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30 Abstract

31

32 Despite large omics datasets, the establishment of a reliable gene annotation is still challenging for
33 eukaryotic genomes. Here, we used the reference genome of the major fungal wheat pathogen
34  Zymoseptoria tritici (isolate IPO323) as a case study to develop methods to improve eukaryotic gene
35  prediction. Four previous IPO323 annotations identified 10,933 to 13,260 gene models, but only one
36  third of these coding sequences (CDS) have identical structures. To resolve these discrepancies and
37  improve gene models, we generated full-length transcripts using long-read sequencing. This dataset
38  was used together with other evidence (RNA-Seq transcripts and protein sequences) to generate
39  novel ab initio gene models. The selection of the best structure among novel and existing gene
40 models was performed according to transcript and protein evidence using InGenAnnot, a novel
41  bioinformatics suite. Overall, 13,414 re-annotated gene models (RGMs) were predicted, including
42 671 new genes among which 53 encoded effector candidates. This process corrected many of the
43  errors (15%) observed in previous gene models (coding sequence fusions, false introns, missing
44  exons). While fungal genomes have poor annotations of untranslated regions (UTRs), our Iso-Seq
45  long-read sequences outlined 5 and 3'UTRs for 73% of the RGMs. Alternative transcripts were
46  identified for 13% of RGMs, mostly due to intron retention (75%), likely corresponding to
47  unprocessed pre-mRNAs. A total of 353 genes displayed alternative transcripts with combinations of
48  previously predicted or novel exons. Long non-coding transcripts (IncRNAs) and double-stranded
49 RNAs from two fungal viruses were also identified. Most IncRNAs corresponded to antisense
50  transcripts of genes (52%). IncRNAs that were up or down regulated during infection were enriched
51 in antisense transcripts (70%), suggesting their involvement in the control of gene expression. Our
52 results showed that combining different ab initio gene predictions and evidence-driven curation
53  using InGenAnnot improved the quality of gene annotations of a compact eukaryotic genome. Our
54  analysis also provided new insights into the transcriptional landscape of Z. tritici, helping develop an
55  increasingly complex picture of its biology.

56
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58 Introduction

59

60  Predicting genes in eukaryotic genomes is a challenging process [1], particularly for fungi with
61  compact genomes. The quality of a genome annotation depends on supporting evidence for coding
62  regions, splice junctions and on the algorithms used to derive patterns for predictions [2]. Several
63  drawbacks for gene annotation were identified in eukaryotic genomes such as the complexity of their
64  gene structure, with introns difficult to predict without experimental transcript evidence, as well as
65  the quality of genome assembly when fragmented in contigs. In fungi, genes are generally close to
66  each other, and frequent overlaps between adjacent transcripts have been observed [3]—[5]. In
67  addition, fungi have shorter introns (averaging 70-100 bp depending on the species, [6]) compared to
68  other eukaryotes. These particularities of fungal genomes require specific training of ab-initio
69  prediction software and development of fungal-specific pipelines [7]-[15]. Long-read sequencing is
70  now used to provide full genome assemblies, reducing drawbacks due to genome fragmentation into
71  contigs. Experimental transcript evidence has also been improved using transcripts assembled from
72 RNA-seq short reads, providing large transcript datasets for gene annotation/curation. Iso-Seq long-
73 read sequencing now provides full-length transcript sequences that bypass problems observed with
74  the assembly of RNA-Seq short reads such as chimeric transcripts covering adjacent genes [16]. Iso-
75  Seq also provides transcript isoforms allowing the identification of alternative start, stop and splicing
76  events. Nevertheless, RNA-Seq reads are still required to quantify the relative abundance of Iso-Seq
77  transcript isoforms, since Iso-Seq is not quantitative and could reveal rare transcripts likely resulting
78  from errors of the transcriptional machinery [17]. Combining these two types of transcript
79  sequencing is needed to avoid drawbacks from each technique [18]. Other omics methods such as
80  transcription start site sequencing (TSS-seq) or cap-analysis gene expression sequencing (CAGE-seq)
81  are now available for precise definition of transcript start sites, but these applications are still limited
82  to model organisms [19], [20].

83
84  We have chosen the reference genome of the major fungal wheat pathogen Zymoseptoria tritici
85  (isolate IPO323) as a case study to improve methods for eukaryotic gene prediction and curation. Z.

86 tritici is an ascomycete (class Dothideomycetes, [21]) that causes a major foliar disease of bread and
87  durum wheat (Septoria tritici blotch [22]). The first Z. tritici genome sequence was obtained in 2011
88  for the bread wheat-infecting European reference isolate IPO323 using Sanger sequencing [23]. This
89  complete genome sequence from telomere to telomere has a size of 39.7 megabases (Mb) and is
90 composed of 13 core chromosomes (CCs) and 8 accessory chromosomes (ACs). Chromosome-scale
91 genome assemblies of 22 additional Z. tritici isolates from different geographic origins were obtained
92 using long-read sequencing [24], [25], [26], as well as the genome sequences of four related species
93  of Zymoseptoria (Z. ardibilae, Z. brevis, Z. passerinii, Z. pseudotritici) [25]. A large proportion of the
94  |PO323 Z tritici genome is composed of transposable elements (TEs, 17% to 20%, [27][28]), while the
95  TE content of other isolates varied between 14% and 21.5% [24], [29], [30].
96
97  Currently, four annotations of the IPO323 Z. tritici genome are available. The first was generated by
98  the Joint Genome Institute in 2011 (JGI, [23]). The second annotation was performed at the Max
99 Planck Institute for Evolutionary Biology in 2015 (MPI, Germany, [28]). Two other annotations were
100 generated in 2015 at Rothamsted Research Experimental Station (RRES,[31]) and the Centre for Crop
101 & Disease Management of Curtin University. Large discrepancies were observed across annotations,
102  both in gene numbers (10,933 to 13,260) and gene structures (30% of coding sequences (CDS) with
103  identical structures). In addition, some genes that are important for the infection process of Z. tritici
104  were not predicted. For example, the effector-encoding gene Avr-Stb6 was located near the telomere
105 of chromosome 5 by quantitative trait locus (QTL) mapping and genome-wide association study
106  (GWAS), but it was not predicted in existing IPO323 annotations [32]. Indeed, it was identified by
107  translating all possible ORFs from the region, and its overall structure (start, stop, two introns) was
108  only predicted using infection-related RNA-seq data. Clearly, the complete coding potential of this
109 genome still has not been identified despite the four thorough annotations that have been
110  developed over the past dozen years.
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111

112 To address this problem, we established a novel strategy to annotate a compact eukaryotic genome
113 using Z tritici as a case study. For this process we generated a large set of full-length cDNA
114 sequences using PacBio Iso-Seq long reads [33], [34]. We also developed a novel suite of tools,
115 InGenAnnot, to compare genes models predicted by different ab initio software and to select the
116  best gene model according to transcript (RNA-Seq, Iso-Seq) and protein evidence. A novel set of
117 13,414 improved gene models was generated. Comparing this annotation to other annotations
118  revealed systematic errors in previous gene models. Full-length cDNA sequences were also used to
119  identify alternative transcripts and long, non-coding RNA (IncRNA), improving our understanding of
120  the transcriptional landscape of Z. tritici.

121

122
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123 Materials and Method

124

125  Available Z. tritici IPO323 gene annotations

126 Currently, four annotations of the Z. tritici IPO323 genome are available. The first , with 10,933 gene
127  models, was developed in 2011 by the Joint Genome Institute with ab initio tools FGENESH and
128  Genewise [8] using EST (expressed sequence tag) and proteome evidence (JGI, [23]). The second
129  annotation was performed in 2015 by the Max Planck Institute, resulting in 11,839 gene models
130  (MPI, Germany, [28]) identified with the Fungal Genome Annotation pipeline [35]. This pipeline uses
131 ab initio tools GeneMark-ES, GeneMark-HMM [13] and Augustus [12] combined by EVidenceModeler
132 [36] with RNA-Seq evidence and keeping as much as possible of the first annotation provided by JGI.
133 The third annotation was generated in 2015 by the Rothamsted Research Experimental Station (UK)
134  with 13,862 gene models (RRES, [31]) obtained with the ab initio tool MAKER-HMM [11] and RNA-
135 Seq evidence. The fourth annotation published in 2015 by the Centre for Crop & Disease
136  Management, Curtin University. (CURTIN, Australia) with 13,260 gene models, was obtained with ab
137  initio tool CodingQuarry [37] and RNA-Seq evidence. All gene files used in the annotations by JGI,
138  MPI, RRES and CURTIN have been made easily accessible (https://doi.org/10.57745/CVIRIB) and can
139 be displayed with a dedicated genome browser (https://bioinfo.bioger.inrae.fr/portal/genome-
140  portal/12) or on the new IPO323 genome web portal at JGI
141 (https://mycocosm.jgi.doe.gov/Zymtrl/Zymtrl.home.html).

142

143 Fungal Isolate, RNA extraction, PacBio Iso-Seq and lllumina RNA-Seq libraries

144  The reference isolate of Z. tritici IPO323 [23] was stored at -80°C as a yeast-like cell suspension (10’
145  cells/mL in 30% glycerol). Z. tritici was grown at 18°C in the dark on solid (Yeast extract Peptone
146  Dextrose (YPD) agar) or liquid (Potato Dextrose Broth (PDB)) media. For RNA production, Z. tritici
147  isolate 1PO323 (4-day-old yeast-like cells diluted to 10° cells/mL final) was cultivated in 75-mL
148  agitated liquid cultures (500 mL Erlen flasks, 150 rpm) at 18°C in the dark for 4 days. Different media
149  were used (Table S3) including Glucose-NOs synthetic medium defined as MM-Zt [38]. MM-Zt was
150 modified by replacing glucose (10 g/L) by different carbon sources (Xylose, Mannitol, Galactose,
151  Sucrose at 10 g/L)). Histone Deacetylase inhibitors such as trichostatin ((TSA, Sigma T8552, 1 uM
152 final) and SAHA (SAHA, Sigma SML0061, 1 mM final) were added to MM-Zt to express genes located
153  in genomic regions with repressive chromatin marks [39]. The composition of complex media (Yeast-
154  Peptone-Dextrose: YPD, Potato-Dextrose-Both: PDB, Glycerol-Nitrate: AE) was already described
155 [40]. Cultures of IPO323 in YPD and PDB were performed at 18°C and 25°C, while AE cultures were
156  performed only at 18°C. A total of 14 culture conditions was used for RNA production (Table S3). All
157  cultures for RNA-Seq were performed in triplicate. Cultures were centrifuged at 3000 rpm for 10
158  minutes and mycelium pellets were washed with water and frozen with liquid nitrogen. Frozen
159  mycelium was lyophilized and kept at -80°C until extraction. RNAs were extracted using the Qiagen
160  Plant RNeasy Kit according to the manufacturer's protocol (Ref. 74904, Qiagen France SAS,
161  Courtaboeuf, France). Preparation and sequencing of PacBio Iso-Seq libraries were performed by the
162 INRAE platform Gentyane (http://gentyane.clermont.inrae.fr). The SMARTer PCR cDNA Synthesis Kit
163  (ref 634926, Clontech, Mountain View, CA, USA) was used for polyA-primed first-strand cDNA
164  synthesis followed by optimized PCR amplification and library preparation using the SMRTbell
165 Template Prep Kit (ref 101-357-000, Pacific Bioscience, Menlo Park, CA, USA) according to
166  manufacturer protocols. The cDNA libraries were prepared without size selection and bar coded for
167 multiplexing. Sequencing was performed on a PacBio SEQUEL (version 1). lllumina RNA-seq single-
168  stranded libraries were prepared using the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB
169 #E7490, New England Biolabs, Ipswich, Massachusetts, USA) and the NEBNext Ultra Il Directional
170 RNA Library Prep Kit for lllumina (NEB #E7765, New England Biolabs, Ipswich, Massachusetts, USA).
171  Custom 8-bp barcodes were added to each library during the preparation process. Pooled samples
172 were cleaned with magnetic beads included in the library preparation kit. Each pool was run on a
173 lane of lllumina HiSegX (lllumina, San Diego, California, USA) using a 150-cycle paired-end run

174

175 Processing of RNA-seq sequences
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176  RNA-Seq data were cleaned and trimmed with Trimmomatic (v 0.36) [41]. The cleaned sequences
177  were then mapped to the Z.tritici IPO323 genome using STAR (v 2.5.1b, --alignintronMin 4 --
178  alignintronMax 5000 -- alignMatesGapMax 5000) [42]. Wig files of uniquely mapped reads were
179  converted to BigWig files with wigToBigWig (v4). StringTie (v2.1.1) [43] was then used to assemble
180 the mapped RNA-Seq reads into transcripts with different parameters depending on the depth of
181  sequencing of libraries and their type (-m 150 --rf --g 0 -f 0.1 -a 10 -j 2 or -j 4). The Trinity script
182  inchworm_transcript_splitter.pl (version 2.8.5) [44] was used to split the transcripts with non-
183  uniform coverage based on the Jaccard clip method. Clipped transcripts were extracted with home-
184  made scripts and clustered with Stringtie and associated bam files to obtain transcripts per million
185  (TPM) counts. All libraries were concatenated into one gff file without merge to avoid loss of
186  information by fusion of small transcripts into larger ones due to the large number of genes in the Z.
187  tritici genome with overlapping untranslated regions (UTRs).

188

189 Processing of Iso-Seq sequences

190 Iso-Seq raw data were processed with the Iso-Seq V3.2 pipeline from PacBio generating polished
191  Circular Consensus Sequences (CCS). CCS were then mapped to the Z tritici IPO323 genome with
192  Gmap (2019-01- 31) [45] and unmapped, low-mapping-quality (£0) or multi-mapped CCS were
193 filtered out. The CupCake package (v10.0.0, https://github.com/Magdoll/cDNA_Cupcake) filtered the
194  isoforms, removing the less-expressed and degraded transcripts using the following tools:
195  collapse_isoforms_by sam.py, get_abundance_post_collapse.py, filter_by_count.py,
196 filter_away_subset.py. Readthrough transcripts were removed using the previous annotations (MPI,
197  JGI, CURTIN, RRES) with BEDTools intersect [46] with an an overlap of 100% for full coding sequences
198  (CDS) (-F 1.0) and the same strand (-s)) of at least 2 CDS. Transcripts mapped on the mitochondrial
199 genome were filtered out as well. Subsequently, all libraries were processed with chain_samples.py
200 from CupCake and clustered for stringent selection. Splicing junctions obtained by STAR (SJ.out.tab
201  files) from lllumina RNA-Seq libraries were used to filter out isoform transcripts with unsupported
202  junctions. Finally, long-read transcripts fully spanning transposable elements were removed with
203  BEDTools, giving the final set of transcript evidence.

204

205  Gene prediction and selection of the best gene models

206 Two gene predictors, Eugene v1.6.1 [10], and LoReAn v2.0 [47], handling long-read transcript
207  sequences as evidence, were used to perform new annotations. Eugene was launched with the
208  provided fungal parameters (WAM fungi matrix) and trained with a dataset of proteins from four
209 genomes of species phylogenetically related to Z.  triticii Cercospora  beticola
210  (GCF_002742065.1_CB0940 V2); Ramullaria collo-cygni (GCF_900074925.1 version_1); Zasmidium
211  cellare (GCF_010093935.1_Zascel); and Sphaerulina musiva
212 (GCF_000320565.1 Septoria_musiva_S502202 v1.0). Gene structures were predicted with assembled
213  transcripts from RNA-Seq and a dataset of Dothideomycetes proteins obtained from Uniprot without
214  Zymoseptoria sequences to avoid inference with gene models to be improved. Filtered Iso-Seq
215  transcripts were used as strongly weighted evidence in model prediction with the parameter
216  “est priority=2".LoReAn was launched in fungus mode with the Augustus retraining mode using
217  the same Dothideomycetes Uniprot dataset without Zymoseptoria sequences and the same Iso-Seq
218  transcript dataset used for Eugene. RNA-Seq data were used as a merged mapping file (BAM) by the
219  pipeline to assemble transcripts and detect splicing sites. The new and previous gene datasets
220 cleaned for TEs with ingenannot filter were annotated for annotation edit distance (AED) [48] scores
221  using ingenannot aed with a fungal protein dataset without any Zymoseptoria species, selected Iso-
222  Seq and RNA-Seq transcripts. AED were computed on gene models only with “--
223  aed tr cds _only” to avoid bias between datasets with or without UTR annotations and with “- -
224  penalty overflow 0.25” to penalize gene models with splicing junctions that lacked support
225  evidence. The best gene models were selected with ingenannot select based on a AED of <0.3 for
226  transcript or an AED of <0.1 for protein evidence. Gene models failing the AED threshold, but
227  contained in clusters with at least 4 predictions from independent annotations were retained, but
228  partial gene models (no ATG nor stop codon) were removed. The high number of annotation sources
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229  (6) and selection of loci detected by 4 independent annotations, allow us to use stringent AED
230 thresholds, limiting selection of annotation-specific gene models to well supported structures.

231

232 Potential new gene effectors predicted with ingenannot rescue_effector, were added to the final set.
233 Transcripts not co-localizing with a selected gene model were tested in 3 frames to analyse the
234  predicted peptides with the same criteria used to detect small, secreted proteins (SSP) as described
235  below. UTRs were inferred in two passes with the ingenannot utr_refine. First, after deleting all
236 previously annotated UTRs and inferring new coordinates from a filtered set of Iso-Seq transcripts.
237  Second, by inferring UTRs with a filtered set of RNA-seq assembled transcripts, considering only
238  transcripts with no UTRs from the first step. Both sets were established with the ingenannot
239  isoform_ranking for filtering and ranking UTR isoforms based on RNA-Seq evidence.

240  Gene models from each annotation were compared using their AED scores with ingenannot
241  aged compare and specific/shared gene models were identified using ingenannot compare. BUSCO
242 [49] analyses with ascomycota_odb10 were performed to evaluate the completeness of datasets.
243

244  Functional annotation and prediction of secreted proteins

245 Functional annotations of genes obtained using Interproscan 5.0 [50] and Blastp [51] (e-value <1e-5)
246  against the NCBI nr databank were then used to perform Gene Ontology annotation [52] with
247 Blast2GO [53]. Secretomes and effectors were annotated as described in [54]. The secretome was
248 predicted by a combination of TMHMM (v.2.0) [55], SignalP (v4.1) [56] and TargetP (v1.1b) [57]
249  results with the following criteria: no more than one transmembrane domain and either a signal
250  peptide or an extracellular localization prediction. The SSP repertoire was predicted by applying a
251  size cut-off of 300 amino acids to the predicted secretome and keeping only proteins predicted as
252  effectors by EffectorP (v2.0).

253

254  Analysis of Iso-Seq transcript isoforms

255  The annotation of transcript isoforms was performed with sqanti3 [58] using Iso-Seq transcripts,
256  previously established to infer UTRs, filtered for UTR length isoforms and low expression levels (less
257  than 10% of total RNA-Seq reads), using the ingenannot isoform_ranking tool. RNA-Seq reads were
258  mapped to Iso-Seq transcripts with RSEM v1.3.3 [59] and Differential Isoform Usage (DIU) performed
259  with tappAS [60] with annotations obtained from sganti3.

260

261 Detection of antisense and IncRNA Iso-Seq transcripts

262 Iso-Seq transcripts annotated as antisense and intergenic with sganti3 were selected as Putative
263 long non-coding (Inc) RNAs. Then transcripts shorter than 1 Kb in length [61], overlapping with TEs
264  and containing an open reading frame (ORF) longer than 100 amino acids predicted with getorf by
265 EMBOSS [62] were discarded. The resulting “non-coding” transcripts were annotated with CPC2 [63],
266  and only transcripts without an ORF with a PFAM domain were kept as IncRNAs. featureCounts
267  (v1.5.1) [64] was used to count reads per transcript, followed by differential expression analysis by
268  edgeR [65] with the SARTools package (v1.6) [66].

269

270 Detection of polycistronic Iso-Seq transcripts

271  For detecting polycistronic mRNAs,, read-through Iso-Seq transcripts that were previously filtered
272  out were merged to obtain the global counts of genes that were potentially co-transcribed. To
273  establish a robust list of co-transcribed multi-gene loci, readthrough transcripts were filtered with
274  the gene reannotation dataset and their Iso-Seq transcripts used as evidence. Only polycistronic
275  mRNAs supported by independent long-read single transcripts for each gene were conserved and
276  considered as reliable. Detection of overlaps between transcripts and annotations was performed
277 with intersect using BEDTools [46].

278

279 Identification and annotation of mycoviruses

280  Iso-Seq transcripts not mapping to the Z tritici IPO323 reference genome were clustered with
281 blastclust. Similarities with known sequences were analysed by blastn search against the NCBI nr
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282  database. Reconstruction of the full-length sequences of viruses was performed by de-novo assembly
283  with SPAdes (v3.15.4) [67]. RNA-dependent RNA polymerase sequences from narnaviruses related to
284  Zt-NV1 were retrieved from NCBI and analyzed using Phylogeny.fr [68]. Alignment of protein
285  sequences was performed with Muscle 3.8.31 and curated by G-blocks. The phylogenetic analysis
286  was performed using PhyML 3.1 and the phylogenetic tree was drawn with TreeDyn 198.3.


https://doi.org/10.1101/2023.04.26.537486
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.26.537486; this version posted May 30, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

287  Results

288

289  Comparison of existing Z. tritici IPO323 genome annotations

290  The four Z tritici IP0323 genome annotations (MPI, JGI, RRES, and CURTIN), filtered out for TE-
291 encoding genes, were clustered into 13,225 metagenes corresponding to 26,224 distinct gene
292  models using only their CDS as reference. Metagenes of InGenAnnot are clusters of overlapping
293  genes transcribed from the same strand and corresponding to the “gene locus” defined in ParsEval
294  [69]. To compare the structure of gene models from different annotations, we defined three
295  categories: a) identical gene models (exactly the same CDS); b) dissimilar gene models (same
296  metagene but different CDS); and c) specific gene models (CDS found only by one annotation at a
297  given locus). Only 3,618 identical gene models were shared along the four annotations. When
298 omitting the JGI annotation, the number of identical gene models among the MPI, RRES, and CURTIN
299  annotations increased to 6,816 (Figure 1a). The highest numbers of identical gene models between
300 two annotations were observed for MPI-RRES (8,442), RRES-CURTIN (8,289), and MPI-Curtin (7,981),
301  while the lowest numbers of identical gene models were observed between JGI and the three other
302  annotations (4,495, 4,621 and 5,276 for JGI-Curtin, JGI-MPI and JGI-RRES respectively). The RRES and
303 CURTIN annotations displayed the highest numbers of specific gene models (593 and 436,
304  respectively), while the MPI annotation displayed the lowest number of specific gene models (12).
305 The JGI and CURTIN annotations displayed a higher number of dissimilar gene models (4,752 and
306 3,844, respectively) compared to the other annotations (2,367 and 1,871 for RRES and MPI,
307  respectively; Figure 1).

308

309 Despite the low numbers of identical gene models across annotations, basic genomic statistics were
310  similar (Table S1). Still, the number of mono-exonic gene models was higher (1.4 to 1.8 fold) in the
311 RRES and CURTIN annotations compared to those by the JGI and MPI. Most of these mono-exonic
312  gene models were only predicted ab initio (without transcript or protein evidence) and they were
313  often specific to a given annotation. The average size of gene models also differed between MPI and
314  the other annotations (1465 bp compared to 1300 bp). We suspected that this difference could result
315 from longer gene models corresponding to the fusion of two or more distinct adjacent gene models
316  that were predicted as single genes by other annotations. Indeed, 533 and 801 gene fusions were
317 detected in the MPI annotation, corresponding to at least two distinct adjacent gene models in the
318  RRES and CURTIN annotations, respectively.

319

320 The chromosomal localization of gene models was compared across the four annotations (Table S2).
321  TheJGI, MPI and CURTIN gene models exhibited a similar distribution across chromosomes, while the
322 RRES annotation displayed twice as many gene models on accessory chromosomes compared to
323 other annotations. Overall, the low number of identical gene models across annotations (27% of
324  metagenes) likely resulted from drawbacks of each annotation pipeline. For example, we identified
325  many gene fusions in the MPI and JGI annotations. We also detected annotation-specific mono-
326  exonic genes in the CURTIN and RRES annotations. These drawbacks resulted in the accumulation of
327  both wrong and specific gene models in each annotation.

328

329  To circumvent these problems, we generated a novel annotation of the IPO323 genome relying on
330 broad transcriptional evidence. This strategy required the construction of an expression dataset
331  using both publicly available single-stranded RNA-Seq datasets, including wheat leaf infection
332 kinetics, and newly generated datasets using both long-read sequencing (PacBio Iso-Seq: Iso-Seq) and
333  short-read sequencing (single-stranded Illumina RNA-Seq: RNA-Seq) (Table S3).

334

335  Iso-Seq based annotation of the IPO323 genome sequence and gene model selection

336  Z. tritici mRNAs used for this study corresponded to a wide array of in vitro mycelial growth
337  conditions (Table S3). These mRNAs were used for the construction of either single-stranded Iso-Seq
338  cDNA libraries or single-stranded lllumina cDNA libraries. The Iso-Seq sequences from each library
339  were processed individually (cleaning, assembly) and pooled into a single dataset. Non-redundant
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340  Iso-Seq transcripts were selected at each locus using the CupCake chaining tool, giving 22,659 Iso-Seq
341  transcripts. Some Iso-Seq transcripts corresponded to alternative transcripts differing in their intron
342  splicing or TSS/TTS (TSS: transcriptional starting site, TTS: transcriptional termination site). The
343 alternative Iso-Seq transcripts that were either not supported by RNA-Seq or with a relative
344  abundance lower than 10% according to RNA-Seq in all conditions, were filtered out. This filtering
345  kept isoforms differentially expressed in a least one condition with a relative abundance over 10%,
346  providing 21,052 transcripts corresponding to 8,927 loci. Most loci displayed only one isoform (50%),
347  while other loci had either 2 to 5 isoforms (42%), or at least 6 isoforms (8%).

348

349 Each single-stranded RNA-Seq library generated in the framework of this study and publicly available
350 datasets (Table S3) were assembled separately and transcripts with weak expression levels (TPM<1)
351  were removed. Between 8,600 and 13,000 filtered transcripts were obtained depending on the
352  library and kept as a separate dataset providing 498,010 single-stranded assembled RNA-Seq
353  transcripts as evidence. Most existing ab initio gene prediction tools use RNA-Seq assembled
354  transcripts as evidence to infer the structure of gene models. However, currently only a few gene
355 prediction tools (Eugene [10], LoReAn [47]) can use Iso-Seq transcripts as evidence. These two
356  softwares were used to annotate the IP0O323 genome sequence with Iso-Seq transcripts, RNA-Seq
357  transcripts and reference fungal protein sequences as evidence. Eugene identified 15,810 gene
358 models in the Z. tritici genome in a two-pass mode and strand-specific prediction allowing
359  overlapping gene models on opposite strands. This number was reduced to 15,245 gene models after
360 filtering out genes corresponding to TEs. LoReAn identified 11,537 gene models in the Z. tritici
361 genome without overlapping gene models on the opposite strand, which were reduced to 11,497
362 after filtering out genes corresponding to TEs. Selection of the best gene model was performed with
363 InGenAnnot using the novel Eugene and LoReAn gene predictions and the four existing ones (JGl,
364 MPI, RRES, CURTIN). All these gene models were clustered into 17,147 metagenes.

365

366  For each comparison InGenAnnot computes an Annotation Edit Distance (AED) [48] that is a distance
367  either between two gene models or between a gene model and an evidence. AED computing takes
368 into account the number of overlapping bases, as previously described [48]. Two additional options
369  were implemented in AED computation, such as a comparison limited to the CDS to avoid bias
370  between annotations without or with UTRs (provided only by Eugene), and a penalty score of 0.25 on
371  transcript AED scores in case of incongruence in splicing sites between transcript evidence and the
372  gene model. Since it is difficult to compare AED values derived from protein evidence to those from
373  transcript evidence, different AED scores were computed for each type of evidence. The gene models
374  with the best AED scores with either transcript or protein evidence, or both types of evidence, were
375  selected based on CDS comparisons. Gene models with an AED of 0.3 for transcript and/or an AED of
376 0.1 for protein evidence were selected (Figure 2). Gene models failing to pass the AED threshold, but
377  predicted by at least four independent annotations, were retained to avoid the loss of gene models
378 with low support from transcript or protein evidence (upper right square in Figure 2 corresponding to
379 1,846 gene models). These rescued genes models were mostly not conserved across fungi (upper
380  right red bar in Figure 2) and frequently had low transcriptional support (upper green bar in Figure 2).
381  For gene models overlapping on opposite strands, only the gene model with the best AED score was
382  selected. Finally, 97 additional effector-encoding genes were predicted with the rescue_effector tool
383  of InGenAnnot.

384

385  Overall, we obtained a final set of 13,414 re-annotated Gene Models (RGMs; File S1, Table S4). In
386 addition, UTRs were inferred from Iso-Seq transcripts for 7,713 genes, and for 9,856 genes (73%)
387  when combined with RNA-Seq assembled transcripts. The average and median sizes of 5’UTRs were
388 315 bp and 156 bp, while they were 389 bp and 220 bp for 3’UTRs (Table S4), close to the values
389  (mean 5'UTR 275 bp and mean 3’ UTR 303 bp) reported recently for the Pezizomycotina P. anserina
390  [70]. A small proportion of genes displayed long 5'UTRs (1 Kbp to 7 Kbp, 6%), and/or long 3'UTRs (1
391  Kbp to 8.6 kbp, 8.6%).

392
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393  Comparison of the reannotated IPO323 gene models with available genome annotations

394  The 13,414 IPO323 RGMs were compared to gene models predicted by the four previous annotations
395  (JGI, MPI, RRES, CURTIN). This comparison was first performed using BUSCO and the
396 ascomycota_odb as reference genes [49]. Higher BUSCO scores (99.4 % identical) were obtained with
397 RGMs compared to the JGI, MPI and CURTIN annotations (95.7-98.5% identical), while scores
398  obtained with RRES gene models were similar (99.1 % identical; Table S5). In particular, the JGI
399  annotation had a high number of fragmented and missing BUSCO genes compared to other
400  annotations, while the CURTIN annotation had a higher level of duplicated BUSCO genes compared
401  to other annotations (Table S5). The eight missing BUSCOs in RGMs were reduced to six after manual
402  inspection. These six RGMs that were missing in BUSCO encoded a Leucyl-tRNA synthetase, a WD40-
403 repeat-containing domain protein, a Zinc finger protein, a Heavy metal-associated domain protein, a
404  protein with an HMA domain, a PHD-type protein and a GTP binding domain protein. Their
405  conservation across fungi is questionable, since a blastp search showed that they are missing from
406 numerous genomes.

407

408  The comparison between annotations was then performed using AED scores (Figure 2, S1 and S2). Of
409 the 13,414 RGMs, 11,568 (86%) passed the AED threshold of 0.3 and 0.1 for transcript and protein
410 evidence, respectively (Figure 2). In comparison, these numbers decrease to 7,730, 8,936, 9,518 and
411 10,716 for the JGI, MPI, RRES and CURTIN annotations, respectively (Figure S1). This comparison
412  showed that RGMs had a higher level of evidence support, followed by the CURTIN annotation, while
413  JGI was the least-supported annotation. Among the 1,846 RGMs failing to pass the AED threshold,
414  but rescued as predicted by at least four annotations, 574 have no AED score. This implied that they
415  were only predicted by ab-initio software (see genes with no evidence in Table S6). 224 of these 574
416  fully ab-initio RGMs (40%) were located on the 3’ arm of chromosome 7 between positions 1,900,000
417  and 2,500,000 (Table S6). Almost none of these RGMs was expressed, even during infection. This
418  region was previously described as carrying a high level of histone H3K27me3 and H3K9me3
419  modifications mediating transcriptional silencing, similar to those found in accessory chromosomes
420 [71]. These marks could explain the lack of expression of genes from this region of chromosome 7. In
421  addition, none of these genes was conserved across fungi, suggesting either a recent origin or an
422  artefact from annotation pipelines. The other fully ab-initio RGMs were more frequently localized on
423  accessory chromosomes (32-53%) than on core chromosomes (12-16%, Table S6).

424

425  Among the 13,414 RGMs, 7,888 were identical to at least one gene model from another annotation
426  (Figure 3), while 3,479 RGMs were identical to all the gene models from the four previous
427  annotations (Figure 3). Since 3,618 gene models were identical among the four previous annotations
428  (see above), 139 of these genes were not identical to RGMs. Most of the corresponding 139 RGMs
429  had a novel start codon that did not change the coding phase of the first open reading frame, leading
430 to a shorter or longer version of the same protein compared to other annotations. However, these
431  novel start codons were not necessarily more supported by transcript evidence than those from
432 previous annotations. Ribosome profiling could help in solving this problem by identifying the real
433  start codon [72]. 2,047 RGMs either differed from all gene models of other annotations (1,376, Table
434  S6) or were not predicted by any other annotation (671, specific RGMs, Table S6). Most of the 1,376
435 RGMs differing from all other annotations had either alternative ATGs (see above) or intron splice
436  sites supported by transcript evidence. RGMs also included novel gene models resulting from
437  resolving the structure of incorrectly fused collinear gene models (see below).

438

439  The 671 specific RGMs were distributed evenly on all chromosomes (Table S6). 117 of these specific
440  RGMs displayed more than 40% similarity to proteins from other fungi, including 63 with more than
441 80% similarity. A tblastn search against the 31 existing Zymoseptoria spp. genome sequences was
442  performed. Most RGM specific genes were found in other Z. tritici strains (File S1), in particular in the
443  genome of strain ST99CH_1A5 (571 hits with a at least 75 % identity and 75% coverage), while only a
444  few hits were found in the most distant species Z. passerinii SP63 (22 hits). Overall, 654 of the 671
445 RGM specific genes (97%) matched at least one Zymoseptoria spp. sequence. These new genes were
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446  often located in regions with complex patterns of expression. A manual curation of these gene
447  models will be required to confirm their accuracy.

448

449 One major improvement of RGMs was in resolving the structure of genes that were incorrectly fused
450  in previous annotations (split RGMs). These genes were identified by detecting overlaps between
451  gene models from different annotations. This survey revealed a high number of RGMs resulting from
452  the splitting of fused genes from the MPI and JGI annotations (1,507 and 1,258, respectively, Table
453  S7), and to a lesser extent from the RRES annotation (701), while these genes were in low number in
454  the CURTIN annotation (176). The average AED score of split RGMs was better (median AED score:
455  0.17) than that of the fused gene models (median AED score: 0.34). In addition, most MPI fused
456  genes (87%) were not supported by transcript evidence, since their AED scores were higher than the
457  cutoff value (>0.3, Figure S3). On the reverse, most transcript AED scores of split RGMs (65 %) were
458  supported by transcript evidence, since their AED scores were lower than the cutoff value (0.3<,
459  Figure S3). Still, a significant number of split RGMs (494, 35%) had low support from both transcript
460  and protein evidence (upper right square in Figure S3). These split RGMs were rescued since they
461  were also identified in other annotations than MPI.

462

463  Overall, these results showed that the split RGMs were better supported by transcript and protein
464  evidence than the MPI fused genes. The transcript evidence of two randomly chosen MPI fused
465  genes and their corresponding split RGMs is shown in Figures S4 and S5. Both MPI fused genes had
466 no Iso-Seq transcript support, while Iso-Seq transcripts supported the corresponding split RGMs.
467  Assembled RNA-Seq transcripts supporting split RGMs were also observed for RGM-1 and RGM-2
468  from Figure S4. However, large assembled RNA-Seq transcripts were supporting the fused MPI gene
469  model from Figure 5. Still, some of these assembled transcripts included alternative introns that were
470  not supported quantitatively by RNA-seq. We hypothesise that these long, chimeric transcripts were
471  artefacts of the assembly of RNA-Seq reads from individual genes with overlapping transcripts. The
472 final proof supporting these split RGMs was obtained by identifying specific expression conditions (13
473  days post-inoculation, wheat infection, Figure S5) in which RGM-2 was strongly expressed, but not
474 RGM-1.

475

476  Functional annotation of the reannotated IPO323 gene models

477 Functional annotation of predicted proteins deduced from RGMs was performed using both Blast2Go
478 and InterProScan. 5,593 RGMs exhibited a GO term or an IPR and 2,838 were annotated with at least
479 one Enzyme Code (EC). As in previous annotations of IPO323 genome sequence [28], [73], several
480  tools were launched to identify genes encoding putative secreted proteins, including effectors (File
481  S1). We identified 1,895 genes corresponding to secreted proteins with less stringent criteria than
482  those used in a previous study that identified 970 secreted proteins using the JG| annotation [43]. All
483  these 970 genes were identified as RGMs. However, they increased to 1,046 mainly due to the
484  splitting of fused gene models from the JGI annotation. The RGM secretome included 234 small,
485  secreted proteins (SSP) according to EffectorP and additional criteria defined in the Materials and
486  Methods section. Among the 100 SSPs studied previously by Gohari et al. using the JGI annotation
487 [74], 93 were identified as encoded by RGMs. Still, many structural differences between these RGMs
488  and the JGI gene models were observed. The effector rescue software of InGeAnnot identified 53
489  SSPs among which 43 were not found in any previous annotations. Four of these 53 novel SSPs
490  displayed a significant upregulation during infection compared to in vitro culture conditions
491 (ZtIPO323 001210, ZtlPO323 072700, ZtIPO323 105940 and ZtIPO323 123970), suggesting a
492  possible role in infection. In addition, genes encoding effectors missing in previous annotations, such
493  as Avr-Stb6, were now predicted correctly. The new annotation also predicted two additional Avr-
494  Stb6 paralogs located on chromosome 10 (Figure S6a), while the original Avr-Stb6 is located at the
495  end of chromosome 5 (Figure S6b, [32]).

496

497 Identification of alternative transcripts using combined Iso-Seq and RNA-Seq evidence
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498  The initial set of 21,052 Iso-Seq transcripts used for gene reannotation was filtered to exclude UTR
499  length isoforms, yielding 11,690 Iso-Seq transcripts corresponding to coding and non-coding loci.
500 Sqanti3 allocated 10,938 Iso-Seq transcripts to 8,199 RGMs (Table 1). 7,872 of these RGMs had the
501 same structure as their matching Iso-seq transcripts (full_splice_match). The other 327 RGMs,
502  classified as “ISM” or “genic” by Sganti3 displayed a structure differing from their matching Iso-seq
503 transcripts. These gene models were supported either by other evidences (RNA-Seq, protein) or
504  rescued (ab initio only). In most cases, these Iso-Seq transcripts were only partly covering the RGMs,
505  suggesting that they were partial cDNAs likely due to the early termination of reverse transcription.
506 2,716 Iso-Seq transcripts were identified as alternative splice variants (25 % of coding transcripts).
507 They were classified by Squanti3 into the following events: combination of known splicing sites (NIC);
508 new splicing sites (NNC); intron retention (IR); and genic (Table 1). Most alternative transcripts
509 corresponded to intron retention events (IR, 75%). Since transcripts could carry a premature
510 termination codon (PTC) recognized by the non-sense mediated decay (NMD) pathway, they were
511  screened for potential NMD signals [75], leaving 2,372 alternative transcripts corresponding to 1,742
512 RGMs. The numbers of RGMs with 2, 3, 4 and at least 5 isoforms were 1,342, 274, 77 and 49,
513  respectively (Table S8). A total of 337 alternative transcripts corresponded to a novel assembly of
514  coding exons, 271 to a novel assembly of UTR exons, and 16 to a novel assembly of both (included in
515 NIC, NNC and Genic events, Table 1). For example, RGM ZtIPO323 030030, predicted to encode a
516 putative SSP in a previous study (SSP10, [76]), had an alternative splicing site providing a new exon
517  and a shorter protein that was reduced by 34% in length at its C-terminus (Figure 4a). The 1,753
518 remaining isoforms with intron-retention events could correspond to un-spliced transcripts not
519  detected by our NMD screen. Some alternative transcripts were detected in high amounts by RNA-
520  Seq, as observed for RGM ZtIPO323_013330 (Figure 4b) with two intron-retention events. This RGM
521  has 4 transcript isoforms. The canonical transcript (Iso-Seq 2), corresponding to the structure of the
522 selected RGM, had 4 splicing sites, one being located in the 5 UTR. Two alternative Iso-Seq
523  transcripts (Iso-Seq 1 and 2) with one or two intron-retention events were also supported by RNA-
524  Seq. The last Iso-Seq transcript (n°4) had an alternative splicing of the fourth intron that was not
525  supported by RNA-Seq data. Some alternative transcript isoforms were used as a major evidence for
526  selecting the RGM as shown for ZtIPO323_ 030030 (Figure 4a) or ZtIPO323_ 013090 (Figure S7). These
527  examples illustrated the difficulty for gene predictors to choose between gene models with complex
528 alternative splicing events or co-existing isoforms with similar expression levels (Figure 4a).

529

530 Differential expression of Iso-Seq transcript isoforms

531 RNA-Seq data were used to detect differential isoform usage (DIU) for coding genes. RGMs with
532  significant DIU between different in vitro culture conditions or between infection and in vitro culture
533 conditions were identified using tappAS [29] with a minimal p-value of 0.01. Only 22 RGMs had a DIU
534 between different culture conditions, in particular between Galactose/Sucrose and Mannose/Xylose
535  growth media (File S1). Ten of them were associated with GO terms (GTPase activity, ATP and GTP
536  binding). A total of 163 RGMs displayed a DIU between at least one infection time point and one
537  culture condition, and 88 (54%) encoded proteins with GO terms (File S1), including 23 secreted
538  proteins. The number of these genes was too small to perform a GO enrichment test. 30 of these 163
539 RGMs were specifically up or down regulated during infection compared to all culture conditions
540  including ZtIPO323 042160 and ZtIPO323 042360, encoding proteins without known function, and
541  ZtIPO323_043800, encoding a PHD and RING finger domains-containing protein. Two of these 30 DIU
542  genes (ZtIPO323_ 016670 and ZtIPO323_043500) encoded secreted proteins that were significantly
543  upregulated at late infection stages (13, 21 dpi). ZtIPO323_ 016670 encoded a carbohydrate esterase
544  from family 8 involved in cell wall modifications and ZtIPO323 043500 encoded a SSP. Manual
545  inspection of the RNA-Seq data associated with these DIU RGMs confirmed their differential
546  expression, but not a different usage of isoforms. Indeed, the isoforms detected during infection
547  corresponded to a low number of reads compared to in vitro culture conditions. This could lead to a
548  biasin DIU analyses.

549

550 Identification of long non-coding RNAs and survey of their expression
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551  Sqanti3 allocated 752 Iso-Seq transcripts to non-coding loci (Table 1). Among these transcripts, we
552  identified 395 antisense and 357 intergenic non-coding transcripts. These 752 Iso-seq transcripts
553  were analyzed for the presence of long non-coding RNAs (IncRNAs). Most previous analyses of fungal
554  IncRNAs were performed using RNA-Seq data with a 200 bp minimal size cutoff. A single study of
555  fungal IncRNAs was performed using Iso-seq in F. graminearum [77]. This study showed that IncRNAs
556  were generally larger in size than 1 kb. Therefore, we chose a cutoff value of 1 kb in length for
557  selecting candidate IncRNAs. Z. tritici 1so-seq transcripts overlapping with TEs, smaller than 1 kb in
558 length and containing an ORF longer than 300 bp (100 amino acids) were discarded. Changing the 1-
559 kb length threshold to 200 bp only removed 72 IncRNAs. This selection left 398 candidate IncRNAs
560 (288 antisense and 110 intergenic). As previously observed [77], intergenic IncRNAs are generally
561  smaller than antisense IncRNAs, explaining the strong impact of size selection on this category.
562 Filtering ORFs longer than 300 bp removed 343 IncRNAs, representing a large proportion of the 398
563  candidate IncRNAs (86%). We decided to keep this stringent criterion to select only reliable IncRNAs.
564  This criterion avoided selecting IncRNAs encoding coding genes not retained by InGenAnnot. For
565  example, the Iso-Seq PB.5809.X located on chromosome 7 (position 688635 to 690776 bp), for which
566  Eugene predicted a gene model not retained as an RGM, was removed from candidate IncRNAs using
567  this criterion. This process selected 55 IncRNAs, among which 3 were labelled as “coding” based on
568  their coding potential and 1 contained an ORF with a pfam domain. Finally, 51 transcripts were
569  classified as IncRNAs according to our stringent criteria and 35 of these IncRNAs (68%) were
570  differentially expressed in at least one pairwise comparison (p-value 0.05). Half of these IncRNAs
571  were differentially expressed between infection and in vitro growth conditions, including 5 that were
572 up-regulated and 12 down-regulated during infection (log2FC > 2). Most IncRNAs that were down-
573 regulated during infection were antisense transcripts (83%). The IncRNA PB1188.1 was down-
574  regulated during infection compared to all culture conditions (Table S9). This IncRNA was an
575 antisense transcript of ZtIPO323_016330, encoding a secreted Subtilisin-like protein, that was up
576  regulated during infection but down regulated during in vitro culture conditions. Another RGM
577  (ZtIPO323_037670) encoding a TTL protein (Tubulin tyrosine ligase involved in the posttranslational
578  modification of tubulin) and its antisense IncRNA PB.2709.1 displayed a negative correlation with
579  their expression pattern during infection (Table S9). In this case, the antisense IncRNA PB.2709.1 was
580  up regulated during infection, while the corresponding coding gene ZtIPO323 037670 was down
581  regulated.

582

583  Iso-Seq transcripts revealed polycistronic mRNAs

584  Alignment of Iso-Seq transcripts with RGMs identified 2,625 potential polycistronic transcripts.
585  Among them, 224 corresponded to polycistronic transcripts containing two to three RGMs on the
586  same strand supported by independent long-read single-transcript molecules. For example, adjacent
587 RGMs ZtIPO323_ 010430 and ZtIPO323 010440 were transcribed on the same strand with
588  overlapping 3'UTR and 5'UTR (Figure 5, red rectangle). Iso-Seq polycistronic single-transcript
589  molecules covering the two RGMs were detected, as well as single RGM Iso-Seq transcripts (Figure 5,
590 Iso-Seq track and Iso-Seq polycistronic track). Assembled RNA-Seq reads at this locus mostly
591  predicted a transcript covering the two RGMs (Figure 5, RNA-Seq transcripts tracks). This long
592  transcript likely resulted from the wrong assembly of reads from overlapping transcripts. Indeed,
593 RNA-Seq coverage strongly decreased in the region of the overlap between the two RGMs,
594  suggesting two independent transcripts (Figure 5, RNA-seq coverage track). This RNA-seq coverage
595  analysis also suggested that the abundance of the polycistronic transcript was low compared to
596  single-gene transcripts. Multiple stop codons were present in these polycistronic transcripts,
597  excluding the possibility of errors in annotated genes for a larger single ORF, as observed for
598  polycistronic transcripts described in Agaricomycetes [78], and F. graminearum [77] or Cordyceps
599 militaris [79].

600

601 Iso-Seq transcripts encoding fungal mycoviruses

602 A total of 2,203 Iso-Seq transcripts did not map to the Z. tritici IPO323 genome and were discarded
603  for annotation. These transcripts were clustered and analysed for their similarity with known
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604  sequences. The larger cluster of independent Iso-Seq transcripts (1919 sequences) was identical to
605  Fusarivirus 1 (ZtFV1), already identified by a large-scale fungal transcript analysis [80]. The second
606  cluster gathered 17 independent Iso-Seq transcripts that were closely related to narnavirus 4 of
607  Sclerotinia sclerotiorum (SsNV4) [81]. As these viral Iso-Seq transcripts were probably obtained by
608 internal polyA priming, they did not cover the full sequence of the viruses. To rescue the full-length
609 viral RNA, de novo-assembly was performed using RNA-Seq data mapping to the viral Iso-Seq
610  consensus sequences. RNA-Seq reads corresponding to these two fungal viruses were detected in all
611  our cDNA libraries. These analyses showed that the ZtFV1 Iso-seq transcript was a full-length viral
612  sequence. However, the second viral I1so-Seq transcript related to SsNV4 was shorter than the viral
613  RNA assembled from RNA-Seq reads. This allowed the reconstruction of a full sequence of 3091
614  nucleotides encoding a protein of 986 amino acids corresponding to a RNA-dependent RNA
615  polymerase. This new virus, ZtNV1 (Zymoseptoria tritici NarnaVirus 1), is as long as SsNV4 (3105bp).
616  ZtNV1 displayed 71% identity at the nucleotide level and 67% identity (79% similarity) at the protein
617  level with SsNV4. The phylogenetic tree of viral RNA-dependent RNA polymerases showed that the
618 ZtNV1 was highly related to narnaviruses from S. sclerotiorum, Plasmopara viticola, and Fusarium
619  asiaticum (Figure S8). IPO323 ZtNV1 sequence was used to screen publicly available Z. tritici RNA-seq
620  datasets. ZtNV1 was identified in all these datasets, but only with very few reads, validating the
621  ubiquitous presence of the virus in Z. tritici. ZtFV1 was also detected in these RNA-seq data in higher
622  amounts compared to ZtNV1 (70,000 fold).
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623  Discussion

624

625  Improvement of the Z. tritici IPO323 gene models

626  We developed a new strategy to generate high-quality genome annotations using the fungus Z. tritici
627 as a case study. The major requirement for improving the Z. tritici IPO323 genome annotation was
628  the production of a set of full-length transcript sequences. Gene annotation strongly relies on
629  transcriptomic data to support the structure of a predicted gene and define its boundaries. The
630 assembly of RNA-Seq short reads frequently leads to artefacts such as chimeras corresponding to
631  adjacent genes with overlapping transcripts [16], especially in genomes with a high gene density [37].
632 Iso-Seq long-read by-pass these artefacts, as it produces sequences from single cDNA molecules
633  without assembly. Iso-Seq also provides transcript isoforms corresponding to alternative start, stop
634  and splicing events. Still, Iso-seq has potential pitfalls since this technic is not quantitative. Indeed,
635  we identified rare Iso-seq transcripts likely corresponding to errors of the transcriptional machinery
636 (intron retention, polycistronic transcripts). We minimized this error by filtering out low-abundance
637 Iso-Seq transcripts based on their quantification using short-read RNA-seq. Overall, filtered Iso-seq
638  transcripts were highly reliable in determining the genome-aligned exon structure of transcripts,
639  while RNA-Seq offered a quantification of Iso-Seq transcript structures and isoforms.

640

641  The newly established transcriptomic dataset was used to select the best gene models among those
642  predicted by different ab initio software according to their AED transcript scores (transcript
643  evidence), using InGenAnnot. Protein evidence also helped select the best gene model for genes not
644  expressed under the conditions used for producing mRNAs. The combination of six ab initio software
645  was needed at two levels. First, a diversity of software was needed to produce a sufficient number of
646  gene models at each locus to be selected by InGenAnnot. Indeed, none of the ab initio software was
647 able to independently predict all the RGMs (Table S10). The best ab initio software, Eugene, only
648  predicted correctly 76% of the RGMs. Second, the use of different ab initio software allowed the
649  rescue of gene models without evidence (1,846 RGMs predicted by at least 4 different ab initio
650  software). Most rescued RGMs were not conserved across fungi and they had a low transcriptional
651  support or they were not expressed under the available conditions (upper green bar in Figure 2).
652  They typically included candidate fungal effectors that could be important for plant-fungal
653 interactions (File 1). Yet, these rescued RGMs may be artefacts of ab initio software, and they need
654  to be validated manually.

655

656  Overall, our strategy significantly improved the annotation of the Z. tritici IPO323 genome, and
657  missing genes encoding effectors such as Avr-Stb6 were now predicted correctly. In addition, it
658 revealed different bias in previous annotations. Among the 13,414 RGMs, 2,047 were either different
659  from all previous gene models (1,376, Table S6) or not predicted in previous annotations (671 RGM-
660  specific, Table S6). We are confident that changing/adding these RGMs is an improvement in the
661  prediction as both transcripts and protein evidence supported these changes. The most frequent
662 discrepancy was the occurrence of fused genes in previous annotations that were split into distinct
663 RGMs. Most of these fused genes corresponded to RGMs with overlapping transcripts (Figures S4,
664  S5). Indeed, the assembly of RNA-Seq reads corresponding to such transcripts could have generated
665  chimeric transcripts, providing erroneous evidence to the software used in these annotations.
666  Changes in parameters used for RNA-Seq read assembly could reduce the number of chimeric
667  transcripts. However, Iso-Seq long-read sequencing clearly avoided this artefact and its use as
668  transcript evidence likely explains the observed improvement in the RGMs. To our knowledge, only
669  two previous studies improved fungal gene prediction using Iso-Seq transcript long-read sequences
670 (C. militaris, [79]; F. graminearum, [77]). We further improved the method used in these papers by
671 filtering Iso-Seq transcripts according to their abundance, and by creating a method to select the best
672  gene model according to different ab initio annotations and evidence.

673

674  Iso-Seq long reads reveals the complexity of transcripts in Z.tritici
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675 Identifying transcript isoforms is a major challenge when relying on the assembly of short RNA-seq
676  reads, as alternative splicing sites could not be easily distinguished. Here, we took advantage of the
677  full-length cDNAs produced by Iso-Seq long-read sequencing to identify novel exon combinations.
678 Indeed, the assembly of RNA-Seq reads could be misleading for transcripts with more than one.
679 However, Iso-Seq sequencing is not a quantitative method and minor transcripts were sequenced.
680  For example, Iso-Seq transcript isoforms with long UTRs or IR without strong support from RNA-Seq
681  data were identified in our initial dataset (Figure 4, Figure 5, Figure S5). These low-abundance
682  transcript isoforms could be produced by the transcriptional machinery either as by-products or to
683  regulate gene expression. As observed for gene annotation (see before), the best strategy is to filter
684  Iso-Seq sequences with RNA-Seq data to withdraw transcript isoforms with weak quantitative
685  support, with the caveat that some transcripts might be excluded. As observed in other fungal
686  genomes ([77], [82], and references quoted within), most alternative splicing events were intron
687  retention (IR). Indeed, we identified 58% of alternative transcripts with IR after NMD filtering (Table
688 1). IR events could generate premature termination codons (PTCs) likely degraded by the NMD
689  pathway. However, NMD signals are difficult to predict with current bioinformatics tools in
690 filamentous fungi. DIU analysis revealed a few RGMs with differential expressed transcript isoforms
691  during infection compared to in vitro growth conditions. As discussed before, the small amounts of
692 RNA-Seq reads available in these conditions makes such comparisons difficult using the available
693 statistical tools. In fact, manual inspection of several detected loci did not reveal clear patterns of
694 DIU for alternative transcripts.

695

696  Additionally, dense genomes, such as Z.tritici genome, are suitable for polycistronic transcription, i.e.
697  the production of mRNA that encode several proteins. Indeed, we identified polycistronic mRNAs in
698  Z tritic among Iso-Seq long-read transcripts, as already observed in Agaromycotina [78] and F.
699  graminearum [77] or C. militaris [79] using Iso-Seq. However, polycistronic-specific RNA-Seq reads
700  were always detected in low abundance compared to single-gene transcripts. These RNA-seq data
701  also showed that polycistronic transcripts mostly corresponded to genes with transcripts overlapping
702  those from adjacent genes. As Iso-Seq is sensitive enough to detect rare transcripts, it is possible that
703  these polycistronic transcripts are rare read-through transcripts. This hypothesis is supported by the
704  fact that in vitro culture conditions of yeast known to be associated with increased transcriptional
705  read-through led to more polycistronic transcripts [83]. Alternatively, these polycistronic transcripts
706  could be an additional level of transcriptional control.

707

708 IncRNAs are differentially expressed during wheat infection

709 LncRNAs are important components of transcriptional and translational regulation [84]. They can act
710 in cis or trans of target genes, and modulate their expression by different mechanisms, leading to
711  either the up-regulation or down-regulation of target genes [84]. Most of studies on fungal IncRNAs
712 used assembled RNA-Seq reads [85]. This approach could lead to assembly artefacts. Iso-Seq long
713 reads bypass this problem as entire cDNA molecules were independently sequenced. This process
714  facilitated the identification of full length, non-chimeric IncRNAs. Using stringent criteria (size > 1000
715 bp, no ORF > 100 aa, no overlap with TEs), we identified 51 IncRNAs in Z. tritici. This number is far
716 lower than those identified in other fungi (939 in N. crassa [86], 352 in Verticillium dahliae [87], and
717  427-819 in F. graminearum [77]). This difference could be due to the stringent criteria used for this
718  study. In fact, when using similar criteria to previous studies, such as keeping all ORFs with no coding
719  potential independently of their size, we identified 398 IncRNAs. In addition, many IncRNAs identified
720 in these fungi were detected in specific conditions corresponding to stress [86], [88], and sexual
721  development which we did not sample [77].

722

723 We investigated the role of IncRNAs in the wheat leaf infection by Z.tritici, and identified that 17 of
724  the 51 IncRNAs were differentially expressed during plant infection, mostly as antisense transcripts
725 (Table S9). Among them, two displayed expression patterns opposed to their corresponding coding
726  genes. The IncRNA PB1188.1 was down-regulated during infection compared to in vitro culture
727 conditions. This IncRNA is an antisense transcript of ZtIP0O323_016330 encoding a secreted Subtilisin-
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728 like protein, that is up-regulated during infection. Subtilisin-like proteins are known to be secreted
729  proteases playing an important role in plant infection [89], [90] and in plant—pathogen interactions
730  [91], [92]. This negative correlation suggested that the down regulation of IncRNA PB1188.1 during
731  infection allowed the full expression of ZtIPO323 016330 in infected leaves. The second IncRNA
732 (IncRNA PB.2709.1) was up-regulated during infection compared to in vitro culture conditions (Table
733 S8), while its corresponding transcript (ZtIPO323_037670) was down-regulated during infection. This
734  transcript encodes a tubulin tyrosin ligase (TTL), a protein involved in the post-translational
735  modification of tubulin. Thus, reduced expression of a TTL protein could alter tubulin turnover during
736  infectious growth. The negative correlation observed between the gene expression and the
737  expression of the corresponding antisense IncRNA suggests that antisense IncRNAs could be involved
738 in the control of fungal gene expression during infection. Our observation hints at the existence of
739  co-regulation networks between coding and non-coding transcripts in Z. tritici and suggest that this
740  mode of regulation could be important during infection, as already observed during the infection of
741  rice leaves by M. oryzae, [93]. These examples stress the importance of including IncRNAs in future
742  studies to gather a comprehensive picture of the expression regulation landscape in Z.tritici.

743

744  RNA mycoviruses are widespread in Z.tritici

745 In addition to the genes belonging to the Ztritici genome, we revealed the presence of two RNA
746 mycoviruses in IPO323. The first one Fusarivirus 1 (Zt-FV1) had been previously identified in Z. tritici
747 by the screening of unmapped fungal RNA-seq reads [80]. We also identified a novel mycovirus, Zt-
748 NV1 (Figure S8), related to the narnavirus 4 of Sclerotinia sclerotiorum (SsNV4) [81]. Using the Isoseq
749  Zt-FV1 and Zt-NV1 sequences as templates, we retrieved RNA-seq reads corresponding to these
750 mycoviruses in all of the IPO323 RNA-seq conditions tested, as well as from publicly available Z. tritici
751  RNA-seq data, showing that these mycoviruses are widespread in Z tritici. Zt-FV1 was the most
752  abundant mycovirus, while Zt-NV1 was only detected as very few reads compared to Zt-FV1
753  (1/70,000), suggesting that it is a minor virus. Mycovirus are known to induce strong phenotypic
754  defects in other fungi, so additional studies are needed to evaluate the role of these widespread
755  mycoviruses in the life cycle of Z. tritici, in particular its growth, sporulation and pathogenicity [94].
756

757  InGenAnot a novel tool for improving gene structure prediction

758 Many tools [8], [10]-[13], [95] and protocols [96] were established to predict gene models in
759 eukaryotic genomes. Some were dedicated to fungal genome annotation [15], [35], [37] and were
760  incorporated in bioinformatics workflows [14]. Evaluation of the reliability of an annotation is not an
761  easy task. One of the most frequently used tools is the BUSCO software for identification of
762  conserved proteins to evaluate the completeness and fragmentation of the predicted genes at the
763 protein level [49]. More recently, new datasets and methods were proposed to test the reliability of
764  gene annotations, looking deeper into the prediction of intron and exon structures [7]. However, this
765  evaluation was still based on selected datasets, representing a conserved and partial view of gene
766  content of a genome. In the case of a genome reannotation, ParsEval could give clues on overlaps of
767 different versions of annotations with sensitivity and specificity metrics [69]. The most descriptive
768  tool to evaluate the reliability of an annotation with associated evidence is GAEVAL (available
769  through AEGeAn [97]), which computes an integrity score weighted by such features as confirmed
770 introns, annotation coverage and UTR identifications.

771

772 In our new software, we implemented the AED metrics [48], to evaluate the ability of a gene
773  structure to match with transcript evidence or other gene sets. We improved on previous
774  implementation of the AED[11] by computing the AED metrics for each type of evidence (transcript
775  and protein) and using a distinct score for Iso-Seq transcripts when available. Moreover, we allow
776 penalized scores in case of discrepancy between the predicted structure and evidence, for example,
777  when predicted splice sites were not supported. This evidence-driven annotation strategy required
778  an in-depth analysis of data provided as evidence to eliminate potential artefacts. As each tool
779  implements specific ML models, with different specificity/sensibility for each data source, their
780  implementation and training parameters are more or less tolerant to particularities such as short CDS
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781  length or non-canonical splicing site. The combination of different gene prediction software with
782  distinct intrinsic characteristics, could be a good way to avoid drawbacks from each software, in
783  particular when ab-initio gene predictors fail to find a consensus gene model. In the same way as
784 EvidenceModeler [36] or TSERBA [98], InGenAnnot is able to select the best gene model based on
785  AED scores with defined evidence thresholds. We used additional criteria to select the best gene
786  model when evidence was lacking (gene model predicted by all or a minimal number of software).
787  Since each gene model had AED metrics, it could be compared to other gene sets, allowing post-
788 filtering or prioritization in the manual curation process.

789

790  Conclusion

791  Inthe era of the massive sequencing of compact fungal genomes, inferring gene models by evidence
792  is essential and complementary to ab-initio gene prediction methods. In this paper, we used the
793  recent Iso-seq technology and developed a novel software, InGenAnnot, to drastically improve the
794  gene annotation of Z tritici, an important fungal plant pathogen. We additionally identify IncRNA and
795  mycoviruses as being expressed during plant infection. We expect that both the improved
796  sequencing technology and our new software will be used widely to improve the gene prediction of
797  many species of importance, in particular in plant pathogens with dense genomes, and reveal new
798  insightsinto the role of transcriptome complexity in plant-pathogen interactions.

799

800
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Availability of data and materials availability

All raw sequencing data generated in this study have been submitted to the NCBI Gene Expression
Omnibus (GEO) under accession GSE218898 with data accessions: GSM6758342 to GSM6758379.
Processed data files of assembled RNA-Seq transcripts and filtered Iso-Seq reads were associated to
the submission. Sequence of the new mycovirus ZtNV1 was deposited to NCBI under accession
0P903463. Previous Z. tritici IP0323 gene annotations, new annotations (RGMs, Isoforms, LncRNAs)
and annotation file, denoted file S1 (z.tritici.IP0323.annotations.txt ), are available at:
https://doi.org/10.57745/CVIRIB.

A genome browser with all annotations and evidence was set up at:
https://bioinfo.bioger.inrae.fr/portal/genome-portal/12/

A new IPO323 genome web site at (https://mycocosm.jgi.doe.gov/Zymtrl/Zymtrl.home.html) was
released with new genome annotations.

The InGenAnnot code and project is available at: https://forgemia.inra.fr/bioger/ingenannot
Licensed under GNU GPL  v3. InGenAnnot  documentation is available at
https://bioger.pages.mia.inra.fr/ingenannot
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Figure 1. Comparison of Zymoseptoria tritici reference isolate IPO323 genome annotations. a} Upset
plot of the gene models from the four annotations of IPO323 (JGI, MPI, RRES and CURTIN). Number
of gene models with identical coding sequences (CDS). b) Comparison of IPO323 gene annotations.
Number of CDS in each annotation. Identical CDS: identical CDS at a given locus. Unique Dissimilar
CDS: at a given locus, a CDS is predicted by at least one other annotation, but they differ in their
structure. Unique Specific CDS: at a given locus, a single CDS is predicted by a single annotation.
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Figure 2. Selection of the best Re-annotated Gene Models (RGMs) according to their Annotation Edit
Distance (AED) scores.

Plot of RGM AED scores. AED scores (0-1) describe how a given gene model fits to transcript and
protein evidence (best fit = 0). Transcript evidence was computed from RNA-Seq or Iso-Seq data (X
axis). Protein evidence was computed from fungal protein sequences excluding Zymoseptoria species
(Y axis). The red, dashed lines represent the AED thresholds to filter out genes (0.3 for transcripts, 0.1
for proteins), except if they are supported by at least four different annotations (1846 RGMs, upper
right area of the graph}). The numbers of genes in the four areas are displayed in white text boxes.
Numbers of transcripts with transcript evidence were plotted on cumulative histograms above the
scatter plot (green). Numbers of transcripts with protein evidence were plotted on cumulative
histograms on the right of the scatter plot (red).
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Figure 3. Comparison of the novel IPO323 genome annotation (Re-annotated Gene Models, RGM)
with the four available annotations

a) Upsetplot of RGMs with gene models from the four available annotations (JGI, MPI, RRES and
CURTIN). Number of shared (identical) gene models for coding sequences (CDS).

b} Number of identical CDS between RGMs and each available annotation.
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Figure 4. Transcript isoforms of Re-annotated Gene Models (RGMs) ZtIPO323_ 030030 (a) and
ZtIPO323_013330 (b) supported by Iso-Seq and RNA-Seq evidence.

a) Gene ZtIP0O323_030030 (chr2: 777930...1778675, 747 b). This RGM has two transcript isoforms
(alternative 3’ acceptor site). Both encoded Small Secreted Proteins (SSP 10, File S1}. Previous
annotations selected the second acceptor site leading to the longest CDS. A single Iso-Seq transcript
corresponding to the longest CDS was detected (Iso-Seq track), while both isoforms were detected
using RNA-Seq data (RNA-Seq assembled transcript). RNA-seq coverage identified both isoforms in
equal amounts (RNA-Seq coverage Xyl). Based on read coverage from different RNA-Seq libraries, the
isoform corresponding to the shortest CDS was the most frequent. This isoform was likely the
canonical form and encoded a protein with a C-terminus that was reduced in length by 34%
compared to the other isoform. RGMs with isoforms track: different isoforms. Iso-Seq track: filtered
Iso-Seq transcripts. RNA-Seq coverage Xyl track: coverage of strand-specific RNA-Seq reads. RNA-Seq
assembled transcript track: assembly of strand-specific RNA-Seq reads.

b) ZtIPO323_013330 (chr_1:3420115..3424093, 3.98 Kb). This RGM had four transcript isoforms. The
selected RGM had four splicing sites, one of which in the 5" UTR was supported by Iso-Seq transcript
(Iso-Seq n°2) and RNA-Seq (RNA-Seq coverage Xyl). Two Iso-Seq transcripts with one or two intron
retention events were detected as Iso-Seq transcripts (Iso-Seq n°1 and 3) and confirmed by RNA-Seq
(RNA-Seq coverage Xyl). One Iso-Seq transcript had an alternative 5’ donor splicing site in the 5 UTR
(Iso-Seq n°4). This isoform was likely weakly expressed, as it was not supported by RNA-Seq (RNA-Seq
coverage Xyl). RGMs with isoforms track: different RGM isoforms. Iso-seq track: filtered Iso-seq
transcripts. RNA-Seq coverage Xyl track: coverage of strand-specific RNA-Seq reads. RNA-Seq
assembled transcript track: assembly of strand-specific RNA-Seq reads.
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Figure 5. Examples of polycistronic transcripts shown for Re-annotated Gene Models (RGMs)
ZtIP0O323_010430 and ZtIPO323_010440

RGMs ZtIPO323_010430 and ZtIPO323_010440, located at chr_1:2692858...2697168 and
chr_1:2692858...2697168, respectively, were transcribed on the same strand with overlapping 3’'UTR
and 5’UTR (red rectangle). Iso-Seq polycistronic track: evidence of transcripts covering the two
RGMs. A strong decrease in RNA-Seq coverage was observed in the region of the overlap (red dashed
rectangle), suggesting two singles, overlapping transcripts. The assembly of RNA-Seq reads led to a
polycistronic transcript involving the two RGMs, likely resulting from the wrong assembly of reads
from these overlapping transcripts. Iso-seq track: filtered Iso-seq transcripts mapping at this locus.
Iso-Seq polycistronic track: polycistronic transcripts identified in the Iso-Seq database. RNA-seq
transcript track: assembly of strand-specific RNA-Seq reads mapping at this locus. RNA-seq coverage
Xyl track: coverage of strand-specific RNA-Seq reads mapping at this locus.
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Categories Counts
Full-splice_match (FSM) * 7872
Incomplete-splice_match (ISM)* 305
Fusion 45
Genic® 664
Intron retention (IR) 1571
novel_in_catalog (NIC)* 7
novel_not_in_catalog (NNC)® 474
Antisense 395
Intergenic 357

! Whole transcripts with possible alternative 3’ and 5’ ends
% partial overlaps of transcripts fitting with intron coordinates

® partial overlaps of introns and exons not compliant with intron/exon coordinates
* Use combination_of_known_splice sites

> At_least_one_novel_splice site detected

Table 1. Classification of Iso-Seq transcript isoforms from Zymoseptoria tritici isolate IPO323

Filtered Iso-Seq transcripts from different growth conditions were analysed and classified with
Sqganti3.
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