

1 **Estimating heritability explained by local ancestry and evaluating stratification bias in
2 admixture mapping from summary statistics**

3 Tsz Fung Chan¹, Xinyue Rui¹, David V. Conti¹, Myriam Fornage², Mariaelisa Graff³, Jeffrey
4 Haessler⁴, Christopher Haiman¹, Heather M. Highland³, Su Yon Jung⁵, Eimear Kenny⁶, Charles
5 Kooperberg⁴, Loic Le Marchand⁷, Kari E. North³, Ran Tao^{8,9}, Genevieve Wojcik¹⁰, Christopher R.
6 Gignoux¹¹, PAGE Consortium, Charleston W. K. Chiang^{1,12,*}, Nicholas Mancuso^{1,12,*}

7

8 1. Center for Genetic Epidemiology, Department of Population and Public Health Sciences,
9 Keck School of Medicine, University of Southern California
10 2. Brown Foundation Institute for Molecular Medicine, The University of Texas Health
11 Science Center, Houston, TX, USA
12 3. Department of Epidemiology, Gillings School of Global Public Health, University of North
13 Carolina, Chapel Hill, North Carolina, United States of America
14 4. Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
15 5. Translational Sciences Section, School of Nursing, Jonsson Comprehensive Cancer
16 Center, University of California, Los Angeles, Los Angeles, CA, United States
17 6. Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY,
18 USA
19 7. Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
20 8. Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
21 9. Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
22 10. Department of Epidemiology, Bloomberg School of Public Health, John Hopkins
23 University, Baltimore, MD, USA
24 11. Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical
25 Campus, Aurora, CO, USA
26 12. Department of Quantitative and Computational Biology, University of Southern California

27 * co-supervised this work

28

29 **Abstract**

30 The heritability explained by local ancestry markers in an admixed population (h_γ^2) provides
31 crucial insight into the genetic architecture of a complex disease or trait. Estimation of h_γ^2 can be
32 susceptible to biases due to population structure in ancestral populations. Here, we present a
33 novel approach, Heritability estimation from Admixture Mapping Summary STAtistics (HAMSTA),
34 which uses summary statistics from admixture mapping to infer heritability explained by local
35 ancestry while adjusting for biases due to ancestral stratification. Through extensive simulations,
36 we demonstrate that HAMSTA h_γ^2 estimates are approximately unbiased and are robust to
37 ancestral stratification compared to existing approaches. In the presence of ancestral
38 stratification, we show a HAMSTA-derived sampling scheme provides a calibrated family-wise
39 error rate (FWER) of ~5% for admixture mapping, unlike existing FWER estimation approaches.
40 We apply HAMSTA to 20 quantitative phenotypes of up to 15,988 self-reported African American
41 individuals in the Population Architecture using Genomics and Epidemiology (PAGE) study. We
42 observe \hat{h}_γ^2 in the 20 phenotypes range from 0.0025 to 0.033 (mean $\hat{h}_\gamma^2 = 0.012 \pm 9.2 \times 10^{-4}$),
43 which translates to \hat{h}^2 ranging from 0.062 to 0.85 (mean $\hat{h}^2 = 0.30 \pm 0.023$). Across these
44 phenotypes we find little evidence of inflation due to ancestral population stratification in current
45 admixture mapping studies (mean inflation factor of 0.99 ± 0.001). Overall, HAMSTA provides a
46 fast and powerful approach to estimate genome-wide heritability and evaluate biases in test
47 statistics of admixture mapping studies.

48 Introduction

49 Admixture mapping (AM) aims to identify genomic regions associated with a disease or
50 quantitative trait in recently admixed populations^{1–7} by leveraging the differences in allele
51 frequencies between local ancestries⁸. AM provides a powerful approach to complement genome-
52 wide association studies (GWAS) in admixed populations due to local ancestry information better
53 tagging uncommon or poorly imputed causal variants⁵ and spanning larger genomic regions, thus
54 reducing the multiple testing burden⁹, enabling discoveries with relatively smaller sample sizes
55^{3,10}. Similarly, recent work¹¹ demonstrated that local ancestry information, which is summarized
56 by heritability explained by local ancestry h_γ^2 , can be leveraged to estimate narrow-sense
57 heritability h^2 in admixed populations, unlike the genotype-based lower bounds (i.e. h_g^2). Multiple
58 works have shown that population structure can bias association tests and estimates of h_g^2 ^{12,13}.
59 However, it is less understood how similar demographic phenomena bias AM and h_γ^2 inference in
60 admixed populations.

61 Admixed populations are typically modeled as a mixture of multiple continental ancestries (e.g.,
62 African, European, or Native American) with finer-scale structure within ancestral populations left
63 unmodeled. Nevertheless, human populations are often structured across both space and time.
64 For example, European ancestry individuals can be modeled as a mixture of at least three ancient
65 populations¹⁴, and Native American ancestry components found in Latinos can also be derived
66 across multiple subpopulations spread across Latin America¹⁵. This unmodeled fine-scale
67 structure could lead to potential biases in downstream association testing. Indeed, this
68 phenomenon has been demonstrated in European populations^{16,17}, and could similarly impact
69 inference in admixed populations when it is not fully accounted for¹⁸. When estimating h_g^2 using
70 SNP data of large sample size, a robust approach to population stratification is to estimate h^2 and
71 test statistic inflation simultaneously¹⁹. Examples of this approach include linkage disequilibrium
72 score regression (LDSC)¹³ and cov-LDSC¹². While these methods are designed for SNP data, it
73 remains unclear how applicable they are on estimating h_γ^2 using summary statistics from
74 admixture mapping studies.

75 In this study we propose HAMSTA (Heritability estimation from Admixture Mapping Summary
76 STAtistics), a novel likelihood-based approach to infer h_γ^2 from admixture mapping summary
77 statistics. To achieve robust and efficient computation, HAMSTA transforms the correlated test
78 statistics using a truncated singular value decomposition (tSVD) and performs maximum-
79 likelihood inference while accounting for residual inflation due to stratification within ancestral
80 populations. We perform extensive simulations and demonstrate that HAMSTA provides
81 approximately unbiased estimates of h_γ^2 and outperforms existing approaches to detect evidence
82 of stratification bias. We demonstrate estimates from HAMSTA can be leveraged to efficiently
83 compute well-calibrated family-wise error rates for admixture mapping, particularly in presence of
84 ancestral stratification which previous approaches do not consider²⁰. Next, we apply HAMSTA to

85 admixture mapping summary statistics for 20 traits from 15,988 self-identified African American
86 individuals in the Population Architecture using Genomics and Epidemiology (PAGE) study ²¹. We
87 find the h^2 estimates of 0.85 (0.085) and 0.42 (0.086) for height and BMI respectively. Compared
88 with LDSC on admixture mapping summary statistics, HAMSTA offers more precise estimates for
89 h^2_γ and better quantifies the inflation in the test statistics due to unknown confounding biases.
90 Overall, we demonstrate that HAMSTA provides a fast and powerful way to estimate genome-
91 wide heritability that controls biases using summary statistics from admixture mapping studies.

92

93 Materials and Methods

94 Model for complex trait and ancestral stratification

95 We consider a two-way admixed population, with ancestral populations pop1 and pop2, which is
96 recently structured into pop2a and pop2b (**Supplementary Figure 1**). This demographic model
97 mimics the African and European admixture in African American and the finer-scale structure in
98 their ancestral European population. We let γ , δ and $-\delta$ denote the population mean phenotype
99 values of pop1, pop2a and pop2b. We denote $A_{i,k}$ as the centered and standardized local ancestry
100 calls for individual i at marker k , such that $E[A_{i,k}] = 0$ and $Var[A_{i,k}] = 1$. We denote indexing
101 over N individuals at the k th marker as A_k and index over M markers for the i th individual as A_i .
102 We define the phenotype y_i of an admixed individual i as,

103
$$y_i = A_i \beta + \pi_i \gamma + d_i \delta + \epsilon_i ,$$

104 where β is the $M \times 1$ vector of local ancestry effects, π_i is defined as the global ancestry proportion
105 due to pop1, $d_i = \pi_i^{(2a)} - \pi_i^{(2b)}$ is the difference between the global ancestry proportions of
106 pop2a and pop2b, and $\epsilon_i \sim N(0, \sigma^2_\epsilon)$ is residual environmental noise. Furthermore, we assume
107 that $\beta_k \sim N(0, \frac{h^2_\gamma}{M})$, where h^2_γ is defined as the heritability explained by local ancestry ¹¹. Lastly, we
108 define $\frac{\gamma^2}{n} \pi' \pi$ as the phenotypic variance explained (PVE) by global ancestry, and $\frac{\delta^2}{n} d'd$ as PVE
109 by ancestral stratification.

110

111 Test statistics for admixture mapping

112 We model the marginal association statistics from an admixture mapping study where only global
113 ancestry proportions π_i (and not d_i) are known beforehand. If the stratification term is not
114 adjusted, the test statistics for marker k will be $Z_k = s_R^{-1} (A_k' P A_k)^{-1/2} (A_k' P y)$, where s_R^{-2} is the
115 residual variance after the global ancestry π is projected out by matrix $P = I - \pi(\pi' \pi)^{-1} \pi'$.
116 Extending this to all M markers we have, $Z = s_R^{-1} D^{-1/2} (A' P y)$, where D is the diagonal elements
117 of $A' P A$. Given this and distributional assumptions regarding y , we can derive the expectation
118 and covariance of Z as,

119

$$E[Z] = s_R^{-1} D^{-1/2} A' P d \delta$$

120

$$Cov[Z] = s_R^{-2} \left[\frac{h_\gamma^2}{M} D^{-1/2} (A' P A)^2 D^{-1/2} + (A' P A) \sigma_\epsilon^2 \right].$$

121
122
123
124
125
126
127
128
129

The $D^{-1/2}(A' P A)D^{-1/2}$ is local ancestry disequilibrium (LAD) matrix analogous to the LD matrix and $D^{-1}(A' P A)^2 D^{-1}$ is the LAD score matrix in which element (j, k) is approximately the dot product of correlation vectors of two markers j and k . When sample size N is large, the test statistics Z are well-approximated by a multivariate normal distribution. The mean reflects the bias due to correlation between local ancestry and ancestral stratification conditional on the global ancestry. In the covariance, the first term is related to the heritability explained by local ancestry and LAD score matrix. The second term in the covariance is related to LAD matrix and nongenetic effects. In the null scenario, where $h_\gamma^2 = 0$, $\delta = 0$, the distribution of Z has means of zeros and covariances simply equal to the LAD matrix.

130
131
132
133
134
135
136

We let the singular value decomposition (SVD) of $A' P = USV'$, $A' P A = US^2 U'$ and $(A' P A)^2 = US^4 U'$. We define rotation $Z^* = S^{-1} s_R U' D^{1/2} Z$, which follows $Z^* \sim N(V' d \delta, \frac{h_\gamma^2}{M} S^2 + \sigma_\epsilon^2)$, where the components are independent. We then assume $V' d \delta$ to be random and follow a normal distribution $N(0, C^*)$ such that $Z^* \sim N(0, \frac{h_\gamma^2}{M} S^2 + (\sigma_\epsilon^2 + C^*))$. The parameters h_γ^2 and “intercept” $C = (\sigma_\epsilon^2 + C^*)$ are the parameters to be inferred. To allow heterogeneous C across Z^* , we allow C to be different every 500 elements, i.e., $C = (c_1 \cdots \times_{500}, c_2 \cdots \times_{500}, \cdots)$. Test statistics from different chromosomes are rotated separately and do not share elements in C .

137

138

Inferring h_γ^2 and biases using HAMSTA

139
140
141
142
143
144
145

Parameters h_γ^2 and C were log-transformed to ensure positivity during optimization. First, we test for ancestral stratification using a likelihood ratio test between models with multiple intercepts and single intercepts in which C is a scalar shared by all elements in Z^* . If the test is significant with $p < 0.05$, we determine the maximum likelihood estimates \hat{h}_γ^2 and \hat{C} under the multiple intercept model. Otherwise, we find \hat{h}_γ^2 and \hat{C} under the single intercept model. To test for the significance of \hat{h}_γ^2 , we use a likelihood ratio test that test the hypothesis $h_\gamma^2 = 0$. The standard errors of the estimates were determined using the jackknife method over 10 blocks.

146

147

Estimating h^2 from h_γ^2

148
149
150

Previous work¹¹ demonstrated a relationship between narrow-sense heritability h^2 and h_γ^2 as $h_\gamma^2 = 2F_{STC} \pi(1 - \pi) h^2$. The F_{STC} is defined as the average genetic distance between the ancestral populations at causal loci. At each site, the genetic distance is computed as $\frac{(f_1 - f_2)^2}{2f(1-f)}$,

151 where f_1 , f_2 and f are the allele frequency in the ancestral populations and the admixed
152 population. We provided h^2 estimates based on 1) $F_{STC} = 0.1692$ reported in the original study¹¹,
153 which was estimated from HapMap 3 dataset and 2) $F_{STC} = 0.1152$ estimated in this study using
154 a subset of African and European descent from the 1000 Genome and HGDP subset in gnomAD
155 v3.1²², assuming common variants explain 90% of h^2 . The average admixture proportion π was
156 observed to be 78% African ancestry.

157

158 **Simulation design**

159 To validate and assess performance of HAMSTA we performed simulations using realistic
160 demographic scenarios. Specifically, we simulated ancestral populations *pop1* and *pop2* mirroring
161 African and European populations in the Out-of-Africa demography model²³. We additionally
162 introduced structure into *pop2* by subdividing it into two subpopulations (denoted by *pop2a* and
163 *pop2b* below, **Supplementary Figure 1**). We set *pop2a* and *pop2b* to have diverged 200
164 generations ago with a migration rate = 10^{-3} . These parameters were selected to result in a
165 genetic differentiation similar to that within European populations ($F_{ST} \approx 0.003$) estimated from
166 the HGDP and 1000 Genome subsets in gnomAD²². We simulated this demography for a 250Mb
167 region with a uniform recombination rate of 10^{-8} per bp using msprime²⁴. Using the true
168 genealogies from simulations, we extracted the true local ancestry of each individual by tracing
169 their lineage to each ancestral population (*pop1*, *pop2a* or *pop2b*). Global ancestries were
170 computed from local ancestry information by computing the total proportion of the 250Mb region
171 that is inherited from an ancestral population. We sampled 50,000 admixed individuals and 20,000
172 local ancestry markers according to the demography mode.

173 Next, we simulated phenotypes according to our phenotype model $y = A\beta + \pi\alpha + d\delta + \epsilon$.
174 Given a sparsity α , we drew the effect of a local ancestry marker β_k from $N(0, \frac{h_\gamma^2}{\alpha M})$ with probability
175 α and ϵ from $N(0, \sigma_\epsilon^2)$. Then we set the true h_γ^2 , PVE by global ancestry, PVE by ancestral
176 stratification, and σ_ϵ^2 by varying the values of γ and δ . Finally, test statistics were computed using
177 linear regression adjusting for π using PLINK 2.0²⁵.

178

179 **Estimate h_γ^2 with other approaches**

180 To compare HAMSTA with existing methods in h_γ^2 estimation, we applied BOLT-REML²⁶, GCTA
181²⁷ and LD score regression (LDSC)¹³ to the simulated and real-world data. In GCTA, the same set
182 of covariates included in the admixture mapping were used in h_γ^2 estimation. Following previous
183 studies, we compute the genetic relatedness matrix using local ancestry in place of genotypes¹¹.
184 In LDSC, we define the “local ancestry linkage disequilibrium” (LAD) score for marker i as $l_i =$
185 $\sum_{j \in W} r_{i,j}^2$ with W being the set of markers in a given window size. Window sizes of 1-cM and 20-
186 cM were used. The LAD scores were used as the regressors and weights in LDSC.

187

188 **Significance threshold estimation**

189 Specifically, to determine the significance threshold for a given admixture mapping study, we
190 randomly generated test statistics $Z = s_R^{-1} D^{-1/2} U S Q$, where Q is a vector of random variable
191 sampled from $N(0, \sigma_q^2)$. We set σ_q^2 to be the maximum intercept if the test for multiple intercepts
192 is significant, and σ_q^2 to be the inferred intercept if the test is not significant. We repeated the
193 sampling procedure 2,000 times to determine the critical value as the 95% percentile of $\max(Z^2)$.
194 The significance threshold was determined as the tail probability of a chi-square distribution
195 (degree of freedom = 1) at the critical value. To determine the threshold for multiple
196 chromosomes, we estimate the threshold for each chromosome separately and then combine the
197 thresholds by summing up the effective testing burden, i.e., $Combined\ thres = 0.05 / \sum_{i=1}^{22} (0.05 / thres_{chromosome\ i})$. For comparison, we also estimated the significance threshold using
198 STEAM²⁰, which sampled from $Z = MVN(0, \Sigma)$, where Σ is a local ancestry correlation matrix
199 based on genetic distance and admixture parameters. Family-wise error rates (FWER) were
200 computed as the percentage of times at least one significant signal is identified out of 500 null
201 simulations.
202

203

204 **Local ancestry inference and genome-wide mapping for admixed individuals in PAGE
205 cohort**

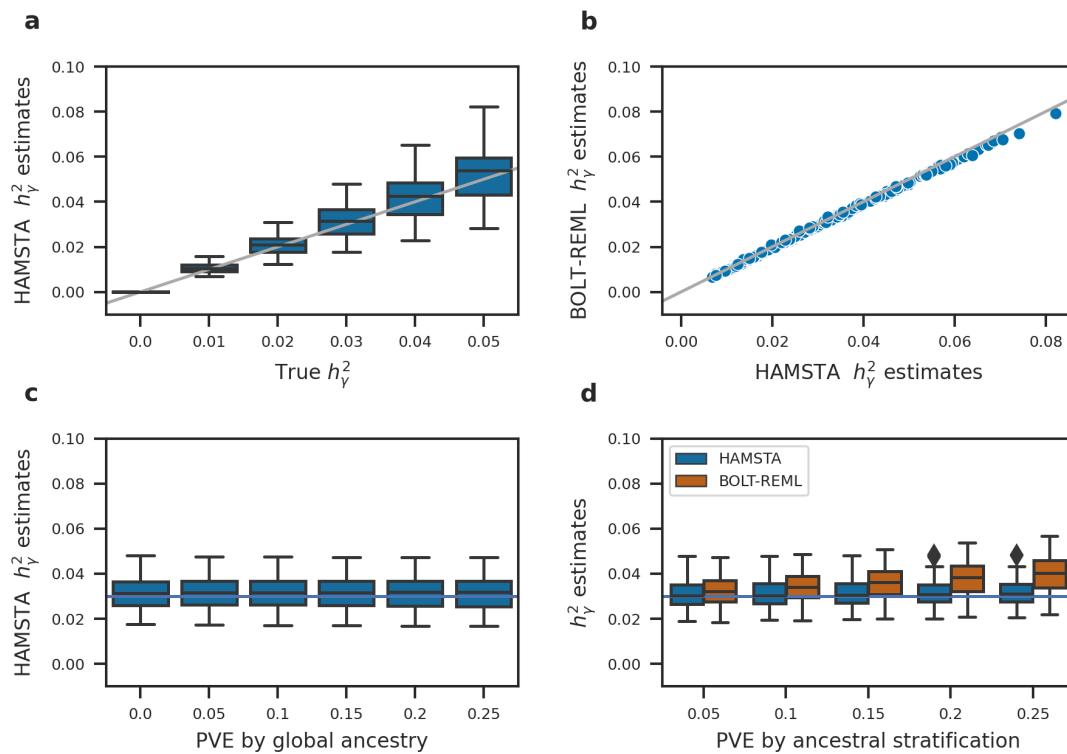
206 We obtained phenotypes and genotyping data measured on Multi-Ethnic Genotyping Array
207 (MEGA) from the PAGE study²¹. The complete dataset included 17,299 participants who self-
208 identified as African American. Our analysis included 20 quantitative phenotypes: Body mass
209 index (BMI), height, waist-to-hip ratio, diastolic blood pressure, systolic blood pressure, PR
210 interval, QRS interval, QT interval, fasting glucose, fasting insulin, C-reactive protein, mean
211 corpuscular hemoglobin concentration, platelet count, estimated glomerular filtration rate,
212 cigarettes per day, coffee cups per day, high-density lipoprotein (HDL), low-density lipoprotein
213 (LDL), triglycerides, and total cholesterol. Filters and transformations were applied, and covariates
214 were selected according to the original PAGE analysis within the African American subset²¹.

215 To infer the local ancestry, a subset of African and European genomes from the 1000 Genome
216 and HGDP subset in gnomAD were used as reference individuals²². After filtering out SNPs with
217 missingness > 10%, lifting over and merging, 516,731 SNPs were used in the local ancestry
218 inference, resulting in 101,292 local ancestry markers. The genotypes of PAGE and reference
219 individuals were re-phased together using EAGLE²⁸, and the ancestry probabilities were inferred
220 as the local ancestry of the haplotype in a region using RFMIX2²⁹. The global ancestry of an
221 individual was computed by taking the average of all predicted local ancestries. We analyzed up
222 to 15,988 individuals who have >5% of one of the inferred ancestries and have no missing values
223 in the covariates in the 20 quantitative phenotypes. Admixture mapping was performed using
224 linear regression adjusting for the study center, inferred global ancestry, and phenotype-specific

225 covariates used in PAGE. The average estimate of h_y^2 across phenotypes was calculated by
226 weighting the estimate of each phenotype by the inverse of the squared standard error. The run
227 time was measured on a machine with an Intel Xeon 4116 processor and 48GB memory.

228

229 **Results**



230

231 **Figure 1**

232 Simulation results from 50,000 admixed individuals and phenotypes under different levels of variance explained by local ancestry,
233 global ancestry and ancestral stratification. The box plots show the range and quartiles of the estimates. a) Results of h_y^2 estimation
234 when varying true h_y^2 . Phenotypic variance explained (PVE) by global ancestry and ancestral stratification were set to 0. A gray identity
line is plotted. b) Comparison of h_y^2 estimates between HAMSTA and BOLT-REML applied to simulation data when true h_y^2 =
236 $\{0.01, 0.02, 0.03, 0.05\}$ in figure a. c) Results when varying the PVE by global ancestry, setting $h_y^2 = 0.03$ (horizontal line) and PVE by
237 ancestral stratification = 0. d) Comparison of h_y^2 estimates between HAMSTA and BOLT-REML under various levels of ancestral
238 stratification. True h_y^2 were fixed at 0.03 (horizontal line).

239

240 **HAMSTA provides unbiased estimates of h_y^2 under ancestral stratification**

241 To evaluate the accuracy of h_γ^2 estimates under various scenarios, we performed simulation
242 studies using local ancestry data simulated under a population demographic model that mirrors
243 African American admixture history with an addition of recent population structure in one of the
244 ancestral populations (see **Methods**). Briefly, we simulated phenotypes absent stratification
245 effects where we varied h_γ^2 from 0 to 0.05 (corresponding to h^2 from 0 to 1 according to ref¹¹),
246 which reflects h_γ^2 estimates reported in previous African American samples³⁰, and performed
247 admixture mapping to compute summary statistics. Overall, we found HAMSTA produced
248 approximately unbiased estimates of h_γ^2 (**Figure 1a**), irrespective of the sparsity of causal markers
249 (**Supplementary Figure 2**). We observed that the summary statistics- based estimates from
250 HAMSTA were highly correlated with those computed from individual-level data using BOLT-
251 REML (**Figure 1b**), suggesting that when stratification bias is not present, there is no loss in
252 accuracy across data settings. Next, to compare our method with existing summary statistics-
253 based methods, we applied LD score regression (LDSC; see **Methods**) and observed LDSC
254 produced biased estimates exhibited large standard errors (**Supplementary Figure 3**).
255 Importantly, we found LDSC estimates remained biased after re-estimating “LAD scores” using a
256 larger window size of 20-cM (**Supplementary Figure 3**). Next, we varied effect of global ancestry
257 while fixing the h_γ^2 and PVE by ancestral stratification and found HASMTA h_γ^2 estimates remained
258 unbiased (**Figure 1c**). Together, our results suggest that when stratification does not inflate
259 summary statistics, HAMSTA provides unbiased estimates of h_γ^2 , unlike existing summary-based
260 approaches.

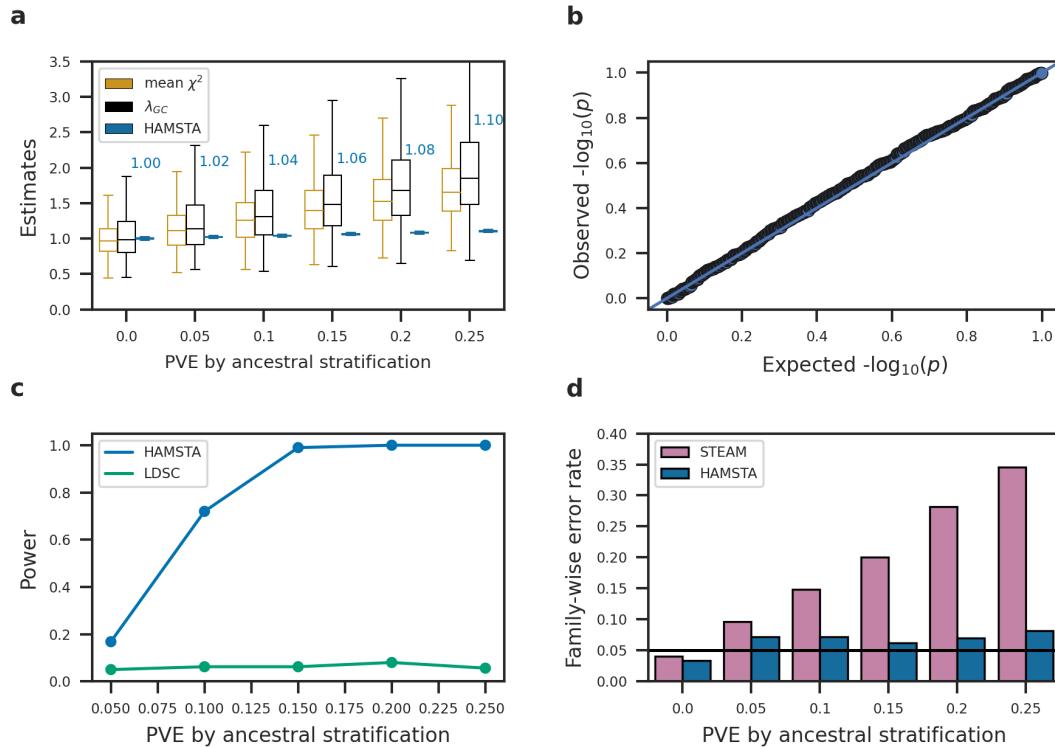
261 Next, we sought to evaluate HAMSTA in presence of ancestral stratifications. We determined that
262 the h_γ^2 estimates in our method were more robust to the presence of unadjusted ancestral
263 stratification (**Figure 1d**). In contrast, BOLT-REML, where the inference model is not aware of
264 ancestral stratification, produced biased results as the PVE by ancestral stratification increases.

265 Further, we demonstrate that our method is still robust to other scenarios of structures in the
266 ancestral populations (**Supplementary Figure 4**). We explored the cases where i) both ancestral
267 populations are structured, ii) the proportion of ancestries from the subpopulations are unequal in
268 the admixed population, ii) the subpopulations are introduced to the admixture event at different
269 times. In all the scenarios, the unbiasedness of our estimator is not affected by the ancestral
270 stratification.

271 Overall, we demonstrated HAMSTA provides unbiased estimates of h_γ^2 under various levels of
272 effects from local ancestry, global ancestry, and stratification in ancestral populations.

273

274



275

276 **Figure 2**

277 Evaluating ancestral stratification by HAMSTA in 500 simulation replicates. We simulated 50,000 admixed individuals and phenotypes
 278 under various levels of variance explained by local ancestral stratification. The true h_g^2 is set to zero. a) Ancestral stratification is
 279 reflected by measures of test statistic inflation. The average estimates of HAMSTA's intercepts are labeled. b) Quantile-quantile plot
 280 of test statistics for the test for ancestral stratification. c) Power comparison between HAMSTA and LDSC in detecting ancestral
 281 stratification. The p value cutoff for each approach was determined such that the significance level = 0.05 in null simulation d) Family-
 282 wise error rate before and after correcting p-value cutoff in admixture mapping using the estimated intercepts.

283

284

285 **HAMSTA estimates inflation in admixture mapping statistics due to stratification**

286 Having established the unbiasedness in h_g^2 estimates, we next sought to evaluate the ability of
 287 HAMSTA to identify inflation in admixture mapping statistics due to ancestral population
 288 stratification. Specifically, intercepts estimated by HAMSTA can be tested against the null (i.e., 1)
 289 to evaluate stratification bias. Overall, we observed HAMSTA produced estimates greater than 1
 290 as the PVE by ancestral stratification increased (Figure 2a), demonstrating the ability of HAMSTA
 291 inferred intercepts to capture stratification-induced inflation. Although we noted similar trends in
 292 other measures of inflation, including mean χ^2 , genomic inflation factor λ_{GC} , their inability to
 293 distinguish between polygenicity and confounding prevent their use for complex disease analyses

294 ¹³. Next, we evaluated the ability of LDSC to identify stratification in admixture mapping statistics
295 through its intercept estimates and observed biased results with large variability (**Supplementary**
296 **Figure 4**). We observed HAMSTA to have significantly greater power to detect stratification bias
297 compared with LDSC (**Figure 2c**). For example, HAMSTA has 80% power when stratification
298 explains 10% of PVE, compared with 5% power of LDSC. These relative differences in
299 performance held when we increased the LAD score window size for LDSC (**Supplementary**
300 **Figure 4**). Overall, HAMSTA provides unbiased estimates of inflation in admixture mapping
301 statistics due to ancestral bias and has greater power to reject its null compared to alternative
302 approaches.

303

304 **HAMSTA improves estimation of p-value thresholds to control family-wise error rate**

305 As the number of approximately independent ancestry blocks depends on the demographic
306 history of the population being studied, there is no universal threshold to determine genome-wide
307 significance in admixture mapping studies. Admixture mapping often relies on permutation-based
308 approaches to estimate the FWER, however these approaches can be computationally intractable
309 for large datasets. Although a recently developed summary-static sampling scheme (STEAM)
310 bypasses the need for individual-level permutations and speeds up the FWER estimation²⁰, its
311 assumption that there exists no inflation in the test statistics may be unmet in the presence of
312 population structure and polygenicity.

313 Here, we demonstrated inferences from HAMSTA can be leveraged to produce significance
314 thresholds for association testing to achieve calibrated family-wise error rates (FWER) compared
315 with STEAM. First, when PVE due to stratification is zero, we found STEAM and HAMSTA
316 estimated similar significance thresholds (HAMSTA mean: 1.12×10^{-4} ; STEAM: 1.57×10^{-4}),
317 yielding comparable FWER at ~5% (**Figure 2d**), which suggests that HAMSTA-based FWER
318 estimates do not deflate overall power despite increased model complexity. Importantly, in
319 presence of ancestral stratification, we found HAMSTA estimates resulted in approximately
320 calibrated FWERs unlike STEAM, which produced a considerable number of false positive
321 associations (**Figure 2d, Supplementary Figure 6**). For example, when PVE due to stratification
322 is 0.25, HAMSTA estimates resulted in FWER of 8% compared to the FWER of 34% from STEAM.
323 Together, these findings demonstrate that intercepts estimated by HAMSTA can be incorporated
324 into significance threshold estimation, producing better calibrated FWERs and therefore reducing
325 false positive findings.

326

327 **Application to African American in the PAGE study**

328 To illustrate the ability of HAMSTA to estimate h_g^2 from summary data, we applied it to admixture
329 mapping summary statistics of 20 quantitative phenotypes computed from the African American
330 participants in PAGE study²¹ (mean N = 8383, SD N = 3901; see **Methods**). Briefly, we performed
331 admixture mapping using 101,292 markers adjusting for the study center, global ancestry, and

332 phenotype-specific covariates. The average genomic inflation factor λ_{GC} across phenotypes is
333 1.53 (SD = 0.64). Next, we applied HAMSTA to generated summary statistics to infer h_γ^2 and
334 evaluate potential stratification biases. To estimate h^2 from h_γ^2 , we estimated the average African
335 ancestry to be 78% and $F_{STC} = 0.12$ from the admixed individuals in PAGE and reference
336 individuals from HGDP and 1000 Genomes.

337 We estimated the h_γ^2 ranges from 0.0025 for systolic blood pressure to 0.033 for height (mean h_γ^2
338 = 0.012; SE = 9.2×10^{-4}) across the 20 phenotypes, of which 13/20 were individually significantly
339 different from 0 (nominal p-value < 0.05 in **Supplementary Table 1**). Translating h_γ^2 to estimates
340 of h^2 , we observed the h^2 ranging from 0.062 for systolic blood pressure to 0.85 for height (mean
341 $h^2 = 0.30$; SE = 0.023), of which 13/20 were individually significant. We found these results were
342 robust to different values of F_{STC} (see **Supplementary Table 1**).

343 Consistent with the simulation results, HAMSTA estimates were correlated more strongly with
344 BOLT-REML estimates ($r = 0.99$, **Figure 3**) than those computed from LDSC ($r = 0.44$)
345 (**Supplementary Figure 7**) This was largely attributable to statistical precision, with standard
346 errors in HAMSTA estimates (range from 0.0023 to 0.014, mean = 0.0058) being slightly greater
347 than those from BOLT-REML (range from 0.0021 to 0.0076, mean = 0.0042), and noticeably lower
348 than those computed from LDSC (range from 0.0064 to 0.021, mean = 0.012). Since 5/20
349 phenotypes had limited sample sizes ($N < 5,000$), which is known to impact the performance of
350 BOLT²⁶, we also estimated h_γ^2 using GCTA. Of the 16 estimates computed by GCTA that
351 converged, we observed they were in general bounded by the estimates by HAMSTA and BOLT-
352 REML (**Supplementary Figure 8**). Overall, we find that HAMSTA estimates of h_γ^2 are consistent
353 with those computed from individual-level approaches in real data, while requiring much less
354 computation time for the inference step (49 seconds for HAMSTA versus 51 minutes for GCTA).

355 To substantiate the translated h^2 estimates computed from HAMSTA, we compared with previous
356 h^2 estimates reported from admixed individuals¹¹ as well as those from twin studies. Overall, we
357 found our h^2 estimates are significantly correlated with the previously reported h_γ^2 -based
358 estimates¹¹ ($r = 0.84$, $p=0.03$). Focusing on height, and BMI, HAMSTA estimated $h_\gamma^2 = 0.033$ (se:
359 3.4×10^{-4}) and $h_\gamma^2 = 0.017$ (3.4×10^{-4}) respectively, corresponding to h^2 of 0.85 (0.085) and
360 0.42 (0.086) respectively. The estimated height h^2 was similar to the $h^2 = 0.68 - 0.84$ in twin
361 studies³¹, whereas the estimated BMI h^2 was smaller than the $h^2 = 0.57 - 0.77$ in twin studies³²
362 and higher than the $h^2 = 0.30$ in an estimation from whole-genome sequence data in European
363 ancestry populations³³.

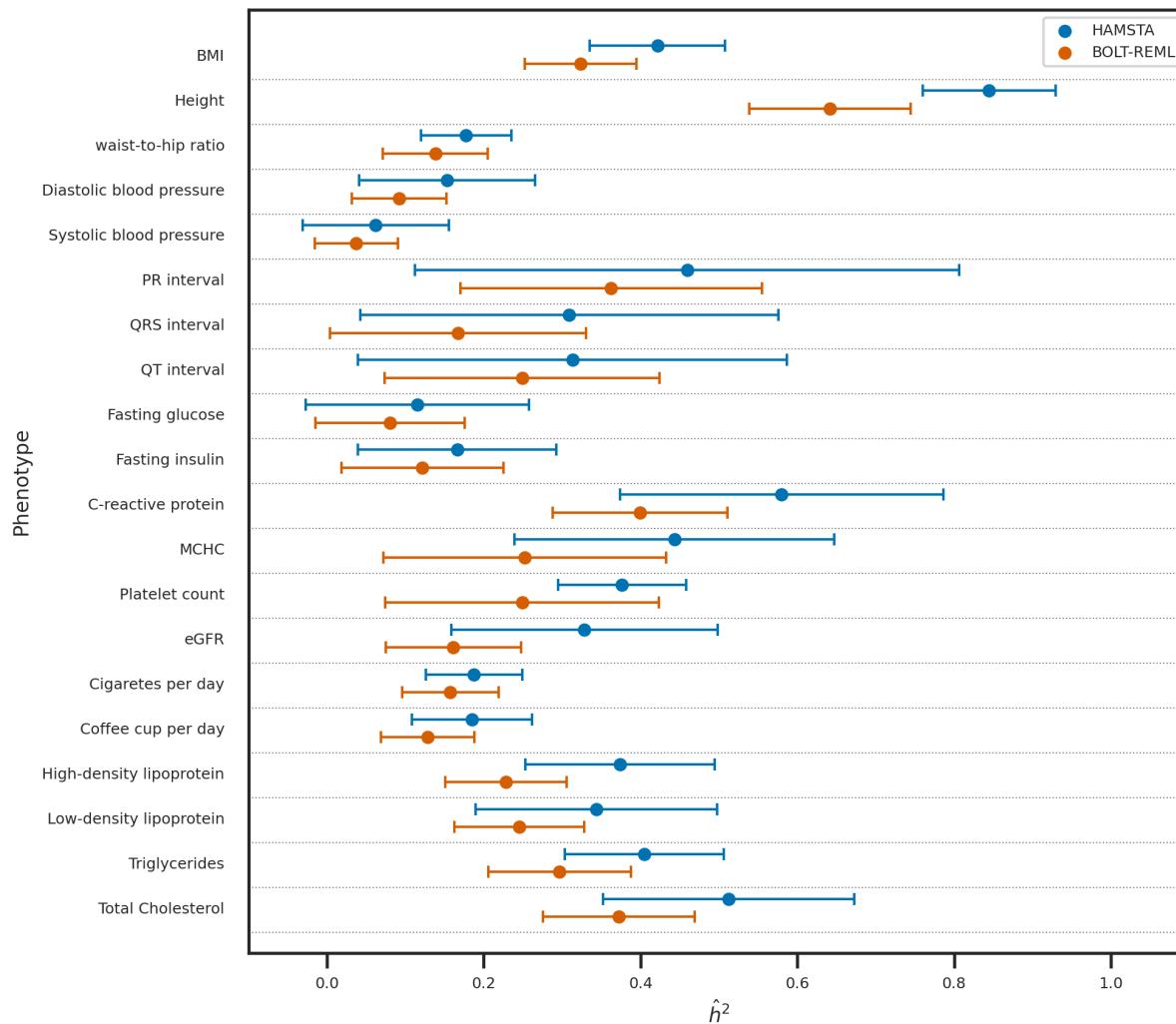
364 HAMSTA estimated intercepts suggested limited evidence for inflated summary statistics due to
365 ancestral stratification in the admixture mapping (range from 0.97 to 1.01, average = 0.99;
366 **Supplementary Table 1**), with 0/20 phenotypes differing significantly from the expectation of 1.
367 Although LDSC suggested no significant deviation of intercepts from 1 (range from 0.18 to 1.95,

368 average = 1.07), individual intercepts varied more greatly under LDSC (mean SE = 0.34), than
369 those computed under HAMSTA (mean SE = 5.6×10^{-3}) (**Supplementary Table 1**).

370 Since in simulation we demonstrated that the significance threshold for admixture mapping
371 corresponding to FWER of 5% is sensitive to ancestral stratification, we estimated the thresholds
372 based on the HAMSTA intercepts. Under no ancestral stratification (i.e. intercept = 1), HAMSTA
373 estimated the significance threshold required to be 2.80×10^{-5} , which agrees with the threshold
374 of 2.10×10^{-5} reported by STEAM for African American²⁰. Based on the estimated intercepts in
375 HAMSTA for the 20 phenotypes, the estimated thresholds range from 2.70×10^{-5} to 3.52×10^{-5} .
376 To conclude, HAMSTA found no evidence of inflation in admixture mapping statistics and
377 provided estimates for h_γ^2 and hence h^2 of the complex traits of African American in PAGE study.

378

379



380

381 **Figure 3**

382 Comparison of \hat{h}_γ^2 -based \hat{h}^2 between HAMSTA and BOLT-REML for the 20 quantitative traits in African American in PAGE. Results
383 on 20 PAGE quantitative traits. Comparison between the estimates from HAMSTA, and BOLT-REML. Each point shows the \hat{h}^2 , and
384 the lengths of the error bars represent the standard errors.

385

386 Discussion

387 In this study, we demonstrated the use of summary statistics from admixture mapping to quantify
388 the contribution of genetic variations to a trait. We developed a tool, HAMSTA, that unbiasedly
389 estimate h_γ^2 under the various trait architecture, including in the presence of unknown population

390 stratification in ancestral populations. Using the summary statistic-based approach, HAMSTA
391 distinguishes the effect tagged by local ancestry on test statistics from unknown confounding
392 biases. We also demonstrated that the estimated biases could be used to correct the significance
393 threshold such that FWER are better controlled. Lastly, we applied HAMSTA to real-world data,
394 showing that it can recover the h_γ^2 and hence h^2 from admixture mapping summary statistics.

395 Our method addresses several limitations in existing approaches estimating h_γ^2 . First, because of
396 the long-range correlations between local ancestry markers, LDSC requires a large window size
397 to capture correlations with distant effect markers. Also, regression weights may not be sufficient
398 to solve the problem of correlated χ^2 statistics, which could lead to inefficient estimation³⁴. Our
399 analysis shows that the efficiency can be improved when admixture mapping test statistics are
400 rotated to an independent space. Second, REML could provide an unbiased estimate, but we
401 showed in simulation that it is susceptible to ancestral stratification. Also, it is computationally
402 expensive as the sample size increases. In real data analysis, the REML approach in GCTA failed
403 to converge in waist-to-hip ratio, QT-interval, cigarette-per-day, and HDL. In contrast, we showed
404 that HAMSTA would be a more robust approach to ancestral stratification and has no
405 convergence problem in our analysis. Finally, existing methods assume uniform test statistics
406 inflation although it has been shown that this assumption could be inaccurate^{35,36}. HAMSTA
407 relaxes this assumption by allowing multiple intercepts to represent non-uniform inflation. Overall,
408 HAMSTA offers advantages over existing methods in the above aspects.

409 We are aware of several limitations of HAMSTA. First, HAMSTA only provides estimates of
410 heritability explained by local ancestries in two-way admixtures, which may limit the use of the
411 method in admixed populations with more than two ancestral populations. Currently, the
412 relationship between h_γ^2 and h^2 are only established in two-way admixed populations such as
413 African American, but models for h_γ^2 multi-way admixture has not yet been proposed.
414 Incorporating the contribution of multiple ancestries in h_γ^2 and h^2 will be a possible extension in
415 the future. Second, the standard error of HAMSTA h_γ^2 is larger than that from methods that use
416 individual-level data like BOLT-REML (mean SE=0.0058 in HAMSTA versus mean SE=0.0042 in
417 BOLT-REML). Nevertheless, HAMSTA h_γ^2 is robust to ancestral stratification, unlike BOLT-REML
418 showing upward biases in the h_γ^2 estimates (**Figure 1d**). Third, HAMSTA only models summary
419 statistics computed from linear regression on quantitative traits. The scope of this study is not
420 extended to modeling binary traits. Future work can explore phenotypes under the liability-scale
421 model and evaluate the use of summary statistics from logistic regression models. Lastly, since
422 HAMSTA relies on an accurate LAD, factors that the LAD depends on, such as global ancestries,
423 could potentially impact the accuracy of the estimates. These factors are required to be adjusted
424 for when estimating the LAD.

425 In summary, our work opens a direction of summary statistics analysis in admixture mapping
426 studies. Our method will facilitate studies of genetic architecture in large cohorts of admixed
427 populations.

429 Acknowledgements

430 This work was funded in part by National Institutes of Health (NIH) under awards R01HG012133
431 and R35GM142783.

432

433 Web Resources

434 BOLT-REML, https://alkesgroup.broadinstitute.org/BOLT-LMM/BOLT-LMM_manual.html
435 GCTA, <https://cnsgenomics.com/software/gcta/>
436 GNOMAD HGDP and 1KG subsets, <https://gnomad.broadinstitute.org/downloads#v3-hgdp-1kg>
437 LDSC, <https://github.com/bulik/ldsc>
438 MSPrime, <https://github.com/tskit-dev/msprime>
439 PLINK, <https://www.cog-genomics.org/plink/>
440 RFMIX2, <https://github.com/slowkoni/rfmix>
441 STEAM, <https://github.com/kegrinde/STEAM>
442

443 Data and code availability

444 The codes for HAMSTA are available at <https://github.com/tszfungc/HAMSTA>
445

446 References

- 447 1. Ziyatdinov, A., Parker, M.M., Vaysse, A., Beaty, T.H., Kraft, P., Cho, M.H., and Aschard, H. (2020). Mixed-model admixture mapping identifies smoking-dependent loci of lung function in
448 African Americans. *Eur. J. Hum. Genet.* 28, 656–668.
- 450 2. Nalls, M.A., Wilson, J.G., Patterson, N.J., Tandon, A., Zmuda, J.M., Huntsman, S., Garcia,
451 M., Hu, D., Li, R., Beamer, B.A., et al. (2008). Admixture mapping of white cell count: genetic
452 locus responsible for lower white blood cell count in the Health ABC and Jackson Heart studies.
453 *Am. J. Hum. Genet.* 82, 81–87.
- 454 3. Freedman, M.L., Haiman, C.A., Patterson, N., McDonald, G.J., Tandon, A., Waliszewska, A.,
455 Penney, K., Steen, R.G., Ardlie, K., John, E.M., et al. (2006). Admixture mapping identifies 8q24
456 as a prostate cancer risk locus in African-American men. *Proc. Natl. Acad. Sci. U. S. A.* 103,
457 14068–14073.
- 458 4. Sofer, T., Baier, L.J., Browning, S.R., Thornton, T.A., Talavera, G.A., Wassertheil-Smoller, S.,
459 Daviglus, M.L., Hanson, R., Kobes, S., Cooper, R.S., et al. (2017). Admixture mapping in the
460 Hispanic Community Health Study/Study of Latinos reveals regions of genetic associations with

461 blood pressure traits. *PLoS One* 12, e0188400.

462 5. Galanter, J.M., Gignoux, C.R., Torgerson, D.G., Roth, L.A., Eng, C., Oh, S.S., Nguyen, E.A.,
463 Drake, K.A., Huntsman, S., Hu, D., et al. (2014). Genome-wide association study and admixture
464 mapping identify different asthma-associated loci in Latinos: The Genes-environments &
465 Admixture in Latino Americans study. *Journal of Allergy and Clinical Immunology* 134, 295–305.

466 6. Pino-Yanes, M., Gignoux, C.R., Galanter, J.M., Levin, A.M., Campbell, C.D., Eng, C.,
467 Huntsman, S., Nishimura, K.K., Gourraud, P.-A., Mohajeri, K., et al. (2015). Genome-wide
468 association study and admixture mapping reveal new loci associated with total IgE levels in
469 Latinos. *J. Allergy Clin. Immunol.* 135, 1502–1510.

470 7. Sun, H., Lin, M., Russell, E.M., Minster, R.L., Chan, T.F., Dinh, B.L., Naseri, T., Reupena,
471 M.S., Lum-Jones, A., Samoan Obesity, Lifestyle, and Genetic Adaptations (OLaGA) Study
472 Group, et al. (2021). The impact of global and local Polynesian genetic ancestry on complex
473 traits in Native Hawaiians. *PLoS Genet.* 17, e1009273.

474 8. Shriner, D. (2017). Overview of Admixture Mapping. *Curr. Protoc. Hum. Genet.* 94, 1.23.1–
475 1.23.8.

476 9. Shriner, D., Adeyemo, A., and Rotimi, C.N. (2011). Joint ancestry and association testing in
477 admixed individuals. *PLoS Comput. Biol.* 7, e1002325.

478 10. Horimoto, A.R.V.R., Xue, D., Thornton, T.A., and Blue, E.E. (2021). Admixture mapping
479 reveals the association between Native American ancestry at 3q13.11 and reduced risk of
480 Alzheimer's disease in Caribbean Hispanics. *Alzheimers. Res. Ther.* 13, 122.

481 11. Zaitlen, N., Pasaniuc, B., Sankararaman, S., Bhatia, G., Zhang, J., Gusev, A., Young, T.,
482 Tandon, A., Pollack, S., Vilhjálmsson, B.J., et al. (2014). Leveraging population admixture to
483 characterize the heritability of complex traits. *Nat. Genet.* 46, 1356–1362.

484 12. Luo, Y., Li, X., Wang, X., Gazal, S., Mercader, J.M., 23 and Me Research Team, SIGMA
485 Type 2 Diabetes Consortium, Neale, B.M., Florez, J.C., Auton, A., et al. (2021). Estimating
486 heritability and its enrichment in tissue-specific gene sets in admixed populations. *Hum. Mol.*
487 *Genet.* 30, 1521–1534.

488 13. Bulik-Sullivan, B.K., Loh, P.-R., Finucane, H.K., Ripke, S., Yang, J., Schizophrenia Working
489 Group of the Psychiatric Genomics Consortium, Patterson, N., Daly, M.J., Price, A.L., and
490 Neale, B.M. (2015). LD Score regression distinguishes confounding from polygenicity in
491 genome-wide association studies. *Nat. Genet.* 47, 291–295.

492 14. Haak, W., Lazaridis, I., Patterson, N., Rohland, N., Mallick, S., Llamas, B., Brandt, G.,
493 Nordenfelt, S., Harney, E., Stewardson, K., et al. (2015). Massive migration from the steppe was
494 a source for Indo-European languages in Europe. *Nature* 522, 207–211.

495 15. Browning, S.R., Grinde, K., Plantinga, A., Gogarten, S.M., Stilp, A.M., Kaplan, R.C., Avilés-
496 Santa, M.L., Browning, B.L., and Laurie, C.C. (2016). Local Ancestry Inference in a Large US-
497 Based Hispanic/Latino Study: Hispanic Community Health Study/Study of Latinos (HCHS/SOL).

498 G3 6, 1525–1534.

499 16. Berg, J.J., Harpak, A., Sinnott-Armstrong, N., Joergensen, A.M., Mostafavi, H., Field, Y.,
500 Boyle, E.A., Zhang, X., Racimo, F., Pritchard, J.K., et al. (2019). Reduced signal for polygenic
501 adaptation of height in UK Biobank. *Elife* 8,.

502 17. Sohail, M., Maier, R.M., Ganna, A., Bloemendal, A., Martin, A.R., Turchin, M.C., Chiang,
503 C.W., Hirschhorn, J., Daly, M.J., Patterson, N., et al. (2019). Polygenic adaptation on height is
504 overestimated due to uncorrected stratification in genome-wide association studies. *Elife* 8,.

505 18. Gopalan, S., Smith, S.P., Korunes, K., Hamid, I., Ramachandran, S., and Goldberg, A.
506 (2022). Human genetic admixture through the lens of population genomics. *Philos. Trans. R.
507 Soc. Lond. B Biol. Sci.* 377, 20200410.

508 19. Speed, D., and Balding, D.J. (2019). SumHer better estimates the SNP heritability of
509 complex traits from summary statistics. *Nat. Genet.* 51, 277–284.

510 20. Grinde, K.E., Brown, L.A., Reiner, A.P., Thornton, T.A., and Browning, S.R. (2019).
511 Genome-wide Significance Thresholds for Admixture Mapping Studies. *Am. J. Hum. Genet.*
512 104, 454–465.

513 21. Wojcik, G.L., Graff, M., Nishimura, K.K., Tao, R., Haessler, J., Gignoux, C.R., Highland,
514 H.M., Patel, Y.M., Sorokin, E.P., Avery, C.L., et al. (2019). Genetic analyses of diverse
515 populations improves discovery for complex traits. *Nature* 570, 514–518.

516 22. Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alföldi, J., Wang, Q., Collins,
517 R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P., et al. (2020). The mutational constraint
518 spectrum quantified from variation in 141,456 humans. *Nature* 581, 434–443.

519 23. Gravel, S., Henn, B.M., Gutenkunst, R.N., Indap, A.R., Marth, G.T., Clark, A.G., Yu, F.,
520 Gibbs, R.A., 1000 Genomes Project, and Bustamante, C.D. (2011). Demographic history and
521 rare allele sharing among human populations. *Proc. Natl. Acad. Sci. U. S. A.* 108, 11983–
522 11988.

523 24. Kelleher, J., Etheridge, A.M., and McVean, G. (2016). Efficient Coalescent Simulation and
524 Genealogical Analysis for Large Sample Sizes. *PLoS Comput. Biol.* 12, e1004842.

525 25. Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015).
526 Second-generation PLINK: rising to the challenge of larger and richer datasets. *GigaScience* 4,.

527 26. Loh, P.-R., Bhatia, G., Gusev, A., Finucane, H.K., Bulik-Sullivan, B.K., Pollack, S.J.,
528 Schizophrenia Working Group of Psychiatric Genomics Consortium, de Candia, T.R., Lee, S.H.,
529 Wray, N.R., et al. (2015). Contrasting genetic architectures of schizophrenia and other complex
530 diseases using fast variance-components analysis. *Nat. Genet.* 47, 1385–1392.

531 27. Yang, J., Lee, S.H., Goddard, M.E., and Visscher, P.M. (2011). GCTA: a tool for genome-
532 wide complex trait analysis. *Am. J. Hum. Genet.* 88, 76–82.

533 28. Loh, P.-R., Danecek, P., Palamara, P.F., Fuchsberger, C., A Reshef, Y., K Finucane, H.,
534 Schoenherr, S., Forer, L., McCarthy, S., Abecasis, G.R., et al. (2016). Reference-based phasing
535 using the Haplotype Reference Consortium panel. *Nat. Genet.* 48, 1443–1448.

536 29. Maples, B.K., Gravel, S., Kenny, E.E., and Bustamante, C.D. (2013). RFMix: a
537 discriminative modeling approach for rapid and robust local-ancestry inference. *Am. J. Hum.*
538 *Genet.* 93, 278–288.

539 30. Shriner, D., Bentley, A.R., Doumatey, A.P., Chen, G., Zhou, J., Adeyemo, A., and Rotimi,
540 C.N. (2015). Phenotypic variance explained by local ancestry in admixed African Americans.
541 *Front. Genet.* 6, 324.

542 31. Silventoinen, K., Sammalisto, S., Perola, M., Boomsma, D.I., Cornes, B.K., Davis, C.,
543 Dunkel, L., De Lange, M., Harris, J.R., Hjelmborg, J.V.B., et al. (2003). Heritability of adult body
544 height: a comparative study of twin cohorts in eight countries. *Twin Res.* 6, 399–408.

545 32. Silventoinen, K., Jelenkovic, A., Sund, R., Yokoyama, Y., Hur, Y.-M., Cozen, W., Hwang,
546 A.E., Mack, T.M., Honda, C., Inui, F., et al. (2017). Differences in genetic and environmental
547 variation in adult BMI by sex, age, time period, and region: an individual-based pooled analysis
548 of 40 twin cohorts. *Am. J. Clin. Nutr.* 106, 457–466.

549 33. Wainschtein, P., Jain, D., Zheng, Z., TOPMed Anthropometry Working Group, NHLBI Trans-
550 Omics for Precision Medicine (TOPMed) Consortium, Cupples, L.A., Shadyab, A.H., McKnight,
551 B., Shoemaker, B.M., Mitchell, B.D., et al. (2022). Assessing the contribution of rare variants to
552 complex trait heritability from whole-genome sequence data. *Nat. Genet.* 54, 263–273.

553 34. Song, S., Jiang, W., Zhang, Y., Hou, L., and Zhao, H. (2022). Leveraging LD eigenvalue
554 regression to improve the estimation of SNP heritability and confounding inflation. *Am. J. Hum.*
555 *Genet.* 109, 802–811.

556 35. Speed, D., Kaphle, A., and Balding, D.J. (2022). SNP-based heritability and selection
557 analyses: Improved models and new results. *Bioessays* 44, e2100170.

558 36. Mathieson, I., and McVean, G. (2012). Differential confounding of rare and common variants
559 in spatially structured populations. *Nat. Genet.* 44, 243–246.

560