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Abstract 16 

Integrating multi-omics data into predictive models has the potential to enhance accuracy, which is essential 17 

for precision medicine. In this study, we developed interpretable predictive models for multi-omics data by 18 

employing neural networks informed by prior biological knowledge, referred to as visible networks. These 19 

neural networks offer insights into the decision-making process and can unveil novel perspectives on the 20 

underlying biological mechanisms associated with traits and complex diseases. We tested the performance, 21 

interpretability, and generalizability for inferring smoking status, subject age and LDL levels using genome-22 

wide RNA-expression and CpG methylation data from blood of the BIOS consortium(4 population cohorts, 23 

N_total=2940). In a cohort-wise cross validation setting, the consistency of the diagnostic performance and 24 

interpretation was assessed. 25 

Performance was consistently high for predicting smoking status with an overall mean AUC of 0.95 (95% CI, 26 

0.90 - 1.00) and interpretation revealed the involvement of well-replicated genes such as AHRR, GPR15 and 27 

LRRN3. LDL-level predictions only generalized in a single cohort with an R2 of 0.07 (95% CI, 0.05 - 0.08). Age 28 

was infered with a mean error of 5.16 (95% CI, 3.97 - 6.35) years with the genes COL11A2, AFAP1, OTUD7A, 29 

PTPRN2, ADARB2 and CD34 consistently predictive. In general, we found that using multi-omics networks 30 

improved performance, stability and generalizability compared to interpretable single omic networks.  31 
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We believe that visible neural networks have great potential for multi-omics analysis; they combine multi-32 

omic data elegantly, are interpretable, and generalize well to data from different cohorts. 33 

 34 

Introduction 35 

Over the last decades, association studies have uncovered numerous genes and CpGs to be associated with 36 

hundreds of traits and diseases1. This has led to tools for identifying high risk individuals and biomarkers 37 

for early disease detection. For example, blood-based methylation biomarkers are currently used for early 38 

diagnosis for various forms of cancer2,3. However, for most complex diseases and traits, the combined 39 

effects, within and between different omics types, is still largely unexplored. For a more comprehensive 40 

understanding of human health and diseases and for more accurate prediction models, it is therefore 41 

necessary to study omic types in relation to one another. Thanks to recent technological improvements for 42 

high throughput sequencing and arrays technologies, the acquisition of multi-omics datasets has become 43 

more feasible, providing opportunities for new multi-omics analysis tools4,5.  44 

 45 

Recently, novel statistical frameworks and machine learning techniques have been published that integrate 46 

multi-omics data in a single analysis6,7. These studies show the potential for multi-omics analysis to 47 

improve prediction for various disorders while providing insight into the disease biology4,8. Integrating 48 

different types of omics data in a single analysis is a challenging task, as each type has different, 49 

procedures, preprocessing steps and analytical requirements9. Combining omics data presents additional 50 

challenges, as each omic has unique dimensions, and it is essential to consider correlation structures both 51 

within and between the different omics types. Thus, for the combined analysis of multiple omics types, 52 

methods need to be flexible and be able to deal with the high dimensionality of these datasets. 53 

 54 

Neural networks have demonstrated such flexibility and have been widely successful in fields such as 55 

image classification10, speech recognition11, and protein modelling12. In contrast to most tasks in image 56 

analysis and speech recognition, the focus of multi-omics frameworks is not only on predictive 57 
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performance but also in understanding the underlying etiology. To facilitate this, a new field in machine 58 

learning, coined visible machine learning13 emerged, in which prior biological knowledge is embedded in 59 

a neural network’s architecture to create interpretable neural networks14–17. Recent examples of these kinds 60 

of neural networks applied in genomics are GenNet18 and P-net19. In the GenNet framework, gene and 61 

pathway annotations were used to create interpretable neural networks for genetic risk prediction from 62 

genotype. In P-net, methylation, gene expression and copy number variants were fed to an interpretable 63 

neural network to differentiate between primary or metastatic prostate cancers. Other examples include, 64 

PasNet20, which integrated pathways information to predict survival for glioblastoma multiforme, a 65 

primary brain cancer. DrugCell21 integrated Gene Ontology knowledge in a network to predict drug 66 

response for various cancers and ParsVNN22 continued on this work and pruned the network for increased 67 

performance and better interpretability.  68 

 69 

In this study, we create visible neural networks to analyze multi-omics data in a single analysis. We 70 

extend the GenNet framework to create interpretable neural networks for multiple omics inputs and apply 71 

it to a dataset with transcriptomics and methylomics data. We validate the method using four cohorts in 72 

the BIOS consortium for the application of predicting age, low-density lipoproteins (LDL) levels and 73 

smoking status. Age prediction from methylation or gene expression data has been an active research area 74 

popularized by the work of Hannum et al. and Horvath23,24. Additionally, it has been shown that these 75 

clocks show an asymptote for older participants and strong biological sex differences, making age 76 

prediction particularly interesting to study with neural networks25. Smoking status and LDL level 77 

predictions are well-suited to evaluate the performance, stability and interpretation of the method. 78 

Methylation and gene expression are highly predictive for smoking status and predictive genes are well-79 

documented26,27. On the other hand, low lipid lipoprotein cholesterol levels is a complex outcome with 80 

both environmental and genetic factors28.  81 

To summarize, we develop visible neural networks for multi-omics data and investigate their 82 

generalizability and robustness for three different phenotypes by leveraging the multi-cohort setting of the 83 
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BIOS consortium in a cohort-wise cross validation analysis. Furthermore, we use the flexibility and 84 

interpretability of these models to find sex-specific effects, omic-specific information and genes and 85 

pathways important for prediction 86 

 87 

Materials & Methods 88 

BIOS  89 

In this study, multi-omics data gathered by the Biobank-based Integrative Omics Study (BIOS) 90 

consortium was used to predict smoking status, age and low-density lipoprotein levels. Specifically, we 91 

used transcriptome and methylome data from BIOS four largest cohorts; LifeLines (LL), Leiden 92 

Longevity Study (LLS), Netherlands Twin Register (NTR), and Rotterdam Study (RS). All cohorts within 93 

the BIOS consortium followed the same procedure in gathering and processing data. For each participant, 94 

transcriptome and the methylome were measured in whole blood samples taken from the same visit. DNA 95 

methylation was profiled according to the manufacturer’s protocol using the Infinium Illumina 96 

HumanMethylation 450k arrays, while blood was first depleted from globin transcripts for RNA 97 

sequencing. A detailed description of all data generation and preprocessing steps for the RNA sequencing 98 

and DNA methylation data can be found in Zhernakova et al. (2017)29 and Bonder et al. (2017)30. Using 99 

the BBMRI-NL’s Integrative Omics analysis platform31, all individuals that had both RNA-seq and 100 

methylation data (β-value) available were selected, resulting in a dataset with 2940 individuals. Y-101 

chromosomal data was excluded, X-chromosomal and autosomal measurements were included. Finally, 102 

RNA-seq expression data was filtered using an expression inclusion criterion of one count per million on 103 

average across all samples or higher9. An overview of the characteristics for each cohort can be found in 104 

Table 1. 105 

 106 

 107 
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Rotterdam 

Study 

LifeLines Leiden 

Longevity 

Study 

Netherlands 

Twin 

Register 

Total of all 

cohorts 

Abbreviation RS LL LLS NTR  

Individuals 693 727  646 874 2940  

Sex, male | female 397 | 296 421 | 306 340 | 306 577 | 297 1735 | 1205 

Smokers*, current 

| never 

75 | 231 107 | 337 75 | 184 155 | 500 412 | 1252 

Age [years], mean 

+ 95% CI 

67.6  

(67.1 - 68.0) 

45.4  

(44.4 - 46.3) 

58.8  

(58.3 - 59.3) 

38.3  

(37.3 - 39.3) 

51.4  

(50.9 - 52.0) 

LDL [mmol/L], 

mean + 95% CI 

3.32  

(3.26 - 3.39) 

3.19  

(3.12 - 3.25) 

3.36  

(3.29 - 3.43) 

2.90  

(2.84 - 2.96) 

3.17  

(3.14 - 3.2) 

Table 1. Main characteristics for all cohorts used in this study. Note the age differences between the cohorts; participants of the 108 
Netherlands Twin Register were on average 29 years younger than the participants of the Rotterdam Study. *Former smokers 109 
were excluded in this study. CI; confidence interval. 110 

 111 

Network design 112 

 113 

Figure 1. Schematic overview of the neural network architectures used in this study. In the ME network (a), DNA methylation 114 
data (CpGs) are grouped and connected using gene annotations. The resulting 10,404 gene nodes are directly connected to the 115 
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output node. Combining the ME network and the the GE network (b) for gene expression, results in the ME+GE network (c). In 116 
the ME+GE network each gene has a node per omic and a combined gene representation. Design (d) adds a covariate input to 117 
the combined gene representation for each gene. This allows the ME+GE network to model gene-specific effects for the covariate. 118 
A schematic overview of the pathway network and a similar fully connected network can be found in Supplementary Figure 1. 119 

Neural network architectures were created using principles from the GenNet framework18. This 120 

framework uses prior knowledge (e.g., gene and pathway annotations) to connect input data to the neurons 121 

in the next layer of neural network. CpG methylation sites were annotated using GREAT32 (Genomic 122 

Regions Enrichment of Annotations Tool) and connected to the closest gene based on genomic distance 123 

(in base pairs) resulting in 17,283 gene annotations for 481,388 methylation sites. These gene annotations 124 

were intersected with the 14,248 remaining gene expression measurements left after preprocessing, 125 

resulting in an overlap of 10,404 genes between both omic types. This set of overlapping genes was used 126 

in all analyses. The methylation gene layer was built using these genes and their corresponding 324,295 127 

CpGs. For the creation of pathway layers the set of overlapping genes was grouped into KEGG‘s 128 

functional pathways33 from ConsensusPathDB34. Out of the 10,404 genes, 4813 genes were annotated for 129 

at least one pathway. 130 

The gene expression network (GE network, Figure 1a) is the simplest network and consists of the gene 131 

expression input connected straight to the output node similar as in LASSO regression. The methylation 132 

network (ME network, Figure 1b) which consists of the input methylation data, a gene layer with neurons 133 

representing gene methylation made and an output node. The methylation and gene expression network 134 

(ME + GE network, Figure 1c) combines both networks. In a similar way as in the ME network, CpGs are 135 

fed to the first layer of the network and reduced to one node per gene using gene annotations. In contrast 136 

to most other methods, gene expression is not concatenated to the input but used as a separate input in the 137 

gene level of the network. In this layer, gene expression is combined with the neurons representing genes 138 

by methylation. Finally, a single node was used to predict the target phenotype.  139 

The activation function transforms the output signal for each neuron. For classification tasks, such as 140 

predicting if an individual smokes or not, a sigmoid activation function was used to scale the output to the 141 

range [0, 1] in the last neuron. Arctanh activation functions were used for all other layers to introduce non-142 
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linearities, increasing the modelling capabilities of the network. For regression tasks, such as predicting 143 

continues traits such as age and LDL levels, ReLu activation functions with output range [0, ∞) were used 144 

for all layers. For a better initialization of the network, the bias of the last neuron was set to the mean 145 

value of the predicted outcome in the training set. 146 

Deeper networks 147 

For more complex modelling of the interactions between expression, methylation and phenotypes, we also 148 

evaluated deeper networks (Supplementary Figure 1). First, using KEGG’s functional pathways33,34 as 149 

prior knowledge, three hierarchical pathway layers were created. The first layer groups genes into 321 150 

functional pathways such as: insulin secretion, thyroid hormone synthesis and PPAR signaling pathway. 151 

The forementioned pathways are all part of the endocrine system group which, in turn, is a subgroup of 152 

organismal systems. The mid and global-level pathway layers were created adopting this hierarchical 153 

structure, consisting of 44 and 6 groups, respectively. Each pathway is represented by its own neuron 154 

resulting in three layers with 321, 44 and 6 nodes each. Not all genes were annotated by the KEGG 155 

functional pathway annotations, 5591 genes did not receive a functional pathway annotation. To ensure 156 

connectivity to the output for all genes, connections that skip the pathway layers (skip connections) were 157 

added from each gene to the output node. 158 

Additionally, a deeper network was constructed without any additional prior biological knowledge to 159 

compare with the KEGG pathway network. Similarly, the ME+GE network served as a basis for this 160 

network and three densely connected layers, 321, 44 and 6 nodes each, were added between the gene layer 161 

and the output node. The resulting network has thus the same number of neurons as the KEGG pathway 162 

network, but has fully connected layers instead of layers based on KEGG pathway information. 163 

Training and evaluation 164 

The neural networks were evaluated in a cohort-wise cross validation setup as shown in Figure 2 to assess 165 

the generalizability of the models across cohorts. Each fold, one cohort is held out as test set, while the 166 

three other cohorts were used for training and validation (leave-one-out method). From these three cohorts 167 
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75% of the individuals were randomly selected for the training set while the remaining 25% was used in 168 

the validation set to tune  the hyperparameters. For all methods the same combinations of hyperparameters 169 

were tuned on the validation set. Combinations included learning rates of [0.01, 0.001, 0.005, 0.0001] and 170 

L1 penalty on the weights of the combined gene and/or methylation gene layer of [0.01, 0.001, 0.0001]. A 171 

higher L1 penalty increases the cost for the network to include more contributors to predict the outcome. 172 

The L1 penalty thus enforces sparsity over the weights, so that most inputs get assigned a (near) zero 173 

weight while important inputs still get assigned a high weight. This L1 regularization on the weights helps 174 

preventing overfitting and increases interpretability. 175 

The mean squared error (MSE) was used as a loss function to optimize for regression tasks. For 176 

classification tasks, weighted binary cross entropy, with a weight inverse to the ratio of the class 177 

imbalance, was used as a loss function. The loss function quantifies the difference between current 178 

outcome and the true label and is optimized during training. The performance of the resulting network is 179 

evaluated using the area under the receiver operating curve (AUC) for classification tasks, and the root 180 

mean squared error (RMSE) and explained variance for regression tasks (explained variance can be found 181 

in the Supplementary Materials). For each fold the hyperparameters of the best performing model in the 182 

validation set were selected to evaluate on the test cohort. Since neural networks use stochastic processes 183 

that can influence the outcome, we trained the network with the best hyperparameters ten times with a 184 

different random seed to investigate its stability. 185 
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 186 
Figure 2. Cohort-wise cross-validation. For each fold three cohorts were used to train and validate the hyperparameters of the 187 
model (75% training, 25% validation). The remaining, left-out cohort served as an independent test set and the average 188 
performance over the test cohorts was reported. The cohort-wise cross validation was done for each phenotype (smoking, LDL 189 
and age prediction). Abbreviations: Netherlands Twin Register (NTR), Leiden Longevity Study (LLS), LifeLines (LL), Rotterdam 190 
Study (RS). 191 

Additional analyses 192 

Neural networks are flexible methods and with the inclusion of prior biological knowledge different 193 

architectures can be explored to provide more insight into the interaction between omics types, 194 

contribution of covariates and gene-specific contribution of covariates. For each of these analyses we 195 

made small changes to the ME+GE networks. 196 

Omic-specific information 197 

Gene expression and methylation data contain redundant information with respect to each other. However, 198 

not all information that is present in the one may be present in the other data type. To evaluate the 199 

independent contribution of each omics to the prediction we add a L1 penalty for one omics type in the 200 

model. This introduces a trade-off for the neural network: the gain in performance for including 201 

information of the penalized omic (i.e., RNA expression of a single gene or the methylation representation 202 

of a single gene) must outweigh its penalty. If the model uses only the non-penalized omic type without 203 

loss of prediction performance, it is likely that there was no omic-specific information. However, if the 204 
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model still decides to use parts of the penalized omics data, this information is most likely unique to the 205 

penalized omic type and was therefore required for prediction. 206 

Covariate-gene interaction 207 

Including covariates in the model, for example sex and age for smoking, can improve performance and 208 

interpretation. Commonly, the covariates are included as an extra layer at the end. However, by adding a 209 

covariate for each gene, more specific information in how a covariate affects a single gene can be obtained 210 

(see Figure 1d). For each phenotype we tested both, a model with covariates in the last layer and a model 211 

with covariates for each gene. 212 

Subtyping with activation patterns 213 

In contrast to fully-connected neural networks, the visible neural network architectures used in this study 214 

are constructed based on prior biological knowledge can be interpretated by inspecting the weights of the 215 

incoming and outgoing connections. The strength of the weights (e.g., between CpGs and genes, 216 

expression and genes, genes and pathways), all express the importance of these biological elements for the 217 

predicted outcome. The weights of a neural network are a result of an optimization over the population it 218 

was trained on, and are thus a result of the population characteristics of the training set. However, neural 219 

networks may learn different patterns for the same outcome.  By inspecting the weights general 220 

information is learned about the importance of each element but this does not show differences between 221 

groups or individuals. Based on differences between individuals, some neurons can activate for a certain 222 

group of individuals, while it does not for others. To gain an overview of the different patterns that are 223 

learned by the network we applied principal component analysis35 (PCA) over all the activations for all 224 

(gene-level) nodes for each individual. In this PCA, individual-level differences may cluster and provide 225 

groups of individuals for which the neural network used a similar activation pattern.  226 

  227 
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Results 228 

 

Phenotype 

Network 

type 

AUC validation cohorts 

 

AUC test cohort 

 

Mean  

test AUC 

over all 

cohorts 

   RS* LL* LLS* NTR* RS LL LLS NTR  

Smoking ME+GE 0.92 
(0.90 - 
0.94) 

0.93 
(0.92 - 
0.93) 

0.91 
(0.90 - 
0.92)  

0.93 
(0.91 - 
0.94) 

0.98 
(0.98 - 
0.98) 

0.92 
(0.92 - 

0.93) 

0.95 
(0.95 - 
0.96) 

0.91 
(0.89 - 

0.92) 

0.95  
(0.90 – 1.00) 

 ME 0.93 
(0.92 - 
0.94) 

0.94 
(0.94 - 
0.95) 

0.95 
(0.94 - 
0.95) 

0.93 
(0.93 - 
0.94) 

0.97 
(0.97 - 
0.98) 

0.94 
(0.93 - 
0.94) 

0.96 
(0.95 - 
0.96) 

0.95 
(0.95 - 
0.96) 

0.95  
(0.93 - 0.98) 

 GE 0.83 
(0.83 - 

0.84) 

0.82 
(0.82 - 

0.82) 

0.83 
(0.83 - 

0.83) 

0.87 
(0.86 - 

0.87) 

0.87 
(0.87 - 

0.88) 

0.85 
(0.85 - 

0.85) 

0.87 
(0.87 - 

0.88) 

0.80 
(0.80 - 

0.80) 

0.85  
(0.80 - 0.90) 

Phenotype Network 

type 

RMSE validation cohorts RMSE test cohorts  Mean test 

RSME 

over all 

cohorts 

  RS* LL* LLS* NTR* RS LL LLS NTR  

Age ME+GE 3.85 
(3.72 - 

3.98) 

4.13 
(4.03 - 

4.23) 

3.88 
(3.78 - 

3.98) 

4.12 
(3.99 - 

4.25) 

5.44 
(5.23 - 

5.65) 

6.04 
(5.76 - 

6.31) 

4.20 
(4.11 - 

4.29) 

6.33 
(5.87 - 

6.8) 

5.16  
(3.97 - 6.35 ) 

 ME  14.48 
(13.04 - 

15.92) 

8.23 
(7.26 - 

9.19) 

18.06 
(15.01 - 

21.11) 

11.28 
(9.90 - 

12.66) 

15.69 
(12.37 - 

19.0) 

8.14 
(6.50 - 

9.79) 

13.17 
(9.13 - 

17.2) 

22.66 
(19.67 - 

25.65) 

15.00  
(4.31 - 25.69 ) 

 GE 6.79 
(6.77 -

6.81) 

6.52 
(6.51 - 

6.53) 

6.40 
(6.38 - 

 6.41) 

6.16 
(6.14 - 

6.17) 

9.03 
(8.80 - 

9.26) 

12.23 
(12.04 - 

12.41) 

6.87 
(6.80 - 

6.95) 

17.77 
(17.51 - 

18.03) 

11.45  
(4.21 - 18.68 ) 

LDL ME+GE 0.88 
(0.87 - 

0.88) 

0.88 
(0.88 - 

0.88) 

0.85 
(0.84 - 

0.86) 

0.92 
(0.91 - 

0.92) 

0.92 
(0.92 - 

0.93) 

0.89 
(0.89 - 

0.90) 

0.93 
(0.93 - 

0.94) 

0.93 
(0.91 - 

0.95) 

0.93  
(0.88 - 0.99) 

 ME 1.18 
(1.12 - 
1.25) 

1.14 
(1.06 - 
1.22) 

1.10 
(1.02 - 
1.18) 

1.12 
(1.08 - 
1.16) 

1.29 
(1.15 - 
1.44) 

1.17 
(1.07 - 
1.26) 

1.10 
(1.01 - 
1.19) 

1.23 
(1.15 - 
1.30) 

1.27 
(0.8 - 1.75) 

 GE 0.88 
(0.88 - 

0.88) 

0.88 
(0.88 - 

0.89) 

0.85 
(0.85 - 

0.86) 

0.90 
(0.90 - 

0.91) 

0.94 
(0.93 - 

0.94) 

0.90 
(0.89 - 

0.90) 

0.93 
(0.93 - 

0.93) 

1.02 
(0.98 - 

1.07) 

0.98  
(0.79 - 1.17) 

Table 1. Performance for cohort-wise cross validation, mean with 95% confidince interval over 10 runs. The area under the curve 229 
is reported for the classification task (smoking status prediction) and the root mean squared error (RMSE) for the regression 230 
tasks; predicting age and LDL levels. ME;  Methylation,  GE; Gene expression,  ME+GE, both methylation and gene expression 231 
as an input for the neural network. RS; Rotterdam study, LL; LifeLines, NTR; Netherlands Twin Register, LLS; Leiden Longevity 232 
Study . See Supplementary Table 1 for the performance of out-of-the-box scikit-learn implementations for each omic.*The name of 233 
the test cohort is used to denote the fold. Thus, for the first fold,  RS, was used  for testing and LL+LLS+NTR were used for 234 
training and validation (75% training, 25% validaton). 235 

 236 
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 237 
Figure 3. Overview of the important genes for predicting smoking status for each fold. Contribution was measured in percentage 238 
of the total weight assigned to each gene. For each gene, the pie chart shows the contribution of methylation and gene expression. 239 
Error bars indicate the standard deviation over ten runs for the exact same network trained with the same hyperparameters. 240 

Cohort-wise cross validation 241 

An overview of the performance for each cohort and for the three different architectures can be found in 242 

Table 2. It shows the mean predictive performance and standard deviation for each fold for ten networks 243 

trained with the same hyperparameters but with different random seeds. The corresponding 244 

hyperparameters, chosen on the best performance in the validation set, can be found in Supplementary 245 

Table 2.  246 

Predicting smoking status 247 

Both gene expression and methylation were highly predictive for smoking status in all folds. The best 248 

performance was achieved by the ME+GE network, thus with both methylation and gene expression input, 249 

in the fold with the Rotterdam Study as test cohort (all other cohorts were used for training and 250 
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validation). In this fold, the network achieved a near perfect classification with area under the receiver 251 

operating curve (AUC) of 0.98 (95% confidence interval, 0.98 - 0.98). Over all folds, the ME networks 252 

and ME+GE networks performed best with a mean AUC of 0.95 (95% CI, 0.93 - 0.98) and 0.95 (95% CI, 253 

0.90 - 1.00) respectively. The GE network, based solely on gene expression input, performed substantially 254 

worse with a mean AUC of 0. 0.85 (95% CI, 0.80 - 0.90). Surprisingly, the mean test performance over all 255 

folds for the ME+GE network was lower for deeper networks with three fully connected layers, achieving 256 

a mean AUC of 0.91 (95% CI, 0.85 - 0.96) (see Supplementary Table 3). In general, each fold obtained 257 

good predictive performance for predicting smoking status, the GE network in the fold with NTR as test 258 

cohort achieved the worst overall predictive performance with a mean AUC of 0.80 (95% CI, 0.80 - 0.80). 259 

The ME+GE networks exhibit a stable performance, with small confidence intervals for the area under the 260 

curve and standard deviations not exceeding 0.03. However, there may be significant variations in the 261 

underlying weights due to stochastic processes used for network initialization and training, resulting in 262 

different starting points and optimization paths for all weights across runs. As the weights within a neural 263 

network operate relative to each other and cannot be directly compared between networks, we compared 264 

the relative contribution of each gene instead. Figure 3 demonstrates that certain genes are consistently 265 

utilized by the network to differentiate between current smokers and non-smokers across all folds, 266 

although there can be notable differences in the percentage of total weight each gene holds. In each fold, 267 

GPR15 is the most or second most predictive gene for smoking status, its signal is mainly driven by gene 268 

expression as visualized in Figure 3. Specifically, 79.8 ± 33.3% (mean and standard deviation over all 269 

folds) of the weights that drive the signal for this gene are from the gene expression input. The next gene, 270 

AHRR, is important for prediction in three out of four cohorts. This signal is driven by both gene 271 

expression (44.3%) as well as methylation (55.6%). Other consistently highly predictive genes (i.e., genes 272 

with a weight contribution higher than 1% in three out of four cohorts) are SEMA6B, PID1, LRRN3, 273 

P2RY6, CDKN1C, CLEC10A and KCNQ1. (See Supplementary Table 4 for more details).  All these 274 

consistently highly predictive genes were found before in association studies for smoking in gene 275 
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expression and methylation36–38. A graphical overview of important pathways for smoking prediction can 276 

be found in Supplementary Figure 2. 277 

To investigate the interplay between the omic types, two additional analyses were conducted where either 278 

gene expression or methylation gene representations were penalized (see Supplementary Figures 3,4 and 279 

5). Without penalization the weights for gene expression and methylation were nearly equally divided 280 

after training. Weights connected to gene expression input occupied 51.6 ± 1.3% of the weights over all 281 

the ME+GE networks, the remainder used for methylation. In these experiments, we found that an omic 282 

specific L1 penalty of 0.01 for gene expression reduced the contribution of the weights associated with 283 

gene expression to 0.69 ± 1.16% while a similar threshold reduced the weights associated with 284 

methylation to 2.56 ± 1.73%. A more severe omic specific L1 threshold of 0.001 for methylation reduced 285 

the use of methylation in the top genes nearly completely, only for LRNN3 methylation input is still used 286 

in the second and third fold with (respectively ~41% and 16% of the weights for this gene). However, with 287 

the same threshold gene expression inputs are responsible for 15% of the weights for AHRR in the first 288 

fold, nearly 29% of the GPR15 weights in the second fold and 39% of RER1 in the fourth fold (see Error! 289 

Reference source not found. and 4). Interestingly, the importance of AHRR was severely impacted by 290 

the methylation penalty,  its gene expression was barely used to predict smoking status when methylation 291 

was penalized. 292 

Predicting age 293 

Networks trained with both methylation and gene expression data (ME+GE) achieved a mean error of 294 

5.16 (95% CI, 3.97 - 6.35) years over all folds for age prediction (see Table 1). Between folds, there were 295 

large differences in performance for predicting age. Most notably, networks did not generalize well in 296 

folds that have either the Rotterdam Study (ranging between 52 to 80 years) or the Leiden Longevity 297 

Study (ranging between 30 to 79 years) as test cohort, the two cohorts with the oldest population. For 298 

these cohorts, the explained variance in the test set was substantially lower than in the validation set: 299 

Rotterdam study test 0.40 (95% CI, 0.37 - 0.43), 0.94 (95% CI 0.93 - 0.94) validation, Leiden Longevity 300 
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Study test 0.95 (95% CI, 0.95 - 0.95), 0.61 (95% CI, 0.60 - 0.63) validation. Aside from being older, these 301 

cohorts also have a smaller spread in age distribution compared to the two other cohorts (See Figure 4a 302 

and Supplementary Figure 6).  The Netherlands Twin Register cohort ranges between roughly 18 and 80 303 

years old while individuals from the Lifelines cohort were between 18 and 81 years old.  304 

Differences between omics and network types were also larger for age prediction than for smoking status 305 

prediction. The ME+GE network consistently outperformed the single-omic networks with substantial 306 

margins: the mean explained variance over all folds was 0.72 (95% CI, 0.36 - 1.07) for the ME+GE 307 

network, 0.30 (95% CI, -0.26 - 0.86) for gene expression, while the ME networks did not find any 308 

predictive pattern that translated to the test cohort. Training and validation performance was generally 309 

poor for the ME network, and although the GE network obtained good validation performance in terms of 310 

explained variance for each fold, this did not translate in folds with the Rotterdam study and Leiden 311 

Longevity Study as test cohorts.  312 

Interpretation of the ME+GE network revealed that many genes had a small contribution for age 313 

prediction (see Supplementary Figure 6). The neural network found a more multifactorial solution for age 314 

prediction than for smoking, the most important gene over all folds only occupied 0.68% of all weights for 315 

predicting age compared to 3.76% for smoking. The most predictive genes with a weight contribution 316 

higher than 0.30% of the total weight in three out of the four folds were COL11A2, AFAP1, OTUD7A, 317 

PTPRN2, ADARB2 and CD34 (Supplementary Table 5). These most predictive genes were not part of 318 

Hannum et al. and Horvath’s epigenetic clocks23,24. 319 

The first principal components of the activation patterns of the ME+GE network revealed distinct 320 

activation patterns for the different sexes with a gradient in each cluster (see 4b). Although, there is no 321 

significant difference in the absolute error between the sexes (Wilcoxon rank-sum, p-value of 0.98, 322 

Supplementary Figure 7,8), the first principal component clusters perfectly for males and females while 323 

the second principal component is strongly related with age. Additional experiments showed that the 324 

clustering of the sexes is mainly driven by genes on the X chromosome (see Supplementary Figure 9). 325 
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Including sex as a covariate in the last layer of the model did not improve the performance of the model 326 

(mean RMSE over all folds of 7.31 [95% CI, 2.89 - 11.73]). Including sex information to each gene also 327 

did not lead to a better performance (mean RMSE over all folds of 10.64 [95% CI, 4.12 - 17.15]). 328 

However, inspecting the weights between the covariate and the genes for the best performing network 329 

revealed strong sex-specific weights for, among others: KLF13, ANO9 and HECA (for more details see 330 

Supplementary Figure 10).  For these genes the network needed strong weights to model sex-specific 331 

effects for age prediction. 332 

  333 

Figure 4. a) Test predictions for the ME+GE network for all folds (each cohort) with corresponding distributions (See 334 

Supplementary 11 and 12 for the GE and ME networks). b) Activation of the ME+GE trained for age prediction. A principal 335 

component analysis clearly shows two distinct activation patterns corresponding to the different sexes. Principal component 1 is 336 

related to the sex differences, principal component 2 to the age of the participants. 337 

After applying an omic-specific L1 penalty for methylation of 0.01, the network only used the methylation 338 

input for gene NEDD1 in the second fold with nearly 33% of the weight contribution for this gene from 339 

methylation, while in the third fold MAD1L1 had a methylation contribution of 23% (see Supplementary 340 

Figure 14). With the same threshold for penalizing gene expression inputs, DNAJB6 had the largest gene 341 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.16.537073doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.16.537073
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 
 

expression use with 31% of the weight for this gene assigned to gene expression input (Supplementary 342 

Figure 15). The deeper neural network architectures quickly overfitted, reaching high performance on the 343 

training data which did not generalize to the validation and test set. These networks were consistently 344 

outperformed by the ME+GE network (Supplementary Table 5). The best performing network build with 345 

KEGG pathway information had the pathway: “environmental information processing” as the most 346 

predictive global pathway because of high contributions of membrane transport (ABC transporters), signal 347 

transduction, and signaling molecules and interaction (see Supplementary Figure 16). 348 

Predicting low-density lipoproteins levels 349 

ME+GE and GE networks explained up to 17% of the phenotypic variance in the validation set but these 350 

networks only generalized in the second fold to an explained variance of 0.07 (95% CI, 0.05 - 0.08) for the 351 

ME+GE network and 0.04 (95% CI, 0.04 - 0.05) for the GE network in the Lifelines test cohort (see 352 

Error! Reference source not found.). In this fold, the largest gene, FAM53A only occupied 0.052% of 353 

the total weight (Supplementary Figure 17). The weights for all genes in the ME+GE network were small 354 

and evenly spread, indicating that the network did not find individual genes with a strong effect for 355 

predicting low-density lipoproteins levels. Additional layers, be it pathways or densely connected layers, 356 

did not improve predictive performance. 357 

 358 

Discussion 359 

 360 
In this paper we evaluated the performance, interpretability and stability of visible neural networks for 361 

single and multi-omics data. Interpretability was achieved by embedding prior biological knowledge such 362 

as gene and pathway annotations in the neural network architecture. We applied these models to predict 363 

smoking status, age and low-density lipoprotein levels in a cohort-wise cross validation using methylation 364 

and gene expression data. 365 

 366 

For smoking, single omic networks and multi-omic networks performed consistently high across all 367 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.16.537073doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.16.537073
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

cohorts for predicting smoking status. Predicting smoking status is a relatively simple task, since smoking 368 

is a powerful inducer of DNA methylation and gene expression alterations39.  This is also reflected by the 369 

mean AUC of 0.95 over all folds that the ME+GE and ME networks achieved. It is slightly better than the 370 

performance of Maas et al. who reported an AUC of 0.90 in an external dataset with a weighted 371 

combination of just thirteen CpGs. Inspection of the weights of the ME+GE network revealed GPR15, 372 

AHRR and LRRN3 as most important genes for prediction, which is consistent with existing 373 

literature26,27,39,40 .  In the ME+GE network the contribution of both omics types was nearly equal (in terms 374 

of weights), while the gene expression-based network by itself was less predictive than the methylation-375 

based networks. Applying an omic-specific penalty for methylation input showed that the ME+GE 376 

network needed some methylation input to achieve similar performance with expression information.  377 

 378 

For predicting age, the ME+GE network outperformed the single ME or GE networks. The performance 379 

of this network in the test cohorts varied between a R2 of 0.40 (95% CI, 0.37 - 0.43) and 0.91 (95% CI, 380 

0.90 - 0.92). This difference in performance is probably caused by the different distributions in age in the 381 

cohorts, depending on the cohorts in the training set the networks are shown less examples of older or 382 

younger individuals. Similar effect were also seen in traditional methods9. Based on the predictive 383 

performance shown in Table 2 one could conclude that for age prediction, usage of the two omics types 384 

increased stability and performance for these type of neural networks compared to the single omic 385 

networks.  Additionally, we have evaluated whether the network used sex-information in the decision 386 

process for age prediction. The first principal component of the activations of the neural network showed a 387 

perfect separation between the sexes, mostly caused by genes on the X-chromosome, while the second 388 

principal component had a clear correlation with age. Owing to the shallowness of the networks, the 389 

activation pattern will therefore closely resemble the underlying data, especially if it has some relation 390 

with the outcome. For deeper networks a PCA on the activation may reveal more detailed information 391 

(such as different patients subtypes or mediating factors) since the network applies more complex 392 

transformations to the data. The inclusion of genes on the X-chromosome allowed the network thus to 393 
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separate between the sexes but it did not have the capacity to model different effects independently from 394 

the input for each sex. To help the model to find a sex-specific effect we modified the network with sex 395 

information as an extra input to each gene node. After, training the network found the strongest sex-396 

specific gene effects for KL13, ANO9 and HECA. However, this addition to the network architecture did 397 

not improve performance.  398 

 399 

An earlier EWAS in only the Rotterdam study did not find significant associations between DNA 400 

methylation in blood and low-density lipoproteins cholesterol41. Another EWAS using BIOS data found 401 

only three significant associations, demonstrating that there is a very weak relation between methylation 402 

and LDL measurements from blood which makes the prediction task more complex42. The neural 403 

networks did find patterns in the training set that were also found in the validation set (up to an R2 of 0.17 404 

[95% CI, 0.16 - 0.18]) but this pattern did not generalize to the test cohorts with the exception of the 405 

Lifeline cohort. In this cohort the method achieved an R2 of 0.07 (95% CI, 0.05 - 0.08) in the test set, 406 

substantially lower than the performance of the validation set 0.13 (95% CI, 0.12 - 0.14). suggesting that 407 

the model had trouble generalizing to data from an unseen cohort. Overall, the low prediction performance 408 

might also indicates that the studied omic-data (gene expression and methylation from blood) might not 409 

contain enough information to accurately predict LDL-levels. 410 

In general, we found that including multiple omics inputs in the network improved performance. These 411 

multi-omic networks had a more stable performance and generalized better to the test cohorts. 412 

Surprisingly, deeper networks did not lead to better performance. Generally, one would expect deeper 413 

networks to perform better since they can model more complex interactions. Thus, it is possible that the 414 

optimal hyperparameter values for deeper networks lie outside the considered hyperparameter range or 415 

that more training examples are required to train these deeper networks. Interpreting the ME+GE networks 416 

revealed well-known genes such as GPR15 and AHRR for smoking that validate the results. However we 417 

also saw that the interpretation can vary between different random initializations and it is therefore 418 
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recommended to train networks with different random seeds for a more complete overview of important 419 

predictors. As for all prediction models, it is important to consider that predictive genes and pathways 420 

found are not necessarily causal genes and pathways as effects can be mediated. However, these genes and 421 

pathways do provide insight in the decision process of the neural network and may be used in follow-up.   422 

 423 

For good interpretation, proper regularization is important as it forces the network to use the most 424 

predictive input features. For example, an L1 penalty on the weights will force the network to learn sparse 425 

weights, resulting in a less complex model. In the absence of an L1 penalty on the weights, the network 426 

has more freedom to choose its weights. This does not necessarily harm performance, but may harm 427 

interpretability. In this work we use the L1 penalty to regularize the network, but other regularization 428 

methods could have been chosen. For example dropout43, this method drives the network to find a more 429 

stable solution by deactivating random sets of neurons during training. Another important factor for 430 

interpretation in visible neural networks is the quality of the prior knowledge used in creation. In this 431 

study, the annotations for the CpG sites were based on genomic distance. Potential improvements could 432 

come from using tissue specific and functional annotation databases such as ENCODE44  433 

 434 

 435 

Conclusion 436 

 437 
We believe that visible neural networks have great potential for genomic applications, especially for 438 

multi-omics integration. These interpretable neural networks can combine multi-omics data elegantly in a 439 

single prediction model and provide the importance of each gene, pathway and omic input for prediction. 440 

Additionally, we found that using multi-omic networks generally improved performance, stability and 441 

generalizability compared to interpretable single omic networks.  442 

 443 

 444 

  445 
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