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Abstract

Integrating multi-omics data into predictive models has the potential to enhance accuracy, which is essential
for precision medicine. In this study, we developed interpretable predictive models for multi-omics data by
employing neural networks informed by prior biological knowledge, referred to as visible networks. These
neural networks offer insights into the decision-making process and can unveil novel perspectives on the
underlying biological mechanisms associated with traits and complex diseases. We tested the performance,
interpretability, and generalizability for inferring smoking status, subject age and LDL levels using genome-
wide RNA-expression and CpG methylation data from blood of the BIOS consortium(4 population cohorts,
N_total=2940). In a cohort-wise cross validation setting, the consistency of the diagnostic performance and
interpretation was assessed.

Performance was consistently high for predicting smoking status with an overall mean AUC of 0.95 (95% ClI,
0.90 - 1.00) and interpretation revealed the involvement of well-replicated genes such as AHRR, GPR15 and
LRRN3. LDL-level predictions only generalized in a single cohort with an R? of 0.07 (95% Cl, 0.05 - 0.08). Age
was infered with a mean error of 5.16 (95% CI, 3.97 - 6.35) years with the genes COL11A2, AFAPL, OTUDTA,
PTPRN2, ADARB2 and CD34 consistently predictive. In general, we found that using multi-omics networks

improved performance, stability and generalizability compared to interpretable single omic networks.
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We believe that visible neural networks have great potential for multi-omics analysis; they combine multi-

omic data elegantly, are interpretable, and generalize well to data from different cohorts.

Introduction

Over the last decades, association studies have uncovered numerous genes and CpGs to be associated with
hundreds of traits and diseases®. This has led to tools for identifying high risk individuals and biomarkers
for early disease detection. For example, blood-based methylation biomarkers are currently used for early
diagnosis for various forms of cancer?3, However, for most complex diseases and traits, the combined
effects, within and between different omics types, is still largely unexplored. For a more comprehensive
understanding of human health and diseases and for more accurate prediction models, it is therefore
necessary to study omic types in relation to one another. Thanks to recent technological improvements for
high throughput sequencing and arrays technologies, the acquisition of multi-omics datasets has become

more feasible, providing opportunities for new multi-omics analysis tools*®.

Recently, novel statistical frameworks and machine learning techniques have been published that integrate
multi-omics data in a single analysis®’. These studies show the potential for multi-omics analysis to
improve prediction for various disorders while providing insight into the disease biology*. Integrating
different types of omics data in a single analysis is a challenging task, as each type has different,
procedures, preprocessing steps and analytical requirements®. Combining omics data presents additional
challenges, as each omic has unique dimensions, and it is essential to consider correlation structures both
within and between the different omics types. Thus, for the combined analysis of multiple omics types,

methods need to be flexible and be able to deal with the high dimensionality of these datasets.

Neural networks have demonstrated such flexibility and have been widely successful in fields such as
image classification'?, speech recognition!, and protein modelling®. In contrast to most tasks in image

analysis and speech recognition, the focus of multi-omics frameworks is not only on predictive
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performance but also in understanding the underlying etiology. To facilitate this, a new field in machine
learning, coined visible machine learning®® emerged, in which prior biological knowledge is embedded in
a neural network’s architecture to create interpretable neural networks'**’. Recent examples of these kinds
of neural networks applied in genomics are GenNet® and P-net'®. In the GenNet framework, gene and
pathway annotations were used to create interpretable neural networks for genetic risk prediction from
genotype. In P-net, methylation, gene expression and copy number variants were fed to an interpretable
neural network to differentiate between primary or metastatic prostate cancers. Other examples include,
PasNet?°, which integrated pathways information to predict survival for glioblastoma multiforme, a
primary brain cancer. DrugCell?! integrated Gene Ontology knowledge in a network to predict drug
response for various cancers and ParsVNN?2 continued on this work and pruned the network for increased

performance and better interpretability.

In this study, we create visible neural networks to analyze multi-omics data in a single analysis. We
extend the GenNet framework to create interpretable neural networks for multiple omics inputs and apply
it to a dataset with transcriptomics and methylomics data. We validate the method using four cohorts in
the BIOS consortium for the application of predicting age, low-density lipoproteins (LDL) levels and
smoking status. Age prediction from methylation or gene expression data has been an active research area
popularized by the work of Hannum et al. and Horvath?#, Additionally, it has been shown that these
clocks show an asymptote for older participants and strong biological sex differences, making age
prediction particularly interesting to study with neural networks?®. Smoking status and LDL level
predictions are well-suited to evaluate the performance, stability and interpretation of the method.
Methylation and gene expression are highly predictive for smoking status and predictive genes are well-
documented®®2”. On the other hand, low lipid lipoprotein cholesterol levels is a complex outcome with
both environmental and genetic factors?,

To summarize, we develop visible neural networks for multi-omics data and investigate their
generalizability and robustness for three different phenotypes by leveraging the multi-cohort setting of the
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84  BIOS consortium in a cohort-wise cross validation analysis. Furthermore, we use the flexibility and
85 interpretability of these models to find sex-specific effects, omic-specific information and genes and
86  pathways important for prediction

87
88 Materials & Methods

89 BIOS
90 In this study, multi-omics data gathered by the Biobank-based Integrative Omics Study (BIOS)
91  consortium was used to predict smoking status, age and low-density lipoprotein levels. Specifically, we
92  used transcriptome and methylome data from BIOS four largest cohorts; LifeLines (LL), Leiden
93  Longevity Study (LLS), Netherlands Twin Register (NTR), and Rotterdam Study (RS). All cohorts within
94  the BIOS consortium followed the same procedure in gathering and processing data. For each participant,
95 transcriptome and the methylome were measured in whole blood samples taken from the same visit. DNA
96  methylation was profiled according to the manufacturer’s protocol using the Infinium I1lumina
97  HumanMethylation 450k arrays, while blood was first depleted from globin transcripts for RNA
98  sequencing. A detailed description of all data generation and preprocessing steps for the RNA sequencing
99  and DNA methylation data can be found in Zhernakova et al. (2017)?° and Bonder et al. (2017)%. Using
100  the BBMRI-NL’s Integrative Omics analysis platform®!, all individuals that had both RNA-seq and
101  methylation data (B-value) available were selected, resulting in a dataset with 2940 individuals. Y-
102  chromosomal data was excluded, X-chromosomal and autosomal measurements were included. Finally,
103  RNA-seq expression data was filtered using an expression inclusion criterion of one count per million on
104  average across all samples or higher®. An overview of the characteristics for each cohort can be found in
105 Table 1.
106

107
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Rotterdam LifeLines Leiden Netherlands | Total of all
Study Longevity Twin cohorts
Study Register
Abbreviation RS LL LLS NTR
Individuals 693 727 646 874 2940
Sex, male | female | 397 | 296 421306 340|306 577 | 297 1735|1205
Smokers*, current | 75| 231 107 | 337 75184 155 | 500 4121252
| never
Age [years], mean | 67.6 45.4 58.8 38.3 51.4
+95% CI (67.1-68.0) | (44.4-46.3) | (58.3-59.3) | (37.3-39.3) | (50.9-52.0)
LDL [mmol/L], 3.32 3.19 3.36 2.90 3.17
mean + 95% CI (3.26 - 3.39) (3.12-3.25) | (3.29-3.43) | (2.84-2.96) | (3.14-3.2)
108 Table 1. Main characteristics for all cohorts used in this study. Note the age differences between the cohorts; participants of the
109 Netherlands Twin Register were on average 29 years younger than the participants of the Rotterdam Study. *Former smokers
110 were excluded in this study. Cl; confidence interval.
111
112 Network design
© MEnetwork | <) ME+GE network
Gene (GE)
@ Combined gene
i T @ representation
| Gene (ME)
; - ; —_— Output node
; P 1 ' @
: @ GE network | ]
' T
I - B 5 —— ;
. 3 |
| ' e
@ |
____________________________________________________________ | ®
[ Methylation (CpGs) ' Covariate
I  Gene expression inputs ME+GE+cov network
I Combined gene representation A
Weight per gene per omic
I Covariates (e.g. sex) Conneclions based on gene annotations. Learned weights
113 represent the importance of the CpG
114 Figure 1. Schematic overview of the neural network architectures used in this study. In the ME network (a), DNA methylation
115 data (CpGs) are grouped and connected using gene annotations. The resulting 10,404 gene nodes are directly connected to the
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116 output node. Combining the ME network and the the GE network (b) for gene expression, results in the ME+GE network (c). In
117 the ME+GE network each gene has a node per omic and a combined gene representation. Design (d) adds a covariate input to
118 the combined gene representation for each gene. This allows the ME+GE network to model gene-specific effects for the covariate.
119 A schematic overview of the pathway network and a similar fully connected network can be found in Supplementary Figure 1.

120  Neural network architectures were created using principles from the GenNet framework?. This

121 framework uses prior knowledge (e.g., gene and pathway annotations) to connect input data to the neurons
122 inthe next layer of neural network. CpG methylation sites were annotated using GREAT32 (Genomic

123 Regions Enrichment of Annotations Tool) and connected to the closest gene based on genomic distance
124 (in base pairs) resulting in 17,283 gene annotations for 481,388 methylation sites. These gene annotations
125  were intersected with the 14,248 remaining gene expression measurements left after preprocessing,

126 resulting in an overlap of 10,404 genes between both omic types. This set of overlapping genes was used
127  in all analyses. The methylation gene layer was built using these genes and their corresponding 324,295
128  CpGs. For the creation of pathway layers the set of overlapping genes was grouped into KEGG*s

129  functional pathways®® from ConsensusPathDB?*. Out of the 10,404 genes, 4813 genes were annotated for

130  at least one pathway.

131  The gene expression network (GE network, Figure 1a) is the simplest network and consists of the gene
132 expression input connected straight to the output node similar as in LASSO regression. The methylation
133 network (ME network, Figure 1b) which consists of the input methylation data, a gene layer with neurons
134  representing gene methylation made and an output node. The methylation and gene expression network
135  (ME + GE network, Figure 1c) combines both networks. In a similar way as in the ME network, CpGs are
136  fed to the first layer of the network and reduced to one node per gene using gene annotations. In contrast
137  to most other methods, gene expression is not concatenated to the input but used as a separate input in the
138 gene level of the network. In this layer, gene expression is combined with the neurons representing genes

139 by methylation. Finally, a single node was used to predict the target phenotype.

140  The activation function transforms the output signal for each neuron. For classification tasks, such as
141  predicting if an individual smokes or not, a sigmoid activation function was used to scale the output to the

142 range [0, 1] in the last neuron. Arctanh activation functions were used for all other layers to introduce non-
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linearities, increasing the modelling capabilities of the network. For regression tasks, such as predicting
continues traits such as age and LDL levels, ReLu activation functions with output range [0, ) were used
for all layers. For a better initialization of the network, the bias of the last neuron was set to the mean

value of the predicted outcome in the training set.

Deeper networks

For more complex modelling of the interactions between expression, methylation and phenotypes, we also
evaluated deeper networks (Supplementary Figure 1). First, using KEGG’s functional pathways®*3* as
prior knowledge, three hierarchical pathway layers were created. The first layer groups genes into 321
functional pathways such as: insulin secretion, thyroid hormone synthesis and PPAR signaling pathway.
The forementioned pathways are all part of the endocrine system group which, in turn, is a subgroup of
organismal systems. The mid and global-level pathway layers were created adopting this hierarchical
structure, consisting of 44 and 6 groups, respectively. Each pathway is represented by its own neuron
resulting in three layers with 321, 44 and 6 nodes each. Not all genes were annotated by the KEGG
functional pathway annotations, 5591 genes did not receive a functional pathway annotation. To ensure
connectivity to the output for all genes, connections that skip the pathway layers (skip connections) were

added from each gene to the output node.

Additionally, a deeper network was constructed without any additional prior biological knowledge to
compare with the KEGG pathway network. Similarly, the ME+GE network served as a basis for this
network and three densely connected layers, 321, 44 and 6 nodes each, were added between the gene layer
and the output node. The resulting network has thus the same number of neurons as the KEGG pathway

network, but has fully connected layers instead of layers based on KEGG pathway information.

Training and evaluation
The neural networks were evaluated in a cohort-wise cross validation setup as shown in Figure 2 to assess
the generalizability of the models across cohorts. Each fold, one cohort is held out as test set, while the

three other cohorts were used for training and validation (leave-one-out method). From these three cohorts

7
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75% of the individuals were randomly selected for the training set while the remaining 25% was used in
the validation set to tune the hyperparameters. For all methods the same combinations of hyperparameters
were tuned on the validation set. Combinations included learning rates of [0.01, 0.001, 0.005, 0.0001] and
L1 penalty on the weights of the combined gene and/or methylation gene layer of [0.01, 0.001, 0.0001]. A
higher L1 penalty increases the cost for the network to include more contributors to predict the outcome.
The L1 penalty thus enforces sparsity over the weights, so that most inputs get assigned a (near) zero
weight while important inputs still get assigned a high weight. This L1 regularization on the weights helps

preventing overfitting and increases interpretability.

The mean squared error (MSE) was used as a loss function to optimize for regression tasks. For
classification tasks, weighted binary cross entropy, with a weight inverse to the ratio of the class
imbalance, was used as a loss function. The loss function quantifies the difference between current
outcome and the true label and is optimized during training. The performance of the resulting network is
evaluated using the area under the receiver operating curve (AUC) for classification tasks, and the root
mean squared error (RMSE) and explained variance for regression tasks (explained variance can be found
in the Supplementary Materials). For each fold the hyperparameters of the best performing model in the
validation set were selected to evaluate on the test cohort. Since neural networks use stochastic processes
that can influence the outcome, we trained the network with the best hyperparameters ten times with a

different random seed to investigate its stability.
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Cohort-wise cross validation

75% Training + 25% validation Test
i o T T e T
Fold 1 NTR LLS LL RS
L A A A L 'y
i LY T Ty i Y
Fold 2 RS NTR LLS LL
L A A A Y, vy
ra Ty ra !
Fold 3 LL RS NTR LLS
) . 4 S
Fold 4 LLS LL RS NTR
., A L A

186
187 Figure 2. Cohort-wise cross-validation. For each fold three cohorts were used to train and validate the hyperparameters of the

188 model (75% training, 25% validation). The remaining, left-out cohort served as an independent test set and the average

189 performance over the test cohorts was reported. The cohort-wise cross validation was done for each phenotype (smoking, LDL
190 and age prediction). Abbreviations: Netherlands Twin Register (NTR), Leiden Longevity Study (LLS), LifeLines (LL), Rotterdam
191 Study (RS).

192  Additional analyses

193  Neural networks are flexible methods and with the inclusion of prior biological knowledge different
194  architectures can be explored to provide more insight into the interaction between omics types,

195  contribution of covariates and gene-specific contribution of covariates. For each of these analyses we

196  made small changes to the ME+GE networks.

197  Omic-specific information

198  Gene expression and methylation data contain redundant information with respect to each other. However,
199 notall information that is present in the one may be present in the other data type. To evaluate the

200  independent contribution of each omics to the prediction we add a L1 penalty for one omics type in the
201  model. This introduces a trade-off for the neural network: the gain in performance for including

202  information of the penalized omic (i.e., RNA expression of a single gene or the methylation representation
203  of asingle gene) must outweigh its penalty. If the model uses only the non-penalized omic type without

204  loss of prediction performance, it is likely that there was no omic-specific information. However, if the
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model still decides to use parts of the penalized omics data, this information is most likely unique to the

penalized omic type and was therefore required for prediction.

Covariate-gene interaction

Including covariates in the model, for example sex and age for smoking, can improve performance and
interpretation. Commonly, the covariates are included as an extra layer at the end. However, by adding a
covariate for each gene, more specific information in how a covariate affects a single gene can be obtained
(see Figure 1d). For each phenotype we tested both, a model with covariates in the last layer and a model

with covariates for each gene.

Subtyping with activation patterns

In contrast to fully-connected neural networks, the visible neural network architectures used in this study
are constructed based on prior biological knowledge can be interpretated by inspecting the weights of the
incoming and outgoing connections. The strength of the weights (e.g., between CpGs and genes,
expression and genes, genes and pathways), all express the importance of these biological elements for the
predicted outcome. The weights of a neural network are a result of an optimization over the population it
was trained on, and are thus a result of the population characteristics of the training set. However, neural
networks may learn different patterns for the same outcome. By inspecting the weights general
information is learned about the importance of each element but this does not show differences between
groups or individuals. Based on differences between individuals, some neurons can activate for a certain
group of individuals, while it does not for others. To gain an overview of the different patterns that are
learned by the network we applied principal component analysis®* (PCA) over all the activations for all
(gene-level) nodes for each individual. In this PCA, individual-level differences may cluster and provide

groups of individuals for which the neural network used a similar activation pattern.

10
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228  Results

Network | AUC validation cohorts AUC test cohort Mean
Phenotype | type test AUC
over all
cohorts
RS* | LL* | LLS* | NTR* RS LL LLS | NTR
Smoking ME+GE ] 0.92 | 0.93 | 0.91 0.93 0.98 0.92 095 |091 ]J0.95
(090- | (0.92- | (0.90- | (0.91- | (098- | (0.92- (0.95- | (0.89- | (0.90-1.00)
0.94) 0.93) | 0.92) 0.94) 0.98) 0.93) 0.96) 0.92)
ME 0.93 |0.94 |0.95 0.93 0.97 0.94 096 |0.95 ]0.95
(092- | (094- | 094- | (093- | (097- | (0.93- (095- | (0.95- | (0.93-0.98)
0.94) 0.95) | 0.95) 0.94) 0.98) 0.94) 0.96) 0.96)
GE 0.83 |0.82 | 0.83 0.87 0.87 0.85 0.87 |0.80 ]0.85
(083- | (0.82- | (0.83- | (0.86- | (087- | (0.85- (0.87- | (0.80- | (0.80-0.90)
0.84) 0.82) | 0.83) 0.87) 0.88) 0.85) 0.88) 0.80)
I S ——
Phenotype | Network | RMSE validation cohorts RMSE test cohorts Mean test
type RSME
over all
cohorts
RS* | LL* | LLS* | NTR*|] RS LL LLS | NTR
Age ME+GE | 3.85 |4.13 | 3.88 4.12 5.44 6.04 420 |6.33 |5.16
(372- | (403- | 378- | (399- | (523- | (576- (411- | (587- | (3.97-6.35)
3.98) 4.23) | 3.98) 4.25) 5.65) 6.31) 4.29) 6.8)
ME 14.48 | 8.23 | 18.06 | 11.28 | 15.69 | 8.14 13.17 | 22.66 | 15.00
(13.04- | (7.26- | (15.01- | (9.90- | (12.37- | (6:50- (9.13- | (19.67- | (4.31-25.69)
1592) | 9.49) | 21.11) 12.66) | 19.0) 9.79) 17.2) 25.65)
GE 6.79 | 6.52 | 6.40 6.16 9.03 1223 | 6.87 | 17.77 | 11.45
(677- | (651- | 6.38- | (6.14- | (880- | (1204- | (6.80- | (17.51- | (4.21-18.68)
6.81) 6.53) | 6.41) 6.17) 9.26) 12.41) 6.95) 18.03)
LDL ME+GE ] 0.88 | 0.88 | 0.85 0.92 0.92 0.89 0.93 |0.93 ]0.93
(087- | (0.88- | (0.84- | (0.91- | (092- | (0.89- (0.93- | (0.91- | (0.88-0.99)
0.88) 0.88) | 0.86) 0.92) 0.93) 0.90) 0.94) 0.95)
ME 1.18 1.14 | 1.10 1.12 1.29 1.17 110 |1.23 1.27
(112- | (xo6- | 0o2- | @os- | (r15- | (o7- (101- | (115- | (0.8-1.75)
1.25) 1.22) | 1.18) 1.16) 1.44) 1.26) 1.19) 1.30)
GE 0.88 | 0.88 | 0.85 0.90 0.94 0.90 093 |1.02 ]0.98
(088- | (0.88- | (0.85- | (0.90- | (093- | (0.89- (093- | (0.98- | (0.79-1.17)
0.88) 0.89) | 0.86) 0.91) 0.94) 0.90) 0.93) 1.07)

229 Table 1. Performance for cohort-wise cross validation, mean with 95% confidince interval over 10 runs. The area under the curve
230 is reported for the classification task (smoking status prediction) and the root mean squared error (RMSE) for the regression

231 tasks; predicting age and LDL levels. ME; Methylation, GE; Gene expression, ME+GE, both methylation and gene expression
232 as an input for the neural network. RS; Rotterdam study, LL; LifeLines, NTR; Netherlands Twin Register, LLS; Leiden Longevity
233 Study . See Supplementary Table 1 for the performance of out-of-the-box scikit-learn implementations for each omic.*The name of
234 the test cohort is used to denote the fold. Thus, for the first fold, RS, was used for testing and LL+LLS+NTR were used for

235 training and validation (75% training, 25% validaton).

236
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Interpretation: gene contribution for predicting smoking status in the cohort-wise cross validation
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238 Figure 3. Overview of the important genes for predicting smoking status for each fold. Contribution was measured in percentage
239 of the total weight assigned to each gene. For each gene, the pie chart shows the contribution of methylation and gene expression.
240 Error bars indicate the standard deviation over ten runs for the exact same network trained with the same hyperparameters.

241  Cohort-wise cross validation

242 An overview of the performance for each cohort and for the three different architectures can be found in
243 Table 2. It shows the mean predictive performance and standard deviation for each fold for ten networks
244 trained with the same hyperparameters but with different random seeds. The corresponding

245  hyperparameters, chosen on the best performance in the validation set, can be found in Supplementary

246 Table 2.

247  Predicting smoking status
248  Both gene expression and methylation were highly predictive for smoking status in all folds. The best
249  performance was achieved by the ME+GE network, thus with both methylation and gene expression input,

250 in the fold with the Rotterdam Study as test cohort (all other cohorts were used for training and
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validation). In this fold, the network achieved a near perfect classification with area under the receiver
operating curve (AUC) of 0.98 (95% confidence interval, 0.98 - 0.98). Over all folds, the ME networks
and ME+GE networks performed best with a mean AUC of 0.95 (95% CI, 0.93 - 0.98) and 0.95 (95% ClI,
0.90 - 1.00) respectively. The GE network, based solely on gene expression input, performed substantially
worse with a mean AUC of 0. 0.85 (95% ClI, 0.80 - 0.90). Surprisingly, the mean test performance over all
folds for the ME+GE network was lower for deeper networks with three fully connected layers, achieving
a mean AUC of 0.91 (95% ClI, 0.85 - 0.96) (see Supplementary Table 3). In general, each fold obtained
good predictive performance for predicting smoking status, the GE network in the fold with NTR as test

cohort achieved the worst overall predictive performance with a mean AUC of 0.80 (95% CI, 0.80 - 0.80).

The ME+GE networks exhibit a stable performance, with small confidence intervals for the area under the
curve and standard deviations not exceeding 0.03. However, there may be significant variations in the
underlying weights due to stochastic processes used for network initialization and training, resulting in
different starting points and optimization paths for all weights across runs. As the weights within a neural
network operate relative to each other and cannot be directly compared between networks, we compared
the relative contribution of each gene instead. Figure 3 demonstrates that certain genes are consistently
utilized by the network to differentiate between current smokers and non-smokers across all folds,
although there can be notable differences in the percentage of total weight each gene holds. In each fold,
GPR15 is the most or second most predictive gene for smoking status, its signal is mainly driven by gene
expression as visualized in Figure 3. Specifically, 79.8 + 33.3% (mean and standard deviation over all
folds) of the weights that drive the signal for this gene are from the gene expression input. The next gene,
AHRR, is important for prediction in three out of four cohorts. This signal is driven by both gene
expression (44.3%) as well as methylation (55.6%). Other consistently highly predictive genes (i.e., genes
with a weight contribution higher than 1% in three out of four cohorts) are SEMAGB, PID1, LRRN3,
P2RY6, CDKN1C, CLEC10A and KCNQL1. (See Supplementary Table 4 for more details). All these

consistently highly predictive genes were found before in association studies for smoking in gene
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276  expression and methylation®®-38, A graphical overview of important pathways for smoking prediction can

277  be found in Supplementary Figure 2.

278  To investigate the interplay between the omic types, two additional analyses were conducted where either
279  gene expression or methylation gene representations were penalized (see Supplementary Figures 3,4 and
280  5). Without penalization the weights for gene expression and methylation were nearly equally divided
281  after training. Weights connected to gene expression input occupied 51.6 + 1.3% of the weights over all
282  the ME+GE networks, the remainder used for methylation. In these experiments, we found that an omic
283  specific L1 penalty of 0.01 for gene expression reduced the contribution of the weights associated with
284  gene expression to 0.69 + 1.16% while a similar threshold reduced the weights associated with

285  methylation to 2.56 + 1.73%. A more severe omic specific L1 threshold of 0.001 for methylation reduced
286  the use of methylation in the top genes nearly completely, only for LRNN3 methylation input is still used
287  inthe second and third fold with (respectively ~41% and 16% of the weights for this gene). However, with
288  the same threshold gene expression inputs are responsible for 15% of the weights for AHRR in the first
289  fold, nearly 29% of the GPR15 weights in the second fold and 39% of RERL1 in the fourth fold (see Error!
290 Reference source not found. and 4). Interestingly, the importance of AHRR was severely impacted by
291  the methylation penalty, its gene expression was barely used to predict smoking status when methylation
292  was penalized.

293  Predicting age

294  Networks trained with both methylation and gene expression data (ME+GE) achieved a mean error of
295  5.16 (95% ClI, 3.97 - 6.35) years over all folds for age prediction (see Table 1). Between folds, there were
296 large differences in performance for predicting age. Most notably, networks did not generalize well in
297  folds that have either the Rotterdam Study (ranging between 52 to 80 years) or the Leiden Longevity

298  Study (ranging between 30 to 79 years) as test cohort, the two cohorts with the oldest population. For

299 these cohorts, the explained variance in the test set was substantially lower than in the validation set:

300 Rotterdam study test 0.40 (95% CI, 0.37 - 0.43), 0.94 (95% CI 0.93 - 0.94) validation, Leiden Longevity
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301  Study test 0.95 (95% ClI, 0.95 - 0.95), 0.61 (95% ClI, 0.60 - 0.63) validation. Aside from being older, these
302  cohorts also have a smaller spread in age distribution compared to the two other cohorts (See Figure 4a
303  and Supplementary Figure 6). The Netherlands Twin Register cohort ranges between roughly 18 and 80

304  years old while individuals from the Lifelines cohort were between 18 and 81 years old.

305  Differences between omics and network types were also larger for age prediction than for smoking status
306  prediction. The ME+GE network consistently outperformed the single-omic networks with substantial
307  margins: the mean explained variance over all folds was 0.72 (95% CI, 0.36 - 1.07) for the ME+GE

308  network, 0.30 (95% ClI, -0.26 - 0.86) for gene expression, while the ME networks did not find any

309  predictive pattern that translated to the test cohort. Training and validation performance was generally
310  poor for the ME network, and although the GE network obtained good validation performance in terms of
311  explained variance for each fold, this did not translate in folds with the Rotterdam study and Leiden

312 Longevity Study as test cohorts.

313  Interpretation of the ME+GE network revealed that many genes had a small contribution for age

314  prediction (see Supplementary Figure 6). The neural network found a more multifactorial solution for age
315  prediction than for smoking, the most important gene over all folds only occupied 0.68% of all weights for
316  predicting age compared to 3.76% for smoking. The most predictive genes with a weight contribution
317 higher than 0.30% of the total weight in three out of the four folds were COL11A2, AFAP1, OTUDT7A,
318 PTPRN2, ADARB2 and CD34 (Supplementary Table 5). These most predictive genes were not part of
319  Hannum et al. and Horvath’s epigenetic clocks?3%4,

320  The first principal components of the activation patterns of the ME+GE network revealed distinct

321  activation patterns for the different sexes with a gradient in each cluster (see 4b). Although, there is no
322 significant difference in the absolute error between the sexes (Wilcoxon rank-sum, p-value of 0.98,

323  Supplementary Figure 7,8), the first principal component clusters perfectly for males and females while
324  the second principal component is strongly related with age. Additional experiments showed that the

325  clustering of the sexes is mainly driven by genes on the X chromosome (see Supplementary Figure 9).
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Including sex as a covariate in the last layer of the model did not improve the performance of the model
(mean RMSE over all folds of 7.31 [95% ClI, 2.89 - 11.73]). Including sex information to each gene also
did not lead to a better performance (mean RMSE over all folds of 10.64 [95% CI, 4.12 - 17.15]).
However, inspecting the weights between the covariate and the genes for the best performing network
revealed strong sex-specific weights for, among others: KLF13, ANO9 and HECA (for more details see
Supplementary Figure 10). For these genes the network needed strong weights to model sex-specific

effects for age prediction.

PCA of the activation patterns per individual of the ME+GE nE:tworlé0
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Figure 4. a) Test predictions for the ME+GE network for all folds (each cohort) with corresponding distributions (See
Supplementary 11 and 12 for the GE and ME networks). b) Activation of the ME+GE trained for age prediction. A principal
component analysis clearly shows two distinct activation patterns corresponding to the different sexes. Principal component 1 is

related to the sex differences, principal component 2 to the age of the participants.

After applying an omic-specific L1 penalty for methylation of 0.01, the network only used the methylation
input for gene NEDD1 in the second fold with nearly 33% of the weight contribution for this gene from
methylation, while in the third fold MAD1L1 had a methylation contribution of 23% (see Supplementary
Figure 14). With the same threshold for penalizing gene expression inputs, DNAJB6 had the largest gene
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expression use with 31% of the weight for this gene assigned to gene expression input (Supplementary
Figure 15). The deeper neural network architectures quickly overfitted, reaching high performance on the
training data which did not generalize to the validation and test set. These networks were consistently
outperformed by the ME+GE network (Supplementary Table 5). The best performing network build with
KEGG pathway information had the pathway: “environmental information processing” as the most
predictive global pathway because of high contributions of membrane transport (ABC transporters), signal

transduction, and signaling molecules and interaction (see Supplementary Figure 16).

Predicting low-density lipoproteins levels

ME+GE and GE networks explained up to 17% of the phenotypic variance in the validation set but these
networks only generalized in the second fold to an explained variance of 0.07 (95% ClI, 0.05 - 0.08) for the
ME+GE network and 0.04 (95% CI, 0.04 - 0.05) for the GE network in the Lifelines test cohort (see
Error! Reference source not found.). In this fold, the largest gene, FAM53A only occupied 0.052% of
the total weight (Supplementary Figure 17). The weights for all genes in the ME+GE network were small
and evenly spread, indicating that the network did not find individual genes with a strong effect for
predicting low-density lipoproteins levels. Additional layers, be it pathways or densely connected layers,

did not improve predictive performance.

Discussion

In this paper we evaluated the performance, interpretability and stability of visible neural networks for
single and multi-omics data. Interpretability was achieved by embedding prior biological knowledge such
as gene and pathway annotations in the neural network architecture. We applied these models to predict
smoking status, age and low-density lipoprotein levels in a cohort-wise cross validation using methylation

and gene expression data.

For smoking, single omic networks and multi-omic networks performed consistently high across all
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cohorts for predicting smoking status. Predicting smoking status is a relatively simple task, since smoking
is a powerful inducer of DNA methylation and gene expression alterations®. This is also reflected by the
mean AUC of 0.95 over all folds that the ME+GE and ME networks achieved. It is slightly better than the
performance of Maas et al. who reported an AUC of 0.90 in an external dataset with a weighted
combination of just thirteen CpGs. Inspection of the weights of the ME+GE network revealed GPR15,
AHRR and LRRN3 as most important genes for prediction, which is consistent with existing
literature?®273%40  In the ME+GE network the contribution of both omics types was nearly equal (in terms
of weights), while the gene expression-based network by itself was less predictive than the methylation-
based networks. Applying an omic-specific penalty for methylation input showed that the ME+GE

network needed some methylation input to achieve similar performance with expression information.

For predicting age, the ME+GE network outperformed the single ME or GE networks. The performance
of this network in the test cohorts varied between a R?of 0.40 (95% ClI, 0.37 - 0.43) and 0.91 (95% Cl,
0.90 - 0.92). This difference in performance is probably caused by the different distributions in age in the
cohorts, depending on the cohorts in the training set the networks are shown less examples of older or
younger individuals. Similar effect were also seen in traditional methods®. Based on the predictive
performance shown in Table 2 one could conclude that for age prediction, usage of the two omics types
increased stability and performance for these type of neural networks compared to the single omic
networks. Additionally, we have evaluated whether the network used sex-information in the decision
process for age prediction. The first principal component of the activations of the neural network showed a
perfect separation between the sexes, mostly caused by genes on the X-chromosome, while the second
principal component had a clear correlation with age. Owing to the shallowness of the networks, the
activation pattern will therefore closely resemble the underlying data, especially if it has some relation
with the outcome. For deeper networks a PCA on the activation may reveal more detailed information
(such as different patients subtypes or mediating factors) since the network applies more complex
transformations to the data. The inclusion of genes on the X-chromosome allowed the network thus to
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separate between the sexes but it did not have the capacity to model different effects independently from
the input for each sex. To help the model to find a sex-specific effect we modified the network with sex
information as an extra input to each gene node. After, training the network found the strongest sex-

specific gene effects for KL13, ANO9 and HECA. However, this addition to the network architecture did

not improve performance.

An earlier EWAS in only the Rotterdam study did not find significant associations between DNA
methylation in blood and low-density lipoproteins cholesterol*'. Another EWAS using BIOS data found
only three significant associations, demonstrating that there is a very weak relation between methylation
and LDL measurements from blood which makes the prediction task more complex*2. The neural
networks did find patterns in the training set that were also found in the validation set (up to an R? of 0.17
[95% CI, 0.16 - 0.18]) but this pattern did not generalize to the test cohorts with the exception of the
Lifeline cohort. In this cohort the method achieved an R? of 0.07 (95% Cl, 0.05 - 0.08) in the test set,
substantially lower than the performance of the validation set 0.13 (95% CI, 0.12 - 0.14). suggesting that
the model had trouble generalizing to data from an unseen cohort. Overall, the low prediction performance
might also indicates that the studied omic-data (gene expression and methylation from blood) might not

contain enough information to accurately predict LDL-levels.

In general, we found that including multiple omics inputs in the network improved performance. These
multi-omic networks had a more stable performance and generalized better to the test cohorts.
Surprisingly, deeper networks did not lead to better performance. Generally, one would expect deeper
networks to perform better since they can model more complex interactions. Thus, it is possible that the
optimal hyperparameter values for deeper networks lie outside the considered hyperparameter range or
that more training examples are required to train these deeper networks. Interpreting the ME+GE networks
revealed well-known genes such as GPR15 and AHRR for smoking that validate the results. However we

also saw that the interpretation can vary between different random initializations and it is therefore
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recommended to train networks with different random seeds for a more complete overview of important
predictors. As for all prediction models, it is important to consider that predictive genes and pathways
found are not necessarily causal genes and pathways as effects can be mediated. However, these genes and

pathways do provide insight in the decision process of the neural network and may be used in follow-up.

For good interpretation, proper regularization is important as it forces the network to use the most
predictive input features. For example, an L1 penalty on the weights will force the network to learn sparse
weights, resulting in a less complex model. In the absence of an L1 penalty on the weights, the network
has more freedom to choose its weights. This does not necessarily harm performance, but may harm
interpretability. In this work we use the L1 penalty to regularize the network, but other regularization
methods could have been chosen. For example dropout®, this method drives the network to find a more
stable solution by deactivating random sets of neurons during training. Another important factor for
interpretation in visible neural networks is the quality of the prior knowledge used in creation. In this
study, the annotations for the CpG sites were based on genomic distance. Potential improvements could

come from using tissue specific and functional annotation databases such as ENCODE*

Conclusion

We believe that visible neural networks have great potential for genomic applications, especially for
multi-omics integration. These interpretable neural networks can combine multi-omics data elegantly in a
single prediction model and provide the importance of each gene, pathway and omic input for prediction.
Additionally, we found that using multi-omic networks generally improved performance, stability and

generalizability compared to interpretable single omic networks.
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