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Abstract 

 

Rheumatoid arthritis (RA) is an autoimmune disease initiated by antigen-specific T cells and B 

cells, which promote synovial inflammation through a complex set of interactions with innate 

immune and stromal cells. To better understand the phenotypes and clonal relationships of 

synovial T and B cells, we performed single-cell RNA and repertoire sequencing on paired 

synovial tissue and peripheral blood samples from 12 donors with seropositive RA ranging from 

early to chronic disease. Paired transcriptomic-repertoire analyses highlighted 3 clonally distinct 

CD4 T cells populations that were enriched in RA synovium: T peripheral helper (Tph) and T 

follicular helper (Tfh) cells, CCL5+ T cells, and T regulatory cells (Tregs). Among these cells, 

Tph cells showed a unique transcriptomic signature of recent T cell receptor (TCR) activation, 

and clonally expanded Tph cells expressed an elevated transcriptomic effector signature 

compared to non-expanded Tph cells. CD8 T cells showed higher oligoclonality than CD4 T 

cells, and the largest CD8 T cell clones in synovium were highly enriched in GZMK+ cells. TCR 

analyses revealed CD8 T cells with likely viral-reactive TCRs distributed across transcriptomic 

clusters and definitively identified MAIT cells in synovium, which showed transcriptomic features 

of TCR activation. Among B cells, non-naive B cells including age-associated B cells (ABC), 

NR4A1+ activated B cells, and plasma cells, were enriched in synovium and had higher somatic 

hypermutation rates compared to blood B cells. Synovial B cells demonstrated substantial clonal 

expansion, with ABC, memory, and activated B cells clonally linked to synovial plasma cells. 

Together, these results reveal clonal relationships between functionally distinct lymphocyte 

populations that infiltrate RA synovium.   
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Introduction 

Synovial inflammation in rheumatoid arthritis (RA) involves a complex set of interactions 

between immune and non-immune cell subsets, yet a core feature of the immune response in 

seropositive RA is an adaptive immune response against citrullinated proteins involving both 

antigen-specific B cells and T cells (Weyand and Goronzy 2021). The activation of B cells in RA 

has long been appreciated, given the characteristic production of disease-associated 

autoantibodies, including rheumatoid factor (RF) and anti-cyclic-citrullinated peptide (anti-CCP) 

antibodies (Roosnek and Lanzavecchia 1991; Schröder et al. 1996; Goldbach-Mansky et al. 

2000; Marston, Palanichamy, and Anolik 2010). B cells may be activated locally within RA 

synovium, as synovial tissue studies have provided evidence of somatic hypermutation (SHM) 

and clonal expansion (Corsiero et al. 2016; Meednu et al. 2022). Synovial B cells may 

contribute antibody-independent functions as well, including antigen presentation and cytokine 

secretion, which involve interactions with other cell types (O9Neill et al. 2005; Wu et al. 2021; 

Sun et al. 2018; Meednu et al. 2016). 

Populations of T cells have likewise been strongly implicated in initiating or maintaining 

synovial inflammation in RA (Panayi, Lanchbury, and Kingsley 1992). Genetic associations 

indicate a critical role for antigen presentation to CD4+ T cells via MHC class II in the 

development of RA (Gregersen, Silver, and Winchester 1987; Raychaudhuri et al. 2012). 

Cellular profiling studies of RA synovial tissue and fluid have highlighted a large population of T 

peripheral helper (Tph) cells, as well as T follicular helper (Tfh) cells, both of which provide help 

to B cells through the production of IL-21 and CD40L (Rao et al. 2017; Yoshitomi and Ueno 

2021; Manzo et al. 2008; Kobayashi et al. 2013). Tph cells differ from Tfh cells in their migratory 

patterns, expressing chemokine receptors such as CCR2 and CCR5 to home to sites of 

peripheral inflammation such as the rheumatoid joint (Rao 2018; Fortea-Gordo et al. 2019). 

Large populations of CD8+ T cells also accumulate within RA synovium, including a prominent 
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granzyme K-expressing population, which may contribute to synovial inflammation through 

inflammatory cytokine production rather than cytotoxicity (Jonsson et al. 2022). 

Complementing studies of specific subsets of immune cells, a holistic picture of both 

immune and non-immune populations in RA is emerging through single-cell RNA-sequencing 

(scRNA-seq) atlases of synovial tissue samples (Stephenson et al. 2018; Zhang et al. 2019; 

Alivernini et al. 2020; Zhang et al. 2022). These studies have highlighted the diversity of cell 

states present in the inflamed tissue of these patients, as well as how the presence and effects 

of these states may differ among patient subpopulations (Alivernini et al. 2020; Zhang et al. 

2022). For lymphocytes, analyses of the T cell receptors (TCR) or B cell receptors (BCR) can 

provide unique insights into the expansion and developmental relationships of lymphocyte 

subsets, leveraging the feature that each new lymphocyte generates a unique TCR/BCR that is 

shared with all progeny. Studies tracking TCRs across tissues or longitudinally in RA patients 

have identified shared T cell clones in different joints (Musters et al. 2018; Klarenbeek et al. 

2012), clonal expansion of specific cell subsets (Argyriou et al. 2022), persistence of expanded 

clones over time (Ishigaki et al. 2015), and overrepresented gene rearrangements that may 

suggest shared antigenic targets (Klarenbeek et al. 2012; Chang et al. 2019; X. Liu et al. 2019); 

however, reactivity of expanded TCRs from RA synovial CD4 T cells to citrullinated peptides 

has been difficult to demonstrate (Turcinov et al. 2022). Studies of BCR repertoires of RA 

patients have indicated somatic hypermutation in RA synovial B cells and identified potential 

specificities across B cells collected from synovial tissue or fluid (Scheel et al. 2011; Corsiero et 

al. 2016; Titcombe et al. 2018; Hardt et al. 2022). A comprehensive examination of both the T 

cell receptor (TCR) and B cell receptor (BCR) repertoires of synovial tissue lymphocyte 

populations and across tissue and blood at the single-cell level has not been described. Such 

studies have the potential to directly link clonal features to the functional roles, developmental 

relationships, and cell-cell interactions of specific lymphocyte phenotypes, as has been 
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achieved in studies of cancer immunotherapy and infectious disease (Luoma et al. 2020; Yost et 

al. 2019; Collora et al. 2022; Mathew et al. 2021). 

Here, we implemented 59 droplet-based scRNA-seq on T and B cells of synovial tissue 

and matched peripheral blood samples from 12 RA patients to simultaneously study their 

transcriptomes and antigen receptor repertoires. Our study provides a high-resolution landscape 

of the clonal relationships within and between cell states, and further between inflamed synovial 

tissue and peripheral blood.  

 

Results 

Single-cell profiling of synovial tissue and peripheral blood lymphocytes 

We collected synovial tissue (n = 12) and matched peripheral blood (n = 10) from 

individuals with RA that comprised a subset of a larger cohort analyzed as part of the 

Accelerating Medicines Partnership Program: Rheumatoid Arthritis and Systemic Lupus 

Erythematosus (AMP RA/SLE) Network, prioritizing samples with high synovial cell yields and 

evident lymphocyte populations by flow cytometry (Zhang et al. 2022). Donors had a mean age 

of 63.6 years (range 28-80) and were predominantly female (n = 11). Patients in the cohort had 

a Clinical Disease Activity Index (CDAI) classification of moderate or high with a mean score of 

26.4 (range 10.5-64.0), and were mainly lymphoid in pathotype, but otherwise had a range of 

disease duration, treatment, and cell type abundance phenotype (CTAP) (Figure S1A, Table 

S1) (Canhão et al. 2018; Humby et al. 2019; Zhang et al. 2022).  

Tissue samples were previously disaggregated into single-cell suspensions for an 

unbiased analysis of the cell states present in RA synovium using RNA and cell surface protein 

profiling (Zhang et al. 2022). Cryopreserved synovial cells remaining after the initial analysis 

were thawed and sorted to isolate CD45+CD3+ and CD45+CD19+ populations, which were 

subsequently encapsulated into droplets and used to generate gene expression, cell-surface 

protein, and TCR/BCR single-cell sequencing libraries (Figure 1A, S1B). Cryopreserved 
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PBMCs were thawed and sorted in parallel. Following a unified single-cell analysis pipeline of all 

samples, we recovered a total of 84,750 cells. After applying QC criteria, 83,159 cells remained, 

which we used to perform an initial round of unsupervised clustering at low resolution (Figure 

1B, S2). On average, we obtained 2,888 cells per synovial tissue sample (range 804-5,188) and 

4,851 cells per blood sample (range 3,442-6,601) (Figure 1C, S1A). 

Through parallel examination of gene expression and protein detection, we identified 

several populations of T cells expressing markers such as CD3E and IL7R, as well as a cluster 

containing B and plasma cells expressing CD79A and CD20 (Figure 1D, S3A, B). Cells from 

both lineages could be found in all samples (Figure 1E,F). We further identified a cluster 

containing proliferating T and B cells, characterized by the expression of markers including 

MKI67 and TYMS. Lastly, we identified two rare populations of contaminating cells expressing 

markers of fibroblasts (PRG4 and FN1) and monocytes (S100A8 and LYZ), which were 

excluded from subsequent analyses (Figure 1D, S3A,B).  

Of the 81,708 lymphocytes captured across all samples, we obtained paired TCR or 

BCR information for 73,185 cells. In the synovial tissue, an average of 84.7% of lymphocytes 

per sample had an associated TCR or BCR (range 72.9-96.1%), while in the blood, 93.1% of 

lymphocytes per sample had this information on average (range 89.3-96.8%) (Figure 1G, S3C). 

Effector CD4+ populations are significantly enriched in synovial tissue 

Sub-clustering of the 35,301 CD4+ T cells obtained from synovial tissue and blood 

samples identified 14 CD4+ T cell subsets (Figure 2A,B, S4A, Table S2). We identified two 

clusters expressing the B cell chemoattractant CXCL13, one of which was composed solely of 

Tph cells, while the other included some cells with detectable CXCR5, suggesting the cluster 

contained a mixture of Tfh and Tph cells (Figure S4B) (Rao et al. 2017; Zhang et al. 2019, 

2022). Both clusters expressed genes associated with B cell help, such as MAF, and both 

scored highly for a Tfh cell gene signature (Figure 2C,D, S4C, Table S3). While the Tfh/Tph 

cluster displayed higher expression of markers such as IL7R and CD69 compared to the Tph 
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cluster, the Tph cluster had significantly elevated expression of PDCD1, CTLA4, LAG3, and 

others. Further, the pure Tph subset produced higher gene scores of TCR signaling and T cell 

activation compared to other CD4+ clusters, suggesting that the cells in this cluster are 

activated (Figure 2D,E, Table S3).  

Several other clusters of memory cells with distinctive expression of chemokines, 

chemokine receptors, and granzymes were present, including CCR7+ (which likely represents 

central memory cells), IL7R+CCL5+, GZMA+CCL5+, and GZMK+ populations. In addition, we 

identified a population of cytotoxic CD4+ cells, marked by the expression of GNLY, PRF1, and 

GZMB, as well as a cluster characterized by a strong interferon-response signature. A small 

population likely containing a mix of naive and memory cells was distinguished primarily by 

increased expression of members of the GIMAP family (e.g. GIMAP4, GIMAP5), which has 

been associated with survival and quiescence in lymphocytes (Table S2) (Barnes et al. 2010). 

Sub-clustering also revealed two populations of regulatory T cells (Tregs). Both 

expressed FOXP3, CTLA4, and TIGIT, though one population was marked by stronger 

expression of IL2RA (encoding CD25) and IL32, while the other displayed higher CCR7 and 

TCF7, suggesting the presence of populations of effector and central memory-like Tregs, 

respectively (Shevyrev and Tereshchenko 2019). A large cluster containing naive T cells 

expressing SELL, TCF7, and CCR7 displayed the strongest expression signature for a 

previously-identified naive T cell gene set (Abbas et al. 2009) (Figure 2B-D, S4C). Lastly, an 

actively proliferating cluster of cells, as well as a subset with elevated mitochondrially encoded 

RNAs could be detected (Figure 2C,D, S4C). In total, T cell populations identified by this 

present clustering analysis were well aligned with those identified in analyses of a larger set of 

synovial tissue samples (of which the 12 synovial samples studied here are a subset), where 

clustering was performed through a combination of RNA and cell surface protein profiling, 

(Figure S4D) (Zhang et al. 2022).  
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We next identified T cell subsets that had differential representation in either synovial 

tissue or peripheral blood. Several memory/effector cell populations were enriched in synovium 

compared to blood, including the Tph, Tfh/Tph, CD25-high Treg, IL7R+CCL5+ memory, 

GZMA+CCL5+ memory, GZMK+ memory, and proliferating clusters (Figure 2F, S4E). In 

contrast, blood samples contained increased abundances of the naive, GIMAP+, and interferon-

stimulated clusters. On average, 45% of the CD4+ population for each blood sample was 

composed of cells from the naive cluster (range 18-66%), while only 5% of synovial tissue CD4 

cells had a naive phenotype (range 2-15%). The increased proportions of many 

memory/effector populations in synovium support the importance of these cells in propagating 

inflammation within the synovium. 

Clonally expanded Tph cells display increased effector and cytotoxic profiles 

We then sought to examine the TCR repertoire of the CD4+ populations across synovial 

tissue and blood. Among the CD4+ populations, the GNLY+ cytotoxic cluster displayed the 

highest clonal expansion and comprised nearly all clones larger than 20 cells. Clonal expansion, 

defined as two or more cells with an identical TCR, was also identified among the Tph and 

GZMA+CCL5+ memory clusters (Figure 2G, S4F,G). An analysis of clonal sharing among the 

synovial tissue clusters revealed a high degree of clonal overlap between the Tph and Tfh/Tph 

clusters, suggesting that cells in these clusters are developmentally related despite their 

transcriptomic differences (Figure 2H,I). In addition, the Tph cluster shared the highest clonal 

overlap with the cycling cluster compared to all other subsets, highlighting the active 

proliferation of the Tph population within the synovial tissue. Conversely, among the blood 

CD4+ cells, we noted clonal sharing across the memory populations and also found the 

GZMA+CCL5+ subset to have elevated clonal overlap with the proliferating blood CD4+ T cells 

(Figure 2H,I).  
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After identifying the Tph population as highly represented in the synovial tissue, clonally 

expanded, and actively proliferating, we sought to identify features that differentiate clonally 

expanded and unexpanded Tph cells in the tissue. Across donors, an average of 12.5% of Tph 

cells belonged to an expanded TCR clone (range 4-32.5%) (Figure 2J). By examining 

transcriptional differences between these cells and Tph cells belonging to an unexpanded clone, 

clonally expanded Tph cells showed significantly increased expression of signatures of effector 

function and cytotoxicity, including elevated expression of IFNG, PRF1, CD40LG, and CCL5 

(Figure 2K,L). In contrast, no difference in the Tfh gene signature score was present between 

expanded and unexpanded cells, suggesting that clonally expanded Tph cells do not lose their 

B cell-helping functions. Interestingly, a similar comparison using cells from the Tfh/Tph cluster 

yielded no significant differences between expanded and unexpanded cells, further suggesting 

a unique set of features among cells in the Tph clusters (Figure 2M). 

Expanded CD8+ clones across tissues largely differ by patterns of GZMK and GZMB 

expression 

Next, we isolated and subclustered the CD8+ T cells present in the synovial tissue and 

blood samples, which revealed 9 CD8+ T cell populations that could be found across samples 

(Figure 3A,B, S5A, Table S2). Among these, 3 populations were distinguished by expression 

patterns of GZMK and GZMB, all of which had strong corresponding matches to clusters 

identified in a recent study of synovial tissue (Figure 3D, S5C) (Zhang et al. 2022). One of 

these clusters solely expressed GZMK, while another expressed GZMK and low levels of 

GZMB. Both of these populations also had elevated GZMA and CCL5, while the GZMK/B+ 

cluster was further differentiated through increased expression of markers, including CCL4 and 

HLA-DRA, and decreased IL7R. The third population, characterized by expression of GZMB 

only, appeared highly cytotoxic through gene module analysis and elevated expression of GNLY 

and PRF1 (Figure 3C, D, S5B). We also isolated a population of likely resident memory CD8+ T 

(Trm) cells, characterized by increased ZNF683 and XCL1, which was confirmed more broadly 
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through examination of a previously-published Trm gene list (Table S3) (Zhao et al. 2020). We 

identified one naive CD8+ population with high expression of SELL and LEF1 and a naive gene 

module signature (Figure 3C,D, S5B). Another population of likely naive cells was also 

identified, characterized by increased expression of IGTB1 and LMNA. Lastly, we found 

separate clusters of CD8+ T cells with elevated interferon-response, proliferation, or 

mitochondrial gene modules (Figure 3C,D, S5B). 

An analysis of cluster representation between synovial tissue and peripheral blood 

samples found the GZMK/B+ cluster to be highly increased in synovial tissue samples (Figure 

3E, S5D), consistent with a recent report (Jonsson et al. 2022). Clusters solely expressing 

GZMK or GZMB were not significantly different in abundance between tissue compartments, 

though the GZMK+ memory population trended higher in synovial tissue, while the GZMB TEMRA 

cluster appeared slightly elevated in the blood (Figure S5D). Additionally, the Trm, proliferating, 

and mitochondrial-high clusters had elevated representation in synovial tissue samples. In 

contrast, the naive and ITGB1-elevated populations could both be found at higher frequencies in 

the blood (Figure 3E, S5D).  

After characterizing the cell states present among the CD8+ population, we sought to 

connect these clusters' clonal attributes. Broadly, we found a much larger degree of clonal 

expansion in the CD8+ compartment compared to the CD4+ subsets. We found the strongest 

clonal expansion among the GZMK/B+ memory and GZMB+ TEMRA clusters, and also noted cells 

in the ISG-high and proliferating clusters to belong to expanded clones (Figure 3F, S5E). 

Comparing the top 50 largest clones across the synovial tissue and blood revealed striking 

differences in cluster composition. Cells from the top 50 clones in the synovial tissue belonged 

overwhelmingly to the GZMK/B+ memory population. In contrast, the top 50 clones in the blood 

belonged to the GZMB+ TEMRA cluster, with minor representation of other populations (Figure 

3G,H). This analysis of the largest clones, and a broader examination of the clonal overlap 

between subclusters in either tissue, showed sharing between the GZMK/B+ memory cluster 
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and proliferating cells of the synovial tissue, while the GZMB+ TEMRA was found to overlap with 

the proliferating component of the blood (Figure S5F,G). To further analyze this, we subsetted 

the proliferating cluster and mapped these cells onto the other CD8+ cells of this dataset. 

Compared to the general cluster proportions, the tissue and blood proliferating cells mapped 

heavily to the GZMK/B+ (201/261 tissue proliferating cells) and GZMB+ TEMRA (24/38 blood 

proliferating cells) clusters, respectively, suggesting an active, though likely differing, role of 

these two populations in their distinct tissues (Figure 3I).  

A further examination of clonal overlap across tissues revealed a small degree of 

sharing between the tissue and blood components of either the GZMK/B+ memory or GZMB+ 

TEMRA clusters separately, but clonal overlap between synovial tissue GZMK/B+ cells and blood 

GZMB+ TEMRA cells was essentially absent (Figure S5H). Of the top 50 clones in both tissue 

compartments, only 6 could be found in both, nearly all of which were larger in the blood than 

the synovial tissue. Notably, 4 of these clones retained a GZMB+ skew even in the synovial 

tissue (Figure 3G,H). Together, these results suggest functionally distinct roles for the 

expanded GZMK/B+ cells of the synovial tissue and the GZMB+ TEMRA cells of the blood. The 

findings corroborate recent work suggesting that the GZMK/B+ cells likely do not arrive in the 

synovial tissue as GZMB+ cytotoxic T cells that subsequently alter their phenotype, and instead 

may enter the synovium as GZMK+ cells or expand locally in the tissue as they adopt a 

phenotype that includes GZMK expression (Jonsson et al. 2022). 

Predicted virus cross-reactive CD8+ T cells do not display altered expansion or 

phenotypic characteristics  

Viral infection has long been connected with the potential for the development and 

maintenance of autoimmune diseases (Fujinami et al. 2006). One possibility that may instigate 

this phenomenon is the presence of cross-reactive epitopes between a virus and endogenous 

proteins, which may drive the activation and expansion of a set of T cells. We sought to identify 

potentially viral-specific T cells in the synovial tissue to evaluate the extent of potential viral 
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cross-reactivity among RA synovial CD8 T cells. To accomplish this, we gathered databases of 

previously identified CMV, EBV, and influenza A-specific T cells (Tickotsky et al. 2017; Shugay 

et al. 2018). We then identified exact matches with the beta chain CDR3 sequence and HLA 

between the RA synovial CD8+ T cells analyzed here and those in the database (Figure S6A). 

Although three of the RA patients (RA04, RA05, and RA07) expressed less common HLA 

alleles, precluding the ability to find matches with previously-discovered specific clones, we 

were able to identify matching clones in the majority of patients (Figure 3J, S6B). Within and 

between patients, we further found these matches to be directed against multiple different 

epitopes for each of the viruses tested (Figure S6C). When examining which cluster these 

matching T cells belong to, we found a spread across clusters, with no cluster being significantly 

overrepresented compared to non-matching cells (Figure 3K). Further, we noted that few 

matching clones were expanded (16/56), with the largest matching clone comprising only 7 

cells. 

Requiring an exact match of clone sequence and HLA can provide strong evidence of 

the capacity for reactivity against a virus; however, identifying shared motifs between viral-

specific T cells and those in our dataset may allow the identification of a larger set of T cells with 

the potential to detect viral epitopes. Thus, we employed GLIPH2 to identify motifs within the 

beta chain CDR3 sequence enriched in viral-specific T cells and our CD8+ T cells (Huang et al. 

2020). After running the GLIPH2 algorithm individually with each virus (CMV, EBV, and 

influenza) for RA synovial T cells, we filtered motifs that contained both virus and RA clones, 

and only those with an HLA match (Figure S6D). We obtained a larger number of clones 

belonging to a viral-associated GLIPH motif (369 unique clones) compared to our exact 

matches (56 unique clones), which was variable across donors (Figure 3L, S6E,F). To 

strengthen the association of the hits within our data, we sought to identify a relationship 

between patient age and the percent of CD8+ T cells associated with potential viral reactivity. 

Though not significantly correlated, we found trends between donor age and the percent of 
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potential CMV and EBV reactive clones, consistent with the dynamics of the anti-viral repertoire 

with age (Khan et al. 2002; Looney et al. 1999) (Figure S6G). Similar to results with exact 

matches, a breakdown of the cluster makeup of motif-matching cells and non-matching cells 

again revealed no significant differences (Figure 3M). Further, we identified no differences in 

the clone size distributions between these two groups, and also found no clones belonging to 

viral GLIPH motifs among the 50 largest synovial tissue clones (Figure 3N). 

Identification of activated innate T cell populations in RA synovium 

Populations of innate T cells have previously been associated with RA, including natural 

killer (NK), ³�, and mucosal-associated invariant T (MAIT) cells, though clear roles for many of 

these subsets in RA remain elusive (M. F. Liu et al. 1999; Andreu et al. 1991; Yamin et al. 2019; 

Koppejan et al. 2019). We identified and subclustered innate T cells in the synovial tissue and 

blood samples, resulting in 7 subsets representing multiple innate lineages (Figure 4A, S7A, 

Table S2). Two populations of ³� T cells, including a V�1 subset characterized by expression of 

TRDV1 and a V�2 subset expressing TRDV2 and TRGV9 (the TCR ³ variable gene commonly 

paired with TRDV2), were retrieved (Lawand, Déchanet-Merville, and Dieu-Nosjean 2017). The 

V�1 population had a elevated expression of GZMB and TIGIT, while V�2 cells had higher 

levels of TYROBP. MAIT cells were also identified among the innate cells, expressing markers 

including SLC4A10, AQP3, and ZBTB16 (Figure 4B,C). Two populations of NK cells were 

detected, including CD56-dim and CD56-bright subsets, that aligned with corresponding NK 

populations in a scRNA-seq reference (Figure S7C) (Zhang et al. 2022). These CD3- subsets 

were not intended to be included in the sorting scheme used in this study; thus, their frequency 

may not reflect the true representation in these samples. In addition to these clusters, we also 

found a population characterized by the expression of ZNF683 (encoding Hobit), which appears 

to contain both ³� and NK cells and a population of innate cells with elevated mitochondrial 

gene expression (Figure 4B). When comparing the frequency of these populations between 

synovial tissue and peripheral blood, only the V�1 subset had significantly increased 
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representation in the synovium, comprising a mean of 2.1% of T cells in the tissue (range 0.1-

4.5%) and 0.5% (range 0.1-1.4%) in the blood (Figure 4D, S7D). 

Leveraging the dataset9s repertoire information, we confirmed the presence of MAIT 

cells through an examination of the TCR alpha chain rearrangements. The MAIT population was 

characterized by its use of TRAV1-2, often accompanied by TRAJ33, TRAJ20, or TRAJ12 

rearrangements (Mori, Lepore, and De Libero 2016). The pairing of the TRAV1-2 and 

TRAJ33/20/12 gene rearrangements could be detected in over half of the cells with an 

associated TCR in the cluster, while it was largely absent across other T cells in the dataset 

(Figure 4E, S7E,F). We then sought to clonally track these MAIT cells between tissue and 

blood and found expanded clones uniquely represented in either tissue, as well as a subset of 

clones that were present in both synovium and blood (Figure 4F, S7G). 

To characterize transcriptional differences between the clonally expanded and non-

expanded MAIT across these tissues, we examined signatures of activation. Synovial MAIT 

cells had elevated activation scores compared to MAIT cells in the blood (Figure 4G). A similar 

pattern was observed with V�1 and V�2 cells (Figure S7H). Because MAIT cells are known to 

become activated through both TCR-dependent and -independent mechanisms (Hinks and 

Zhang 2020), understanding how this relates to differences between tissues is relevant to better 

decipher the potential role of these cells in RA synovium. Gene signatures of TCR-dependent 

and -independent MAIT activation from multiple independent sources showed significantly 

enriched scores for both mechanisms in synovium compared to blood (Leng et al. 2019; 

Lamichhane et al. 2021). Both clonally expanded and non-expanded MAIT cells from synovial 

tissue had higher signatures for both mechanisms compared to their blood counterparts, but no 

significant difference could be detected between the expanded and non-expanded subsets of 

either tissue, suggesting subsets of MAIT cells in synovial tissue may become activated by 

either TCR-dependent and independent mechanisms (Fig 4H,I, S7I,J, Table S3). Together, 
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these transcriptomic and repertoire data provide strong evidence for the presence of a defined 

MAIT cell population within RA synovium that appears activated.  

B cells exhibit tissue-specific enrichment 

Analogous to the T cell analysis, we characterized 27,869 B cells through subclustering 

to obtain 8 B cell and 2 plasma cell populations (Figure 5A-C, Figure S8A-C, Table S2). We 

annotated 4 of these populations as naive subsets based on relatively higher expression of 

naive markers such as IgD and TCL1A, strong mapping to naive B cells from blood and tonsil in 

the published literature (Figure 5E) and recently identified in RA synovial tissue using RNA and 

surface protein expression (Figure S8B) (Zhang et al. 2022). Two of the naive B clusters were 

distinguished by relative levels of IgD expression (Naive-IgD-low, Naive-IgD-high). The Naive-

IgD-low is also distinguished by higher FCER2 (CD23). The other two naive clusters had 

elevated expression of HSPA1B (Naive-HSPA1B+) or higher mapped mitochondrial reads 

(Naive-MT-high) and had weaker mapping to a naive B cell state (Figure 5E, Figure S8B,D). 

These latter two clusters were the dominant naive population in the synovium. Naive-HSPA1B+ 

has an activated phenotype with up-regulation of NR4A1 and DNAJB1 in addition to HSPA1B. 

Given the upregulation of ZEB2 and ITGAX (CD11c) (Figure S8D,E), this subset resembles an 

activated naive B cell described as expanded in the blood of patients with lupus (Jenks et al. 

2018). The other six clusters are non-naive and dominate the synovial B cells. On average, 

64.5% of the B cells for each blood sample were composed of cells from the naive clusters (IQR 

59.5 - 86.7%), while only 9.1% of synovial tissue B cells had a naive phenotype (IQR 5.5 - 

12.0%). We identified a cluster of memory B cells expressing memory markers, including CD27, 

TNFRSF13B, S100A10, and S100A4 (Figure 5B, S8C-E). This memory cluster maps to a 

peripheral blood memory B cell signature (Figure 5E) and the switched memory population 

described by Zhang et al. (Figure S8B). Finally, many of these B cells are class-switched based 

on V(D)J sequencing (Figure 5H).   
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Additional B cell populations included age-associated B cells (ABCs), activated-, and 

LILRA4+ B cells. Age-associated B cells (ABCs) expressed the canonical markers CD11c and 

FCRL5 as previously described (Figure 5B, S8C) (Zhang et al. 2019, 2022; Jenks et al. 2018; 

Wang et al. 2018), as well as other ABC makers such as TBX21 (T-bet) and ZEB2 (Figure 5B 

and S8D). Interestingly, one of the top differentially expressed genes in the ABC cluster is 

IFI30, highlighting activation of interferon signaling as a potential driver of ABCs in situ (Figure 

S8C). The B-cell activated cluster was annotated based on high expression of NR4A1, related 

early response and germinal center light zone (GC LZ) genes (Figure 5B,E, Table S3). Notably, 

both ABCs and activated B cells showed evidence of class-switch recombination (Figure 5H,I), 

consistent with previous reports (Meednu et al. 2022; Jenks et al. 2018). Another small B cell 

population was named clonal-LILRA4+ based on high BCR clonality and high LILRA4 and G-

protein signaling molecules. This small population only appeared in three PBL samples, with 87 

out of 89 total cells belonging to one sample, and was omitted from downstream analyses. We 

used XBP1 and CD27 expression to identify plasmablast (XPB1+CD27int) and plasma cells 

(XBP1+CD27hiIgA+IgG+). Plasmablasts also mapped to a GC dark zone (GC DZ) signature 

(Figure 5E), likely reflective of a high proliferation state (see Figure S8A for specific genes). 

Both populations exhibited high levels of class-switch recombination and SHM (Figure 5G-I, 

Table S3). 

Next, we tested each population for enrichment in the blood versus synovium. All 

populations were found in both the blood and synovium and across multiple donors (Figure 

S8A). Naive-HSPA1B+, Activated B cells and plasma cells were significantly more abundant in 

the synovium. In contrast, Naive-IgD-low, Naive-IgD-high, B-memory, ABCs, and Naive-MT-high 

clusters were significantly enriched in the blood (Figure 5D, S10D). The increased proportions 

of activated B cell populations in synovium support the active participation of these cells in 

synovial immune responses. We next sought to identify features that differentiate synovial from 

blood B cells by performing GSEA (Figure S10B). Many of the B cell populations in the 
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synovium showed enrichment for GO pathways associated with cell activation and cytokine-

mediated signaling (Figure S10B). The former is consistent with the overall activated state of B 

cells in the synovium. It is interesting that the most significant enrichment for cytokine-mediated 

signaling in any synovial B cell state is within the plasmablasts, suggesting that cytokine 

signaling is a critical mediator of plasmablast generation in the tissue (Figure S10B). 

Accumulation of somatic hypermutation and class switch in synovial B cells 

Utilizing the paired repertoire BCR data, we examined the degree of SHM in each of the 

previously described cell populations. We calculated the percent of SHM in the V/J region of the 

CDR3 for both heavy and light chains, then compared the rate between blood and synovial cells 

for each population (Figure 5F). Mutation rates differed between cell states. Activated B cells, 

ABCs, memory, plasmablasts, plasma cell, and MT-high populations all had significantly higher 

levels of SHM compared to the Naive-IgD-high population as a reference (Figure 5G). 

Interestingly, 3 naive-like B cell populations 3 Naive-IgD-low, Naive-HSPA1B+, and  

Naive-MT-high 3 had significantly higher mutation rates in the synovium compared to blood, 

suggesting a spectrum of in situ naive B cell activation as we recently described (Meednu et al. 

2022). Notably, ABCs and activated B cell populations also exhibited significantly higher 

mutation in the synovium, suggesting in situ activation and selection. The only population that 

had significantly higher mutation rates in the blood were plasma cells. Naive-IgD-high, memory, 

and plasmablasts did not show significance for tissue-specific mutation differences (Figure 5F).  

Additionally, we examined the amount of class-switching occurring within each cell 

population and between blood and synovial cells. Synovial B cell states exhibited significantly 

more class-switched BCRs (IgG or IgA+, IgD-) compared to their blood counterparts across all 

populations, except for naive IgD-high B cells (Figure 5H). All cell populations showed a 

statistically significant increase in the amount of class-switched BCRs compared to the least 

class-switched population: naive IgD-high B cells (Figure 5I). Of note, over 50% of the synovial 

ABCs showed evidence of class-switching. 
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Evidence of in situ antigen exposure and clonal expansion in synovial B cells 

Using the BCRs recovered in our dataset, we identified groups of clonally-related B cells 

by quantifying the similarity between their IgH CDR3 sequences. Cell populations that were 

more highly mutated produced larger B cell clones, as has been reported in analyses of blood B 

cell repertoires from healthy individuals (Figure 6A,B) (DeWitt et al. 2016). For example, 

plasmablasts and plasma cells had a higher proportion of large clones (20-100 cells) than other 

populations, consistent with antigen-driven clonal expansion (Figure 6A,B). For 

plasmablasts/plasma cells, clonal expansion was more prominent in the blood than in the 

synovium (Figure 6B). This suggests that plasma cells in the synovium are experiencing 

different selection pressures than those circulating in the periphery. In the synovium, B cell 

populations other than plasma cells had mostly singletons or, within the activated B cells, ABCs, 

and MT-high, smaller clones (2-5 cells). Overall, the presence of both clonal expansion and 

higher SHM is consistent with stimulation and provision of T cell help within these more 

activated B cell populations. Further, consistent with an antigen-experienced B cell repertoire, 

activated B cells and ABCs had shorter CDR3 length and higher charge overall in both the 

synovium and blood (Figure S10A) (Meffre et al. 2001). In the blood, clones were also mostly 

singletons but with a proportion of small, medium, and even large clones detected in the 

activated, memory, MT-high, ABCs, and Naive-HSPA1B+ B cells (Figure 6B). 

To assess clonal relationships between cell types, co-occurrence of expanded clone 

members between cell types was reported for each clone that contained a member within two 

different cell types. Though the vast majority of clones were contained within a specific 

population, we did identify clones that were shared between populations. Figure 6C depicts the 

clonal sharing across populations within each compartment. Within the synovium, plasma cells 

and plasmablasts share a large number of clones (24 clones, Figure 6D), strongly supporting a 

developmental relationship between newly generated plasmablasts and more mature plasma 

cells. Notably, we also observed shared clones between ABCs and activated B cells, as well as 
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between both these B cell states and the plasma cells. A small number of clones are also 

shared between the MT-high B cell state and both activated B cells and ABCs (Figure 6C,D). 

Overall, this data suggests a developmental relationship from Naive-MT-high (a naive B cell 

population already showing some signs of antigenic stimulation based on higher SHM rates 

compared to resting naive - Figure 5G) alternatively down an ABC vs. activated B cell pathway, 

as well as between these cell states and then downstream to plasma cells. It is also of interest 

that memory B cells share clones with activated B cells as well as differentiate to plasma cells, 

consistent with memory B cells participating in synovial immune reactions (Figure 6C,D). Within 

the peripheral blood, there is substantially more clonal sharing between multiple cell states 

(Figure 6C). This is also evident when examining the cell population composition of the 50 most 

dominant clones in the blood compared to the synovium (Figure 6F,G). As an example, the 5th 

most expanded blood clone was observed in the ABC, plasmablast, Naive-IgD-low, MT-high 

and memory B cells (Figure 6F). In contrast, the 50 most dominant synovial clones are heavily 

weighted toward plasma cells (Figure 6G). Though clones were shared between the synovium 

and blood, these clones were not expanded (Figure 6H). Tissue trafficking clones were found 

within plasma cells, ABCs, activated and memory populations consistent with some trafficking of 

these B cells between the two compartments (Figure 6I). Interestingly, clones shared between 

blood and tissue had distinct phenotypes (Figure 6I). As an example, there are multiple cases 

of memory B cells in the blood becoming activated B cells or ABCs or plasma cells in the 

synovium, strongly suggesting that memory B cells participate in synovial immune reactions. 

  In order to identify features that differentiate clonally expanded from unexpanded B cells 

in the synovium we performed GSEA. We focused this analysis on plasmablasts and plasma 

cells given the limited numbers of clones in other cell states. Clonally expanded plasmablasts 

showed increased expression of signatures of BCR signaling, cytokine mediated signaling and 

response to cytokines as compared to non-clonally expanded cells (Figure 6E). 
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Identification of altered T cell-B cell communication patterns in synovium 

Given the association of BCR signaling, B cell activation, and response to cytokines with 

the enriched and clonally expanded B cells in the synovial analysis, we next sought to 

systematically investigate potential T cell-B cell interactions.  We constructed cell3cell 

communications networks using CellChat (Jin et al. 2021), with an initial focus on 

communication differences between the CD4+ T cell subpopulations and total B cells. The 

proliferating, Tph, and Tfh/Tph subsets had the largest numbers of significant interactions 

identified with B cells (Figure 7A). Detection of significant CXCL13-CXCR5 interactions 

between Tph-B cell and Tfh/Tph-B cell pairs is consistent with prior reports and supports the 

performance of the analysis method (Rao et al. 2017). A significant IFNG-IFNGR interaction 

was further detected between Tph-B but not Tfh/Tph-B pairs, consistent with the increased 

expression of IFNG in the Tph cluster compared to the Tfh/Tph cluster (Figure S11A,B). We 

then generated an inferred communication network using CD4+ T subpopulations and B cell 

subpopulations. Examination of the cumulative incoming and outgoing interactions for each 

population identified the Tph population as having elevated signals for both directions, while the 

ABC population had the strongest outgoing signal of any cluster (Figure S11B). A pair-wise 

analysis of significant interactions between these CD4+ T and B cell populations found the 

proliferating cluster to have the largest number of predicted interactions with all B cell subsets, 

though this may reflect a heterogeneous nature of proliferating cells. Aside from the proliferating 

cluster, elevated interactions between Tph cells and the ABC, Plasmablast, Memory, and Clonal 

B cell populations were identified. The number of significant interactions for each of these pairs 

was higher than with any other CD4+ population, suggesting an elevated signaling potential of 

the Tph cluster (Figure 7B). 

Next, we leveraged the cross-tissue nature of our dataset to compare T cell-B cell 

signaling differences between synovial tissue and blood. We generated a separate 

communication network for each, both of which returned roughly similar numbers of significant 
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interactions detected with a slight elevation in the synovium (Figure S11C). Within the synovial 

tissue, the TNF, CXCL, IL-2, and IFN type II signaling pathway families were elevated, together 

highlighting characteristics of an inflammatory and immune-activated state of the tissue. Among 

the signaling pathways underrepresented in the tissue compared to signaling in the blood were 

CCL, SELPLG, ICAM, and ITGB, which are often expressed on cells migrating in the blood 

(Figure 7C). Finally, we sought to identify cell-cell interactions elevated in the synovial tissue 

between Tph or Tfh/Tph cells and either ABC, Memory, or Activated B cells. In all analyzed 

pairs, BTLA-TNFRSF14 (HVEM) and CXCL13-CXCR5 interactions were elevated in the 

synovium compared to the blood. In contrast, ITGB2-ICAM2 and LGALS9-CD44/45 interactions 

were higher in most blood pairs. Comparing different interactions between Tph-B subsets and 

Tfh/Tph-B subsets, LTA-TNFRSF14 (HVEM) was identified in all synovial Tph-B cell pairings 

but absent in Tfh/Tph-B cell pairings. In the synovium, IFNG-IFNGR was a significant interaction 

in both Tph/ABC and Tph/Activated B cell pairings, and LTA-TNFRSF1B (TNFR2) was specific 

to the Tph/ABC pairing only (Figure 7D). 

 

Discussion 

By leveraging paired single-cell RNA and TCR/BCR sequencing, this work provides a 

detailed assessment of the relationship between the immune repertoire and cell state 

composition, gene expression, and cell-cell interactions in RA synovium. These data provide 

new insights into the developmental relationships between specific synovial lymphocyte 

populations, for example demonstrating clonal links connecting ABC and activated B cells with 

plasma cells, while separating clonally distinct Tph/Tfh vs CCL5+ CD4 T cells and GZMK+ vs 

GZMB+ CD8 T cells. 

Within the CD4+ T cell compartment, the Tph cells express among the highest effector 

and activation signatures compared to other subsets and are significantly enriched in synovium 

compared to the blood, consistent with prior observations (Rao et al. 2017; Aldridge et al. 2020). 
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Here, we leverage the paired repertoire information of this population, identifying it as one of the 

most clonally expanded CD4 T cell populations and clonally related to both proliferating cells 

and Tfh cells. These observations of Tph cells from synovial tissue are consistent with recent 

work tracking clonal relationships of Tph cells in synovial fluid, which also showed clonal overlap 

with proliferating cells and a population of Tph cells with lower expression of CXCL13 (Argyriou 

et al. 2022). Further, our work suggests additional roles for Tph cells, where upon T cell 

activation and clonal expansion, they upregulate factors related to effector function and 

cytotoxicity, such as GZMB, IFNG, and CCL4. This result may suggest a direct contribution by 

this population in promoting tissue inflammation or injury through cytotoxic activity in addition to 

its well-characterized B cell helper function. 

While analyses of CD8 T cells have largely focused on expression of cytotoxic features 

such as granzyme B, recent observations have highlighted a prominent CD8 T cell population in 

RA synovium with distinct expression of granzyme K (Jonsson et al. 2022). Our analyses further 

underscore a key distinction between GZMK+ and GZMB+  CD8+ T cells in RA synovium and 

blood. Whereas in the blood GZMB-expressing cytotoxic cells formulate the largest clones, 

CD8+ cells that express GZMK comprise the majority of the most expanded cells in the tissue. 

A striking finding through the current and prior analyses was the near-absence of clonal overlap 

between these cohorts across tissues, suggesting that these GZMK+ cells do not arrive at the 

synovium as GZMB-expressing cytotoxic cells, and may instead receive antigenic stimulation 

locally that drives clonal expansion and functions such as cytokine production (Jonsson et al. 

2022). 

The presence of T cell cross-reactivity between virus and self has previously been 

associated with the capacity for driving autoimmunity, including in RA, yet the potential for virus-

reactive T cells to contribute to synovial inflammation has remained uncertain (Wucherpfennig 

and Strominger 1995; Pender et al. 2017; Ashton et al. 2016; Lanz et al. 2022). Our analyses 

identify multiple synovial T cell clones that match those previously identified to be viral-reactive, 
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a result consistent with the recent demonstration of viral reactivity among TCRs from RA 

synovial CD4 T cells (Turcinov et al. 2022). Our paired RNA-seq/TCR analysis enabled 

interrogation of the phenotypes of potentially viral-reactive CD8 T cells, yet no broad-scale 

difference in the cluster composition or clonal characteristics of these cells was apparent. 

Because our methodology relied on utilizing viral-specific clones that had previously been 

identified on defined HLA alleles, there are likely a number of <false-negative= clones in the 

dataset that could be viral-reactive yet did not have a match in the examined databases. Future 

work to better define the viral-reactive capacity of T cells within the joint may rely on isolating 

viral-specific cells using viral peptides bound to tetramers. Still, this work shows the presence of 

likely cross-reactive T cells within the synovium, yet with no enrichment for specific activated or 

effector phenotypes. 

Populations of innate T cells are thought to contribute to RA (Bank 2020; Fathollahi et al. 

2021). Here, we define the subsets of innate T cells present in synovium, including populations 

of ³� T, NK, and MAIT cells, with selective enrichment of Vdelta1 ³� T cells in the synovium 

compared to blood, consistent their enrichment in other tissues including gut and skin (Bos et al. 

1990; Deusch et al. 1991). Leveraging paired TCR information, this is the first single-cell RNA 

sequencing study in RA to confirm the presence of MAIT cells by analyzing VDJ gene 

rearrangements. Our detection of shared MAIT cell clones in synovium and blood suggests that 

these cells may traffic into and out of synovium. Synovial MAIT cells showed an increased 

activation signatures compared to those in blood, as did ³� T cells, suggesting an active role for 

these cells in inflammatory arthritis.  

One of the striking findings of our study is the enrichment of activated B cell populations 

in the synovium with evidence of clonal expansion and clonal sharing between different B cell 

states. We achieved unprecedented resolution of discrete B cell states, and in contrast to a 

previous study (Hardt et al. 2022), our data demonstrated clonal sharing between multiple B cell 

states extending beyond memory B cell and PC pools. We further extend the observation from 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.18.533282doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.18.533282
http://creativecommons.org/licenses/by-nc-nd/4.0/


previous studies (Scheel et al. 2011; Hardt et al. 2022) that synovial plasma cells are generated 

from locally activated B cells including activated B cells, ABCs and memory B cells. Further, our 

work highlights the likely important signals promoting synovial B cell activation and selection, 

including antigen (reflected in upregulation of BCR signaling), cytokines (most notably IFNG), 

and direct cell-cell interactions, mainly involving Tph/Tfh cells. Citrullinated peptides may be the 

main antigenic drivers in the synovium as has been suggested by other studies (Corsiero et al. 

2016; Kristyanto et al. 2020). 

Our study highlighted a spectrum of B cell activation unique to the synovium. We 

identified multiple naïve-like B cell states, with surprising evidence of antigen 

encounter/activation based on higher mutation rates.  The majority of the synovial B cells in our 

study are non-naive, dominated by a B-activated cluster expressing NR4A1 (Meednu et al. 

2022), ABCs, and plasmablasts/plasma cells. The presence of higher SHM, clonal expansion, 

and clonal sharing in these B cell subsets is consistent with in situ synovial activation and 

selection. We have hypothesized that activated B cells are involved in initiating ectopic lymphoid 

structures (ELS), as evidenced by their higher expression of ELS-inducing cytokines like LT and 

IL6 (Meednu et al. 2022). This may promote the generation of memory B cells and plasma cells 

in situ. Our data also suggest that NR4A1+ activated B cells may go down an extrafollicular 

pathway as they share clones with ABCs. Further, Naive-MT-high B cells, although present in 

small numbers in the synovium, share clones with both ABCs and activated B cells. It is thus 

tempting to speculate that this naive-like state may represent the precursor of ABCs and 

activated B cells in the synovium. 

The availability of paired analysis of T and B cells from the same synovial samples 

allowed us to directly link clonally expanded T cell populations with synovial tissue expanded B 

cells for the first time. The most striking predicted interactions were identified between 

proliferating T cells and Tph with activated B cells, ABCs, and plasmablasts. Notably, Tph and 

ABCs had among the largest numbers of incoming and outgoing interactions, suggesting an 
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elevated signaling potential for these populations. Signaling pathways enriched in the synovium 

and identified in the Tph-ABC interaction included cytokines (e.g. IFNG- produced by Tph and 

IFNGR on ABCs and LTA-TNFRSF14 (HVEM) interactions) and chemokines. Notably, GSEA 

also identified cytokine-mediated signaling as prominent in clonally expanded synovial B cells, 

including within the ABC population. This subset of B cells has been previously reported to be 

expanded in autoimmune disease (Jenks et al. 2018) with accumulation in inflamed tissue 

(Zhang et al. 2019, 2022), but the signals that promote ABCs in the synovium remain unclear. 

Our data strongly point to Tph cells as a key driver. This is in accord with a recent report in 

juvenile idiopathic arthritis demonstrating that clonally expanded IL21 and IFNG coexpressing 

Tph promote CD11c+ double negative B cell differentiation (Fischer et al. 2022).  

Together, these findings across T and B cells highlight the altered cell state composition 

and clonal characteristics that may work together to maintain inflammation in RA. Our study 

utilized a cross-sectional cohort unified in high disease activity, but otherwise heterogeneous 

across treatment history, disease duration, and cell-type abundance phenotype (CTAP). Further 

studies with a larger cohort of patients may assist in connecting clonal characteristics such as 

those identified here with patient stratifications, which may serve to increase our knowledge of 

the inherent cellular and molecular heterogeneity of the disease. As the understanding of 

pathogenic roles of B and T cell subsets in RA continues to evolve, this dataset will be a useful 

resource to generate or test insights related to the antigen receptor repertoires of synovial 

lymphocytes. 

 

Methods 

Sample processing 

For this study, patients were recruited and consented through the Accelerating Medicines 

Partnership (AMP) Network for RA and SLE (Zhang et al. 2022). Synovial tissue samples and 

matched peripheral blood mononuclear cells were cryopreserved after collection as described 
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(Donlin et al. 2018). Stored synovial tissue samples were then thawed and disaggregated into 

single-cell suspensions by mincing and digesting with 100 µg/mL LiberaseTL (Roche) and 100 

µg/mL DNaseI (Roche) in RPMI (Life Technologies) for 15 min, with occasional inversion during 

disaggregation. Disaggregated cells were passed through a 70 µm cell strainer and washed 

prior to antibody staining with anti-CD235a antibodies (clone 11E4B-7-6 (KC16), Beckman 

Coulter) and Fixable Viability Dye eFluor 780 (eBioscience/ThermoFisher). Live non-erythrocyte 

cells (viability dye- CD235-) were collected by fluorescence-activated cell sorting (BD FACSAria 

Fusion) and were initially cryopreserved in Cryostor CS10 (Sigma-Aldrich). The disaggregated 

synovial tissue cells and matched cryopreserved peripheral blood mononuclear cells were then 

thawed in batches, and both T and B cells were collected by fluorescence-activated cell sorting 

(BD FACSAria II) (Figure S1B, Table S4). 

Single-cell library preparation and sequencing 

Cells collected from cell sorting were encapsulated into oil droplets using a Chromium NextGEM 

Chip G (10X Genomics). Following reverse transcription and cDNA amplification, 59 gene 

expression, immune repertoire, and feature barcode libraries were constructed following 

manufacturer protocols (v1.1). The libraries were finally pooled for sequencing on an Illumina 

Novaseq 6000 using an S4 flow cell.  Gene expression libraries were sequenced to obtain a 

read depth of 100,000 reads per cell, feature barcode libraries were sequenced at 5,000 reads 

per cell, and immune repertoire libraries were sequenced at 5,000 reads per cell. FASTQ file 

demultiplexing for gene expression libraries was performed using the mkfastq function in 

CellRanger (10X Genomics, v4.0). Following this, alignment to a reference genome (GRCh38) 

and counting was completed using the count function to generate expression matrices for each 

sample. Immune repertoire FASTQ files were separately demultiplexed, and the vdj function 

was used to perform sequence assembly and clonotype calling for TCR and BCR sequences in 

each sample. 

Initial quality control 
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Gene count matrices were imported in R for downstream analysis. Quality control was first 

performed jointly on all cells collected and sequenced in this experiment. Several metrics were 

explored to assess the quality of each cell. First, low-quality cells were distinguished from high-

quality cells in each tissue compartment. Cells were kept for downstream analysis if they had at 

least 1000 mapped reads in either the blood or the synovium. After initial filtering, we generated 

several metrics to identify doublets using software packages scDblFinder (Germain et al. 2022) 

and scds (Bais and Kostka 2020), as well as marking cells that coexpressed at least 1 TCR and 

1 BCR. At this point, a single synovial sample (AMP ID# 300_0415) was discarded due to only 

12 cells passing these initial QC thresholds. Log-normalization was then applied to the gene 

expression counts for remaining cells. Final QC thresholding was performed on the log-

normalized counts, keeping cells with greater than 500 genes detected and less than 20 percent 

of detected reads coming from mitochondrial genes. Additional quality control was performed for 

T and B cells separately in downstream analysis. 

Broad cell type identification 

After initial QC, unsupervised clustering was performed on the remaining cells to identify major 

cell types present in the data. Principal components were first generated in order to reduce the 

dimensionality of the feature space before clustering. Using Seurat9s clustering functionalities on 

the first 30 principal components, a 20 nearest-neighbors network graph was computed. Then, 

we performed Louvain clustering with a resolution parameter of 0.3, and visualized the cells in 

2D space using Uniform Manifold Approximation and Projection (UMAP). Differentially-

expressed genes between clusters were identified (Student9s T-test) by including only genes 

exhibiting a greater-than 0.25 log-fold difference between clusters. In order to annotate each 

cluster with a biologically meaningful name, genes with the highest log-fold changes were 

considered, as well as marker genes that are cell-type specific. 

T cell subclustering  
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Cells broadly labeled as <T cells= and <Proliferating= from the combined object were subset, and 

Harmony (Korsunsky et al. 2019) was then used to perform batch correction at the level of the 

patient and tissue using theta = 2 and max.iter.cluster = 20. Using the top 50 Harmony 

embeddings, Louvain clustering was performed, which was then visualized in UMAP space. 

Nearest neighbors were identified using the Harmony embeddings, and clustering was 

iteratively performed with a resolution of 1.4 finally selected. Broad T cell markers (eg. CD4, 

CD8, TRDC) were used along with differential gene expression (Wilcoxon Rank Sum test) to 

identify the T cell lineages for each of these initial clusters. At this point, a small number of 

remaining contaminating cells (such as B cells from the Proliferating cluster), were removed. 

Based on gene expression, clusters of CD4, CD8, and innate T cells were separated and 

individually clustered using a similar strategy with slightly different parameters for each subset 

(CD4: 40 Harmony embeddings, 0.5 cluster resolution; CD8: 40 Harmony embeddings, 0.4 

cluster resolution; innate T: 10 Harmony embeddings, 0.4 cluster resolution). 

B cell subclustering 

Cells labeled as <B cells= from the broad clustering, we further characterized B cell 

subpopulations. Before reclustering the B cells, we discard cells marked as doublets according 

to scDblFinder and B cells which simultaneously coexpressed at least 1 BCR and at least 1 

TCR. On the remaining cells, Seurat9s default normalization and scaling was performed and 

principal components were generated. Harmony was used to perform batch correction at the 

patient level using theta = 2 and max.iter.cluster = 20. From here, the 20-nearest-neighbors 

network graph was generated using the first 30 harmonized principal components. We then 

applied Louvain clustering using a resolution parameter of 0.5 to identify clusters of similar cells 

to visualize in the UMAP space.  Differential gene expression was then performed (Student9s t-

test) to provide markers for cluster annotation. Before selecting the final set of input parameters, 

results were explored at multiple resolutions, variable number of included principal components, 

and using both harmonized and non-harmonized principal components.  
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Gene signature analysis 

Gene signatures used in this study were obtained from the sources listed in Table S3. The 

AddModuleScore function in Seurat was used to assign a value for each cell for each signature, 

corresponding to the average expression of the signature subtracted by the aggregate 

expression of randomly-selected control genes. 

Dataset reference mapping 

A reference object was built using Symphony (Kang et al. 2021) with cells from Zhang et al, 

2022 that correspond to the populations being assayed (CD4 T, CD8 T, innate T, or B cells), 

integrating at the sample level and using the first 20 PCs. Data from the current study was then 

projected onto this reference using the mapQuery and knnPredict functions, to generate 

confidence scores for each reference cluster9s mapping, which we further visualized using 

pheatmap. The most-likely identities for each cluster were then cross-referenced with DEG lists 

from our dataset to aid in generating final cluster identities.  

Single-cell TCR receptor profiling  

For each sample, the filtered_contig_annotations.csv file output from cellranger was used to 

identify TCR sequences obtained for each cell barcode using scRepertoire (Borcherding, 

Bormann, and Kraus 2020). Using the filterMulti argument, only the top 2 expressed chains 

were retained when a cell barcode was associated with more than 2 chains (eg. SS³ or S³³). 

These TCRs and their cell barcodes were then matched with corresponding cell barcodes 

obtained from the sample9s RNA library. Combined, 45,096 cells in the initial T cell subset had 

available TCR information, including 22,634 cells obtained from synovial tissue and 22,462 cells 

obtained from blood. Clones were further characterized into discrete groups for their extent of 

clonal expansion for downstream analysis. 

Single-cell BCR receptor profiling 
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Analogous to the TCR profiling, output from CellRanger was used to identify BCR sequences for 

each cell barcode. For downstream analysis, we included BCR that were considered high-

confidence, full-length. We also excluded BCR that were associated with more than 2 heavy 

chains or more than 2 light chains. BCR passing QC were then matched with cell barcodes from 

the sample9s single-cell RNA library. Combined, 30,779 cells in the B cell subset had associated 

BCR information, of which, 7,763 cells were from the synovial tissue and 23,016 were from 

blood. We assigned each BCR sequence to its closest sequence in the IMGT database using 

the Change-O tool (Gupta et al. 2015). The degree of somatic hypermutation in each B cell was 

quantified by determining the number of V and J substitutions in each B cell9s IgH CDR3 

sequence when compared to its closest IMGT sequence. Clones were characterized in B cells 

according to the similarity of their CDR3 regions. Using a similarity threshold of 96.5%, CD-HIT 

(Fu et al. 2012) was used to define discrete clonal groups for downstream analysis. 

Mixed-effect modeling 

A number of mixed effect models were fit in our analysis, which all generally took a similar form. 

To adjust for patient-specific effects in our data, mixed-effect models were fit using sample_ID 

as a scalar random effect and fixed effects for other covariates of interest. Lme4 (Bates et al. 

2015) was used to obtain point estimates for all mixed-effect models, with 95% confidence 

intervals.  

Gene-set enrichment analysis 

Gene set enrichment analysis was performed using Fast Gene Set Enrichment Analysis 

(FGSEA) (Korotkevich et al. 2021). FGSEA calculates an enrichment score for each gene set, 

given a ranked vector of gene-level statistics. A null distribution of the enrichment score is 

estimated through random sampling of gene sets. P-values are estimated as the number of 

random gene sets with more extreme enrichment scores than the gene set of interest, divided 

by the number of random gene sets generated. Multiple testing correction is then performed to 

get adjusted P-values. We first performed differential expression for our comparisons of interest 
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within each population (SYN vs PBL and Clonal vs Non-clonal) to obtain a ranked vector of 

gene-level statistics. We then sampled 1000 gene random sets to estimate the null distribution 

of each gene set9s enrichment score and calculate adjusted P-values.  

Cell-Cell interactions 

Cell-cell interaction inference was performed using CellChat (Jin et al. 2021), which uses a 

manually curated database of ligand-receptor interactions gathered from KEGG signaling 

pathways and published literature. Interaction networks are constructed by identifying 

differentially expressed genes related to these interactions, computing the average expression 

of each ligand-receptor pair across cell cluster pairings, and finally calculating a communication 

probability value based on permutation testing. For finding communication probabilities, we 

used the tool9s Tukey triMean method, which performs a weighted average of the median and 

upper and lower quartiles, and further used 100 bootstraps (nboot = 100) to calculate p values. 

HLA imputation 

To obtain estimated two-field HLA alleles in each donor, we performed HLA imputation from 

SNP genotype data. We genotyped donors from this study by using Illumina Multi-Ethnic 

Genotyping Array. We performed quality control of genotype by sample call rate > 0.99, variant 

call rate > 0.99, minor allele frequency > 0.01, and  PHWE > 1.0×10-6. We extracted the extended 

MHC region (28334Mb on chromosome 6) and performed haplotype phasing with SHAPEIT2 

software (Delaneau, Marchini, and Zagury 2011). We then performed HLA imputation by using a 

multi-ancestry HLA reference panel version 2 (Luo et al. 2021) and minimac3 software (Das et 

al. 2016). From the imputed dosage of two-field HLA alleles of each HLA gene in each donor, 

we defined the most likely set of two two-field alleles. 

Data availability 

Data generated by this study are deposited at Synapse (doi.org/10.7303/syn47217489.1). 

Code availability 
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Source code to reproduce analyses used in this study are available at 

https://github.com/dunlapg/amp2repertoire. 
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Figure 1. Sorting and single-cell analysis of matched blood and synovial tissue T cells 

and B cells. A. Schematic showing the overall study design. T and B cells were isolated from 

synovial tissue biopsies (n=12) and matched peripheral blood (n = 10). Single-cell libraries for 59 

gene expression and receptor repertoires were generated using the 10X Genomics platform. B. 

Unsupervised clustering and UMAP projection of 83,159 cells that passed QC. C. Bar plot of the 

number of cells recovered for each sample, color denotes tissue origin. D. Violin plots showing 

the expression distribution of select markers for each identified cell population. E. Bar plot of the 

cluster composition for each sample. F. UMAPs of the combined clustering, separated by 

peripheral blood (top) and synovial tissue (bottom). G. Bar plot highlighting the recovery of VDJ 
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information for each sample, excluding fibroblast and monocyte populations. PBL, peripheral 

blood lymphocytes. SYN, synovial tissue. Figure (A) created using BioRender.  
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Figure 2. Enriched representation of effector CD4+ populations in synovial tissue. A. 

UMAP projection of CD4+ T cell reclustering. B. Bar plot of the number of cells included in each 

cluster. C. Violin plots of the expression distribution of select, differentially-expressed markers 

for each cluster. D. Heat map showing the scaled module score of select gene signatures. E. 

UMAPs of TCR signaling (left) and activation (right) signatures. F. Bar plot of the tissue 

distribution for cells in each cluster, with significance determined by paired T-tests in Figure 

S4E. F. Bar plot of the clone size distribution for each cluster. H and I. Heat map of pairwise 

clonal overlap values calculated using Morisita9s index for synovial tissue (H) and blood (I). J. 

Bar plots of the percent of synovial tissue Tph and Tfh/Tph cells found to be expanded, per 

donor. K. Box plots of the effector signature (left), cytotoxicity signature (middle), and Tfh 

signature (right) distribution for expanded and non-expanded Tph cells. Each dot represents a 

donor, and P values were determined by paired T-tests. L. Heat map of the average expression 

of effector and cytotoxicity signature genes, comparing expanded and non-expanded Tph and 

Tfh/Tph cells. M.!"#$!%&#'(!#)!'*+!+))+,'#-!(./01'2-+!3&+)'45!,6'#'#$.,.'6!(./01'2-+!37.88&+45!108!9)*!

(./01'2-+!3-./*'4!8.('-.:2'.#0!)#-!+$%108+8!108!0#0;+$%108+8!9)*<9%*!,+&&(=!>1,*!8#'!-+%-+(+0'(!
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Figure 3. GZMK and GZMB+ T cells are not clonally related. A. UMAP projection of CD8+ T 

cell reclustering. B. Bar plot of the number of cells included in each cluster. C. Violin plots of the 

expression distribution of select, differentially-expressed markers for each cluster. D. Heat map 

showing the scaled module score of select gene signatures. E. Bar plot of the tissue distribution 

for cells in each cluster, with significance determined by paired T-tests in Figure S5D. F. Bar 

plot of the clone size distribution for each cluster. G and H. Bar plots of the clone sizes and 

cluster breakdowns of the top 50 most expanded clones for synovial tissue (G) and blood (H) 

separately. Letters above bars denote clones shared between synovial tissue and blood. I. 

Donut plots of the prolfieration cluster mapping proportions compared to the general cluster 

proportions. J. Bar plot of the percent of CD8+ cells that are exact viral-reactive matching, per 

patient, split by virus. Box size denotes size of clone. K. Bar plot of the cluster distribution for 

exact viral matching and non-matching cells. L. Bar plot of the percent of CD8+ cells that have a 

GLIPH2 motif matching viral-reactive clones, per patient, split by virus. M. Bar plot of the cluster 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2023. ; https://doi.org/10.1101/2023.03.18.533282doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.18.533282
http://creativecommons.org/licenses/by-nc-nd/4.0/


distribution for GLIPH2 motif viral-reactive matching and non-matching cells. N.!"1-!%&#'!#)!'*+!
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Figure 4. Innate T cell populations have increased activation signatures in the synovium. 

A. UMAP projection of innate T cell reclustering. B. Violin plots of the expression distribution of 

select, differentially-expressed markers for each cluster. C. UMAPs of the gene expression 

levels of select innate T cell lineage markers. D. For each selected cluster, frequency of cell 
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representation as a proportion of all T cells in a sample. Each dot represents a single sample, 

and lines denote paired blood and tissue for a donor. Significance is determined by paired T-

tests, with multiple testing correction. E. UMAP highlighting innate T cells with a TRAV1-2 and 

either TRAJ33, 20, or 12 gene rearrangement. F. Scatter plot of the size of each MAIT cell clone 

across tissue sources, colored by patient. G. Box plot of an activation signature in the MAIT cell 

cluster. H and I. TCR-dependent (H) and independent (I)!NOK9!,+&&!1,'.@1'.#0!(./01'2-+(!)-#7!

J+0/!+'!1&5!MDGP5!(%&.'!:6!'.((2+!108!,&#01&!+$%10(.#0=!Q./0.).,10,+!,1&,2&1'+8!2(.0/!%1.-+8!

R.&,#$!'+('.0/!A.'*!L#&7!,#--+,'.#0=!B!%!C!D=DEF!BB!%!C!D=DGF!BBB!%!C!D=DDGF!0(5!0#'!(./0.).,10'= 
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Figure 5. Accumulation of activated, somatically mutated B cell in the RA synovium. A. 

UMAP projection of B cell clustering. Unlabeled gray cells (<NA=) were called B-T doublets as 

determined by high expression of CD3E and high doublet scores; these cells were omitted from 

downstream analysis. The population labeled B-Clonal(LILRA4+) was also omitted from 

downstream analysis due to having a small number of cells which were only found in 2 blood 

samples. B. Dot plots of salient markers used in annotating clusters. C. Bar plot of the number 

of cells included in each cluster. D. Bar plot of the tissue distribution within each cluster. 

Significance determined by mixed effect model using MASC, shown in Figure S8D. E. Heat map 

showing the scaled module score of select gene signatures. Heatmaps of selected genes for 

pathways available in Figure S10A. F. Plot quantifying differences in SHM rate between tissue 

within each population. P-values assessed through a linear mixed-effect model with random 

effect for donor. G. Plot quantifying differences in SHM rate between clusters. P-values 

assessed through a linear mixed-effect model with random effect for donor. Reference 

population set to B-Naive(IgD-high). H. Bar chart of productive immunoglobulin heavy chain 

(IgH) isotype usage for each cluster split by tissue after QC. I. ?&#'!#)!+))+,'!(.H+(!108!PES!

,#0).8+0,+!.0'+-@1&(!)#-!1!7.$+8;+))+,'!&#/.('.,!-+/-+((.#0!7#8+&!A*.,*!-+/-+((+(!1!,+&&T(!,&1((;

(A.',*!('1'+!3K/I!#-!K/O!;U!V,&1((;(A.',*+8W5!K/N!#-!K/X!;U!V0#'!,&1((;(A.',*+8W4!#0!.'(!%*+0#'6%+!
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Figure 6. Clonal expansion and clonal sharing between B cell states in the synovium. A. 

UMAP projection of IgH-defined clonal expansion in B cells. Cells without BCR are not included 

in this plot or other plots in this figure. B. Bar chart showing proportion of clone sizes for each 

cluster split by tissue. C. Circos plot showing clonal sharing between cell populations split by 

tissue compartment. The color of the edge corresponds to the proposed originating population. 

D. Bar plot showing the cell identity and clone size for each synovial trafficked clone. E. Dotplot 

of selected pathways checked for gene set enrichment between clonal cells and non-clonal cells 

in the synovium. Cell states were omitted that had a limited number of clones. F. Bar plot 

displaying the 50 largest clones in the blood and their cell population composition. G. Bar plot 

displaying the 50 largest clones in the synovium and their cell population composition. H. Plot 

displaying the distribution of clones across each tissue and clones shared between tissues. I. 

Plot of cell population composition of the tissue-trafficked clones.  
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Figure 7. Identification of altered T-B cell communication pathways. A. Circle plot of the 

number of significant cell-cell interactions identified between CD4+ T cell subsets and B cells. 

B. Heatmap of the number of significant cell-cell interactions identified between CD4+ T cell 

subsets as senders and B cell subsets as receivers. C. Bar plot of the proportion of a signaling 

pathway9s detection in synovial tissue or blood. D. Dot plot of significant interactions detected 

between Tph or Tfh/Tph cells and ABC, Memory, or Activated B cells, split by tissue. 
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