: an R package for microbial growth curve data analysis

Michael Blazanin

Abstract

Characterization of microbial growth is of both fundamental and applied interest. Modern platforms can
automate collection of high-throughput microbial growth curves, necessitating the development of
computational tools to handle and analyze these data to produce insights. However, existing tools are
limited. Many use parametric analyses that require mathematical assumptions about the microbial
growth characteristics. Those that use non-parametric or model-free analyses often can only quantify a
few traits of interest, and none are capable of importing and reshaping all known growth curve data
formats. To address this gap, here | present a newly-developed R package: gcplyr. gcplyr can flexibly
import growth curve data in every known format, and reshape it under a flexible and extendable
framework so that users can design custom analyses or plot data with popular visualization packages.
geplyr can also incorporate metadata and generate or import experimental designs to merge with data.
Finally, gcplyr carries out model-free and non-parametric analyses, extracting a broad range of clinically
and ecologically important traits, including initial density, lag time, growth rate and doubling time,
carrying capacity, diauxie, area under the curve, extinction time, and more. In sum, gcplyr makes
scripted analysis of growth curve data in R straightforward, streamlines common data wrangling and
analysis steps, and easily integrates with common visualization and statistical analyses.
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Introduction

Characterization of microbial population growth dynamics has been of fundamental and applied interest
since nearly the dawn of microbiology (1). From bacterial interactions with antimicrobials to the effects
of mutations in yeast, growth curves are a ubiquitous technique to study microbial growth. Indeed,
modern automated platforms, including plate readers, can collect high-throughput growth data over
time on hundreds of samples simultaneously. Yet, this data-generation capacity has outpaced the
development of computational tools to handle and analyze microbial growth data, presenting new
challenges.

First and foremost, data are rarely output in the ideal format for analysis, visualization, or publication.
Reorganizing data manually can be tedious and fraught with the potential for introduction of errors.
Moreover, since output files vary between different plate readers, scripted reorganization may require
tailored code for each output format. Despite this, existing software tools provide limited utilities for
streamlined data wrangling and reorganization (Table S1).

Once data are reorganized, scientists face the challenge of converting raw data into quantitative
microbial traits. Typically, plate readers measure the optical density of a microbial culture, which
corresponds to the density of the population. To convert optical density measures over time into a
guantitative microbial trait, many groups have developed software with graphical user interfaces (Table
S1, (2-12)). Graphical user interfaces make the tools easy to use, with little or no programming.
However, these programs limit the degree to which users can customize their analyses, carry out
analyses beyond the options built into the software, or integrate their analyses with scripted approaches
to visualization or statistics.

In addition, many of the most popular computational tools use parametric analyses of microbial growth
curve data (Table S1, (2, 3, 5, 7,9, 11-19)). Parametric analyses fit a mathematical model of microbial
population growth to observed data, then extract the fitted parameter values to quantify traits. While
this approach is useful, it has drawbacks. Namely, users must choose a model to fit, making specific
error-prone mathematical assumptions about the form the growth data should take. Moreover, users
must then validate that their data meet the assumptions of the model, and verify that optimization
algorithms converged on appropriate fits to their data. Most challengingly, some growth dynamics may
not fit any known models of microbial growth, leaving researchers with few to no options using
programs built on parametric analyses.

Given these drawbacks, in recent years some groups have developed software to analyze microbial
growth data with non-parametric or model-free approaches (Table S1, (2, 4, 6, 8, 10, 13-15, 17-24)).
These analyses make no specific mathematical assumptions about the form of the growth data, instead
extracting parameters of interest directly from the data itself or from non-parametrically smoothed
transformations of the data. However, the vast majority of these tools can only quantify a few traits of
interest, and all of them have limited data wrangling and reorganization capabilities.

To address these shortcomings, | present my newly-released R package, gcplyr. geplyr is a software
package that can flexibly import growth curve data in all of the instrument output formats of which | am
aware. geplyr is built in R, a popular scripting language for scientific data analysis and visualization. gcplyr
provides a framework for data reshaping that is flexible and extendable so that users can easily run
custom analyses or integrate gcplyr with existing visualization packages. gcplyr also allows incorporation
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of metadata and experimental design information. Finally, gcplyr facilitates model-free and non-
parametric analyses, extracting a number of traits of interest, including initial density, lag time, growth
rate and doubling time, carrying capacity, diauxie, area under the curve, extinction time, and more. All of
these functionalities are extensively documented in tutorials and the user manual, such that only a basic
working knowledge in R is sufficient to use the package.

Results

Implementation

geplyr is an open-source R package available on CRAN and GitHub, with source code available under the
permissive MIT License. Within R, gcplyr functions make it easy to import data, merge them with
experimental design information, smooth and calculate derivatives as necessary, and analyze curves to
produce a number of metrics (Fig 1). These metrics can be easily plotted using ggplot2, combined with
other non-growth curve experimental data, and statistically analyzed in R. gcplyr is usable with a basic
working knowledge of the R coding language, or by following the available step-by-step tutorials.
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Fig 1. Workflow to use gcplyr to analyze microbial growth curve data. gcplyr functions import and
reshape data files into tidy-shaped data, then merge them with imported or user-input experimental
design information. Data and designs can then be smoothed and have derivatives calculated to extract
growth curve metrics. Metrics can be easily merged with other non-growth curve experimental data
before statistical analyses and visualization.
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Data reshaping

geplyr can import a variety of input data formats and then reshape them into a uniform format ideal for
subsequent graphic and analysis steps. Every export format | am aware of from plate readers or other
similar instruments can be imported by gcplyr (Fig 2). This is an especially useful improvement for block-
shaped data, where data are arranged to match the physical layout of the plate it was read from and
each timepoint is saved separately. | am not aware of any previous software that could parse block-
shaped data files without requiring a custom script; gcplyr streamlines this process with a single
function. Once data are imported into R, they are reshaped into a ‘tidy’ format (also known as ‘long’
format) (25). Tidy-shaped data have all observations in a single column, with each unique datapoint with
its own row, and additional columns specifying the timepoint, well, and any added experimental design
information (e.g. bacterial strain). Tidy-shaped data is the best layout for most analyses (25), is
consistent with requirements of data repositories like Dryad, and is the expected input for a number of
popular R packages (26). By transforming data into a tidy-shape, gcplyr makes it easy for users to also
visualize their data using ggplot2 (27), manipulate their data using dplyr (28), or apply any of the other
tidyverse packages to their data (26).
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Fig 2. Common microbial growth curve data export formats. Block-shaped data are organized to match
the physical layout of the multi-well plate from which they were generated, with each timepoint having
its own block. Wide shaped data contain one column for the timepoint and one column for each well
from a plate, with each row corresponding to a different timepoint. Tidy-shaped data feature one
column for the timepoint, one column for the well identifier, and one column containing all the
observations, so each unique data point (well-by-timepoint combination) has its own row. In tidy-shaped
data, additional columns (not shown) can contain experimental design information, other data, or both.

Incorporation of metadata and experimental designs
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geplyr can also incorporate metadata and experimental designs with growth curve data. Metadata from
input files can be incorporated during file reading. Experimental design information can be incorporated
in one of two ways. First, gcplyr can read designs from user-generated spreadsheet files. Second, users
can directly input experimental design information. gcplyr functions can also output designs to files for
reference or inclusion in a laboratory notebook.

Characterizing microbial growth

To quantify attributes of growth data without model fitting, gcplyr computes metrics of interest from
density data and its derivatives. gcplyr can calculate both the derivative and per-capita derivative of
density data (Fig 3). gcplyr can then identify features in the density data and its derivatives to quantify
traits of interest, including lag time, growth rate, doubling time, and carrying capacity (Table 1, Fig 4A).
geplyr also has the novel ability to detect and quantify diauxic growth (Table 1, Fig 4B), a trait that is
common in many microbes but difficult to analyze using existing software tools.

o
@
2 050
O F;
0.25 —
q.n"..
0 6 12 18 24
— Time (hr)
=
o
@ 0.10-
Qo
o
o 0.057
=
©
2 0.0
= 0 6 12 18 24
Time (hr)
—~ 056
o=
e 04
Q.
@ 2
5
.z 927
a. [
D OIO- T T T T T
0 6 12 18 24
Time (hr)

Fig 3. Example of a growth curve, its derivative, and its per-capita derivative. Using an example
experimental bacterial growth curve, gcplyr was used to calculate the derivative and per-capita
derivative by fitting a linear regression to rolling windows of the plain or log-transformed density values,
respectively. These calculations used a window 75 minutes (five data points) wide.
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Table 1. Examples of microbial growth traits that can be quantified using gcplyr. Each trait is listed with
a brief description of the computational approach used by gcplyr to quantify the trait.

Trait Description gcplyr method
Growth rate The maximum rate of exponential growth per Maximum of per-capita
unit time derivative

Doubling time

The amount of time it would take for the
population to double in size when growing
exponentially

Minimum of doubling time,
which is log(2) divided by per-
capita derivative

Area under the
curve

An overall measure of bacterial growth

Area under the curve of density

Lag time

The amount of time that passes between the
start of a growth curve and the beginning of
exponential growth

Projection of maximum growth
rate fit back to starting density

Carrying capacity

The maximum density that can be reached in
the environment

Maximum of density

Diauxic shift

The time when the microbe metabolically
shifts from growing on one resource to
growing on another (less-favored) one

Time of the first local minima of
derivative

Growth rate during
diauxie

The maximum rate of exponential growth per
unit time post diauxic shift

Maximum of per-capita
derivative after diauxic shift

Doubling time
during diauxic shift

The amount of time for it would take for the
population to double in size when growing
exponentially post diauxic shift

Minimum of doubling time
after diauxic shift

Peak density

The peak density reached before declining
towards extinction, most frequently used to
quantify interactions with antagonists, like
between bacteria and phages

Density of first local maxima of
density

Peak time

The time when density peaks before declining
towards extinction, most frequently used to
qguantify interactions with antagonists, like
between bacteria and phages

Time of first local maxima of
density

Near-extinction
time

The time when density falls below some
threshold that denotes near or complete
extinction of the population

Time when density first drops
below threshold
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Fig 4. Example of a growth curve demonstrating calculation of microbial traits. A. Depiction of the
calculation of lag time, maximum growth rate, and maximum density reached in 24 hours on an example
experimental bacterial growth curve. Maximum growth rate was determined by finding the maximum of
the per-capita growth rate (slope of the red line originating from the red points). Lag time was calculated
as the point where the red line intersects with the initial density on log-transformed axes (vertical
dashed line). Maximum density in 24 hours was simply the maximum density (horizontal dashed line). B.
Depiction of the identification of diauxic growth in an example experimental bacterial growth curve.
Diauxie was identified by using gcplyr’s local extrema finding function to find a local minimum in the
derivative curve, yielding an accurate identification of the time when the diauxic shift occurred (vertical
dashed line).

Characterizing bacterial growth in the presence of phages

Microbial growth curves can also be used to characterize interactions between bacteria and antagonists.
One frequent application of this is to quantify interactions with lytic phages (29—42), a use-case which
existing software has limited capacity to handle. In these curves, the phage densities cannot be directly
visualized, but changes in the bacterial density can be. The bacterial density tends to initially increase,
before peaking and declining due to phage lysis. Metrics like peak density, time until near-extinction,
and area under the curve can be used to, for example, compare the susceptibility of different bacterial
strains to a focal phage (33, 34, 37-39, 41). gcplyr can directly calculate all three metrics (Fig 5).
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Fig 5. Example of an experimental growth curve of bacteria in the presence of lytic phages. Peak
density and near-extinction time act as proxy measures for the bacterial strain’s sensitivity to the phage.
Peak density (red “X”) was identified by using gcplyr’s local extrema finding function to identify a local
maximum in the density data. Near-extinction time (vertical dashed line) was identified by finding the
first point the OD600 dropped below 0.1 using gcplyr’s threshold-detection function.

Dealing with noise in growth curve data

One frequent challenge with experimental growth curve data is the presence of noise. Noise can obscure
underlying traits of interest. gcplyr currently has two methods to deal with noise: 1) smoothing raw
density data, and 2) using fitting during derivative calculations.

In many cases, noise can be smoothed directly from the density data. gcplyr implements several well-
established smoothing algorithms (Fig 6A), including moving average, moving median, LOESS (43-46),
and GAM (47-50). Each of these algorithms is tunable by user-set parameters, and they can be applied
individually or in sequence.

In some cases, smoothing density data itself may not be necessary or sufficient. In particular, derivatives,
especially per-capita derivatives, are often sensitive to experimental noise. By default, gcplyr calculates
derivatives for each pair of subsequent points. However, to deal with noisy data, gcplyr can calculate
derivatives by fitting a linear regression with a rolling window of multiple points (Fig 6B). The rolling
regression approach has been implemented elsewhere, and can improve accuracy and reduce the effects
of noise on calculated derivatives (21).
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Fig 6. gcplyr methods for dealing with noisy data. Example data is an experimental bacterial growth
curve with added simulated noise. A. Example of growth curve with added noise demonstrating
smoothing algorithms. Noisy density data (points) was smoothed with each algorithm (red line) using
geplyr’s data smoothing function. Moving median and moving average were smoothed using windows of
5 data points (75 minutes), LOESS was used with a span of 0.2, and GAM was used with 20 knots. B.
Example of fitting during derivative calculation to reduce the effects of noise. The derivative of the data
points in A was calculated using gcplyr’s derivative calculation function with rolling windows of 2, 5, 9, or
13 data points (30, 75, 135, or 195 minutes).

Discussion

Modern technology has accelerated the generation of high-throughput microbial growth data,
necessitating new computational tools capable of handling and analyzing this data to produce insights.
Here | introduced gcplyr, a new R package built specifically to address this need. gcplyr can flexibly
import growth curve data in every format of which | am aware, combine data with experimental design
information, reshape data for analysis and use with other popular R packages, and compute a number of
growth curve metrics using model-free and non-parametric analyses.

gcplyr improves on existing computational tools by implementing improved data wrangling capabilities.
geplyr’s input format requirements are less restrictive and more flexible than existing tools, freeing users
from the need to reformat files manually. Moreover, gcplyr’s capacity for data reorganization goes well
beyond that of existing tools (Table S1). This data organization framework provides a number of benefits
over existing implementations:

1. It allows users to integrate as many pieces of experimental design information as desired.

2. It allows users to easily integrate their growth curve analyses with existing visualization and
statistics packages in R.

3. It allows users to merge growth curve data analyses with other sources of data.
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4. It allows users to leverage the general-use functions in gcplyr and other packages to generate
custom analyses to identify unique features in their data.

Additionally, gcplyr improves on existing computational tools by providing an expanded array of traits
that can be quantified using model-free and non-parametric approaches. Previous tools had fit
parametric mathematical models of microbial growth to observed data (2, 3, 5, 7, 9, 11-19), an approach
that requires validation of model assumptions and fails when data do not fit the chosen model. Instead,
gcplyr and some recent tools quantify traits directly from the data itself (2, 4, 6, 8, 10, 13-15, 17-24). In
comparison to most existing tools, gcplyr expands on the number of possible traits to be quantified and
facilitates analyses of a greater diversity of growth curve phenomena.

Growth curves are a widespread experimental approach in the microbial sciences. From bacterial
interactions with antimicrobials to investigating the effects of genetic manipulations in yeast, growth
curves are used to study microbial growth. However, until now, tools capable of wrangling and doing
model-free analysis of growth curve data were limited. By enabling these steps, gcplyr lubricates high-
quality model-free analysis for a wide range of applied and fundamental research on microbial growth.

Materials and Methods

Availability and dependencies of gcplyr

geplyr is written in the open-source R programming language (46), and is available for free to use. gcplyr
can be installed from the centralized CRAN repository (https://CRAN.R-project.org/package=gcplyr) with
the built-in install.packages function, or from GitHub (https://github.com/mikeblazanin/gcplyr).
Installation requirements will continue to adjust as active development on gcplyr continues, but are
always listed on the CRAN page. gcplyr has been written to minimize the number of external
dependencies, thus simplifying the installation.

Documentation

Extensive documentation for gcplyr is available online (https://mikeblazanin.github.io/gcplyr/) and in the
vignettes and user manual bundled with installations of gcplyr, including tutorials that walk through each
step of an analysis.

Inputs.

geplyr can import files in any tabular file format (e.g. .csv, .xls, .xlsx, .tsv). gcplyr can also import data and
design files regardless of whether they are block-shaped, wide-shaped, or tidy-shaped, which includes
every instrument output format | am aware of (Fig 2).

Data reshaping.

Once data is imported, gcplyr extends the functionality of dplyr (28) to transform block-shaped and
wide-shaped data and designs into tidy-shaped data and designs.

Incorporating experimental design information.
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geplyr can import experimental designs from user-created tabular files, or can generate designs within R.
Designs generated within R can include as many experimental design fields as desired, and can be output
to a spreadsheet file. Regardless of how designs are generated, they can then be merged with data.

Calculation of derivatives.

Growth curve metrics can be calculated in a model-free way by identifying features of the density data
and its derivatives. To facilitate this, gcplyr can calculate both plain and per-capita derivatives. Plain
derivatives are calculated simply as the slope of the density data over time. Per-capita derivatives can be
calculated as the plain derivative divided by the density, or as the slope of the log-transformed density
over time. By default, gcplyr uses each pair of subsequent points to calculate derivatives. However,
geplyr can also calculate derivatives by fitting a linear regression to all points within a window centered
at each data point, with user-set parameters determining the width of the window. The package
documentation discusses best practices for setting derivative parameters and calculating derivatives.

Smoothing data.

Model-free analyses can be sensitive to experimental noise in growth curve data. To smooth noise in raw
density data, gcplyr implements several well-established smoothing functions, including moving average,
moving median, loess (43—46), and GAM (47-50). Smoothing functions are tuned by user-set
smoothness parameters. The package documentation discusses best practices for setting smoothness
parameters and smoothing data.

Analysis functions.

A number of growth curve metrics can be quantified by identification of local extrema (Table 1). gcplyr
includes a function that can identify local extrema by iteratively searching a window centered at each
data point for the maximum and minimum data in the window until the algorithm converges. User-set
parameters determine the width and height of the window, tuning the sensitivity of the algorithm to
narrower and shallower peaks and valleys, respectively. The package documentation discusses best
practices for setting local extrema finding parameters and identifying local extrema.

Threshold-crossing events represent another important class of growth curve metrics. For example, the
near-extinction time of a bacterial population can be estimated as the time required for optical density
to drop below a threshold value (Table 1). To identify such events, gcplyr includes a general threshold-
crossing finding function that finds times when the data or derivative crosses the user-defined threshold
in the direction(s) specified by the user.

geplyr also includes some specialized analysis functions for specific metrics. Lag time is calculated using
an established approach (51, 52): finding the maximum per-capita growth rate, then projecting that rate
as a tangent line from the point of maximum growth until it intersects with the initial density on a log-
transformed y-axis (Fig 4). Area under the curve is simply calculated using the trapezoid rule to get an
exact definite integral.

Example microbial growth data

To generate experimental microbial growth curve data for examples, Pseudomonas fluorescens SBW25
(53) was grown at 28 °C in King’s B media: 10g/L LPO037 Oxoid Bacteriological Peptone, 15 g/L glycerol,
1.5 g/L potassium phosphate, and 0.6 g/L magnesium sulfate. Bacteria were inoculated in a total volume
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of 200 pL to an initial density of 10° cfu/mL, then grown shaking in a BioTek Epoch 2 microplate
spectrophotometer. For the phage-bacteria co-culture growth curve, phage Phi2 (54) was inoculated at
an initial MOl of 0.01.

For experimental microbial growth curve data demonstrating diauxic growth, | pulled growth curve data
of ancestral Pseudomonas fluorescens SBW25 from (55). To summarize their methods, 4 uL of an
overnight bacterial culture was added to a 96 well plate with 146 L of modified King’s B media: 2.5g/L
LP0O037 Oxoid Bacteriological Peptone, 3.75 g/L glycerol, 0.75 g/L potassium phosphate, and 0.3 g/L
magnesium sulfate. Bacteria were grown overnight at 29°C while shaking with the OD600 read every 15
minutes.

All data and code to generate the plots in this paper are available at
https://github.com/mikeblazanin/gcplyr/tree/master/manuscript.
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Table S1. Comparison of gcplyr with other available microbial growth curve analysis software and code.

Incorporate Parametric Non-parametric
Software Citation Available as Scriptable Imports Data reshaping designs Plotting fitting & analysis  Smoothing analysis
geplyr This R package Yes Block, wide, tidy Yes, into wide or Yes With No Yes Yes
paper tidy ggplot2
QurvE (2) GUl or R package  Yes Wide, specialized From specialized Yes Built-in Yes Yes Yes
formats formats into wide
growthcurver  (13) R package Yes Wide No No Built-in Yes No Minimally
growthrates (14) R package Yes Tidy No No With Yes Yes Minimally
ggplot2
opm (15) R package Yes Specialized formats Yes, into opm- Yes Built-in Yes (but defunct)  Yes Minimally
specific class
AUDIT (3) GUI, R-based No Tidy, specialized formats ~ From specialized Yes Built-in Yes Yes No
formats into tidy
growr (partof (3) R package Yes Tidy N/A N/A With Yes Yes No
AUDIT) ggplot2
mtpviewl (3) R package Yes Tidy N/A N/A Built-in N/A N/A N/A
(part of
AUDIT)
biogrowth (16) R package Yes Wide No No Built-in Yes No No
AMIGA (20) Python package Some Wide No Yes Built-in No Yes Yes
or command line
PMAnalyzer (17, 18) bash, R and No Wide No No Built-in Yes No Minimally
Python-based
GrowthRates (21) Command line No Wide, specialized Yes No No No No Yes
formats
bletl (19) Python package Yes Specialized formats Yes Yes Built-in Minimally Yes Yes
fitderiv (4) GUI or Python Some Wide No No Built-in No Yes Yes
package
phenom (22) Python code Yes Wide No Yes No No Yes Yes
B-GREAT (23) Python code Yes Wide No Yes No No Yes Yes
Hemmerichet (24) MATLAB code Yes One well at a time No No No No No Yes
al code
GCAT (5) GUI, R-based No Wide No Yes Built-in Yes No No
PRECOG (6) GUI No Wide No No Built-in No Yes Yes
IPMP 2013 (7) GUI, Python- No Wide No No Built-in Yes No No
based
GATHODE (8) GUI, Python- No Wide No Minimally Built-in No Yes Yes
based
Microrisk Lab (9) GUI, R-based No Wide No No Built-in Yes No No
YODA (10) Webpage via No Wide No No No No No Yes
server
BGFit (11) Webpage No Wide No No Built-in Yes No No
CarbolLogR (12) GUI, R-based No Specialized formats No Yes Built-in Yes No No
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