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Abstract

Spatial molecular technologies have revolutionised the study of disease
microenvironments by providing spatial context to tissue heterogeneity. Recent spatial
technologies are increasing the throughput and spatial resolution of measurements, resulting
in larger datasets. The added spatial dimension and volume of measurements poses an
analytics challenge that has, in the short-term, been addressed by adopting methods
designed for the analysis of single-cell RNA-seq data. Though these methods work well in
some cases, not all necessarily translate appropriately to spatial technologies. A common
assumption is that total sequencing depth, also known as library size, represents technical
variation in single-cell RNA-seq technologies, and this is often normalised out during
analysis. Through analysis of several different spatial datasets, we noted that this
assumption does not necessarily hold in spatial molecular data. To formally assess this, we
explore the relationship between library size and independently annotated spatial regions,
across 23 samples from 4 different spatial technologies with varying throughput and spatial
resolution. We found that library size confounded biology across all technologies, regardless
of the tissue being investigated. Statistical modelling of binned total transcripts shows that
tissue region is strongly associated with library size across all technologies, even after
accounting for cell density of the bins. Through a benchmarking experiment, we show that
normalising out library size leads to sub-optimal spatial domain identification using common
graph-based clustering algorithms. On average, better clustering was achieved when library
size effects were not normalised out explicitly, especially with data from the newer sub-
cellular localised technologies. Taking these results into consideration, we recommend that
spatial data should not be specifically corrected for library size prior to analysis unless
strongly motivated. We also emphasise that spatial data are different to single-cell RNA-seq

and care should be taken when adopting algorithms designed for single cell data.
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Introduction

After being crowned method of the year 2020 *, spatial molecular technologies have
advanced drastically with new platforms boasting greater coverage of transcripts and
increased spatial resolution of measurements 2°. Resolutions from these technologies span
from 100s of cells (e.g., GeoMx) to sub-cellular (e.g., CosMx, Xenium and STOmics); while
transcript and protein coverage range from 100s of molecules (e.g., CosMx and Xenium) to
genome-wide measurements (e.g., GeoMx, Visium and STOmics). These approaches detect
transcripts by either sequencing or imaging, with the latter providing the highest spatial
resolution. The ability to resolve high-throughput molecular measurements in space has
enabled the study of diseases in their resident tissue microenvironment, thus, providing a

more comprehensive view of disease systems °.

The added spatial information coupled with the scale of the data poses a significant
bioinformatics challenge. Since it is difficult to conceptualise analysis of individual molecular
measurements at sub-cellular spatial resolution, a popular approach has been to abstract
the measurements at the cellular level **. This is done by segmenting cellular boundaries
and accumulating individual datapoints within these cellular bins ‘. This approach enables
the >1300 tools developed for the analysis of single-cell RNA sequencing (ScCRNA-seq) data

8

to be applied to spatial molecular data °. While applying scRNA-seq tools to spatial

molecular data often works well as a first pass **

, it remains underpowered since these
methods disregard spatial information. Dedicated methods that incorporate spatial

information are now being developed for analysis tasks such as the identification of spatially

9-11 12-14 15,16

variable features , Spatially constrained clustering , and cell type annotation
However, these methods are still built on the foundations of cell-based analysis and
therefore propagate some of the assumptions inherent to single-cell data. One such
assumption is that differences in the total number of transcripts detected/sequenced per cell
represents technical variation that should be normalised out prior to downstream analysis. In

sequencing-based transcriptomics, this is often referred to as the library size. For imaging-
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based spatial molecular technologies, it is more appropriate to refer to these as the total

detections per cell.

The idea of normalisation for library sizes originated from bulk RNA sequencing
where samples were sequenced at varying depths thus the effect of sequencing depth
needed to be corrected to enable cross-sample comparison of gene counts *’. The simplest
method of accounting for library size in RNA-seq data is to divide each count by the total
sequencing depth for that sample, and multiply by a scalar, such as a million, to obtain
counts per million (CPM), and this has been adopted by the single cell field ‘8. However,
sometimes this adjustment does not mitigate the effect of total sequencing depth in single
cell experiments and new methods such as regularised negative binomial regression
(sctransform)*® and the deconvolution of pooled size factors (scran) % have been proposed
to effectively reduce the impact of library size differences. These methods specifically
account for the sparsity inherent to single-cell sequencing data. Their application to such

data is warranted as each cell is the unit of measurement in these data.

The unit of measurement in sub-cellular spatial molecular technologies is either a
transcript detection (e.g., Xenium, CosMx, and FISH-based assays) or a sub-cellular spot
(e.g., STOmics) therefore normalisation at the cellular level is not as naturally motivated
compared to bulk or scRNA-seq. Although cellular binning is not performed in Visium data,
like other spatial molecular technologies, the proximity of spots/cells to neighbouring
spots/cells implies spatial autocorrelation resulting from biological dependence when
spots/cells originate from the same tissue region. This spatial autocorrelation has not been
previously investigated in the context of normalisation for spatial molecular data and is not
accounted for in single-cell normalisation methods even though these methods are routinely

applied to spatial data from both imaging-based #* and sequencing-based technologies 2.

Here, we analyse spatial transcriptomic datasets from four different technologies and
three different tissues to show that library size or total detections per cell is not simply a

technical artefact that should be corrected for when analysing spatial datasets. Across all
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four technologies, we show through statistical modelling that library sizes or total detections
per cell significantly differ across tissue structures, thus representing real biology rather than
technical variation. Similar observations have been made in scRNA-seq data however, this
is the first time it has been rigorously tested in spatial molecular data ?*. We also show that
on average, normalising this effect out will negatively impact spatial domain identification.
Our recommendation when analysing spatial data is to carefully consider when to normalise
library sizes or total detections per cell. For instance, library size normalisation should not be
performed prior to spatial domain identification but could be considered for other

downstream analytical tasks such as cross-sample comparisons.

While we show that no normalisation outperforms sctransform for clustering tasks,
there is clearly a need for new normalisation methods that account for the unique properties
of spatial data, such as differences in capture efficiency across the tissue. Here we have
specifically evaluated the effect of library size normalisation on clustering, however this could
impact the performance of other downstream analysis as well. Overall, we recommend that
care is needed when adopting single cell methods to analyse spatial data, as the

assumptions of these methods may be violated when applied to spatial data.

Results

Library size or total detections per cell captures real biology in spatial
transcriptomics datasets

In some single cell datasets with subtle biological signals, library size is often the
largest source of variability and can lead to the identification of clusters that capture library
size differences, not biology. To assess this in spatial data, we analysed 23 biological
samples from 4 different spatial technologies encompassing both imaging- and sequencing-
based spatial technologies that span sub-cellular and region-level spatial resolutions. These
data are described in Table 1. We began by exploring total detections across space by

binning transcript detections from Xenium, STOmics and CosMx into a hexagonal
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tessellation and visualising the density across bins/spots (Figures la-d, Additional File 1:
Supplementary Figure 1). These bins were large enough to contain 10s of cells and 1000s of
transcripts. To assess library size associations with tissue regions, we independently
annotated regions in the Xenium, STOmics and CosMx datasets using immunofluorescence
images (see Methods). This allowed us to annotate 149-155 brain regions in the Xenium
mouse brain dataset, 118 regions in the STOmics mouse brain dataset and 4 regions in the
CosMx non-small cell lung cancer (NSCLC) dataset to enable a comparison across tissue
regions (Figures le-h, Additional File 1. Supplementary Figure 2). Mouse brain data were
annotated using the Allen Brain Atlas % while the NSCLC data were annotated using QuPath

2 to segment regions based on markers.

Table 1: Spatial transcriptomics datasets used to study library size effects.

Technology | Technology # # Total counts/ | Organism Tissue Source
type samples | genes detections

10x Visium | Sequencing- 12 | 33,538 9-22M | Homo Dorsolateral 25,26
based sapiens prefrontal cortex

10x Imaging- 3 248 58-62M | Mus Brain 27

Xenium based musculus

NanoString | Imaging- 7 960 25-40M | Homo Non-small-cell }

CosMx based sapiens lung cancer

BGI Sequencing- 126,177 134M | Mus Brain 2

STOmics based musculus

Tissue structure was apparent across the brain and cancer datasets when visualising
the total detections/library sizes. With the Visium brain dataset (Figure 1a), we could clearly
identify the layering of the cortex (Figure 1e) while with the Xenium and STOmics mouse
brain datasets (Figures 1b-c), we could visually identify the cortex (darker greens in Figures
1f-g), white matter (pinks in Figures 1f-g) and hippocampus (brighter greens in Figures 1f-g).
Due to the higher spatial resolution of these datasets, we could also identify substructures of
the mouse brain such as the dentate gyrus (beak like structure) that had the highest total

detections/library sizes. There were clear structures with a large detection count in the
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NSCLC dataset as well (Figure 1d) with tumour regions having the highest total detections

(Figure 1h).

Our binning strategy allowed us to investigate total detections/library size without
delving into cell boundary detection which is still an active area of research. However, this
meant that each bin contained multiple cells, therefore we had to relate the total
detections/library sizes back to the number of cells. As expected, the library size linearly
increased with the number of cells regardless of the technology, although this relationship
was not as strong for the Visium data (Figures li-I, Additional File 1: Supplementary Figure
3). However, we can also see clustering of points by region, particularly for the Xenium and
STOmics datasets, indicating that cell density is not the only contributing factor to library
size. To demonstrate this effect more clearly, we estimated the total detections/library sizes
per cell for each region by dividing the total detections/counts in the region by the total
number of cells. Figures 1m-p show each region sorted by these averages across the 4
technologies. We see a clear region-specific effect in each dataset. For the Xenium and
STOmics mouse brain datasets, similar brain sub-structures cluster together indicating that
the average total detections/library size per cell is similar in the higher-order structures
(Figures 1n-o, Additional File 1: Supplementary Figure 4). We also see that tumour regions
tend to have higher total detections per cell. This is unsurprising as tumour cells are

expected to be transcriptionally more active than other cell types %%,

Next, we wanted to assess the relationship between regions, the number of cells and
total detections/library sizes in a more statistically rigorous manner. To do so, we treated all
transcript detections, regardless of the gene, as a spatial point process that is a realisation of
an underlying intensity function. This was done by fitting a Poisson model to the total
detections/library sizes per bin with the following covariates: cell density, tissue region, and
other technology-specific variables such as the field-of-view (CosMx) and the number of
DNA nanoball spots (STOmics). The model was fitted to binned data, where the bins are

guadrats defined by a hexagonal tessellation. The interaction between all covariates were
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included in the model. Performing a Type Il analysis of variance (ANOVA) on the

covariates of each model, we found that the number of cells per bin explained the largest

variance in library sizes followed by the tissue region (tissue region p-values < 2x10°%,

Table 2, Supplementary Table 1), across all technologies except for STOmics. In STOmics,

the number of DNA nanoball spots was the strongest predictor, however, this number is

dependent on the number of cells since nanoball spots not overlapping cells contain no

measurements and therefore are not included in the analysis. Collectively, these results

show that even after accounting for the number of cells in each bin, there is a significant

relationship between spatially defined regions and total detections/library sizes. This effect

appears to be technology, species, and organ agnostic, and is present across both healthy

and disease systems.

Table 2: Results of Type Il ANOVA tests on regression models of library size/total

detections. (Df — degrees of freedom, Pr(>F) — p-value, Sum Sq — sum of squares)

Sample Sum Sq Df | F value Pr(>F) Covariate Platform
Human_DLPFC_1 | 34500.725| 1| 100.683 | 1.98x 10 | NCell Visium
Human_DLPFC_1 | 117179397 | 7 |48851.871| <2x10°® | Region Visium
Human_DLPFC_1 8845.691 6 4.3024 | 0.00024808 | NCell:Region Visium
mBrain_ff repl 4898911.5 1 26560.22 < 2x10°%® | NCell Xenium
mBrain_ff_repl 408444642 | 140 | 15817.478 | < 2x10°% | Region Xenium
mBrain_ff_repl 836131.428 | 138 32.849 < 2x10°% | NCell:Region Xenium
STOmics Brain 5858.959 | 1| 136.689| 2.92x 10> | NCell STOmics
STOmics Brain 64978830.5 | 118 | 12847.026 | < 2x10°% | Region STOmics
STOmics Brain 4230921.64 | 1 |98706.943 | <2x10°% | NSpots STOmics
STOmics Brain 38476.177 | 108 8.312 | 5.20 x 10" | NCell:Region STOmics
STOmics Brain 62629.932 | 1| 1461.150 | 3.09 x 10°* | NCell:NSpots STOmics
STOmics Brain 72415.583 | 109 15.500 | 1.57 x 10°** | Region:NSpots STOmics
STOmics Brain 58914.306 | 104 13.216 | 9.20 x 10" | NCell:Region:NSpots | STOmics
Lung5_Rep3 4346427.84 | 1]10273.966 | <2x10°% | NCell CosMx
Lung5_Rep3 2601294.53 | 4| 1537.217 | <2x10°% | Region CosMx
Lung5_Rep3 171274652 | 29| 139.605| <2x10°% | fov CosMx
Lung5_Rep3 24695567 | 3 19.458 | 1.40x 10™ | NCell:Region CosMx
Lung5_Rep3 150009.021 | 29 12.227 | 1.03x10™° | NCell:fov CosMx
Lung5_Rep3 197636.265 | 41 11.394 | 5.18x 107 | Region:fov CosMx
Lung5_Rep3 67589.498 | 40 3.9941 | 4.19x 10 | NCell:Region:fov CosMx
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Normalising out total detections/library sizes reduces clustering

performance

Predicated on the region-specific total detections/library size effect, we could infer
that normalising out total detections/library sizes would result in loss of information when
attempting to identify spatial domains using clustering. This task is commonly performed on

% This workflow involves

Visium data using a standard single-cell clustering pipeline
normalising out library sizes using sctransform/scran, identifying highly variable genes,
performing dimension reduction using principal components analysis, using the top principal

components to build a shared nearest neighbour graph, and finally running community

detection on these graphs to identify spatial domains.

We wanted to evaluate the impact of normalisation on this workflow without biases in
parameter choice. Data normalisation using different methods may mean a different set of
parameters work best for each normalisation. To remove any parameter-specific effects, we
set up a benchmark that explores a large parameter space and tests all combinations of
parameters for each normalisation strategy across 23 samples spanning all four
technologies (Figure 2a). In total we tested 14076 different combinations. For each
combination of sample and normalisation strategy, we computed the median and maximum
Adjusted Rand Index (ARI) representing the average- and best-case scenarios for clustering
respectively. Figure 2b shows these values when data were unnormalised, normalised with
scran ?°, or normalised with sctransform '°. We see that the median ARI across most
samples is higher when no normalisation or scran normalisation is performed than when
library size effects are explicity removed using sctransform. This indicates that on average,
we are likely to encounter a better clustering without normalisation or when normalising with
scran (Figure 2b). If parameters are tuned well in the workflow, scran normalisation can

result in better clustering, primarily for the Visium samples. These results again highlight that

total detections/library sizes themselves contain region-specific information. Improved
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clustering on scran normalised data compared to sctransform normalised data could be an
indicator of some residual library size effect following scran normalisation since scran does
not explicitly normalise out library size effects. We note that this comparison was performed
without using spatial localisation information and it would be interesting to see the impact of
normalisation on methods dedicated to spatial molecular technologies. Of note is that in
general the ARI is not particularly high (max ARI = 0.6), indicating a need for improved

analysis methods for spatial data.

Conclusion

Total detections/library sizes are associated with biology in spatial molecular
technologies and can be valuable in identifying spatial domains in tissue. They should not be
prematurely normalised out as they can enhance various analyses if used carefully. We
recommend carefully selecting when to normalise library sizes in spatial molecular data. We
also emphasise caution when transferring ideas and tools from single-cell analysis into
spatial molecular data as the assumptions of these methods may not be valid for spatial

data.

Methods

Hexagonal tessellation of sub-cellular localised data

We computed a hexagonal tessellation such that there were 100 hexagons along
each axis. Since the area profiled in the Xenium dataset was larger, the tessellation of this
dataset contained 200 hexagons along each axis. This was preferred over a standard
square grid as a hexagonal tessellation is less prone to edge effects *!. Total

detections/counts as well as the total number of cells were computed in each bin.

Poisson model of binned counts

Points in space represent a Poisson point process therefore binning points will result in

Poisson distributed count data. We model binned counts as a linear combination of the
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number of cells, the region types, and any technology specific technical covariates such as
the number of DNA nanoball beads (BGI STOmics) and the field of view (NanoString
CosMx). Generalised linear models with a log link function are used to perform the fit. All

possible interactions between covariates were included in the models.

Annotating brain datasets using the Allen Brain Atlas

Mouse brain data from the Xenium and STOmics technologies were annotated by
registering our DAPI stained images to the common coordinates framework v3 (CCFv3) of
the Allen Brain Atlas # using the Aligning Big Brains & Atlases (ABBA) plugin (v0.3.7) in Fiji
(v1.53t) *. The resultant hierarchical annotation was compressed such that the deepest
layer of non-missing annotation was used to annotate each detection/DNA nanoball spot.
Non-small cell lung cancer (NSCLC) data were annotated manually with QuPath (v0.3.2) #
using the accompanying PanCK, CD3, CD45 and DAPI stained images. Hexagonal bins
were then allocated to regions based on the predominant annotation of data points in the

bin.

Figures

Figure 1: Detection density and total detections/library sizes are associated with
biology consistently across different spatial molecular technologies, organs and

species.

a-d) Detection density per bin/spot plot for Visium dorsolateral prefrontal cortex (DLPFC),
Xenium mouse brain, STOmics mouse brain and CosMx non-small cell lung cancer
(NSCLC), reveal tissue structure. e-h) Regions annotated for each bin/spot using the Allen
Brain Atlas for the mouse brain and manual annotation based on immunofluorescence
markers of CosMx NSCLC. i-I) Number of cells plot against the total detections/library sizes
per bin/spot, coloured by the tissue region, showing the region-specific relationship between

cells and detections/counts. m-p) Average detections/library sizes per cell for each region,
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computed as the sum of detections divided by the number of cells for each region, showing

that related regions exhibit similar total detections/library sizes per cell.

Figure 2: Normalisation of total detections/library sizes results in poorer spatial

domain identification using clustering approaches.

a) Schematic of the benchmark performed on 12 Visium dorsolateral prefrontal cortex
(DLPFC) samples showing the parameter space explored when using a single-cell clustering
pipeline to identify spatial domains. b) The median and maximum Adjusted Rand Index (ARI)
obtained when no normalisation is performed and when scran and sctransform normalisation
are applied. On average, as indicated by the median ARI, no normalisation results in best
performance, however, when finely tuned, scran normalisation can produce a better
clustering. Specifically, unnormalised data from sub-cellular localised technologies results in

better or similar clustering to normalised data.
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Data

1.Visium - 12 samples
2. Xenium - 3 samples
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4. CosMx - 7 samples

Normalisation
1.none

2. sctransform
3.scran

Feature selection
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Dimensional reduction
1. Principal Components Analysis

Graph construction

1. sNN graph with 5 NNs
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4. sNN graph with 50 NNs

Community detection
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