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Abstract

The heritability explained by local ancestry markers in an admixed population (h%) provides
crucial insight into the genetic architecture of a complex disease or trait. Estimation of h% can be
susceptible to biases due to population structure in ancestral populations. Here, we present a
novel approach, Heritability estimation from Admixture Mapping Summary STAtistics (HAMSTA),
which uses summary statistics from admixture mapping to infer heritability explained by local
ancestry while adjusting for biases due to ancestral stratification. Through extensive simulations,
we demonstrate that HAMSTA h% estimates are approximately unbiased and are robust to
ancestral stratification compared to existing approaches. In the presence of ancestral
stratification, we show a HAMSTA-derived sampling scheme provides a calibrated family-wise
error rate (FWER) of ~5% for admixture mapping, unlike existing FWER estimation approaches.
We apply HAMSTA to 20 quantitative phenotypes of up to 15,988 self-reported African American
individuals in the Population Architecture using Genomics and Epidemiology (PAGE) study. We
observe A2 in the 20 phenotypes range from 0.0025 to 0.033 (mean A2 = 0.012 +/- 9.2 x 107%),

which translates to h? ranging from 0.062 to 0.85 (mean h? = 0.30 +/- 0.023). Across these
phenotypes we find little evidence of inflation due to ancestral population stratification in current
admixture mapping studies (mean inflation factor of 0.99 +/- 0.001). Overall, HAMSTA provides a
fast and powerful approach to estimate genome-wide heritability and evaluate biases in test
statistics of admixture mapping studies.
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Introduction

Admixture mapping (AM) aims to identify genomic regions associated with a disease or
quantitative trait in recently admixed populations’™” by leveraging the differences in allele
frequencies between local ancestries®. AM provides a powerful approach to complement genome-
wide association studies (GWAS) in admixed populations due to local ancestry information better
tagging uncommon or poorly imputed causal variants® and spanning larger genomic regions, thus
reducing the multiple testing burden®, enabling discoveries with relatively smaller sample sizes
310 Similarly, recent work'" demonstrated that local ancestry information, which is summarized
by heritability explained by local ancestry h2, can be leveraged to estimate narrow-sense

heritability h? in admixed populations, unlike the genotype-based lower bounds (i.e. hf,). Multiple
works have shown that population structure can bias association tests and estimates of h3 "'
However, it is less understood how similar demographic phenomena bias AM and h)Z, inference in
admixed populations.

Admixed populations are typically modeled as a mixture of multiple continental ancestries (e.g.,
African, European, or Native American) with finer-scale structure within ancestral populations left
unmodeled. Nevertheless, human populations are often structured across both space and time.
For example, European ancestry individuals can be modeled as a mixture of at least three ancient
populations', and Native American ancestry components found in Latinos can also be derived
across multiple subpopulations spread across Latin America'. This unmodeled fine-scale
structure could lead to potential biases in downstream association testing. Indeed, this
phenomenon has been demonstrated in European populations '®'", and could similarly impact
inference in admixed populations when it is not fully accounted for '®. When estimating hg2 using

SNP data of large sample size, a robust approach to population stratification is to estimate h? and
test statistic inflation simultaneously'®. Examples of this approach include linkage disequilibrium
score regression (LDSC)"™ and cov-LDSC'?. While these methods are designed for SNP data, it
remains unclear how applicable they are on estimating h)Z, using summary statistics from

admixture mapping studies.

In this study we propose HAMSTA (Heritability estimation from Admixture Mapping Summary
STAtistics), a novel likelihood-based approach to infer h7 from admixture mapping summary
statistics. To achieve robust and efficient computation, HAMSTA transforms the correlated test
statistics using a truncated singular value decomposition (tSVD) and performs maximum-
likelihood inference while accounting for residual inflation due to stratification within ancestral
populations. We perform extensive simulations and demonstrate that HAMSTA provides
approximately unbiased estimates of h)z, and outperforms existing approaches to detect evidence
of stratification bias. We demonstrate estimates from HAMSTA can be leveraged to efficiently
compute well-calibrated family-wise error rates for admixture mapping, particularly in presence of
ancestral stratification which previous approaches do not consider 2°. Next, we apply HAMSTA to
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85  admixture mapping summary statistics for 20 traits from 15,988 self-identified African American
86 individuals in the Population Architecture using Genomics and Epidemiology (PAGE) study '. We
87 find the h? estimates of 0.85 (0.085) and 0.42 (0.086) for height and BMI respectively. Compared
88  with LDSC on admixture mapping summary statistics, HAMSTA offers more precise estimates for
89  h; and better quantifies the inflation in the test statistics due to unknown confounding biases.
90 Overall, we demonstrate that HAMSTA provides a fast and powerful way to estimate genome-
91  wide heritability that controls biases using summary statistics from admixture mapping studies.

92

o3 Materials and Methods

94  Model for complex trait and ancestral stratification

95  We consider a two-way admixed population, with ancestral populations pop1 and pop2, which is

96  recently structured into pop2a and pop2b (Supplementary Figure 1). This demographic model

97  mimics the African and European admixture in African American and the finer-scale structure in

98 their ancestral European population. We let y, § and —§ denote the population mean phenotype

99  values of pop1, pop2a and pop2b. We denote 4; , as the centered and standardized local ancestry
100  calls for individual i at marker k, such that E[A4;,] =0 and Var[4;,] = 1. We denote indexing
101  over N individuals at the kth marker as A, and index over M markers for the ith individual as 4; .
102  We define the phenotype y; of an admixed individual i as,

103 yi=Ai,B+7Ti)/+di5+€i,

104  where S isthe M x 1 vector of local ancestry effects, n; is defined as the global ancestry proportion
105 due to pop1, d; = m;?¥ — ;2 s the difference between the global ancestry proportions of
106  pop2a and pop2b, and €; ~ N(0,02,) is residual environmental noise. Furthermore, we assume

2
107  that g, ~N(O, %) , where h? is defined as the heritability explained by local ancestry ", Lastly, we

108 define ’;—2 7' as the phenotypic variance explained (PVE) by global ancestry, and i—z d'd as PVE
109 by ancestral stratification.

110
111 Test statistics for admixture mapping

112  We model the marginal association statistics from an admixture mapping study where only global
113  ancestry proportions m; (and not d;) are known beforehand. If the stratification term is not
114  adjusted, the test statistics for marker k will be Z, = sp~*(A,'PA, )~Y/?(Ax'Py), where sg?is the
115  residual variance after the global ancestry = is projected out by matrix P = I — n(x'n) 1n'.
116  Extending this to all M markers we have, Z = s "D~/2(A’ Py), where D is the diagonal elements
117  of A'PA. Given this and distributional assumptions regarding y, we can derive the expectation
118 and covariance of Z as,
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119 E[Z] = sg"'D~Y2A'Pds
hZ
120 Cov[Z] = sp~2 [MYD‘l/Z(A’PA)ZD‘l/Z + (A'PA)c?].

121  The D~Y2(A’PA)D~'/? is local ancestry disequilibrium (LAD) matrix analogous to the LD matrix
122 and D 1(A'PA)?D~1! is the LAD score matrix in which element (j, k) is approximately the dot
123  product of correlation vectors of two markers j and k. When sample size N is large, the test
124  statistics Z are well-approximated by a multivariate normal distribution. The mean reflects the bias
125 due to correlation between local ancestry and ancestral stratification conditional on the global
126  ancestry. In the covariance, the first term is related to the heritability explained by local ancestry
127  and LAD score matrix. The second term in the covariance is related to LAD matrix and nongenetic
128 effects. In the null scenario, where h% =0, 6 = 0, the distribution of Z has means of zeros and

129  covariances simply equal to the LAD matrix.

130  We let the singular value decomposition (SVD) of A’'P = USV', A’PA = US?U’' and (A'PA)? =
2
131 US*U’. We define rotation Z* = S~1szU’'D'/?Z, which follows Z*~N(V’d5,’;4—y 5% + 62 ), where the
132 components are independent. We then assume V'dé to be random and follow a normal
2
133  distribution N(0,C*) such that Z* ~ N(O,’;—y S% + (62 + C*)). The parameters h7 and “intercept”

134 € = (02 + C*) are the parameters to be inferred. To allow heterogeneous C across Z*, we allow
135 C to be different every 500 elements, i.e., C = (c1**xs500,C2 ***xs500, ") - Test statistics from
136  different chromosomes are rotated separately and do not share elements in C.

137
138 Inferring h§ and biases using HAMSTA

139  Parameters hj and C were log-transformed to ensure positivity during optimization. First, we test
140 for ancestral stratification using a likelihood ratio test between models with multiple intercepts and
141  single intercepts in which C is a scalar shared by all elements in Z*. If the test is significant with
142 p < 0.05, we determine the maximum likelihood estimates fzﬁ and € under the multiple intercept
143  model. Otherwise, we find fzﬁ and € under the single intercept model. To test for the significance
144 of hZ, we use a likelihood ratio test that test the hypothesis h2 = 0. The standard errors of the
145  estimates were determined using the jackknife method over 10 blocks.

146
147  Estimating h* from hZ

148  Previous work'" demonstrated a relationship between narrow-sense heritability h?> and h% as
149  h} = 2Fgcm(1—m)h® . The Fgr¢ is defined as the average genetic distance between the

(fi—f2)?

150 ancestral populations at causal loci. At each site, the genetic distance is computed as 2Py
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151 where f;, f, and f are the allele frequency in the ancestral populations and the admixed
152  population. We provided h? estimates based on 1) Fgr = 0.1692 reported in the original study'’,
153  which was estimated from HapMap 3 dataset and 2) Fsrc = 0.1152 estimated in this study using
154  a subset of African and European descent from the 1000 Genome and HGDP subset in gnomAD
155  v3.1 22, assuming common variants explain 90% of h? . The average admixture proportion = was
156  observed to be 78% African ancestry.

157
158  Simulation design

159 To validate and assess performance of HAMSTA we performed simulations using realistic
160  demographic scenarios. Specifically, we simulated ancestral populations pop1 and pop2 mirroring
161  African and European populations in the Out-of-Africa demography model 2. We additionally
162 introduced structure into pop2 by subdividing it into two subpopulations (denoted by pop2a and
163  pop2b below, Supplementary Figure 1). We set pop2a and pop2b to have diverged 200
164  generations ago with a migration rate = 1073. These parameters were selected to result in a
165 genetic differentiation similar to that within European populations (Fsr ~ 0.003) estimated from
166  the HGDP and 1000 Genome subsets in gnomAD %2, We simulated this demography for a 250Mb
167  region with a uniform recombination rate of 10~% per bp using msprime 2. Using the true
168 genealogies from simulations, we extracted the true local ancestry of each individual by tracing
169 their lineage to each ancestral population (pop1, pop2a or pop2b). Global ancestries were
170  computed from local ancestry information by computing the total proportion of the 250Mb region
171  thatis inherited from an ancestral population. We sampled 50,000 admixed individuals and 20,000
172  local ancestry markers according to the demography mode.

173  Next, we simulated phenotypes according to our phenotype model y =Af + na + dé + €.

2
174  Given a sparsity a, we drew the effect of a local ancestry marker g, from N (0, :—Ay/[) with probability

175 a and € from N(0,02). Then we set the true h%, PVE by global ancestry, PVE by ancestral

176 stratification, and ¢2 by varying the values of y and §. Finally, test statistics were computed using
177  linear regression adjusting for m using PLINK 2.0 %°.

178
179  Estimate h§ with other approaches

180  To compare HAMSTA with existing methods in h? estimation, we applied BOLT-REML%*, GCTA
181  ?"and LD score regression (LDSC)™ to the simulated and real-world data. In GCTA, the same set
182  of covariates included in the admixture mapping were used in h? estimation. Following previous
183  studies, we compute the genetic relatedness matrix using local ancestry in place of genotypes '".
184 In LDSC, we define the “local ancestry linkage disequilibrium” (LAD) score for marker i as [; =
185  Yjew rfj with W being the set of markers in a given window size. Window sizes of 1-cM and 20-
186  cM were used. The LAD scores were used as the regressors and weights in LDSC.
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187
188  Significance threshold estimation

189  Specifically, to determine the significance threshold for a given admixture mapping study, we
190  randomly generated test statistics Z = sz*D~Y2USQ, where Qis a vector of random variable
191 sampled from N (0, 07). We set g7 to be the maximum intercept if the test for multiple intercepts
192 s significant, and o7 to be the inferred intercept if the test is not significant. We repeated the
193  sampling procedure 2,000 times to determine the critical value as the 95% percentile of max(Z?).
194  The significance threshold was determined as the tail probability of a chi-square distribution
195 (degree of freedom = 1) at the critical value. To determine the threshold for multiple
196 chromosomes, we estimate the threshold for each chromosome separately and then combine the
197 thresholds by summing up the effective testing burden, i.e., Combined thres = 0.05/
198 22 (0.05/threscphromosome i) - FOr comparison, we also estimated the significance threshold using
199  STEAM?, which sampled from Z = MVN(0,X), where X is a local ancestry correlation matrix
200 based on genetic distance and admixture parameters. Family-wise error rates (FWER) were
201 computed as the percentage of times at least one significant signal is identified out of 500 null
202  simulations.

203

204 Local ancestry inference and genome-wide mapping for admixed individuals in PAGE
205 cohort

206 We obtained phenotypes and genotyping data measured on Multi-Ethnic Genotyping Array
207 (MEGA) from the PAGE study ?'. The complete dataset included 17,299 participants who self-
208 identified as African American. Our analysis included 20 quantitative phenotypes: Body mass
209 index (BMI), height, waist-to-hip ratio, diastolic blood pressure, systolic blood pressure, PR
210 interval, QRS interval, QT interval, fasting glucose, fasting insulin, C-reactive protein, mean
211 corpuscular hemoglobin concentration, platelet count, estimated glomerular filtration rate,
212  cigarettes per day, coffee cups per day, high-density lipoprotein (HDL), low-density lipoprotein
213  (LDL), triglycerides, and total cholesterol. Filters and transformations were applied, and covariates
214  were selected according to the original PAGE analysis within the African American subset %'.

215 To infer the local ancestry, a subset of African and European genomes from the 1000 Genome
216  and HGDP subset in gnomAD were used as reference individuals ?2. After filtering out SNPs with
217  missingness > 10%, lifting over and merging, 516,731 SNPs were used in the local ancestry
218 inference, resulting in 101,292 local ancestry markers. The genotypes of PAGE and reference
219  individuals were re-phased together using EAGLE %, and the ancestry probabilities were inferred
220 as the local ancestry of the haplotype in a region using RFMIX2 ?°. The global ancestry of an
221 individual was computed by taking the average of all predicted local ancestries. We analyzed up
222  to 15,988 individuals who have >5% of one of the inferred ancestries and have no missing values
223  in the covariates in the 20 quantitative phenotypes. Admixture mapping was performed using
224  linear regression adjusting for the study center, inferred global ancestry, and phenotype-specific
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225  covariates used in PAGE. The average estimate of hj across phenotypes was calculated by
226  weighting the estimate of each phenotype by the inverse of the squared standard error. The run
227  time was measured on a machine with an Intel Xeon 4116 processor and 48GB memory.

228

229 Results
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230
231 Figure 1
232 Simulation results from 50,000 admixed individuals and phenotypes under different levels of variance explained by local ancestry,
233 global ancestry and ancestral stratification. The box plots show the range and quartiles of the estimates. a) Results of hf, estimation
234 when varying true hf,. Phenotypic variance explained (PVE) by global ancestry and ancestral stratification were set to 0. A gray identity

235 line is plotted. b) Comparison of hZ estimates between HAMSTA and BOLT-REML applied to simulation data when true h7 =
236 {0.01,0.02,0.03,0.05} in figure a. c) Results when varying the PVE by global ancestry, setting h2 = 0.03 (horizontal line) and PVE by

237 ancestral stratification = 0. d) Comparison of h} estimates between HAMSTA and BOLT-REML under various levels of ancestral
238 stratification. True hZ were fixed at 0.03 (horizontal line).
239

240 HAMSTA provides unbiased estimates of hZ under ancestral stratification


https://doi.org/10.1101/2023.04.10.536252
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.10.536252; this version posted April 18, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

241 To evaluate the accuracy of h} estimates under various scenarios, we performed simulation
242  studies using local ancestry data simulated under a population demographic model that mirrors
243  African American admixture history with an addition of recent population structure in one of the
244  ancestral populations (see Methods). Briefly, we simulated phenotypes absent stratification
245  effects where we varied h; from 0 to 0.05 (corresponding to h* from 0 to 1 according to ref m,
246  which reflects hi estimates reported in previous African American samples % and performed
247  admixture mapping to compute summary statistics. Overall, we found HAMSTA produced
248  approximately unbiased estimates of ;. (Figure 1a), irrespective of the sparsity of causal markers
249  (Supplementary Figure 2). We observed that the summary statistics- based estimates from
250 HAMSTA were highly correlated with those computed from individual-level data using BOLT-
251 REML (Figure 1b), suggesting that when stratification bias is not present, there is no loss in
252  accuracy across data settings. Next, to compare our method with existing summary statistics-
253  based methods, we applied LD score regression (LDSC; see Methods) and observed LDSC
254  produced biased estimates exhibited large standard errors (Supplementary Figure 3).
255 Importantly, we found LDSC estimates remained biased after re-estimating “LAD scores” using a
256 larger window size of 20-cM (Supplementary Figure 3). Next, we varied effect of global ancestry
257  while fixing the h? and PVE by ancestral stratification and found HASMTA h? estimates remained
258 unbiased (Figure 1c). Together, our results suggest that when stratification does not inflate
259  summary statistics, HAMSTA provides unbiased estimates of hZ , unlike existing summary-based
260  approaches.

261 Next, we sought to evaluate HAMSTA in presence of ancestral stratifications. We determined that
262 the h; estimates in our method were more robust to the presence of unadjusted ancestral
263  stratification (Figure 1d). In contrast, BOLT-REML, where the inference model is not aware of
264  ancestral stratification, produced biased results as the PVE by ancestral stratification increases.

265 Further, we demonstrate that our method is still robust to other scenarios of structures in the
266  ancestral populations (Supplementary Figure 4). We explored the cases where i) both ancestral
267  populations are structured, ii) the proportion of ancestries from the subpopulations are unequal in
268 the admixed population, ii) the subpopulations are introduced to the admixture event at different
269 times. In all the scenarios, the unbiasedness of our estimator is not affected by the ancestral
270  stratification.

271 Overall, we demonstrated HAMSTA provides unbiased estimates of h% under various levels of
272  effects from local ancestry, global ancestry, and stratification in ancestral populations.

273
274
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276 Figure 2
277 Evaluating ancestral stratification by HAMSTA in 500 simulation replicates. We simulated 50,000 admixed individuals and phenotypes
278 under various levels of variance explained by local ancestral stratification. The true hf, is set to zero. a) Ancestral stratification is
279 reflected by measures of test statistic inflation. The average estimates of HAMSTA's intercepts are labeled. b) Quantile-quantile plot
280 of test statistics for the test for ancestral stratification. c) Power comparison between HAMSTA and LDSC in detecting ancestral
281 stratification. The p value cutoff for each approach was determined such that the significance level = 0.05 in null simulation d) Family-
282 wise error rate before and after correcting p-value cutoff in admixture mapping using the estimated intercepts.
283
284

285 HAMSTA estimates inflation in admixture mapping statistics due to stratification

286  Having established the unbiasedness in hj estimates, we next sought to evaluate the ability of
287 HAMSTA to identify inflation in admixture mapping statistics due to ancestral population
288  stratification. Specifically, intercepts estimated by HAMSTA can be tested against the null (i.e., 1)
289  to evaluate stratification bias. Overall, we observed HAMSTA produced estimates greater than 1
290 asthe PVE by ancestral stratification increased (Figure 2a), demonstrating the ability of HAMSTA
291 inferred intercepts to capture stratification-induced inflation. Although we noted similar trends in
292  other measures of inflation, including mean x?, genomic inflation factor 4., their inability to
293  distinguish between polygenicity and confounding prevent their use for complex disease analyses


https://doi.org/10.1101/2023.04.10.536252
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.04.10.536252; this version posted April 18, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

294 3. Next, we evaluated the ability of LDSC to identify stratification in admixture mapping statistics
295 through its intercept estimates and observed biased results with large variability (Supplementary
296  Figure 4). We observed HAMSTA to have significantly greater power to detect stratification bias
297  compared with LDSC (Figure 2c). For example, HAMSTA has 80% power when stratification
298 explains 10% of PVE, compared with 5% power of LDSC. These relative differences in
299 performance held when we increased the LAD score window size for LDSC (Supplementary
300 Figure 4). Overall, HAMSTA provides unbiased estimates of inflation in admixture mapping
301 statistics due to ancestral bias and has greater power to reject its null compared to alternative
302 approaches.

303
304 HAMSTA improves estimation of p-value thresholds to control family-wise error rate

305 As the number of approximately independent ancestry blocks depends on the demographic
306 history of the population being studied, there is no universal threshold to determine genome-wide
307  significance in admixture mapping studies. Admixture mapping often relies on permutation-based
308 approaches to estimate the FWER, however these approaches can be computationally intractable
309 for large datasets. Although a recently developed summary-static sampling scheme (STEAM)
310 bypasses the need for individual-level permutations and speeds up the FWER estimation?, its
311 assumption that there exists no inflation in the test statistics may be unmet in the presence of
312  population structure and polygenicity.

313  Here, we demonstrated inferences from HAMSTA can be leveraged to produce significance
314  thresholds for association testing to achieve calibrated family-wise error rates (FWER) compared
315 with STEAM. First, when PVE due to stratification is zero, we found STEAM and HAMSTA
316  estimated similar significance thresholds (HAMSTA mean: 1.12 x 107%; STEAM: 1.57 x 10™%),
317  vyielding comparable FWER at ~5% (Figure 2d), which suggests that HAMSTA-based FWER
318 estimates do not deflate overall power despite increased model complexity. Importantly, in
319  presence of ancestral stratification, we found HAMSTA estimates resulted in approximately
320 calibrated FWERs unlike STEAM, which produced a considerable number of false positive
321  associations (Figure 2d, Supplementary Figure 6). For example, when PVE due to stratification
322 is 0.25, HAMSTA estimates resulted in FWER of 8% compared to the FWER of 34% from STEAM.
323  Together, these findings demonstrate that intercepts estimated by HAMSTA can be incorporated
324  into significance threshold estimation, producing better calibrated FWERs and therefore reducing
325 false positive findings.

326
327  Application to African American in the PAGE study

328  To illustrate the ability of HAMSTA to estimate hJ from summary data, we applied it to admixture

329 mapping summary statistics of 20 quantitative phenotypes computed from the African American
330 participants in PAGE study®' (mean N = 8383, SD N = 3901; see Methods). Briefly, we performed
331  admixture mapping using 101,292 markers adjusting for the study center, global ancestry, and
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332  phenotype-specific covariates. The average genomic inflation factor A;, across phenotypes is
333  1.53 (SD = 0.64). Next, we applied HAMSTA to generated summary statistics to infer h7 and
334  evaluate potential stratification biases. To estimate h* from h;, we estimated the average African

335 ancestry to be 78% and Fsrc = 0.12 from the admixed individuals in PAGE and reference
336 individuals from HGDP and 1000 Genomes.

337  We estimated the hJ ranges from 0.0025 for systolic blood pressure to 0.033 for height (mean h?
338 =0.012; SE=9.2 x 10~*) across the 20 phenotypes, of which 13/20 were individually significantly
339 different from O (nominal p-value < 0.05 in Supplementary Table 1). Translating h; to estimates
340 of h?, we observed the h? ranging from 0.062 for systolic blood pressure to 0.85 for height (mean
341  h? =0.30; SE = 0.023), of which 13/20 were individually significant. We found these results were
342  robust to different values of Fsr (see Supplementary Table 1).

343  Consistent with the simulation results, HAMSTA estimates were correlated more strongly with
344 BOLT-REML estimates (r = 0.99, Figure 3) than those computed from LDSC (r = 0.44)
345 (Supplementary Figure 7) This was largely attributable to statistical precision, with standard
346  errors in HAMSTA estimates (range from 0.0023 to 0.014, mean = 0.0058) being slightly greater
347  those from BOLT-REML (range from 0.0021 to 0.0076, mean = 0.0042), and noticeably lower
348 than those computed from LDSC (range from 0.0064 to 0.021, mean = 0.012). Since 5/20
349  phenotypes had limited sample sizes (N<5,000), which is known to impact the performance of
350 BOLT?, we also estimated h using GCTA. Of the 16 estimates computed by GCTA that
351  converged, we observed they were in general bounded by the estimates by HAMSTA and BOLT-
352 REML (Supplementary Figure 8). Overall, we find that HAMSTA estimates of h? are consistent
353  with those computed from individual-level approaches in real data, while requiring much less
354  computation time for the inference step (49 seconds for HAMSTA versus 51 minutes for GCTA).

355  To substantiate the translated h? estimates computed from HAMSTA, we compared with previous
356  h? estimates reported from admixed individuals "' as well as those from twin studies. Overall, we
357 found our h? estimates are significantly correlated with the previously reported h%-based
358 estimates " (r = 0.84, p=0.03). Focusing on height, and BMI, HAMSTA estimated h; =0.033 (se:
359 3.4 x107*) and h; = 0.017 (3.4 x 10™*) respectively, corresponding to h* of 0.85 (0.085) and
360 0.42 (0.086) respectively. The estimated height h? was similar to the h? = 0.68 - 0.84 in twin
361 studies 3!, whereas the estimated BMI h% was smaller than the h% = 0.57 - 0.77 in twin studies
362 and higher than the h? = 0.30 in an estimation from whole-genome sequence data in European
363  ancestry populations®?.

364 HAMSTA estimated intercepts suggested limited evidence for inflated summary statistics due to
365 ancestral stratification in the admixture mapping (range from 0.97 to 1.01, average = 0.99;
366  Supplementary Table 1), with 0/20 phenotypes differing significantly from the expectation of 1.
367  Although LDSC suggested no significant deviation of intercepts from 1 (range from 0.18 to 1.95,
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368 average = 1.07), individual intercepts varied more greatly under LDSC (mean SE = 0.34), than
369 those computed under HAMSTA (mean SE = 5.6 x 1073) (Supplementary Table 1).

370 Since in simulation we demonstrated that the significance threshold for admixture mapping
371 corresponding to FWER of 5% is sensitive to ancestral stratification, we estimated the thresholds
372  based on the HAMSTA intercepts. Under no ancestral stratification (i.e. intercept = 1), HAMSTA
373  estimated the significance threshold required to be 2.80 x 10~°, which agrees with the threshold
374  of 2.10 x 1075 reported by STEAM for African American®. Based on the estimated intercepts in
375 HAMSTA for the 20 phenotypes, the estimated thresholds range from 2.70 x 107> t03.52 x 107°.
376 To conclude, HAMSTA found no evidence of inflation in admixture mapping statistics and
377  provided estimates for h; and hence h? of the complex traits of African American in PAGE study.

378
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381 Figure 3

382 Comparison of Ef, -based hZbetween HAMSTA and BOLT-REML for the 20 quantitative traits in African American in PAGE. Results

383 on 20 PAGE quantitative traits. Comparison between the estimates from HAMSTA, and BOLT-REML. Each point shows the A2, and
384 the lengths of the error bars represent the standard errors.

385

386 DISCUSSION

387 In this study, we demonstrated the use of summary statistics from admixture mapping to quantify
388 the contribution of genetic variations to a trait. We developed a tool, HAMSTA, that unbiasedly
389  estimate hj under the various trait architecture, including in the presence of unknown population
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390 stratification in ancestral populations. Using the summary statistic-based approach, HAMSTA
391  distinguishes the effect tagged by local ancestry on test statistics from unknown confounding
392  biases. We also demonstrated that the estimated biases could be used to correct the significance
393  threshold such that FWER are better controlled. Lastly, we applied HAMSTA to real-world data,
394  showing that it can recover the h% and hence h? from admixture mapping summary statistics.

395  Our method addresses several limitations in existing approaches estimating h;. First, because of
396 the long-range correlations between local ancestry markers, LDSC requires a large window size
397  to capture correlations with distant effect markers. Also, regression weights may not be sufficient
398 to solve the problem of correlated y? statistics, which could lead to inefficient estimation 34, Our
399 analysis shows that the efficiency can be improved when admixture mapping test statistics are
400 rotated to an independent space. Second, REML could provide an unbiased estimate, but we
401 showed in simulation that it is susceptible to ancestral stratification. Also, it is computationally
402 expensive as the sample size increases. In real data analysis, the REML approach in GCTA failed
403 to converge in waist-to-hip ratio, QT-interval, cigarette-per-day, and HDL. In contrast, we showed
404 that HAMSTA would be a more robust approach to ancestral stratification and has no
405 convergence problem in our analysis. Finally, existing methods assume uniform test statistics
406 inflation although it has been shown that this assumption could be inaccurate *°>%. HAMSTA
407  relaxes this assumption by allowing multiple intercepts to represent non-uniform inflation. Overall,
408 HAMSTA offers advantages over existing methods in the above aspects.

409 We are aware of several limitations of HAMSTA. First, HAMSTA only provides estimates of
410 heritability explained by local ancestries in two-way admixtures, which may limit the use of the
411 method in admixed populations with more than two ancestral populations. Currently, the
412  relationship between h% and h? are only established in two-way admixed populations such as
413  African American, but models for h; multi-way admixture has not yet been proposed.
414  Incorporating the contribution of multiple ancestries in h% and h? will be a possible extension in
415  the future. Second, the standard error of HAMSTA h% is larger than that from methods that use
416  individual-level data like BOLT-REML (mean SE=0.0058 in HAMSTA versus mean SE=0.0042 in
417 BOLT-REML). Nevertheless, HAMSTA h% is robust to ancestral stratification, unlike BOLT-REML
418  showing upward biases in the h; estimates (Figure 1d). Third, HAMSTA only models summary
419  statistics computed from linear regression on quantitative traits. The scope of this study is not
420 extended to modeling binary traits. Future work can explore phenotypes under the liability-scale
421 model and evaluate the use of summary statistics from logistic regression models. Lastly, since
422 HAMSTA relies on an accurate LAD, factors that the LAD depends on, such as global ancestries,
423  could potentially impact the accuracy of the estimates. These factors are required to be adjusted
424  for when estimating the LAD.

425 In summary, our work opens a direction of summary statistics analysis in admixture mapping
426  studies. Our method will facilitate studies of genetic architecture in large cohorts of admixed
‘427 populations.
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