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Abstract  29 

The heritability explained by local ancestry markers in an admixed population (ℎ"#)  provides 30 
crucial insight into the genetic architecture of a complex disease or trait. Estimation of ℎ"# can be 31 
susceptible to biases due to population structure in ancestral populations. Here, we present a 32 
novel approach, Heritability estimation from Admixture Mapping Summary STAtistics (HAMSTA), 33 
which uses summary statistics from admixture mapping to infer heritability explained by local 34 
ancestry while adjusting for biases due to ancestral stratification. Through extensive simulations, 35 
we demonstrate that HAMSTA ℎ"# estimates are approximately unbiased and are robust to 36 
ancestral stratification compared to existing approaches. In the presence of ancestral 37 
stratification, we show a HAMSTA-derived sampling scheme provides a calibrated family-wise 38 
error rate (FWER) of ~5% for admixture mapping, unlike existing FWER estimation approaches. 39 
We apply HAMSTA to 20 quantitative phenotypes of up to 15,988 self-reported African American 40 
individuals in the Population Architecture using Genomics and Epidemiology (PAGE) study. We 41 
observe ℎ$"# in the 20 phenotypes range from 0.0025 to 0.033 (mean ℎ$"# = 0.012 +/- 9.2	 × 10,-), 42 
which translates to ℎ$# ranging from 0.062 to 0.85 (mean ℎ$# = 0.30 +/- 0.023). Across these 43 
phenotypes we find little evidence of inflation due to ancestral population stratification in current 44 
admixture mapping studies (mean inflation factor of 0.99 +/- 0.001). Overall, HAMSTA provides a 45 
fast and powerful approach to estimate genome-wide heritability and evaluate biases in test 46 
statistics of admixture mapping studies.   47 
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Introduction 48 

Admixture mapping (AM) aims to identify genomic regions associated with a disease or 49 
quantitative trait in recently admixed populations1–7 by leveraging the differences in allele 50 
frequencies between local ancestries8. AM provides a powerful approach to complement genome-51 
wide association studies (GWAS) in admixed populations due to local ancestry information better 52 
tagging uncommon or poorly imputed causal variants5 and spanning larger genomic regions, thus 53 
reducing the multiple testing burden9, enabling discoveries with relatively smaller sample sizes 54 
3,10.  Similarly, recent work11 demonstrated that local ancestry information, which is summarized 55 
by heritability explained by local ancestry ℎ"#, can be leveraged to estimate narrow-sense 56 
heritability ℎ# in admixed populations, unlike the genotype-based lower bounds (i.e. ℎ.#). Multiple 57 
works have shown that population structure can bias association tests and estimates of  ℎ.# 12,13. 58 
However, it is less understood how similar demographic phenomena bias AM and ℎ"# inference in 59 
admixed populations.  60 

Admixed populations are typically modeled as a mixture of multiple continental ancestries (e.g., 61 
African, European, or Native American) with finer-scale structure within ancestral populations left 62 
unmodeled. Nevertheless, human populations are often structured across both space and time. 63 
For example, European ancestry individuals can be modeled as a mixture of at least three ancient 64 
populations14, and Native American ancestry components found in Latinos can also be derived 65 
across multiple subpopulations spread across Latin America15. This unmodeled fine-scale 66 
structure could lead to potential biases in downstream association testing. Indeed, this 67 
phenomenon has been demonstrated in European populations 16,17, and could similarly impact 68 
inference in admixed populations when it is not fully accounted for 18. When estimating ℎ.# using 69 
SNP data of large sample size, a robust approach to population stratification is to estimate ℎ# and 70 
test statistic inflation simultaneously19. Examples of this approach include linkage disequilibrium 71 
score regression (LDSC)13 and cov-LDSC12. While these methods are designed for SNP data, it 72 
remains unclear how applicable they are on estimating ℎ"# using summary statistics from 73 
admixture mapping studies.  74 

In this study we propose HAMSTA (Heritability estimation from Admixture Mapping Summary 75 
STAtistics), a novel likelihood-based approach to infer ℎ"# from admixture mapping summary 76 
statistics. To achieve robust and efficient computation, HAMSTA transforms the correlated test 77 
statistics using a truncated singular value decomposition (tSVD) and performs maximum-78 
likelihood inference while accounting for residual inflation due to stratification within ancestral 79 
populations.  We perform extensive simulations and demonstrate that HAMSTA provides 80 
approximately unbiased estimates of ℎ"# and outperforms existing approaches to detect evidence 81 
of stratification bias. We demonstrate estimates from HAMSTA can be leveraged to efficiently 82 
compute well-calibrated family-wise error rates for admixture mapping, particularly in presence of 83 
ancestral stratification which previous approaches do not consider 20. Next, we apply HAMSTA to 84 
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admixture mapping summary statistics for 20 traits from 15,988 self-identified African American 85 
individuals in the Population Architecture using Genomics and Epidemiology (PAGE) study 21. We 86 
find the ℎ# estimates of 0.85 (0.085) and 0.42 (0.086) for height and BMI respectively. Compared 87 
with LDSC on admixture mapping summary statistics, HAMSTA offers more precise estimates for 88 
ℎ"# and better quantifies the inflation in the test statistics due to unknown confounding biases. 89 
Overall, we demonstrate that HAMSTA provides a fast and powerful way to estimate genome-90 
wide heritability that controls biases using summary statistics from admixture mapping studies.  91 

 92 

Materials and Methods 93 

Model for complex trait and ancestral stratification 94 

We consider a two-way admixed population, with ancestral populations pop1 and pop2, which is 95 
recently structured into pop2a and pop2b (Supplementary Figure 1). This demographic model 96 
mimics the African and European admixture in African American and the finer-scale structure in 97 
their ancestral European population. We let 𝛾, 𝛿 and −𝛿 denote the population mean phenotype 98 
values of pop1, pop2a and pop2b. We denote 𝐴3,5	as the centered and standardized local ancestry 99 
calls for individual i at marker k, such that 𝐸[𝐴3,5] 	= 0		 and 𝑉𝑎𝑟[𝐴3,5] 	= 1	. We denote indexing 100 
over 𝑁 individuals at the kth marker as 𝐴5 and index over 𝑀 markers for the ith individual as 𝐴3	. 101 
We define the phenotype 𝑦3	 of an admixed individual i as, 102 

𝑦3	 = 𝐴3	𝛽	 +	𝜋3𝛾	 +	𝑑3𝛿	 +	 𝜖3		,  103 

where 𝛽 is the 𝑀 × 1 vector of local ancestry effects, 𝜋3 is defined as the global ancestry proportion 104 
due to pop1, 𝑑3 = 𝜋3(#F) − 𝜋3(#H) is the difference between the global ancestry proportions of 105 
pop2a and pop2b, and 𝜖3	 ∼ 𝑁(0, 𝜎#K)	 is residual environmental noise. Furthermore, we assume 106 

that 𝛽5	~𝑁(0,
MNO

P
)	, where  ℎ"# is defined as the heritability explained by local ancestry 11. Lastly, we 107 

define "
O

Q
	𝜋′𝜋 as the phenotypic variance explained (PVE) by global ancestry, and S

O

Q
	𝑑′𝑑 as PVE 108 

by ancestral stratification. 109 

 110 

Test statistics for admixture mapping 111 

We model the marginal association statistics from an admixture mapping study where only global 112 
ancestry proportions 𝜋3 (and not 𝑑3) are known beforehand. If the stratification term is not 113 
adjusted, the test statistics for marker k will be 𝑍5	 = 𝑠V,W(𝐴5′𝑃𝐴5	),W/#(𝐴5′𝑃𝑦), where 𝑠V#is the 114 
residual variance after the global ancestry 𝜋 is projected out by matrix 𝑃	 = 	𝐼	 − 	𝜋(𝜋′𝜋),W𝜋′. 115 
Extending this to all M markers we have,  𝑍	 = 𝑠V,W𝐷,W/#(𝐴′	𝑃𝑦), where 𝐷 is the diagonal elements 116 
of 𝐴′𝑃𝐴	. Given this and distributional assumptions regarding 𝑦, we can derive the expectation 117 
and covariance of 𝑍	as, 118 
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𝐸[𝑍] 	= 𝑠V,W𝐷,W/#𝐴′𝑃𝑑𝛿	 119 

𝐶𝑜𝑣[𝑍] 	= 𝑠V,#	[
ℎ"#

𝑀
𝐷,W/#(𝐴′𝑃𝐴	)#𝐷,W/# + (𝐴′𝑃𝐴	)𝜎K#]	. 120 

The 𝐷,W/#(𝐴′𝑃𝐴	)𝐷,W/# is local ancestry disequilibrium (LAD) matrix analogous to the LD matrix 121 
and  𝐷,W(𝐴′𝑃𝐴	)#𝐷,W is the LAD score matrix in which element (𝑗, 𝑘) is approximately the dot 122 
product of correlation vectors of two markers 𝑗 and  𝑘. When sample size N is large, the test 123 
statistics 𝑍 are well-approximated by a multivariate normal distribution. The mean reflects the bias 124 
due to correlation between local ancestry and ancestral stratification conditional on the global 125 
ancestry. In the covariance, the first term is related to the heritability explained by local ancestry 126 
and LAD score matrix. The second term in the covariance is related to LAD matrix and nongenetic 127 
effects. In the null scenario, where ℎ"# 	= 0, 𝛿 = 0, the distribution of 𝑍 has means of zeros and 128 
covariances simply equal to the LAD matrix.     129 

We let the singular value decomposition (SVD) of 𝐴′𝑃 = 	𝑈𝑆𝑉′, 𝐴′𝑃𝐴	 	= 	𝑈𝑆#𝑈′ and (𝐴′𝑃𝐴	)# 	=130 

	𝑈𝑆-𝑈′. We define rotation 𝑍∗ = 𝑆,W𝑠V𝑈′𝐷W/#𝑍, which follows 	𝑍∗~𝑁(𝑉′𝑑𝛿, MN
O

P
	𝑆# + 𝜎K#	), where the 131 

components are independent. We then assume 𝑉′𝑑𝛿 to be random and follow a normal 132 

distribution 𝑁(0, 𝐶∗) such that 𝑍∗ 	∼ 𝑁(0, MN
O

P
	𝑆# + (𝜎K# + 𝐶∗)). The parameters ℎ"# and “intercept” 133 

𝐶 = (𝜎K# + 𝐶∗) are the parameters to be inferred. To allow heterogeneous 𝐶 across  𝑍∗, we allow 134 
𝐶 to be different every 500 elements, i.e., 𝐶 = 	(𝑐W ⋯×500 , 𝑐# ⋯×500 ,⋯ )		. Test statistics from 135 
different chromosomes are rotated separately and do not share elements in 𝐶.  136 

 137 

Inferring 𝒉𝜸𝟐 and biases using HAMSTA 138 

Parameters ℎ"# and 𝐶 were log-transformed to ensure positivity during optimization. First, we test 139 
for ancestral stratification using a likelihood ratio test between models with multiple intercepts and 140 
single intercepts in which 𝐶 is a scalar shared by all elements in 𝑍∗. If the test is significant with 141 
𝑝	 < 	0.05, we determine the maximum likelihood estimates ℎ$"# and 𝐶l under the multiple intercept 142 
model. Otherwise, we find ℎ$"# and 𝐶l under the single intercept model. To test for the significance 143 
of  ℎ$"#, we use a likelihood ratio test that test the hypothesis ℎ"# 	= 	0.	The standard errors of the 144 
estimates were determined using the jackknife method over 10 blocks.  145 

 146 

Estimating 𝒉𝟐	 from 𝒉𝜸𝟐 147 

Previous work11 demonstrated a relationship between narrow-sense heritability ℎ#	 and ℎ"# as 148 
ℎ"# 	= 2𝐹nop	𝜋(1 − 𝜋)	ℎ#		. The 𝐹nop  is defined as the average genetic distance between the 149 

ancestral populations at causal loci. At each site, the genetic distance is computed as (qr,qO)
O

#q(W,q)
, 150 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 18, 2023. ; https://doi.org/10.1101/2023.04.10.536252doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.10.536252
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

where 𝑓W, 𝑓# and 𝑓 are the allele frequency in the ancestral populations and the admixed 151 
population. We provided ℎ#	estimates based on 1) 𝐹nop  = 0.1692 reported in the original study11, 152 
which was estimated from HapMap 3 dataset and 2)  𝐹nop  = 0.1152 estimated in this study using 153 
a subset of African and European descent from the 1000 Genome and HGDP subset in gnomAD 154 
v3.1 22, assuming common variants explain 90% of ℎ#	. The average admixture proportion 𝜋 was 155 
observed to be 78% African ancestry.  156 

 157 

Simulation design 158 

To validate and assess performance of HAMSTA we performed simulations using realistic 159 
demographic scenarios. Specifically, we simulated ancestral populations pop1 and pop2 mirroring 160 
African and European populations in the Out-of-Africa demography model 23. We additionally 161 
introduced structure into pop2 by subdividing it into two subpopulations (denoted by pop2a and 162 
pop2b below, Supplementary Figure 1). We set pop2a and pop2b to have diverged 200 163 
generations ago with a migration rate = 10,t. These parameters were selected to result in a 164 
genetic differentiation similar to that within European populations (𝐹no ≈ 0.003) estimated from 165 
the HGDP and 1000 Genome subsets in gnomAD 22. We simulated this demography for a 250Mb 166 
region with a uniform recombination rate of 10,w per bp using msprime 24. Using the true 167 
genealogies from simulations, we extracted the true local ancestry of each individual by tracing 168 
their lineage to each ancestral population (pop1, pop2a or pop2b). Global ancestries were 169 
computed from local ancestry information by computing the total proportion of the 250Mb region 170 
that is inherited from an ancestral population. We sampled 50,000 admixed individuals and 20,000 171 
local ancestry markers according to the demography mode. 172 

Next, we simulated phenotypes according to our phenotype model 𝑦 = 𝐴	𝛽	 + 	𝜋𝛼	 + 	𝑑𝛿	 + 	𝜖	. 173 

Given a sparsity 𝛼, we drew the effect of a local ancestry marker 𝛽5 from 𝑁(0, MN
O

yP
)	with probability  174 

𝛼 and 𝜖 from 𝑁(0, 𝜎K#)	. Then we set the true ℎ"#	, PVE by global ancestry, PVE by ancestral 175 
stratification, and 	𝜎K#	 by varying the values of 𝛾 and 𝛿. Finally, test statistics were computed using 176 
linear regression adjusting for 	𝜋 using PLINK 2.0 25. 177 

 178 

Estimate 𝒉𝜸𝟐 with other approaches 179 

To compare HAMSTA with existing methods in ℎ"# estimation, we applied BOLT-REML26, GCTA 180 
27 and LD score regression (LDSC)13 to the simulated and real-world data. In GCTA, the same set 181 
of covariates included in the admixture mapping were used in ℎ"# estimation. Following previous 182 
studies, we compute the genetic relatedness matrix using local ancestry in place of genotypes 11. 183 
In LDSC, we define the “local ancestry linkage disequilibrium” (LAD) score for marker 𝑖 as 𝑙3 	=184 
∑ 𝑟3,}#}∈�  with 𝑊 being the set of markers in a given window size. Window sizes of 1-cM and 20-185 
cM were used. The LAD scores were used as the regressors and weights in LDSC.  186 
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 187 

Significance threshold estimation 188 

Specifically, to determine the significance threshold for a given admixture mapping study, we 189 
randomly generated test statistics 𝑍	 = 	 𝑠V,W𝐷,W/#𝑈𝑆𝑄, where 𝑄	is a vector of random variable 190 
sampled from 𝑁(0, 𝜎�#). We set 𝜎�# to be the maximum intercept if the test for multiple intercepts 191 
is significant, and 𝜎�# to be the inferred intercept if the test is not significant. We repeated the 192 
sampling procedure 2,000 times to determine the critical value as the 95% percentile of 𝑚𝑎𝑥(𝑍#). 193 
The significance threshold was determined as the tail probability of a chi-square distribution 194 
(degree of freedom = 1) at the critical value. To determine the threshold for multiple 195 
chromosomes, we estimate the threshold for each chromosome separately and then combine the 196 
thresholds by summing up the effective testing burden, i.e., 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑	𝑡ℎ𝑟𝑒𝑠	 = 0.05/197 
∑ (0.05/𝑡ℎ𝑟𝑒𝑠�M��������	3)##
3�W 	. For comparison, we also estimated the significance threshold using 198 

STEAM20, which sampled from 𝑍	 = 	𝑀𝑉𝑁(0, 𝛴), where 𝛴 is a local ancestry correlation matrix 199 
based on genetic distance and admixture parameters. Family-wise error rates (FWER) were 200 
computed as the percentage of times at least one significant signal is identified out of 500 null 201 
simulations.  202 

 203 

Local ancestry inference and genome-wide mapping for admixed individuals in PAGE 204 
cohort 205 

We obtained phenotypes and genotyping data measured on Multi-Ethnic Genotyping Array 206 
(MEGA) from the PAGE study 21. The complete dataset included 17,299 participants who self-207 
identified as African American. Our analysis included 20 quantitative phenotypes: Body mass 208 
index (BMI), height, waist-to-hip ratio, diastolic blood pressure, systolic blood pressure, PR 209 
interval, QRS interval, QT interval, fasting glucose, fasting insulin, C-reactive protein, mean 210 
corpuscular hemoglobin concentration, platelet count, estimated glomerular filtration rate, 211 
cigarettes per day, coffee cups per day, high-density lipoprotein (HDL), low-density lipoprotein 212 
(LDL), triglycerides, and total cholesterol. Filters and transformations were applied, and covariates 213 
were selected according to the original PAGE analysis within the African American subset 21.  214 

To infer the local ancestry, a subset of African and European genomes from the 1000 Genome 215 
and HGDP subset in gnomAD were used as reference individuals 22. After filtering out SNPs with 216 
missingness > 10%, lifting over and merging, 516,731 SNPs were used in the local ancestry 217 
inference, resulting in 101,292 local ancestry markers. The genotypes of PAGE and reference 218 
individuals were re-phased together using EAGLE 28, and the ancestry probabilities were inferred 219 
as the local ancestry of the haplotype in a region using RFMIX2 29. The global ancestry of an 220 
individual was computed by taking the average of all predicted local ancestries. We analyzed up 221 
to 15,988 individuals who have >5% of one of the inferred ancestries and have no missing values 222 
in the covariates in the 20 quantitative phenotypes. Admixture mapping was performed using 223 
linear regression adjusting for the study center, inferred global ancestry, and phenotype-specific 224 
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covariates used in PAGE. The average estimate of ℎ"# across phenotypes was calculated by 225 
weighting the estimate of each phenotype by the inverse of the squared standard error. The run 226 
time was measured on a machine with an Intel Xeon 4116 processor and 48GB memory.   227 

 228 

Results 229 

  230 
Figure 1 231 
Simulation results from 50,000 admixed individuals and phenotypes under different levels of variance explained by local ancestry, 232 
global ancestry and ancestral stratification. The box plots show the range and quartiles of the estimates. a) Results of ℎ"#	 estimation 233 
when varying true ℎ"#. Phenotypic variance explained (PVE) by global ancestry and ancestral stratification were set to 0. A gray identity 234 
line is plotted.  b) Comparison of ℎ"# estimates between HAMSTA and BOLT-REML applied to simulation data when true ℎ"# 	=235 
	{0.01, 0.02, 0.03, 0.05} in figure a. c) Results when varying the PVE by global ancestry, setting ℎ"# 	= 0.03 (horizontal line) and PVE by 236 
ancestral stratification = 0. d) Comparison of ℎ"# estimates between HAMSTA and BOLT-REML under various levels of ancestral 237 
stratification. True ℎ"#	 were fixed at 0.03 (horizontal line). 238 

 239 

HAMSTA provides unbiased estimates of 𝒉𝜸𝟐 under ancestral stratification 240 
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To evaluate the accuracy of ℎ"# estimates under various scenarios, we performed simulation 241 
studies using local ancestry data simulated under a population demographic model that mirrors 242 
African American admixture history with an addition of recent population structure in one of the 243 
ancestral populations (see Methods). Briefly, we simulated phenotypes absent stratification 244 
effects where we varied  ℎ"# from 0 to 0.05 (corresponding to  ℎ# from 0 to 1 according to ref 11), 245 
which reflects ℎ"# estimates reported in previous African American samples 30, and performed 246 
admixture mapping to compute summary statistics. Overall, we found HAMSTA produced 247 
approximately unbiased estimates of ℎ"# (Figure 1a), irrespective of the sparsity of causal markers 248 
(Supplementary Figure 2). We observed that the summary statistics- based estimates from 249 
HAMSTA were highly correlated with those computed from individual-level data using BOLT-250 
REML (Figure 1b), suggesting that when stratification bias is not present, there is no loss in 251 
accuracy across data settings. Next, to compare our method with existing summary statistics-252 
based methods, we applied LD score regression (LDSC; see Methods) and observed LDSC 253 
produced biased estimates exhibited large standard errors (Supplementary Figure 3). 254 
Importantly, we found LDSC estimates remained biased after re-estimating “LAD scores” using a 255 
larger window size of 20-cM (Supplementary Figure 3). Next, we varied effect of global ancestry 256 
while fixing the ℎ"# and PVE by ancestral stratification and found HASMTA ℎ"# estimates remained 257 
unbiased (Figure 1c). Together, our results suggest that when stratification does not inflate 258 
summary statistics, HAMSTA provides unbiased estimates of  ℎ"# , unlike existing summary-based 259 
approaches. 260 

Next, we sought to evaluate HAMSTA in presence of ancestral stratifications. We determined that 261 
the ℎ"# estimates in our method were more robust to the presence of unadjusted ancestral 262 
stratification (Figure 1d). In contrast, BOLT-REML, where the inference model is not aware of 263 
ancestral stratification, produced biased results as the PVE by ancestral stratification increases.  264 

Further, we demonstrate that our method is still robust to other scenarios of structures in the 265 
ancestral populations (Supplementary Figure 4). We explored the cases where i) both ancestral 266 
populations are structured, ii) the proportion of ancestries from the subpopulations are unequal in 267 
the admixed population, ii) the subpopulations are introduced to the admixture event at different 268 
times. In all the scenarios, the unbiasedness of our estimator is not affected by the ancestral 269 
stratification.  270 

Overall, we demonstrated HAMSTA provides unbiased estimates of ℎ"# under various levels of 271 
effects from local ancestry, global ancestry, and stratification in ancestral populations.  272 

 273 

 274 
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  275 
Figure 2  276 
Evaluating ancestral stratification by HAMSTA in 500 simulation replicates. We simulated 50,000 admixed individuals and phenotypes 277 
under various levels of variance explained by local ancestral stratification. The true ℎ"# is set to zero. a) Ancestral stratification is 278 
reflected by measures of test statistic inflation. The average estimates of HAMSTA’s intercepts are labeled.  b) Quantile-quantile plot 279 
of test statistics for the test for ancestral stratification. c) Power comparison between HAMSTA and LDSC in detecting ancestral 280 
stratification. The p value cutoff for each approach was determined such that the significance level = 0.05 in null simulation d) Family-281 
wise error rate before and after correcting p-value cutoff in admixture mapping using the estimated intercepts. 282 

 283 

 284 

HAMSTA estimates inflation in admixture mapping statistics due to stratification  285 

Having established the unbiasedness in ℎ"# estimates, we next sought to evaluate the ability of 286 
HAMSTA to identify inflation in admixture mapping statistics due to ancestral population 287 
stratification. Specifically, intercepts estimated by HAMSTA can be tested against the null (i.e., 1) 288 
to evaluate stratification bias. Overall, we observed HAMSTA produced estimates greater than 1 289 
as the PVE by ancestral stratification increased (Figure 2a), demonstrating the ability of HAMSTA 290 
inferred intercepts to capture stratification-induced inflation. Although we noted similar trends in 291 
other measures of inflation, including mean 𝜒#	, genomic inflation factor 𝜆�p, their inability to 292 
distinguish between polygenicity and confounding prevent their use for complex disease analyses 293 
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13. Next, we evaluated the ability of LDSC to identify stratification in admixture mapping statistics 294 
through its intercept estimates and observed biased results with large variability (Supplementary 295 
Figure 4). We observed HAMSTA to have significantly greater power to detect stratification bias 296 
compared with LDSC (Figure 2c). For example, HAMSTA has 80% power when stratification 297 
explains 10% of PVE, compared with 5% power of LDSC. These relative differences in 298 
performance held when we increased the LAD score window size for LDSC (Supplementary 299 
Figure 4). Overall, HAMSTA provides unbiased estimates of inflation in admixture mapping 300 
statistics due to ancestral bias and has greater power to reject its null compared to alternative 301 
approaches.  302 

 303 

HAMSTA improves estimation of p-value thresholds to control family-wise error rate 304 

As the number of approximately independent ancestry blocks depends on the demographic 305 
history of the population being studied, there is no universal threshold to determine genome-wide 306 
significance in admixture mapping studies. Admixture mapping often relies on permutation-based 307 
approaches to estimate the FWER, however these approaches can be computationally intractable 308 
for large datasets. Although a recently developed summary-static sampling scheme (STEAM) 309 
bypasses the need for individual-level permutations and speeds up the FWER estimation20, its 310 
assumption that there exists no inflation in the test statistics may be unmet in the presence of 311 
population structure and polygenicity.  312 

Here, we demonstrated inferences from HAMSTA can be leveraged to produce significance 313 
thresholds for association testing to achieve calibrated family-wise error rates (FWER) compared 314 
with STEAM. First, when PVE due to stratification is zero, we found STEAM and HAMSTA 315 
estimated similar significance thresholds (HAMSTA mean: 1.12	 × 	10,-; STEAM: 1.57	 × 10,-), 316 
yielding comparable FWER at ~5% (Figure 2d), which suggests that HAMSTA-based FWER 317 
estimates do not deflate overall power despite increased model complexity. Importantly, in 318 
presence of ancestral stratification, we found HAMSTA estimates resulted in approximately 319 
calibrated FWERs unlike STEAM, which produced a considerable number of false positive 320 
associations (Figure 2d, Supplementary Figure 6). For example, when PVE due to stratification 321 
is 0.25, HAMSTA estimates resulted in FWER of 8% compared to the FWER of 34% from STEAM. 322 
Together, these findings demonstrate that intercepts estimated by HAMSTA can be incorporated 323 
into significance threshold estimation, producing better calibrated FWERs and therefore reducing 324 
false positive findings. 325 

 326 

Application to African American in the PAGE study 327 

To illustrate the ability of HAMSTA to estimate ℎ"# from summary data, we applied it to admixture 328 
mapping summary statistics of 20 quantitative phenotypes computed from the African American 329 
participants in PAGE study21 (mean N = 8383, SD N = 3901; see Methods). Briefly, we performed 330 
admixture mapping using 101,292 markers adjusting for the study center, global ancestry, and 331 
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phenotype-specific covariates. The average genomic inflation factor 𝜆�p across phenotypes is 332 
1.53 (SD = 0.64). Next, we applied HAMSTA to generated summary statistics to infer ℎ"# and 333 
evaluate potential stratification biases. To estimate ℎ# from ℎ"#, we estimated the average African 334 
ancestry to be 78% and 𝐹nop  = 0.12 from the admixed individuals in PAGE and reference 335 
individuals from HGDP and 1000 Genomes. 336 

We estimated the ℎ"# ranges from 0.0025 for systolic blood pressure to 0.033 for height (mean ℎ"# 337 
= 0.012; SE = 9.2	 × 10,-) across the 20 phenotypes, of which 13/20 were individually significantly 338 
different from 0 (nominal p-value < 0.05 in Supplementary Table 1). Translating ℎ"# to estimates 339 
of ℎ#, we observed the ℎ# ranging from 0.062 for systolic blood pressure to 0.85 for height (mean 340 
ℎ# = 0.30; SE = 0.023), of which 13/20 were individually significant. We found these results were 341 
robust to different values of 𝐹nop  (see Supplementary Table 1).  342 

Consistent with the simulation results, HAMSTA estimates were correlated more strongly with 343 
BOLT-REML estimates (r = 0.99, Figure 3) than those computed from LDSC (r = 0.44) 344 
(Supplementary Figure 7) This was largely attributable to statistical precision, with standard 345 
errors in HAMSTA estimates (range from 0.0023 to 0.014, mean = 0.0058) being slightly greater 346 
those from BOLT-REML (range from 0.0021 to 0.0076, mean = 0.0042), and noticeably lower 347 
than those computed from LDSC (range from 0.0064 to 0.021, mean =  0.012). Since 5/20 348 
phenotypes had limited sample sizes (N<5,000), which is known to impact the performance of  349 
BOLT26, we also estimated ℎ"# using GCTA. Of the 16 estimates computed by GCTA that 350 
converged, we observed they were in general bounded by the estimates by HAMSTA and BOLT-351 
REML (Supplementary Figure 8). Overall, we find that HAMSTA estimates of ℎ"# are consistent 352 
with those computed from individual-level approaches in real data, while requiring much less 353 
computation time for the inference step (49 seconds for HAMSTA versus 51 minutes for GCTA). 354 

To substantiate the translated ℎ# estimates computed from HAMSTA, we compared with previous 355 
ℎ# estimates reported from admixed individuals 11  as well as those from twin studies. Overall, we 356 
found our ℎ# estimates are significantly correlated with the previously reported ℎ"#-based 357 
estimates 11 (r = 0.84, p=0.03). Focusing on height, and BMI, HAMSTA estimated  ℎ"# = 0.033 (se: 358 
3.4	 × 10,-) and ℎ"# = 0.017 (3.4	 × 10,-) respectively, corresponding to ℎ# of 0.85 (0.085) and 359 
0.42 (0.086) respectively. The estimated height ℎ# was similar to the ℎ# = 0.68 - 0.84 in twin 360 
studies 31, whereas the estimated BMI ℎ# was smaller than the ℎ# = 0.57 - 0.77 in twin studies 32 361 
and higher than the ℎ# = 0.30 in an estimation from whole-genome sequence data in European 362 
ancestry populations33.  363 

HAMSTA estimated intercepts suggested limited evidence for inflated summary statistics due to 364 
ancestral stratification in the admixture mapping (range from 0.97 to 1.01, average = 0.99; 365 
Supplementary Table 1), with 0/20 phenotypes differing significantly from the expectation of 1. 366 
Although LDSC suggested no significant deviation of intercepts from 1 (range from 0.18 to 1.95, 367 
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average = 1.07), individual intercepts varied more greatly under LDSC (mean SE = 0.34), than 368 
those computed under HAMSTA (mean SE = 5.6 × 10,t) (Supplementary Table 1).  369 

Since in simulation we demonstrated that the significance threshold for admixture mapping 370 
corresponding to FWER of 5% is sensitive to ancestral stratification, we estimated the thresholds 371 
based on the HAMSTA intercepts. Under no ancestral stratification (i.e. intercept = 1), HAMSTA 372 
estimated the significance threshold required to be 2.80 × 	10,�, which agrees with the threshold 373 
of 2.10 × 	10,� reported by STEAM for African American20. Based on the estimated intercepts in 374 
HAMSTA for the 20 phenotypes, the estimated thresholds range from 2.70 × 	10,� to 3.52 × 	10,�. 375 
To conclude, HAMSTA found no evidence of inflation in admixture mapping statistics and 376 
provided estimates for  ℎ"# and hence ℎ# of the complex traits of African American in PAGE study.  377 

 378 
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 379 

 380 
Figure 3  381 
Comparison of  ℎ$"# -based ℎ$#between HAMSTA and BOLT-REML for the 20 quantitative traits in African American in PAGE. Results 382 
on 20 PAGE quantitative traits. Comparison between the estimates from HAMSTA, and BOLT-REML. Each point shows the ℎ$#, and 383 
the lengths of the error bars represent the standard errors.  384 

 385 

Discussion 386 

In this study, we demonstrated the use of summary statistics from admixture mapping to quantify 387 
the contribution of genetic variations to a trait. We developed a tool, HAMSTA, that unbiasedly 388 
estimate ℎ"# under the various trait architecture, including in the presence of unknown population 389 
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stratification in ancestral populations. Using the summary statistic-based approach, HAMSTA 390 
distinguishes the effect tagged by local ancestry on test statistics from unknown confounding 391 
biases. We also demonstrated that the estimated biases could be used to correct the significance 392 
threshold such that FWER are better controlled. Lastly, we applied HAMSTA to real-world data, 393 
showing that it can recover the ℎ"# and hence ℎ# from admixture mapping summary statistics.  394 

Our method addresses several limitations in existing approaches estimating ℎ"#. First, because of 395 
the long-range correlations between local ancestry markers, LDSC requires a large window size 396 
to capture correlations with distant effect markers. Also, regression weights may not be sufficient 397 
to solve the problem of correlated 𝜒#	 statistics, which could lead to inefficient estimation 34. Our 398 
analysis shows that the efficiency can be improved when admixture mapping test statistics are 399 
rotated to an independent space. Second, REML could provide an unbiased estimate, but we 400 
showed in simulation that it is susceptible to ancestral stratification. Also, it is computationally 401 
expensive as the sample size increases. In real data analysis, the REML approach in GCTA failed 402 
to converge in waist-to-hip ratio, QT-interval, cigarette-per-day, and HDL. In contrast, we showed 403 
that HAMSTA would be a more robust approach to ancestral stratification and has no 404 
convergence problem in our analysis. Finally, existing methods assume uniform test statistics 405 
inflation although it has been shown that this assumption could be inaccurate 35,36. HAMSTA 406 
relaxes this assumption by allowing multiple intercepts to represent non-uniform inflation. Overall, 407 
HAMSTA offers advantages over existing methods in the above aspects.  408 

We are aware of several limitations of HAMSTA. First, HAMSTA only provides estimates of 409 
heritability explained by local ancestries in two-way admixtures, which may limit the use of the 410 
method in admixed populations with more than two ancestral populations. Currently, the 411 
relationship between ℎ"# and ℎ# are only established in two-way admixed populations such as 412 
African American, but models for ℎ"# multi-way admixture has not yet been proposed. 413 
Incorporating the contribution of multiple ancestries in ℎ"# and ℎ# will be a possible extension in 414 
the future. Second, the standard error of HAMSTA ℎ"# is larger than that from methods that use 415 
individual-level data like BOLT-REML (mean SE=0.0058 in HAMSTA versus mean SE=0.0042 in 416 
BOLT-REML). Nevertheless, HAMSTA ℎ"# is robust to ancestral stratification, unlike BOLT-REML 417 
showing upward biases in the ℎ"# estimates (Figure 1d). Third, HAMSTA only models summary 418 
statistics computed from linear regression on quantitative traits. The scope of this study is not 419 
extended to modeling binary traits. Future work can explore phenotypes under the liability-scale 420 
model and evaluate the use of summary statistics from logistic regression models. Lastly, since 421 
HAMSTA relies on an accurate LAD, factors that the LAD depends on, such as global ancestries, 422 
could potentially impact the accuracy of the estimates. These factors are required to be adjusted 423 
for when estimating the LAD.   424 

In summary, our work opens a direction of summary statistics analysis in admixture mapping 425 
studies. Our method will facilitate studies of genetic architecture in large cohorts of admixed 426 
populations. 427 
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