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Summary

Dendritic spines are crucial for excitatory synaptic transmission as the size of a spine
head correlates with the strength of its synapse. The distribution of spine head sizes
follows a lognormal-like distribution with more small spines than large ones. We analysed
the impact of synaptic activity and plasticity on the spine size distribution in adult-born
hippocampal granule cells from rats with induced homo- and heterosynaptic long-term
plasticity in vivo and CA1 pyramidal cells from Munc-13-1-Munc13-2 knockout mice with
completely blocked synaptic transmission. Neither induction of extrinsic synaptic plasticity
nor the blockage of presynaptic activity degrades the lognormal-like distribution but
changes its mean, variance and skewness. The skewed distribution develops early in the
life of the neuron. Our findings and their computational modelling support the idea that
intrinsic synaptic plasticity is sufficient for the generation, while a combination of intrinsic
and extrinsic synaptic plasticity maintains lognormal like distribution of spines.
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Introduction

A variety of features in the brain including dendritic spine size (Loewenstein et al., 2011;
Montero-Crespo et al., 2020; Santuy et al., 2018), synaptic strength (Cossell et al., 2015;
lkegaya et al., 2013; Lefort et al., 2009; Song et al., 2005) and neuronal firing rate
(Mizuseki & Buzsaki, 2013) are strongly positively skewed with a heavy tail, displaying a
lognormal-like distribution. Lognormal-like distributions of synaptic and firing rate
parameters are thought to play a fundamental role in the structural and functional
organization of the brain (Barbour et al., 2007; Buzsaki & Mizuseki, 2014; Kasai et al.,
2021), and a number of explanations for the emergence of such distributions in active

and plastic networks have been proposed.

Spines are plastic and motile structures of neuronal dendrites that function as
postsynaptic sites for excitatory inputs. The spine head contains the postsynaptic density
(PSD) with AMPA and NMDA glutamate receptors (Ziff, 1997). The size of the PSD
correlates with spine head size, the number of presynaptic vesicles (Harris et al., 1992;
Harris & Stevens, 1989), and the density of postsynaptic receptors (Matsuzaki et al.,
2001; Nusser et al., 1998; Takumi et al., 1999; Zito et al., 2009). Therefore, spine head
size has been used as a morphological proxy for synaptic strength (Asrican et al., 2007;
Bromer et al., 2018). Spines change in size, shape and number depending on synaptic
activity (for reviews see Bhatt et al., 2009; Harris, 2020; Kasai et al., 2010; Nishiyama &
Yasuda, 2015; Segal, 2017; Suratkal et al., 2021), which has been termed extrinsic spine

size dynamics (Kasai et al., 2021).

Given the overwhelming evidence for activity-dependent, extrinsic spine dynamics, the

conventional view would be to expect spine size distributions to depend heavily on
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synaptic activity and associated synaptic plasticity (Barbour et al., 2007, see also Mateos
et al.,, 2007; McKinney, 2010; McKinney et al., 1999). However, spines also display
spontaneous, activity-independent, intrinsic changes (Mongillo et al., 2017; Ziv & Brenner,
2018). In keeping with a major role of such intrinsic spine dynamics, recent data from
pharmacologically silenced cultured rat cortical neurons challenged the conventional
view, indicating that skewed synapse weight distributions can emerge in an activity-
independent manner (Hazan & Ziv, 2020). However, what remains unclear are the
important questions as to (i) what kind of spine size distributions emerge during dendritic
maturation of adult newborn neurons, when, and whether these are affected by homo-
and heterosynaptic plasticity, and (ii) whether such skewed synapse weight distributions
can emerge spontaneously in intact neuronal circuits. To address these issues, we
studied the distribution of spine sizes in adult-born dentate granule cells from rats with
induced in vivo homo- and heterosynaptic long-term plasticity. In addition, we studied
spine size distribution in Munc13 double-knockout mouse brain circuits with completely
blocked presynaptic activity. We found that homosynaptic long-term potentiation (LTP),
with associated spine growth, and heterosynaptic long-term depression (LTD), with
associated spine shrinkage, do not disrupt the lognormal-like spine size distribution but
rather modulate its parameters. Moreover, we report that the lognormal-like distribution

of spine sizes emerges even with entirely blocked synaptic activity.
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Results
Independence of spine size distribution from long-term homo- and heterosynaptic

plasticity in adult-born hippocampal granule cells (abGCs)

As the effects of nerve cell age and long-term synaptic plasticity on the skewness of spine
size distributions are unknown, we characterized the spine size distribution and its
relationship to long-term synaptic plasticity in retrovirally labeled hippocampal abGCs of
three different cell ages. These are characterized by gradual onset and development of
homo- and heterosynaptic plasticity (21, 28 and 35 dpi, see Methods; Jungenitz et al.,
2018), soon after start of spinogenesis at 16-18 dpi (Ohkawa et al., 2012; Radic et al.,
2017). In these cells, homosynaptic LTP associated with spine enlargement was induced
in the middle molecular layer (MML) following 2 h stimulation of the medial perforant path
(Jungenitz et al., 2018). At the same time, concurrent heterosynaptic LTD associated with
spine shrinkage was induced in dendrites in the adjacent unstimulated outer and inner
molecular layers (OML, IML). Those effects were restricted to the stimulated ipsilateral
hemisphere and therefor, the unstimulated contralateral site served as control. Here, we
fitted a lognormal function to the raw data to test whether it provides a good fit for the size
distribution of mushroom spines. In the first round of analyses, this was done collectively
for all of the cells of one condition (i.e. synaptic layer, cell age and hemisphere) together

(Figure 1).

In all conditions — in ipsi- and contralateral dentate gyrus, at all cell ages and in all three
layers — the lognormal-like distribution matched the data exceptionally well with very high
goodness of fit (r?) values of 0.95 - 0.99. As expected, changes in the shape (peak and

width) of the distribution reflected the overall homosynaptic spine enlargement in the
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ipsilateral MML with respect to the contralateral MML as well as the overall heterosynaptic
spine shrinkage in the ipsilateral OML and IML with respect to the contralateral OML and
IML. This confirms that after plasticity induction, the number of large spines increased
and the number of small spines decreased in the stimulated layer while opposite changes
occurred in the adjacent unstimulated layers (Jungenitz et al.,, 2018). However, the

lognormal form of the distribution remained.
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Figure 1. Collected spine size data from anesthetised rat abGCs reveal robust lognormal-like spine

size distributions in all dentate layers and cell ages irrespective of ipsilaterally induced
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homosynaptic or heterosynaptic plasticity. (A) Left: An example retrovirally labeled abGC imaged at
35 days post injection (dpi; scale bar: 25 um). The ipsilateral MML experienced 2-hour high frequency
stimulation. Right: Top panel shows an enlarged dendritic segment located in the stimulated ipsilateral
MML. Middle, bottom panel depicts analysed spines (scale bar: 1 um). (B) Spine size distributions and their
average lognormal fits for all cells in one layer (OML, MML, IML), time (21, 28 and 35 dpi = cell age) and
hemisphere (ipsilateral stimulated = green, and contralateral control = magenta), fitted to the spine data.
Note the high overall goodness of fit for all conditions. The lower ipsilateral vs. contralateral (stimulated vs.
control) distribution peak associated with reduced distribution width in the stimulated MML indicates
homosynaptic spine expansion; the higher ipsilateral vs. contralateral distribution peak in the OML and IML
indicates heterosynaptic spine shrinkage. OML, MML, IML: outer, middle, inner molecular layer; GCL:
granule cell layer of the dentate gyrus. The dashed line represents the lognormal fit, the solid line the spine

data binned into size categories.

To see if a skewed, lognormal-like distribution also appeared at the level of individual
cells, we examined spines in each cell separately. Both ipsilateral and contralateral
(Supplementary Figure 1 and 2) dentate abGCs showed highly rightward skewed
distributions at all cell ages and in all layers with a variety in shapes, peaks, and widths,

and a lognormal-like spine size distribution was observed in all individual cells.

Overall, we achieved a good fit, with the majority of r? values between 0.8 and 0.99. There
was some variability in the goodness of fit as fewer samples were available for analysis,
and one outlier was as low as -0.5 (MML ipsilateral, at 21dpi). The generally high r? values
indicate a lognormality of the data at the individual cell level, independent of cell age, cell
layer, or stimulation (hemisphere). Thus, the rightward skewness of spine size distribution
is a robust and synaptic-plasticity-independent phenomenon already present at an early

nerve cell age.
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To quantify the comparison of spine size distributions between ipsilateral (stimulated)
dentate gyrus with induced synaptic plasticity and the contralateral (control) side, we

calculated the goodness of fit (r?) (Figure 2) and skewness (Supplementary Figure 3).

Goodness of fit comparison
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Figure 2. Individual cell level analysis of the spine size data from anesthetised rat abGCs confirms
robust lognormal-like distribution in all dentate layers and cell ages. The goodness of fit values were
similar in the ipsilateral (stimulated; green) and contralateral (control; magenta) dentate gyrus layers. Left,
middle, right panel: 21, 28 and 35 dpi, respectively. Left, middle, right panel: 21, 28 and 35 dpi, respectively.
Each dot represents a single cell. The error bar represents SEM. The y-axes are cropped at 0, with one

outlier below this value in the MML ipsilaterally at 21 dpi.

There were no significant differences (p < 0.05) in the goodness of fit between the two
hemispheres, in any layer or time (i.e. cell age in dpi) comparison (Figure 2). Another way
to quantify the lognormality of the spine size data is to calculate the skewness (asymmetry
around the mean) of the data. All cells in every condition displayed a skewness above 0,
confirming that the data were not symmetrically distributed but skewed to the right
(Supplementary Figure 3). Again, there were no significant differences between the
hemispheres. Overall, the skewness quantification supported the results obtained by the
r> comparisons, showing that the lognormal-like distribution of spine sizes is independent

of stimulation-induced homo- and heterosynaptic plasticity. Comparing the standard
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deviations taken from the natural logarithms of the spine data (in the following called
sigma), which is an indicator of the width of the distribution and in this case the range of
the spine sizes, some significant differences (p < 0.05) were observed (Supplementary
Figure 4). The sigma value for the stimulated ipsilateral MML at 28 dpi significantly
increased compared to the contralateral side. This indicates that the shape widened and
that there was an increase in bigger spines due to the induction of homosynaptic LTP.
There was a significant decrease in the ipsilateral spine sizes in the IML at 21 dpi and the
OML at 35 dpi compared to the contralateral side, indicating that the shape narrowed and

the number of smaller spines increased due to heterosynaptic LTD.

For a lognormal distribution, the logarithm of the individual values is normally distributed.
As an additional quantification method, we calculated the logarithm of the data and fitted
a Gaussian distribution to the transformed data (Figure 3). The distributions at the
youngest cell age (21 dpi) showed a well-fitted Gaussian distribution in all three layers
and both ipsi- and contralaterally, indicating the condition for the lognormal distribution
was met. In older cells (both 28 and 35 dpi), the Gaussian distribution fit less well to the
logarithmic data. This was especially the case on the right side of the peak, where the
actual number of spine sizes was higher than the estimated fit. There was an
overabundance of bigger spines at older cell ages, regardless of plasticity induction.
However, this overabundance of bigger spines could be observed especially in the MML,
where homosynaptic plasticity was induced. This indicates that spines do not follow a

strict lognormal distribution but a lognormal-like distribution.

We compared three skewed distributions, including the lognormal distribution, to quantify

whether the lognormal distribution is the best fit of those three. To this end, we used the

10
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Akaike Information Criterion (AIC). Our analyses and comparisons revealed that of the
three distributions tested (lognormal, gamma and Weibull), the lognormal distribution had
an advantage over the other two, indicating that it was the best fit for the data

(Supplementary Figure 5 and 6).

Gaussian fit for abGC spines
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Figure 3. Fitting a Gaussian distribution to logarithmically transformed spine data of abGCs

revealed that spine sizes follow a lognormal-like distribution. The average Gaussian fits for all cells in

one dentate layer (OML, MML, IML), time (21, 28 and 35 dpi) and hemisphere (ipsi- and contralateral), fitted

to the logarithm of the spine data (green and magenta). The dashed line shows the Gaussian fit, the solid

line represents the spine data. The differences between data and fit is shown by shading in the areas

between both. At 21 dpi, in all layers and both ipsi- and contralateral, the Gaussian distribution fits well to
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the data. In the older cells (28 and 35 dpi) there is apparent overabundance of bigger spines and thus a
bias to the right of the peak. This is pronounced especially in the MML, where high-frequency stimulation

occurred. OML, MML, IML: outer, middle, inner molecular layer; GCL: granule cell layer of the dentate

gyrus.

Independence of spine size distribution from presynaptic transmitter release

Viewed together, the data from rat abGCs showed a strong independence of the
lognormal-like spine size distribution from homosynaptic and heterosynaptic plasticity.
This raises the question as to whether synaptic activity in general affects spine size
distributions. To assess this, we analysed spines in nerve cells with blocked presynaptic

transmitter release.

We used a data set of CA1 pyramidal cell (CA1 PC) spines from organotypic hippocampal
cultures obtained from Munc-13-1-Munc13-2 double knockout mice (DKOs) (Sigler et al.
2017). In these mutants, presynaptic glutamate and GABA release is almost entirely
blocked (Varoqueaux et al. 2002; Sigler et al. 2017). The spine data comprised three
developmental time points, at which spine size was measured in organotypic slices (7, 14
and 21 days in vitro, div) and two further groups, one where synaptic activity (presynaptic
transmitter release) was blocked (DKO group 0) and the corresponding control group
(group 1). CA1 PCs possess three different spine types: 22.85+6.01% mushroom spines
(meantSD), 23.73t4.83% thin spines and 51.1616.62% stubby spines. About

2.26+2.53% were defined as ‘other’ and not included in further analyses.

The data were analysed by different conditions, separated by time in vitro (div) and group.
In the first step, all cells and spine types were analysed together in each condition. In the

second step, spine sizes were analysed at the single cell level, for all spine types together.

12
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Finally, the three different spine types were analysed separately, first for all cells in one

condition, then at the individual cell level as well.

A lognormal distribution was fitted to the spine data. As with the abGC data above, the

goodness of fit (r?) showed that the lognormal fit described the spine size distribution very

well, in all conditions and for all spines (Figure 4).
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Figure 4. Collected spine size data from CA1 PCs in Munc-13 DKO (blocked presynaptic release)

and WT (control) organotypic slice cultures revealed robust lognormal-like distribution in all cell

culture ages irrespective of blocked presynaptic release. (A) An example GFP labeled CA1 PC from a

DKO slice culture imaged at 21 days in vitro (div; scale: 50 um). (B) The panel shows an enlarged dendritic

segment. (C) Average lognormal fit for all spines (mushroom, stubby and thin) and all CA1 PCs in one
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condition (blocked presynaptic release or control) pooled together. Note that the lognormal function fit the
data (red and blue dots) with high goodness of fit (r?) values in both groups, and at all time points (div). The

dashed line shows the lognormal fit, the solid line represents the spine data.

Again, like with the abGC data, at the individual cell level, spine sizes in every CA1 PC in
both groups followed a lognormal distribution, at each cell culture age (div) that we studied
(Figure 5A). There were differences in the shape and width of the distribution, but the

rightward skewness was preserved even at the individual cell level.

We compared the goodness of fit parameter r2 between the groups and different time
points (div), for all spines together (Figure 5B). There were no significant differences
between the two groups, only a trend in the blocked activity group towards a slightly
reduced r2. Comparing the time points, there was no significant difference (p < 0.05) within
the blocked activity group. In the control group there was a significant increase (p < 0.01)
in the goodness of fit from day 7 to day 21 in vitro, indicating that the lognormal distribution
described the data better for more mature slice cultures. A similar trend was seen in the
blocked activity group, but without reaching statistical significance. This shows that there
is a lognormal-like distribution of spine sizes irrespective of whether the presynaptic

transmitter release is blocked or not.

A closer analysis of the spine size data revealed that the skewness values were typically
above 0 (in some exceptional cases for thin spines below 0, indicating a skewness to the
left), confirming that the spine sizes were not symmetrically distributed. Comparing the
different conditions revealed no significant differences between different time points (cell
culture age in div) or between the groups (Supplementary Figure 7A). Within each group,

the skewness increased slightly but not significantly over time. The sigma comparison

14
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revealed no significant differences in the width of the distribution and the range of spine
sizes (Supplementary Figure 8). A trend was seen at 21 div, where the blocked
presynaptic transmitter release group has a slightly increased sigma compared to the

control group, indicating that the range of spine sizes increases.
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Figure 5. Individual cell level analysis of the spine size data from CA1 PCs in Munc-13 DKO (blocked
presynaptic release) and WT (control) organotypic slice cultures revealed a robust lognormal-like
distribution independent of synaptic activity. (A) Lognormal fits in individual cells in both groups and at

three time points (div). The single blue (above) and red (below) line represents the mean of all spine sizes
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as seen in Figure 4C. (B) Goodness of fit (r?) comparisons. The comparison between the two groups yielded
no significant difference. In the control group, r? increases significantly (p < 0.01) over time. (C) Thin spines
showed lower goodness of fit than stubby and mushroom spines in both experimental conditions. Each dot

represents a single cell, error bars represent SEM. m — mushroom spines, s — stubby spines, t— thin spines

Next, we tested whether a deeper analysis of spine type subgroups (mushroom, stubby
and thin) would show inter- or intra-group differences (Figure 5C). The thin spine
population showed lower r? values than the mushroom and stubby spine population. In
line with this, thin spines also showed the lowest score for skewness (Supplementary
Figure 5B). At the individual cell level, mushroom spines in each cell followed a lognormal
distribution (Figure 6A). The group with blocked presynaptic transmitter release showed
a similar goodness of fit as the control group. There was a significant increase of r2 over
time (p < 0.05) in the control group (Figure 6B). Mushroom spines had a slightly higher
skewness in the control group, but the difference was not significant (Supplementary
Figure 7C) and they showed the lowest sigma value in comparison to the other two spine
types, indicating a smaller range of sizes (Supplementary Figure 8). Analyses of thin and

stubby spines at the individual cell level are shown in Supplementary Figures 9 and 10.
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Figure 6. Analysis of mushroom spines from CA1 PCs in Munc-13 DKO and WT (control)
organotypic slice cultures showed a high goodness of fit to a lognormal distribution. (A) Individual
fits for mushroom spines in each cell. The single blue (above) and red (below) fit shows the average
distribution (B) Goodness of fit (left panel) analysis revealed no significant differences between the groups
(blocked presynaptic release vs. control) and a significant increase in r? over time (p < 0.05) (7, 14 and 21

div) for control. Each dot represents a single cell, error bar represents SEM.

As with the abGC data set, we conducted the AIC analysis and comparison for mushroom
spines, to check whether the lognormal distribution was the best fit out of three skewed
distributions. The lognormal distribution had an advantage over the other two in both

experimental groups and at all cell ages (Supplementary Figure 11). These findings
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indicate that a lognormal-like spine size distribution is preserved even when synaptic
activity is blocked. Intriguingly, the sizes of thin spines showed a less good fit to a

lognormal distribution.

Again, as with the abGC spine data set, a final analysis of spine data from Munc13 DKOs
and control littermates focused on the lognormal-like distributions of spine sizes in more
detail by employing the normal (Gaussian) fits of logarithmically transformed data. The
logarithm of lognormal-like spine size data should lead to a normal-like distribution.
Taking the logarithm of the data and fitting a Gaussian distribution to the transformed data
revealed for all spine types that the distribution had a bias towards the left side of the
peak, meaning there was an overabundance of small spines in the samples (Figure 7A),
at all cell ages and in both experimental groups. For mushroom spines, there was a clear
cutoff to the left (Figure 7B), whereas for thin spines there was a cutoff to the right of the
peak (Figure 7C). This was due to the method by which spines were categorised by size
into thin or mushroom spines. Stubby spines showed the best Gaussian fit, indicating that
the stubby spines were distributed strictly lognormally. The bias to the left might be an
artefact of the method used to detect and measure the spines. Overall, the findings
indicate, similar to the abGC data set, that spines were lognormal-like distributed

independently of synaptic activity.
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Figure 7. Gaussian fits to logarithmically transformed spine data for all spine subtypes and each
type individually showed varying degrees of lognormality. The average Gaussian fits for all spine

subtypes (A), mushroom spines (B), thin spines (C) and stubby spines (D) in all cells at one time (7, 14
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and 21 div) and experimental condition (blocked presynaptic release and control), fitted to the logarithm of
the spine data (red and blue). For all spine types together, there was a bias to the left of the peak at all
three cell ages and for both conditions, indicating an overabundance of small spines in the data sample,
making the distribution more lognormal-like. Mushroom spines (B) and thin spines (C) showed a cut off at
the same spine size, with mushroom spines displaying spine sizes above the cutoff and thin spines below.
The Gaussian distribution did not fit as well to those two spine types, meaning that they are more lognormal-
like. Stubby spines (D) showed the best fit to the logarithmic data. The dashed line shows the Gaussian fit,
the solid line represents the spine data. The differences between data and fit is shown by shading in the

areas between both.

A computational model implementing intrinsic and extrinsic synaptic plasticity accounts

for the generation and preservation of skewed synaptic weight distributions

Many computational models of synaptic dynamics presume that the distribution of
synaptic weights arises predominantly due to activity-dependent (extrinsic) synaptic
plasticity (Gilson and Fukai, 2011; Zheng et al., 2013; Effenberger et al., 2015; Scheler,
2017). Therefore, our observation that synaptic activity is not necessary for the
emergence of skewed spine size distributions requires an extended computational
approach that captures the key role of activity-independent (intrinsic) plasticity. To
account for this, we used a computational model of synaptic dynamics that combines

intrinsic plasticity (Hazan and Ziv, 2020) with classical extrinsic plasticity mechanisms.

Lognormal distributions are typically preserved when applying multiplicative stochastic
operations. Combined intrinsic and extrinsic synaptic plasticity might represent a
biological implementation of such multiplicative changes of synaptic weights. Thus, to
investigate the influence of intrinsic and extrinsic plasticity on the lognormal distribution

of spine sizes, we developed a minimal computational model, that was able to account
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for the experimental data. Extrinsic synaptic plasticity was modeled as Hebbian activity-
dependent spike-timing-dependent plasticity (STDP) consisting of additive LTP and
multiplicative LTD. Intrinsic synaptic plasticity was based on activity-independent
fluctuations modeled as multiplicative noise. The model was inspired by van Rossum et
al. (2000). The synaptic weights, for which we assume spine sizes to be a reliable proxy,
were determined for each condition after the simulation was run, and a lognormal
distribution was fitted over the weight data. In a first simulation, we wanted to see if
intrinsic plasticity alone (modeled as multiplicative noise) can generate a lognormal
distribution. To this end, we fed a uniform distribution as initial weights into the model and
tracked the synaptic weights over the time course of the simulation to see how it
developed (Figure 8A). The distribution became lognormal over time, showing that
multiplicative noise is indeed sufficient to generate lognormal distributions (Hazan & Ziv,

2000).

Next, we explored in silico how synaptic activity in the form of LTP-inducing HFS affects
the shape of the synaptic weight distribution. We used the model to recreate the plasticity
processes in the Jungenitz et al. (2018) data set. We compared a HFS (periodic spiking
input at 200 Hz) with a control simulation with an input of 10 Hz (Figure 8B). The model
generated lognormal distributions in both simulations with high goodness of fit values
(r? = 0.99), but with differences in shape and peak. This was supported by the Gaussian
distribution of the logarithmic weight data (Figure 8B, right panel). The lognormal
distribution resulting from the HFS simulation showed a narrower distribution and a higher
peak at medium sized spine sizes, whereas the control simulation showed a broader

shape, with a peak at lower sized weights. This is contrary to the experimental results,
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where the HFS stimulated spines in the MML showed a broader distribution with bigger
spines increasing in number, whereas the unstimulated control spines showed a narrower
distribution. This discrepancy could be due to the differences in the duration of the

experiment and the simulation, or to the choice of modelled heterosynaptic scaling.

We then recreated the experimental data obtained upon block of presynaptic transmitter
release by comparing a completely silent simulation (i.e. using only intrinsic noise) and a
control simulation that received Poisson input at a frequency of 5 Hz (Figure 8C). The
simulation yielded similar results to the experimental data. The intrinsic noise distribution
broadened as compared to the control simulation, but there were no significant
differences between the two groups. Both distributions were well-fitted by a lognormal
distribution (r? = 0.99), which was also supported by the well-fitted Gaussian distribution
of the logarithmic weight data (Figure 8C, right panel). As shown by Rossum et al (2000),
additive STDP also contributes to a skewed distribution of synaptic weights as already
strong synapses are more likely to trigger a postsynaptic response and therefore
potentiate again. Interestingly, however, additive intrinsic noise can lead to relatively large
changes in the strengths of small synapses and limit the skewness of the weight
distributions. This, alongside the experimental results on silenced cultures, implies that

intrinsic noise should be chiefly multiplicative.

In sum, and in agreement with the abGC spine data, combined extrinsic and intrinsic
plasticity can maintain the skewed distributions in the presence of correlated LTP-
inducing synaptic activation. Furthermore, in line with Munc-13 DKO spine size data, our
modeling shows that extrinsic plasticity is not necessary for the generation of skewed

spine size distributions and that intrinsic plasticity alone is sufficient.
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multiplicative noise generates lognormal distribution
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Figure 8. Computational modeling indicates that intrinsic (activity-independent) synaptic plasticity
is sufficient for the generation of lognormal-like spine size distributions and a combination of
intrinsic and extrinsic synaptic plasticity is sufficient for the maintainance of the lognormal-like
distributions. (A) An initially uniform distribution transforms into a lognormal distribution over time. Only
multiplicative noise that represented intrinsic synaptic plasticity was applied to the distribution, which was

enough to generate a lognormal distribution over time out of the uniform distribution. (B) Periodic high
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frequency simulation (HFS) with an input rate of 200 Hz was applied to the model (light green) and
compared to a control simulation that received a 10 Hz periodic input (magenta). The HFS simulation shows
a narrower distribution with the peak centered around medium sized weights whereas the control simulation
has a broader distribution with the peak more to the left, centered around smaller weights. Both simulations
follow a lognormal distribution with high goodness of fit values. (C) Intrinsic mechanisms, simulated as a
silent network without any extrinsic input (red) shows a slightly shifted distribution compared to the control
simulation (extrinsic activity simulated with an input at 5 Hz; light blue). The silent simulation has a slightly
higher peak centered around medium sized weights and seems to be broader compared to the control

simulation. Both simulations follow a lognormal distribution with high goodness of fit values.
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Discussion

Excitatory post-synaptic potential sizes and spine head sizes have lognormal-like
distributions (de Vivo et al., 2017; lkegaya et al., 2013; Lefort et al., 2009; Loewenstein
etal., 2011; Merchan-Pérez et al., 2014; Montero-Crespo et al., 2020; Santuy et al., 2018;
Song et al., 2005). Here, we confirm that spine size distributions follow a lognormal shape
in both hippocampal dentate abGCs in vivo and in organotypically cultured CA1 PCs. In
dentate abGCs, a lognormal-like distribution of spine sizes was present at all studied cell
ages, irrespective of homo- or heterosynaptic long-term plasticity induction. Most
strikingly, in CA1 PCs, spine size distributions were skewed and lognormal-like even in
Munc-13 DKOs, in which presynaptic transmitter release is entirely blocked. These data
show that the lognormal-like distribution of spine sizes is activity- and plasticity-
independent. The skewness of spine size distributions develops early in cell age without
extrinsic influences related to presynaptic transmitter release, and therefore seems to be
determined intrinsically. However, we cannot exclude potential extrinsic influences that
are not related to presynaptic transmitter release, such as trophic factors or adhesion

proteins.

Independence of spine size distributions from intrinsic dynamics and extrinsic plasticity

Intriguingly, we detected robust lognormal-like distributions of spine sizes in young
newborn GCs that had experienced homo- and heterosynaptic plasticity. This is in
agreement with previous studies showing unchanged spine size, spine type distribution,
and spine numbers at 30 min and 2 h after homosynaptic long-term potentiation in dentate
granule cells and CA1 PCs, respectively (Bromer et al., 2018; Sorra & Harris, 1998).

Together with our previous work (Jungenitz et al. 2018, Beining et al., 2017), these data
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indicate that high-frequency activation of synapses evokes their homo- and
heterosynaptic plastic changes leading to a redistribution instead of an overall increase
(or decrease) in spine size and synaptic strength. The plasticity-related redistribution of
synaptic weights with a homeostatic maintenance of the total synaptic area per um of
dendrite length (Bourne & Harris, 2007; Bromer et al., 2018) may be a result of activity-
dependent competitive redistribution of synaptic building resources (Triesch et al., 2018).
In addition to the plasticity-independence, the skewed spine size distribution in abGCs
was detected at the earliest studied time point (21 dpi), shortly after onset of spinogenesis
between 16 — 18 dpi (Ohkawa et al., 2012; Radic et al., 2017). This indicates that it
develops in early stages of a nerve cell’s life. Extending long-term time lapse imaging of
abGCs (Radic et al., 2017) to include their initial developmental stages with the time of
rapid spinogenesis should clarify whether the first spines already display skewed size

distributions.

A recent study on cultured primary cortical neurons (Hazan & Ziv, 2020) provided results
in line with our observation that spine size distribution is independent of presynaptic
glutamate release. In this study on dissociated neurons in culture with pharmacologically
blocked spiking and synaptic activity during the plating procedure, synapses showed
physiological diversity with a full range of synaptic sizes (Hazan & Ziv, 2020). The
synapse size distributions in these silenced networks in culture were rightward skewed,
broad, and stable, showing characteristics of a lognormal-like distribution. Interestingly,
networks with chronic activity suppression showed an increase in average spine size, and
synaptic size distributions broadened, indicating that activity-dependent processes

constrain synaptic growth (Minerbi et al., 2009; Statman et al., 2014; Ziv & Brenner, 2018).
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Our analysis of spines upon blockage of presynaptic transmitter release documents a
similar shift in spine sizes. The blocked transmitter release group shows a broader
distribution with a lower peak, indicating a shift towards an increased number of bigger
spines, possibly regulated by intrinsic mechanisms. Similar results were reported by
Yasumatsu and colleagues (2008) who observed individual spines of CA1 pyramidal cells
from rat hippocampal slices in culture after blocking synaptic transmission and plasticity
mediated by NMDA receptors. They reported that spontaneous, intrinsic spine volume
fluctuations were independent of activity-dependent plasticity processes. In the presence
of NMDAR inhibition, the rate at which spines were eliminated was decreased and spine
generation was unaffected. Spine elimination of mostly small spines was reduced but

new, small spines still emerged, affecting the skewness of the distribution.

An important finding of Yasumatsu et al. (2008) was that small spines were the most
plastic ones, changing in size, being eliminated, or newly generated even within one day.
Large spines, in contrast, were more persistent. This supports the idea that small, more
plastic spines are more involved in learning processes, whereas stable, large spines are
responsible for memory traces (Bourne & Harris, 2007; Hung et al., 2008; Kasai et al.,
2003). This might hint at a potential advantage of lognormal size distributions, with a large
pool of small spines with higher plasticity potential and a minority of big and less plastic
spines that can hold long-term memory traces (cf. Yap et al., 2020). However, our present
study and previously published data (Hazan & Ziv, 2020; Sando et al., 2017; Sigler et al.,
2017, Kleinjan et al., 2023) show clearly that synaptic activity is not necessary for the
emergence of large spines (Ziv & Brenner, 2018). In line with this, the diversity of spine

types — in terms of fractions of mushroom, stubby and thin spines — is not affected in mice
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with a complete suppression of synaptic transmitter release from glutamatergic neurons
upon Cre-inducible expression of tetanus toxin (Dorkenwald et al., 2019; Sando et al.,
2017). Consistently, spinogenesis in CA1 PCs has been shown to be independent of the
activation of ionotropic glutamate receptors (Lu et al., 2013), although their numbers
might be modulated by the lack of activity (Sigler et al, 2017; Hazan and Ziv, 2020). Even
the complete knockout of Ca?* channels in synapses in cultured hippocampal neurons
did not impair synapse structure (Held et al., 2020). All these observations are congruent
with early investigations showing that in vivo-like synapse diversity emerges in neurons
in chronically silenced organotypic cultures (Harms et al., 2005; Harms & Craig, 2005;

van Huizen et al., 1985; but see McKinney et al., 1999).

Computational model accounts for the generation and maintenance of lognormal-like

weight distributions

The finding that synaptic activity is not necessary for the skewed spine size and synapse
weight distribution is unexpected in the context of several prominent theoretical models.
Many computational models of synaptic weight dynamics assume that realistic weight
distributions emerge due to a combination of Hebbian and non-Hebbian activity-
dependent synaptic plasticity. For example, spiking network simulations led to the
suggestion that a highly skewed distribution of synaptic weights appears due to network
self-organization (Zheng et al., 2013), by the combined effects of (i) excitatory and (ii)
inhibitory spike-timing dependent plasticity (STDP and iSTDP), (iii) synaptic normalisation
(preserving the total input weight of a neuron), (iv) intrinsic plasticity (for firing rate

homeostasis), and (v) structural plasticity (in the form of synaptogenesis).
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Similarly, other computational studies (van Rossum et al., 2000) used an STDP rule with
a homeostatic component (diminished potentiation for strengthened synapses; see also
Effenberger et al., 2015) or log-STDP (Gilson & Fukai, 2011) to reproduce the
experimentally observed positively skewed weight distribution. Further, a more recent
mathematical study argued that Hebbian learning is needed to produce and maintain
skewed synapse size distributions (Scheler, 2017). However, the studies including our
work and work of others (Hazan & Ziv, 2020) clearly show that activity-dependent synaptic
plasticity is not essential for the lognormal-like weight distributions to occur. This means
that the synaptic plasticity rules proposed in these computational studies are not
necessary for the generation of heavy-tailed synaptic weight distributions, but that they
may still be involved in the maintenance of the skewed distributions once neuronal

networks become exposed to prolonged synaptic activity and plasticity.

Indeed, our plasticity model, using a Kesten process as multiplicative noise for
implementing intrinsic synaptic fluctuations (Hazan & Ziv, 2020), generated a lognormal-
like distribution without any influence of an extrinsic plasticity mechanism. The
multiplicative noise (i.e. intrinsic plasticity mechanisms) also generated a lognormal
distribution that is slightly broader than a control simulation with noise and activity-
dependent plasticity (i.e. both intrinsic and extrinsic mechanisms). This is in accordance
with our results obtained with the Munc13 DKO data set. When we added additive STDP
and simulated the network model with periodic high-frequency input (mimicking LTP-
inducing activity), the skewed, lognormal-like distribution was maintained, but changed in

width and shape compared to a control simulation that received 10 Hz input. The
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maintenance of the lognormal-like distribution is in agreement with the abGC LTP/LTD

data set.

However, in experimental data, the spine distribution affected by LTP-inducing HFS
broadened compared to the control spines. In our model, the weight distribution of the
HFS simulation got narrower in comparison to the control simulation. This discrepancy
between the model and the data could be due to the time differences between the
experiment and the simulation, where the HFS was applied for 2 hours to the cells,
compared to the shorter period of the computer simulation. It could also be due to the
choice of heterosynaptic scaling in the model. Further work is required to establish the
range of parameters that are fully consistent with the experimental data, for example the
relationship between strengths of intrinsic and extrinsic plasticity. The insight of this
model, as previously shown by van Rossum (2000), is that even additive potentiation can
generate and preserve skewed synaptic weight distributions as stronger synapses are
more likely to trigger postsynaptic spikes and therefore more likely to undergo
potentiation. The presence of skewed distributions even without STDP in our data is

evidence that intrinsic noise is likely to be multiplicative.

Activity-independent computational models based on stochastic multiplicative shrinkage
and additive growth of synapses (mathematically well approximated by stochastic Kesten
or nonlinear Langevin processes) successfully account for the emergence of lognormal-
like synaptic strength distributions (Hazan and Ziv 2020; see also Yasumatsu et al. 2008
and Loewenstein et al. 2011). Similarly, a mechanistic model based on activity-
independent cooperative stochastic binding and unbinding of synaptic scaffold molecules

can explain the rightward skewed, distributions of synaptic sizes (Hazan & Ziv, 2020;
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Shomar et al., 2017). Our new model of intrinsic and extrinsic plasticity shows how
activity-independent and activity-dependent synaptic dynamics may cooperate to

maintain lognormal-like distribution of synaptic efficacies.

An open question that remains is as to whether long-tailed distributions of synaptic
weights have functional relevance. Their computational role is still not fully understood
but several studies indicate that they may support optimal network dynamics in the form
of sparse, fast, broad and stable responses (Cossell et al., 2015; lkegaya et al., 2013;
lyer et al., 2013; Teramae et al., 2012; Teramae & Fukai, 2014) and facilitate network
burst propagation (Omura et al., 2015). Sparse and strong synapses connect together to
a so-called “rich club” of rare but highly connected neurons (Gal et al., 2017; Nigam et
al., 2016). The rich-club neuron organization can generate bistable low-firing and high-
firing network states, whereas biologically unrealistic random networks only display
mono-stable, low-firing states (Klinshov et al., 2014). The rare and strong synaptic
connections participate to a disproportionate degree in information processing (Nigam et
al., 2016), such as feature preference and selectivity in visual cortex (Cossell et al., 2015).
They may also contribute to memory recall in associative memory networks (Hiratani et
al., 2013). Network simulations also indicated that lognormal-like synaptic distributions
are important in the context of criticality since they support continuous transitions to chaos
associated with the generation of scale-free avalanches (Kusmierz et al., 2020). In
addition, a recent computational study showed that strong synaptic inputs from the heavy
tail of the lognormal synaptic efficacy distribution play a crucial role in triggering local
dendritic spikes (Goetz et al., 2021) which are known to enhance nonlinear single cell

computations.
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Conclusion

In sum, our work highlights the importance of a skewed, lognormal-like distribution of
brain parameters. It persists through high frequency stimulation and plasticity processes
and emerges even when presynaptic transmitter release is blocked. Given its importance
and widespread presence in the brain, computational plasticity models should strive to

maintain a skewed, lognormal-like distribution of spine sizes and synaptic weights.
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Methods
Spine data from dentate adult-born granule cells (abGCs) in rats with induced homo- and

heterosynaptic plasticity

We analysed the distribution of spines in granule cell (GC) data in the dentate gyrus (DG),
from Jungenitz et al. (2018). In this data set, structural homo- and heterosynaptic plasticity
of spines was induced in abGCs using two hour high-frequency stimulation (HFS) of the
medial perforant path (MPP) in anesthetised rats. AbGCs were stimulated at different time
points after the injection of retroviral vectors (days post injection, or dpi). The cell ages
used in the analysis were 21, 28 and 35 dpi. The HFS induced LTP associated with spine
expansion in the middle molecular layer (MML) of the dentate gyrus (Jungenitz et al.,
2018). Concurrently it induced heterosynaptic LTD associated with spine shrinkage in the

inner and outer molecular layer (IML/OML).

The data set comprised spine data for individual cells in (i) the three different layers (IML,
MML and OML), (ii) at the three different cell ages (21, 28 and 35 dpi), and (iii) from both
the contra- and ipsilateral hemisphere. The contralateral side without the induction of
synaptic plasticity (Jungenitz et al., 2018) was included as a control. All analysed spines
were mushroom spines (spines with a large head in relation to the neck (Bosch and
Hayashi, 2012; Rochefort and Konnerth, 2012)). Analysis was done at the level of
individual cells or dentate molecular layers, separately for each layer, hemisphere, and

cell age.

Spine data from CA1 pyramidal cells in Munc13 double-knockouts
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The blocked presynaptic activity data set contained spine data from CA1 pyramidal cells
(PC) in hippocampal organotypic slices from Munc13 double-knockout (DKO) mice (Sigler
et al.,, 2017). In these DKOs, the elimination of synaptic protein Munc13 causes a
complete loss of spontaneous and evoked transmitter release (Varoqueaux et al., 2002).
The data set comprised spine data from M13-DKOs and their controls, from three different
time points of measurement (7, 14 and 21 days in vitro, div). The data set was split into

apical and basal dendrites, and in three spine subgroups (mushroom, stubby and thin).
Fitting a lognormal distribution to the data

The spine head area was used to analyse the distribution of spine sizes. All analyses
were done with Matlab software using a custom-written script. We analysed cells

individually as well as collectively by combining and averaging all cells for one condition.

From the raw data, the mean (1) and standard deviation (o) of the spine sizes’ natural
logarithms were calculated. They functioned as a starting point for the algorithm
implemented to fit the lognormal distribution over the spine data. Because the data spans
multiple scales, the raw size data was normalised. For the normalisation, the integral of
the spine size distribution was calculated, and the absolute number of spines in each size

bin was divided by that integral.

The next step in the analysis was to build the lognormal function that would be fitted to
the normalised data. For this, a customised fitting procedure had to be derived for which

the probability density function (PDF) of the lognormal distribution was used:

PRSEEE <_ (In () - u)2>

X oV21T exp 202
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U and o are defined as parameters, f(x) as the dependent and x as the independent
variable. The lognormal distribution was then fitted to the normalised data. With the fit
function, plots and respective goodness of fit statistics for each of the fits were generated.
The goodness-of-fit statistics give an indication of how well the respective fit or model

fitted the data. The r-square (r?) value was used in all further analysis.

The key characteristic of a lognormal distribution is that the logarithm of the random
variable will be normally distributed. Thus, taking the logarithm of the spine data is another
good method to check if the data is distributed lognormally-like. A similar fitting procedure
as above was applied. The data was first transformed by taking the logarithm of the spine

sizes, then a Gaussian distribution was fitted to the logarithmic data:

) = aexp (— (= b))

where a, b and c are the parameters, f(x) the dependent and x the independent variable.

With the fit function fitting a Gaussian distribution to the logarithm of the data, new plots

were generated that compared the logarithmic data with the fit.

To determine differences between the different layers, cell ages or experimental and
control groups, the given r? for each condition was compared, using statistical non-
parametric tests. r?, or the coefficient of determination, is used to determine how well the
variation in f(x) (the dependent variable) can be explained by x (the independent
variable(s)). Essentially, it provides a measure of how well the observed outcomes can

be replicated by a model. In our case, how well the applied fits describe the spine size
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data. The value is less than or equal to 1, with 1 being a perfect fit of the model. The
coefficient of determination is calculated as follows:

, _ explained variation

total variation

To support the findings of the goodness of fit comparisons, we also looked at the
skewness (asymmetry around the mean) of the data and the width of the distribution
(standard deviation of the data’s natural logarithm, in the following called sigma). More
information about these comparisons can be found in the Supplementary Methods.
Additionally, we conducted a model fit comparison for which we fit two additional skewed
distributions (gamma and Weibull) to the data, and then used the Akaike Information
Criterion (AIC) to compare all three distribution fits. This was done to see whether or not
the lognormal distribution was the best fit for the data. More information about the AIC

calculations and comparisons can be found in the Supplementary Methods.

Statistical Analysis

Several statistical tests were applied to test for statistical differences of r? for a lognormal
and the skewness between the different conditions in both data sets. The distribution
analysis showed a lognormal distribution in the spine data, so only non-parametric tests

were applied.

For the hemisphere (ipsilateral / stimulated vs contralateral / non-stimulated) comparison
in the rat dentate abGC spine data and the group comparison (Munc13 DKO group with
blocked presynaptic release vs. control group) in the mouse CA1 PC spine data, we used

a Mann-Whitney-U or ranksum test. To compare between the three different dentate
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layers (IML / MML / OML), we used Friedman’s test. Since all three layer-samples in one
cell come from the same cell, it was a repeated measurement of multiple variables. The
Kruskal-Wallis test was used for the comparison between different cell ages or cell culture
ages. If significant differences (p < 0.05) were found in one sample, both for the time
comparison and the layer comparison, post-hoc paired ranksum tests were conducted. A
Bonferroni-Holm correction for multiple tests was applied to test for specific significant

differences in the sample.

Multiplicative STDP model to investigate lognormal distributions

To further investigate the influence of plasticity on the lognormal-like distribution of
synaptic weights, we developed a simple model based on van Rossum et al. (2000). The
model includes heterosynaptic scaling, an intrinsic multiplicative (Kesten) noise process,
and an STDP learning rule with additive potentiation and multiplicative depression. The
times between a presynaptic event and a postsynaptic event are written as At. Negative
values of At, where the presynaptic event precedes the postsynaptic event, lead to

potentiation w — wp and positive values lead to depression w — wa.

_At
Wp =W+ ¢p exp (TSTDP)

At
Wa = W= Wtq EXp (TSTDP)

w is the synaptic weight, c, is the weight of potentiation (c,= 0.007 pS), c, is the weight
of depression (c; = 0.003) and 7 is the time constant for STDP (zSTDP = 0.5 ms). In
addition, the synapses are affected by a continuous-time multiplicative noise process of

strength 4% per second. The postsynaptic neurons are modelled as leaky integrate-and-
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fire cells receiving 100 inputs each and uniform heterosynaptic scaling maintains a
constant total conductance. The membrane time constant is 10 ms and the firing

threshold is 10 mV above rest.

The model consists of a population of 1000 neurons, and the synapses are stimulated
either in a Poisson manner or with periodic spiking, at different input frequencies

depending on the simulation condition.

To see whether or not multiplicative noise (i.e. intrinsic mechanisms) are enough to
generate a lognormal distribution, a uniform distribution was fed into the model as an
initial distribution and the synaptic weights were measured throughout the simulation. The
model was then used to replicate the two experimental data sets. First, the high frequency
stimulation that induced LTP in the stimulated spines was recreated with the model, using
periodic spiking as input at a 200 Hz frequency. This was compared with a control
simulation, that received 10 Hz input. The second simulation compared intrinsic
mechanisms, simulated with only multiplicative noise in a silent period, and extrinsic and
intrinsic processes using a control simulation at 5 Hz receiving Poisson input. A lognormal
distribution was fitted to the synaptic weight data in the same way as previously described.
Additionally, the logarithm was taken of the data and a Gaussian distribution was fitted to

the transformed data.
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