

1 An O-GlcNAc transferase pathogenic variant that

2 affects pluripotent stem cell self-renewal

3
4 Michaela Omelková¹, Christina Dühring Fenger^{2,3}, Marta Murray¹, Trine Bjørg Hammer², Veronica M.
5 Pravata¹, Sergio Galan Bartual^{1,5}, Ignacy Czajewski¹, Allan Bayat², Andrew T. Ferenbach^{1,5},
6 Marios P. Stavridis¹ and Daan M. F. van Aalten^{1,4,5*}

7
8 ¹Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee,
9 Dundee, UK

10 ²Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund, Denmark

11 ³Amplexa Genetics A/S, Odense, Denmark

12 ⁴Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, China

13 ⁵Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark

14
15 *Correspondence to: daan@mbg.au.dk

16
17 Key words: OGT, O-GlcNAc, CDG, intellectual disability, stem cells, self-renewal

18 **Summary statement**

19 We show that the C921Y O-GlcNAc transferase variant found in patients with intellectual disability leads to a
20 defect in pluripotent stem cell self-renewal and decreased levels of stem cell markers.

21

22 **Abstract**

23 O-linked β -N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme that modifies proteins
24 with O-GlcNAc. Inborn *OGT* genetic variants were recently shown to mediate a novel type of Congenital
25 Disorder of Glycosylation (OGT-CDG) which is characterized by X-linked intellectual disability (XLID) and
26 developmental delay. Here, we report an *OGT*^{C921Y} variant which co-segregates with XLID and epileptic
27 seizures, and results in loss of catalytic activity. Colonies formed by mouse embryonic stem cells carrying
28 *OGT*^{C921Y} show decreased levels of protein O-GlcNAcylation accompanied by decreased levels of Oct4, Sox2
29 and extracellular alkaline phosphatase (ALP), implying reduced self-renewal capacity. These data establish
30 a link between OGT-CDG and embryonic stem cell self-renewal, providing a foundation for examining the
31 developmental aetiology of this syndrome.

32

33 Introduction

34

35 Intellectual disability (ID) is a cognitive handicap that affects up to 1 % of the general population (Maulik et
36 al., 2011; McKenzie et al., 2016). ID is characterized by reduced cognitive function (IQ < 70) and adaptive
37 behaviour diagnosed before the 18th year of life (Tassé et al., 2016). It is estimated that 40 % of ID cases can
38 be attributed to genetic causes (Posada De La Paz et al., 2017). To date, > 2000 genes have been implicated
39 in ID aetiology (Firth and Wright, 2011; PanelApp Genomics England, 2020) and 141 of these are located on
40 the X chromosome (Tejada and Ibarluzea, 2020), which encodes a disproportionate number of genes
41 involved in cognitive processes (Lubs et al., 2012; Skuse, 2005; Zechner et al., 2001). Indeed, due to
42 hemizygosity for X-linked genes, more males than females suffer from ID (Posada De La Paz et al., 2017).
43 Based on aetiology and clinical presentation, ID comprises a heterogenous group of neurodevelopmental
44 conditions that can either be syndromic (i.e., a part of a clinically defined set of symptoms forming a
45 syndrome) or non-syndromic.

46 Congenital Disorders of Glycosylation (CDG) is an umbrella term for inborn defects in glycosylation
47 enzymes that lead to ID in 60 – 70 % of patients (Wolfe and Krasnewich, 2013). Recently, a novel type of
48 CDG (OGT-CDG) was diagnosed in patients carrying pathogenic variants in O-linked β -N-acetylglucosamine
49 (O-GlcNAc) transferase (OGT) (Pravata et al., 2020b). To date, 17 pathogenic OGT-CDG variants have been
50 identified through whole genome sequencing, and several of these have been characterized clinically and
51 biochemically (Pravata et al., 2019; Pravata et al., 2020a; Selvan et al., 2018; Vaidyanathan et al., 2017;
52 Willems et al., 2017). In addition to ID and delayed achievement of developmental milestones, patients with
53 OGT-CDG commonly present with musculoskeletal problems, brain malformations, eye abnormalities,
54 dysmorphic features and language problems (Pravata et al., 2020b). Furthermore, heart anomalies, immune
55 system defects, genital abnormalities and digestive problems have also been reported in individual patients.
56 OGT-CDG thus appears to affect the development and function of multiple organ systems. The mechanisms
57 through which OGT variants mediate ID remain to be established, although several hypotheses have been
58 put forward (Pravata et al., 2020b).

59 OGT is a 117 kDa enzyme encoded by the OGT gene located on the X chromosome and expressed
60 ubiquitously in human tissues (Kreppel et al., 1997; Lubas et al., 1997). OGT catalyses O-GlcNAcylation, an
61 essential, dynamic modification of nucleocytoplasmic proteins with a single O-linked GlcNAc sugar moiety
62 on serine and threonine residues (Kreppel et al., 1997; Torres and Hart, 1984). As opposed to other post-
63 translational modifications that are generally mediated by protein families, O-GlcNAcylation is controlled by
64 only two enzymes with opposing function, OGT and O-GlcNAc hydrolase (OGA), that attach and remove the
65 GlcNAc moiety, respectively (Gao et al., 2001; Wells et al., 2002). The sugar nucleotide donor for O-
66 GlcNAcylation, UDP-GlcNAc, is synthesized from glucose by the hexosamine biosynthetic pathway and thus
67 O-GlcNAcylation is thought to serve as a nutrient sensor (Hart, 2015; Medford et al., 2013). Since 1984, when
68 O-GlcNAcylation was first discovered in lymphocytes (Torres and Hart, 1984), modification of O-GlcNAc
69 proteins has been shown to be ubiquitous across all human tissues (Wulff-Fuentes et al., 2021). O-
70 GlcNAcylation has been implicated in a range of biological mechanisms such as cellular metabolism
71 (Slawson et al., 2010), gene expression and regulation (Krause et al., 2018; Sakabe et al., 2010; Streubel et
72 al., 2017; Tan et al., 2021), cell division (Drougat et al., 2012; Lefebvre et al., 2004; Leturcq and Lefebvre,

73 2017; Sakabe and Hart, 2010) and stem cell differentiation (Elena-Herrmann et al., 2020; Hao et al., 2019;
74 Zhang et al., 2019). Moreover, O-GlcNAcylation is considered essential for survival as embryonic ablation of
75 *Ogt* in mice (Shafi et al., 2000) and zebrafish (Webster et al., 2009) is lethal, while loss of Oga activity leads
76 to perinatal death in mice (Keembiyehetty et al., 2015; Muha et al., 2021; Yang et al., 2012).

77 OGT is composed of 13.5 N-terminal tetratricopeptide repeats (TPRs) that mediate substrate
78 recognition and protein - protein interactions (Iyer and Hart, 2003; Jínek et al., 2004; Rafie et al., 2017) and
79 a globular catalytic domain that catalyses O-GlcNAcylation. In addition to acting as an essential glycosylation
80 enzyme, OGT also proteolytically activates transcriptional co-regulator Host Cell Factor 1 (HCF1) (Capotosti
81 et al., 2011). HCF1 is heavily glycosylated and cleaved by OGT in the same active site, however,
82 glycosylation and proteolysis occur through separate mechanisms (Kapuria et al., 2018; Lazarus et al., 2013).
83 Data suggest that HCF1 may bind a large proportion of promoters in the human genome, acting as an
84 important cell cycle progression and mitochondrial biogenesis regulator (Michaud et al., 2013). Interestingly,
85 *HCFC1* is itself a well-known XLID gene, mutations of which are thought to alter neural stem cell maintenance
86 and differentiation (Castro et al., 2020; Huang et al., 2012; Jolly et al., 2015).

87 There is growing evidence to suggest that O-GlcNAcylation is essential for embryonic stem cell (ESC)
88 maintenance (Shafi et al., 2000) and embryogenesis (Jang et al., 2012; Shafi et al., 2000; Webster et al.,
89 2009; Yang et al., 2012; Zhang et al., 2019; Zhu et al., 2020). Cellular O-GlcNAcylation decreases during
90 neuronal differentiation (Liu et al., 2012), suggesting a link between dynamic O-GlcNAc cycling and tissue
91 development. Furthermore, OGT O-GlcNAcylates transcription factors that play an important role in
92 pluripotency and stem cell function, including Octamer binding transcription factor 4 (Oct4) (Constable et al.,
93 2017), SRY (sex determining region Y)-box 2 (Sox2) and Signal transducer and activator of transcription 3
94 (STAT3) (Li et al., 2017). STAT3 is a member of the JAK/STAT signalling pathway that is activated by
95 pluripotency stimulus Leukemia Inhibiting Factor (LIF) in mouse ESCs (mESCs). Here, we report three
96 brothers affected by OGT-CDG that carry a novel variant, OGT^{C921Y}, in the catalytic core of OGT that is absent
97 in their healthy brother. The variant has not been previously reported, neither in the healthy population
98 (gnomAD database) nor in patients (HGMD database). We show that the OGT^{C921Y} variant possesses
99 decreased glycosyltransferase activity *in vitro* and in an mESC model. Strikingly, a knock-in of OGT^{C921Y}
100 results in abrogated self-renewal in mESCs as shown by decreased expression of alkaline phosphatase
101 (ALP), Oct4 and Sox2 during a clonogenic assay. These results suggest that the role of OGT in ESC self-
102 renewal and pluripotency may contribute to clinical signs seen in OGT-CDG patients.

103
104

105

Results and Discussion

106

107 *Three brothers with intellectual disability carry an inherited catalytic OGT variant absent in their healthy*
108 *brother*

109

110 Four male siblings were born to a healthy non-consanguineous couple shown as family members II.5 and
111 II.6 on the family pedigree (Fig. 1A). The first child was born in 1960 and is healthy. The second child,
112 currently a 58-year-old male shown as proband III:2 on the family pedigree, was born at 38 weeks of gestation
113 after a normal pregnancy. Birth weight was 2950 gram (2nd - 9th centile) and birth length was 52 cm (50th -
114 75th centile). Apgar scores at birth are unknown. There were no concerns following birth and the patient was
115 discharged. Following the first two years of life, he showed delay in reaching developmental milestones,
116 especially in areas of speech and language development. He learned his first words at the age of 14 months,
117 and he is now able to speak in short sentences with five to seven words and understand simple instructions.
118 At the age of twelve months, he could walk and reach out with palmar grasp, transfer objects, and put them
119 into his mouth. Later in life, the patient presented with autistic features. He attended a special needs school,
120 and he currently lives in a sheltered home. He underwent an operation for an inguinal hernia at the age of 48
121 years. Brain MRI was never performed. He has experienced at least two generalised tonic clonic seizures.
122 The first seizure occurred around the age of 40 years. At seizure onset, his EEG showed background slowing,
123 but without any clear interictal epileptiform abnormalities. After the second seizure, a daily treatment with
124 oxcarbazepine was prescribed and he has since had a good seizure control. Dysmorphic features include an
125 oval face, narrow, long and pear-shaped nose with a high nasal bridge, thin upper lip, high arched palate,
126 large ears, sparse eyebrows, thin and short fingers with distal squaring (Fig. 1B, Fig. S1). At the age of 58,
127 the patient has osteoporosis and scoliosis. He has been diagnosed with both a short stature (166 cm, - 1.48
128 SD) and a head circumference of 55.3 cm (+ 0.12 SD). Cranial nerve examination was normal. Limb
129 examination showed neither rigidity nor tremors. The power in the limbs was five out of five (MRC Scale for
130 Muscle Strength) and the deep tendon reflexes were normal. He presented with a slow, shuffling gait.

130

131 The mother later gave birth to monozygotic male twins, here referred to as twin 1 and twin 2 (III:3 and
132 III:4 in pedigree) at 38 weeks of gestation following a normal pregnancy. Conception was unassisted. Twin 1
133 (III:3) weighed 2150 gram at birth (< 0.4th centile) and had a birth length of 48cm (2nd - 9th centile), while twin
134 2 (III:4) weighed 1650 gram (< 0.4th centile) and measured 46 cm (0.4th – 2nd centile). Apgar scores are
135 unavailable. While twin 1 was breastfed and discharged within a week following the birth, twin 2 was tube fed
136 for two weeks. Similar to proband III:2, the twins also showed delay in reaching developmental milestones,
137 especially in areas of speech and language development. Twin 2 never learned to speak and twin 1 is able
138 to pronounce a few words. The twins have autism and communicate using simple signs and by pointing. They
139 are able to understand very simple instructions. Both make high pitched sounds, have repetitive mannerisms
140 and clap their hands together if excited. In addition, twin 2 has self-injurious behaviour. Their motor
141 development was also affected; although both twins learned to walk by the age of 18 months, they were
142 diagnosed with significant gross motor difficulties and clumsiness. They have attended a special needs
143 nursery and school and they currently live in a sheltered home. Neither of the twins underwent a brain MRI.
While twin 1 has not had an epileptic seizure, twin 2 has experienced his first generalized tonic clonic seizure

144 at around 40 years of age. Over the subsequent eleven years, he had a total of four identical epileptic
145 seizures.

146 At the time of the first seizure, the EEG in twin 2 showed background slowing, but without any clear
147 interictal epileptiform abnormalities. After the second seizure, a daily treatment with carbamazepine was
148 prescribed. Data on dysmorphic features from childhood were not available, but both twins currently present
149 with an oval face, up-slanting palpebral fissures, narrow, long and pear-shaped nose with a high nasal bridge,
150 thin upper lip, hypotrichosis and thin fingers (Fig. 1B, Fig. S1). Twin 2 has also been diagnosed with scoliosis,
151 short stature (165 cm, - 2.1 SD) and osteoporosis. In addition, twin 2 is without any rigidity or tremors of the
152 extremities but has a slow shuffling gait. Limited clinical data is available for twin 1.

153 The three brothers III:2, III:3 and III:4 thus appeared to suffer from an inherited developmental defect
154 which was not present in their eldest healthy brother (III:1). Family history revealed that two maternal uncles
155 (II.3 and II.4) also suffered from intellectual disability and were wheelchair bound at older age, suggesting an
156 X-linked recessive inheritance pattern. Whole genome sequencing of patient III:2 and subsequent Sanger
157 analysis of the OGT gene in samples from all three remaining brothers and their mother were performed.
158 These analyses revealed that the affected siblings III:2, III:3 and III:4 carried a guanine to adenine substitution
159 at 2762nd nucleotide (c.2762G>A) in the OGT gene that translates as cysteine to tyrosine substitution at
160 position 921 in OGT (c.2762G>A p.(C921Y), NM_181672.2, OGT^{921Tyr}) inherited from their heterozygous
161 mother (OGT^{921Cys/Tyr}). This OGT variant has not been previously reported and it is classified as likely
162 pathogenic according to the ACMG criteria (criteria PM1 PM2 PP1 PP2 PP3 PP4) (Richards et al., 2015).
163 The OGT^{C921Y} variant was absent in the healthy brother (II:1, OGT^{921Cys}), suggesting that this single point
164 mutation in OGT causes intellectual disability in patients II:2, II:3 and II:4. Thus, we have identified three
165 brothers with intellectual disability who carry an inherited catalytic OGT variant absent in healthy brother. The
166 clinical observations are consistent with previous clinical descriptions of OGT-CDG patients and add
167 considerable knowledge to the currently limited information on adult OGT-CDG patients (Pravata et al.,
168 2020b). For example, despite an established association between decreased O-GlcNAcylation and
169 Alzheimer's disease (Liu et al., 2004; Liu et al., 2009; Park et al., 2021), these patients do not present with
170 signs of age-related neurodegenerative disorders.

171
172 *OGT^{C921Y} is defective in glycosyltransferase activity toward protein substrates in vitro*
173 Disrupted OGT stability and folding caused by pathogenic missense variants could contribute to OGT-CDG
174 pathophysiology (Pravata et al., 2020b). Therefore, the effect of C921Y substitution on the OGT protein
175 structure was investigated. Although we were able to produce this variant in recombinant form from an *E. coli*
176 expression system, we were unable to grow crystals for structural analysis, unlike several of the previously
177 reported variants (Gundogdu et al., 2018; Pravata et al., 2019; Pravata et al., 2020a; Selvan et al., 2017;
178 Vaidyanathan et al., 2017). Nevertheless, analysis of the wild type OGT structure reveals that C921 resides
179 in the catalytic domain of OGT, proximal to the UDP-GlcNAc binding site (~13 Å, Fig. 2A). The mutation of
180 C921 to a bulky tyrosine residue would disrupt the C845-C921 disulfide bridge found in wild type OGT.
181 Furthermore, C921Y could perturb the position of H911, which in the wild type enzyme establishes π-π
182 stacking interactions with the UDP uracil ring (Fig. S2 A&B). The mutation could also affect N935, induce the

183 loss of the Y851-UDP interaction and promote the generation of a new interaction between the Y931 and
184 UDP (Fig. S2 A&B). Thus, the C921Y substitution could affect protein stability, interfere with catalysis and/or
185 alter binding of UDP-GlcNAc to OGT.

186 We next investigated whether the C921Y mutation disrupts stability of recombinant OGT (323 –
187 1044aa) *in vitro* using a thermal denaturation assay. No change in melting temperature between truncated
188 OGT^{WT} ($T_m = 45 \pm 1$ °C) and OGT^{C921Y} ($T_m = 45 \pm 1$ °C) was observed (n = 3 replicates, each consisting of
189 three technical repeats, Fig. S3). Next, we examined the impact of the C921Y mutation on the
190 glycosyltransferase activity of full-length OGT. We first used a steady-state kinetics assay with varying
191 concentrations of sugar donor UDP-GlcNAc against an established acceptor peptide (Ac-
192 KENSPA VTPVSTA-NH₂, (Pathak et al., 2015)) (Fig. 2B). The maximal reaction velocity (V_{max}) and the
193 Michaelis Menten constant (K_m) were reduced for OGT^{C921Y} ($V_{max} = 0.70 \times 10^{-3} \pm 0.01$ μmol/s, $K_m = 14 \pm 4$
194 μM) compared to OGT^{WT} ($V_{max} = 2.8 \times 10^{-3} \pm 0.2$ μmol/s, $K_m = 78 \pm 15$ μM). However, the catalytic efficiency
195 (k_{cat} / K_m) of the mutant and wild type enzyme were similar (OGT^{WT} $k_{cat} / K_m = 0.07$, OGT^{C921Y} $k_{cat} / K_m = 0.10$,
196 n = 3 replicates, each consisting of three technical repeats). Thus, the catalytic activity of OGT^{C921Y} towards
197 a peptide substrate is intact compared to OGT^{WT}.

198 We next evaluated effects of the mutation on OGT activity towards TAB1-binding protein 1 (TAB1), a
199 well characterised protein substrate (Pathak et al., 2012; Rafie et al., 2017), revealing a loss of OGT^{C921Y}
200 catalytic activity compared to OGT^{WT} (Fig. 2C). Western blot analysis of TAB1 O-GlcNAcylation showed that
201 the time dependent increase in TAB1 O-GlcNAc signal produced by OGT^{WT} was absent in the OGT^{C921Y}
202 catalyzed reaction (Fig. 2D). The mean level of TAB1 O-GlcNAcylation catalyzed by OGT^{C921Y} after 6 h was
203 28-fold lower than that catalyzed by OGT^{WT} (Two-way Anova with Sidak's multiple comparison testing, $p <$
204 0.0001).

205 These data reveal that while OGT^{C921Y} catalytic activity towards protein substrates is abrogated, it
206 appears intact towards peptides, implying that disruption of substrate interactions with the catalytic domain
207 of OGT caused by the C921Y mutation prevents accommodation of large acceptor substrates. Interestingly,
208 this suggests a previously unappreciated role of catalytic domain residues in recognition of protein substrate
209 features beyond the site of O-GlcNAc modification. Together, these data show that OGT^{C921Y} is defective in
210 glycosyltransferase activity toward protein substrates *in vitro*.

211 212 OGT^{C921Y} disrupts O-GlcNAc homeostasis in undifferentiated mESCs

213 To investigate the impact of the OGT^{C921Y} variant on O-GlcNAc cycling, we engineered male OGT^{C921Y} mESC
214 lines using CRISPR/Cas9. The murine and human OGT protein sequences are identical in the mutated region
215 (Fig. S4A). Three independent CRISPR/Cas9 lines carrying OGT^{C921Y} were generated through clonal
216 expansion from three distinct founder cells (Fig. S4B). OGT^{C921Y} mESC lines were morphologically identical
217 to wild type cells and their cell cycle was not affected (Fig. S5). mRNA and protein levels of key pluripotency
218 factors Oct4 and Sox2 remained the same as in OGT^{WT} mESC (Fig. S6). All the following experiments were
219 performed using three different cell clones per genotype and repeated over multiple passages, unless stated
220 otherwise.

221 Western blot analyses from pluripotent OGT^{C921Y} mESCs revealed a significant decrease in global O-
222 GlcNAc levels compared to wild type cells (Figs. 3A,B, OGT^{WT} n = 15 biological replicates, OGT^{C921Y} n = 13

223 biological replicates, Unpaired t test, $p = 0.0072$), suggesting an alteration in O-GlcNAc homeostasis. We
224 detected a significant upregulation of Ogt protein levels in OGT^{C921Y} cells compared to the wild type (Fig. 3A
225 & C, OGT^{WT} n = 15 biological replicates, OGT^{C921Y} n = 13 biological replicates, Unpaired t test, $p < 0.0001$).
226 However, given the decreased global O-GlcNAcylation levels in the mutant mESC lines, these data suggest
227 that, despite being present at higher levels, OGT^{C921Y} glycosyltransferase activity is not sufficient to maintain
228 O-GlcNAc homeostasis in mESCs. Oga protein levels were unchanged in the mutant cell line (Figs. 3A,D,
229 OGT^{WT} n = 15 biological replicates, OGT^{C921Y} n = 13 biological replicates, Unpaired t test, $p = 0.14$), whereas
230 previously characterized OGT-CDG variants showed a reduction in OGA protein levels when modelled in
231 mESCs or patient-derived lymphoblastoids whilst OGT levels remained unchanged compared to wild type
232 (Pravata et al., 2019; Pravata et al., 2020a; Vaidyanathan et al., 2017).

233 We next evaluated *Ogt* and *Oga* expression with RT-PCR analysis of three biological replicates with
234 up to three OGT^{C921Y} and OGT^{WT} lines. These experiments showed that *Ogt* mRNA expression is unchanged
235 in OGT^{C921Y} lines compared to wild type (Fig. 3E, n = 3 RT-PCR runs, each consisting of two to three biological
236 replicates, Two-way Anova, $p = 0.82$), implying that Ogt may be stabilised at the protein level in OGT^{C921Y}
237 mESCs, possibly through decreased protein degradation in cultured cells. Qian and colleagues (2018)
238 revealed a bidirectional feedback mechanism between Ogt and Oga at the transcriptional level in primary
239 mouse hepatocytes using an overexpression system. Furthermore, OGT has been shown to direct the
240 transcriptional repressor Sin3A-HDAC1 complex to the OGA promoter in OGT-CDG patient-derived
241 lymphoblastoids, thus modulating OGA expression (Vaidyanathan et al., 2017). Indeed, *Oga* mRNA levels
242 were significantly decreased in OGT^{C921Y} mESCs (Fig. 3F, n = 3 RT-PCR runs, each consisting of two to
243 three biological replicates, unpaired t test, $p = 0.0007$) despite protein levels being unchanged. Taken
244 together, these data reveal that OGT^{C921Y} disrupts O-GlcNAc homeostasis in pluripotent mESCs despite
245 compensatory changes in the levels of Ogt protein and Oga expression.

246 *HCF1 processing is unchanged in pluripotent OGT^{C921Y} mESCs*

247 In addition to catalyzing O-GlcNAcylation, OGT also proteolytically processes and activates the
248 transcriptional coregulator HCF1 (Capotosti et al., 2011). HCF1 is encoded by *HCFC1*, which itself has been
249 reported to be an intellectual disability gene (Huang et al., 2012; Wongkittichote et al., 2021). Biochemical
250 analysis of two previously reported OGT-CDG variants showed decreased HCF1 proteolysis (Pravata et al.,
251 2019; Willems et al., 2017). HCF1 proteolysis occurs within the same active site of OGT as O-GlcNAcylation
252 (Kapuria et al., 2016; Lazarus et al., 2013). Given the proximity of the C921Y substitution to the OGT active
253 site (Figs. 2A, S1) and the impact of the C921Y variant on OGT glycosyltransferase activity, we investigated
254 whether this variant leads to deficient HCF1 O-GlcNAcylation and processing. First, we performed an *in vitro*
255 HCF1 repeat 1 (HCF1rep1) cleavage assay using full length recombinant hOGT^{WT} or hOGT^{C921Y} (Fig. S7).
256 The uncleavable mutant HCF1rep1^{E10D} was used in this assay as a negative control to allow us to distinguish
257 between unspecific HCF1 degradation and *bona fide* proteolytic products (Fig. S7). In agreement with the
258 loss of O-GlcNAcylation activity on TAB1, we observed decreased levels of O-GlcNAcylation of HCF1rep1^{WT}
259 and HCF1rep1^{E10D} by OGT^{C921Y} (Fig. 4A). However, both the wild type and mutant OGT were able to catalyse
260 the formation of HCF1 proteolytic products (Fig. 4A). To corroborate this further, we investigated HCF1
261 cleavage in the mESC model (Fig. 4B). Since HCF1 translocates to the nucleus, the abundance of HCF1
262

263 proteolytic fragments was inspected in both the cytoplasmic and nuclear fractions of undifferentiated mESCs
264 (Fig. 4B). We observed no difference in HCF1 signal between wild type OGT and OGT^{C921Y} cells in either of
265 the cellular compartments (Fig. 4C, n = 6 biological replicates, One-way Anova with Tukey comparison test,
266 cytoplasmic fraction $p = 0.99$, nuclear fraction $p = 0.54$). RT-PCR of HCF1 revealed that HCF1 mRNA levels
267 remain stable in OGT^{C921Y} mESCs (Fig. 4D, n = 3 RT-PCR runs, each consisting of two to three biological
268 replicates, unpaired t test, p value = 0.172). Taken together, these data show that HCF1 processing is
269 unchanged in undifferentiated OGT^{C921Y} mESCs.

270

271 *OGT^{C921Y} abrogates mESC self-renewal capacity*

272 Analogous to previously reported OGT-CDG mutations (Pravata et al., 2020b), patients carrying the OGT^{C921Y}
273 variant present with a broad array of phenotypes including developmental delay, brain abnormalities and
274 musculoskeletal defects. Embryonic development and patterning are crucially dependent on the ability of the
275 inner cell mass of the early embryo to respond to the presence of differentiation stimuli or the absence of
276 self-renewal stimuli. The ability of the inner cell mass as well as cultured ESCs to develop into the three
277 primary germ cell layers is called pluripotency. Pluripotent cells maintain their identity through self-renewal.
278 In the context of embryonic development, self-renewal and differentiation are meticulously orchestrated by
279 various signalling molecules. In cell culture, mESCs are commonly propagated through LIF supplementation
280 in the growth media (Smith et al., 1988; Williams et al., 1988). Upon LIF withdrawal, mESCs lose expression
281 of pluripotency markers such as Oct4 and Nanog, colonies acquire a flattened morphology, and cells begin
282 to differentiate (Chen et al., 2015; Cherepkova et al., 2016; He et al., 2017). O-GlcNAcylation has been
283 previously shown to be important for core and auxiliary pluripotency factor function (Constable et al., 2017;
284 Hao et al., 2019; Jang et al., 2012; Kim et al., 2021; Myers et al., 2016). Therefore, we hypothesized that the
285 OGT^{C921Y} variant may impact the ability of stem cells to maintain an undifferentiated state. To test this
286 hypothesis, we assayed colony formation and maintenance of stemness upon LIF withdrawal.

287

288 OGT^{C921Y} and wild type mESCs were subjected to clonogenic conditions in presence of LIF (positive control)
289 or followed by LIF withdrawal for 24-96 h before fixing and alkaline phosphatase (ALP) staining (Fig. 5A).
290 High expression of ALP is considered to be a marker of pluripotency, with ALP staining visualising pluripotent
291 colonies (Štefková et al., 2015). The ALP-stained colonies were examined under a light microscope and
292 classified into three categories (undifferentiated, mixed and differentiated) based on the intensity of ALP stain
293 and colony morphology. Examples of colony scoring are shown in Fig. S8. In the wild type cell lines, the
294 percentage of differentiated colonies increased after LIF withdrawal (Figs. 5B,C, n = 9 biological replicates,
295 one-way Anova with Dunnett's multiple comparison test, $p < 0.0001$) and the percentage of undifferentiated
296 colonies significantly decreased with time of culture in absence of LIF (Figs. 5B,D, n = 9 biological replicates,
297 one-way Anova with Dunnett's multiple comparison test, $p = 0.012$). However, the percentages of
298 undifferentiated and differentiated mutant OGT^{C921Y} colonies did not change significantly in relation to the
299 length of LIF deprivation (Figs. 5B-D, n = 9 biological replicates, one-way Anova with Dunnett's multiple
300 comparison test, $p = 0.10$ and $p = 0.29$ respectively). We noted that OGT^{C921Y} mESCs produced significantly
301 higher percentage of differentiated colonies than wild type mESCs at every LIF withdrawal time point apart
302 from 96 h (Fig. 5B,C, n = 9 biological replicates, two-way Anova, 24 h, $p < 0.0001$, 48 h $p = 0.02$, 72 h $p =$

303 0.004, 96 h $p = 0.13$). Remarkably, OGT^{C921Y} colonies showed a significantly increased number of
304 differentiated colonies even in presence of LIF ($n = 9$ biological replicates, two-way Anova, $p = 0.0001$)
305 compared to wild type. The number of mixed colonies remained constant over the course of the assay in both
306 wild type and OGT^{C921Y} mESCs. Furthermore, the overall number of colonies formed by OGT^{C921Y} mESCs
307 was significantly lower than for wild type mESCs (Fig. S9, $n = 45$ wells scored, unpaired t -test, $p < 0.0001$).
308 This observation can be explained by a decrease in clonogenic potential of OGT^{C921Y} compared to wild type,
309 and/or increased cell death following cell plating at limiting density. Lastly, OGT^{C921Y} mESCs formed colonies
310 with significantly larger surface area than wild type cells (Fig. S9, OGT^{WT} $n = 2270$ colonies measured,
311 OGT^{C921Y} $n = 1533$ colonies measured, unpaired t test, $p < 0.0001$; observations were pooled together from
312 all three independent experiments performed using three clones per genotype). Given the loss of ALP
313 staining in OGT^{C921Y}, the observed increase in surface area may reflect flattening and concomitant expansion
314 of OGT^{C921Y} colonies due to differentiation.

315 To further corroborate the O-GlcNAcylation status and enzymatic activity of OGT^{C921Y} mESCs under
316 clonogenic conditions, we sought to investigate the levels of global protein O-GlcNAcylation and protein
317 levels of key pluripotency transcription factors (Sox2 and Oct4). OGT^{C921Y} and OGT^{WT} mESCs were cultured
318 for 7 days under clonogenic conditions in the presence of LIF (Fig. 6A). As opposed to the decreased
319 glycosyltransferase activity of the OGT^{C921Y} variant *in vitro* and in confluent mESCs, the decrease in global
320 O-GlcNAcylation in OGT^{C921Y} colonies compared to OGT^{WT} colonies was not significant (Fig. 6B,D, OGT^{WT} n
321 = 8 biological replicates, OGT^{C921Y} $n = 9$ biological replicates, unpaired t test, $p < 0.07$) despite increased
322 levels of the Ogt protein (Fig. 6B,C, $n = 9$ biological replicates, unpaired t test, $p = 0.0004$). Previous reports
323 indicated that global O-GlcNAcylation is highest in pluripotent stem cells and decreases as pluripotency is
324 lost (Liu et al., 2012; Sheikh et al., 2020). Our observation may therefore reflect the shift from predominantly
325 pluripotent stem cell population present in confluent mESCs propagated in LIF to a mixed population of cells
326 present at day six of the clonogenic assay (Fig. 5C-E). Furthermore, Western blot analysis of lysates derived
327 from OGT^{C921Y} colonies revealed a significant decrease of Oct4 (Fig. 6B,G, $n = 9$ biological replicates,
328 unpaired t test, $p = 0.004$) and Sox2 (Fig. 6B,F, $n = 9$ biological replicates, unpaired t test, $p = 0.002$) levels
329 compared to OGT^{WT}. This finding was corroborated by immunofluorescence staining of OGT^{WT} and OGT^{C921Y}
330 colonies (Fig. S10). It is worth noting that we observed a variability in Sox2 and Oct4 protein levels among
331 the three lines of OGT^{C921Y} mESCs, possibly stemming from the fact that each cell line is derived from a
332 separate CRISPR/Cas9 event, therefore representing three cell populations that arose from three different
333 founder cells. To discern whether differentiating OGT^{C921Y} mESCs assume specific germ layer preferentially,
334 colonies were immunolabelled for markers specific for the mesoderm (Brachyury), endoderm (sox17) and
335 ectoderm (pax6). There was no difference in germ layer marker protein expression in the mutant and wild
336 type colonies (Fig. S11, S12, S13 and S14). However, this result is limited by the short timeframe of the
337 assay. Taken together, these data show that independent of LIF signalling, OGT^{C921Y} mESCs show reduced
338 ALP staining under clonogenic conditions compared to OGT^{WT}, suggesting defects in the stem cell renewal.
339 Furthermore, OGT^{C921Y} colonies grown in the presence of LIF show reduced levels of Sox2 and Oct4
340 transcription factors, implying that OGT^{C921Y} affects self-renewal of mESC under these conditions.

341 **Concluding remarks**

342

343 Pathogenic missense variants in the *OGT* gene co-segregate with intellectual disability in at least 17 known
344 affected families, seven of which have been described in detail (Bouazzi et al., 2015; Pravata et al., 2019;
345 Pravata et al., 2020a; Selvan et al., 2018; Vaidyanathan et al., 2014; Willems et al., 2017). Through
346 biochemical, cellular, and animal model assays, recent studies revealed that these single *OGT* point
347 mutations (hemizygous or heterozygous) underpin pathogenesis, *via* unknown biological mechanisms. This
348 condition was recently classified as a distinct type of CDG, termed OGT-CDG (Pravata et al., 2020b). Here,
349 we describe a family affected by a C921Y variant in the catalytic domain of OGT. Three male siblings suffering
350 from ID harbour the OGT^{C921Y} variant, while their brother who possesses a wild type copy of *OGT* is healthy.
351 All three affected brothers present with dysmorphic features such as long and pear-shaped nose, as well as
352 behavioural and language problems. These features are in line with the recently reported general clinical
353 phenotype description of OGT-CDG patients (Pravata et al., 2020b). The severity of the OGT^{C921Y} patients'
354 ID varied. Interestingly, the level of ID manifestations was different even between the two twins affected by
355 this novel OGT variant. Similar differences in ID severity were reported by Pravata and colleagues in female
356 monozygotic twins suffering from OGT-CDG (Pravata et al., 2019).

357 The C921Y mutation is predicted to cause structural defects within the OGT catalytic core, albeit
358 without measurable effects on stability *in vitro*. Interestingly, only two of the OGT-CDG variants biochemically
359 characterized to date (OGT^{N567K} and OGT^{N648Y}) did not lead to changes in OGT stability (Pravata et al., 2019;
360 Pravata et al., 2020a). OGT^{N567K} , OGT^{N648Y} and OGT^{C921Y} are the only three described variants directly
361 affecting the catalytic domain, whereas other OGT-CDG mutations reside in the TPR domain and result in
362 destabilization of the protein. Collectively, these data suggest that either loss of functional OGT protein or
363 disruption of OGT catalytic activity lead to the same clinical phenotype. Biochemical characterization of
364 further variants affecting catalysis, solution of their crystal structures and examination of OGT localization in
365 OGT-CDG cells will contribute to testing this hypothesis.

366 Previous research has revealed a role of the OGT TPR domain in protein - protein interactions and
367 substrate recognition (Iyer and Hart, 2003; Jínek et al., 2004; Lazarus et al., 2013; Levine et al., 2018; Pathak
368 et al., 2015; Rafie et al., 2017), demonstrating the role of an asparagine ladder in substrate binding. Our data
369 imply a potential role of catalytic domain residues in substrate recognition, substantiated by predicted
370 structural changes in the proximity of the active site and a loss of glycosyltransferase activity towards a
371 protein substrate, without loss of activity towards a peptide substrate. We also revealed that Ogt activity in
372 cultured mESCs was affected by the C921Y variant, leading to global hypo O-GlcNAcylation. Decreased O-
373 GlcNAcylation in cultured cells as a result of an OGT-CDG mutation has previously only been observed in
374 the OGT^{N648Y} variant (Pravata et al., 2020a). O-GlcNAc homeostasis is tightly regulated by feedback loops
375 between OGT, OGA and O-GlcNAc levels (Decourcelle et al., 2020; Lin et al., 2021; Muthusamy et al., 2015;
376 Tan et al., 2021; Zhang et al., 2014). This has been shown to occur through both translational and post-
377 translational mechanism, for example, through regulation of intron detention, which alters the abundance of
378 productive transcripts of *OGT* and *OGA* (Tan et al., 2021). Unlike in Ogt^{C921Y} cells, this generally manifests
379 as downregulation of OGA at the protein level, particularly upon OGT inhibition or in OGT-CDG catalytic
380 domain mutations (Ortiz-Meoz et al., 2015; Pravata et al., 2019; Pravata et al., 2020a). However, reducing

381 O-GlcNAcylation through inhibiting the hexosamine biosynthetic pathway has been shown to increase OGT
382 protein levels (Lin et al., 2021). Importantly, OGA is also implicated in neurodevelopment (Olivier-Van
383 Stichelen et al., 2017) and cognitive functioning (Muha et al., 2020), both in model animals and potentially in
384 humans (as determined by a genome wide association study on intelligence) (Savage et al., 2018). These
385 data together suggested the hypothesis that reduction of OGA levels in itself could be a potential mechanism
386 that underpins OGT-CDG (Pravata et al., 2020b). However, unlike other characterized OGT-CDG mESC cell
387 lines, the OGT^{C921Y} variant did not induce OGA downregulation in mESCs. Furthermore, based on Western
388 blot analysis, HCF1 proteolytic processing and localization was not affected in cultured mESCs in our study,
389 even though O-GlcNAcylation and HCF1 proteolytic processing occur within the same active site of OGT. A
390 previously reported OGT-CDG mutation affecting the TPR domain results in a similar phenotype: unaffected
391 HCF1 processing and reduced glycosyltransferase activity (Gundogdu et al., 2018; Vaidyanathan et al.,
392 2017). These data point to loss of O-GlcNAcylation on specific proteins as a likely link between OGT-CDG
393 missense mutations and patient phenotypes.

394 To determine whether OGT-CDG may arise due to decreased O-GlcNAcylation in stem cells, we
395 assayed self-renewal and differentiation in mESCs harbouring the C921Y mutation in *Ogt*. In these cells, the
396 pluripotency marker ALP and the key pluripotency transcription factors Oct4 and Sox2 are significantly
397 decreased in the presence of LIF, compared to wild type colonies, implying a defect in the maintenance of
398 an undifferentiated state. The colonies formed by OGT^{C921Y} mESCs were flat and spread-out, resembling
399 differentiating colonies in their morphology. In addition, global O-GlcNAcylation in OGT^{C921Y} mESC colonies
400 is significantly reduced compared to OGT^{WT} mESC colonies. This is in line with a previous study indicating
401 that preventing O-GlcNAcylation blocks mESC self-renewal (Jang et al., 2012). O-GlcNAcylation has also
402 been shown to decrease during development (Liu et al., 2012), further supporting the hypothesis that
403 decreased O-GlcNAcylation may be pathogenic through reducing stem cell pluripotency and self-renewal.
404 However, the OGT^{C921Y} variant does not result in preferential differentiation towards a specific germ layer,
405 despite previous research indicating that O-GlcNAcylation of SOX2 can promote differentiation towards an
406 ectodermal lineage (Kim et al., 2021). These findings suggest that a potential contributor to OGT-CDG clinical
407 manifestation is a misregulation of exit from a pluripotent state in stem cells. This may occur at several stages
408 of development, with recent evidence suggesting normal O-GlcNAcylation is required for maintenance not
409 only of ESCs (Jang et al., 2012), but also neural stem cells (NSCs) (White et al., 2020, Shen et al., 2021).
410
411
412

413 **Materials & Methods**

414

415 *Sequencing of patient genetic material*

416 The inclusion of patients in research studies has been approved by the local ethical committee and consent
417 for publication of data and photographs was given by the family. Whole exome sequencing was performed
418 on patient III:2. Subsequent screening for the OGT-variant was done by Sanger sequencing in the mother,
419 the healthy brother (III:1) and the affected twins (III:3 and III:4). All genetic analysis was done at an accredited
420 clinical laboratory in Amplexa Genetics A/S, Sverigesgade 24, Odense C, Denmark.

421

422 *Protein expression and purification*

423 Human OGT^{WT} and OGT^{C921Y} constructs (full length and a 323 – 1044aa shortened construct with truncated
424 TPR domain fused with N-terminal His tag (full length) and GST tag (323 – 1044 OGT)) were expressed in
425 *E. coli* BL21 cells in plasmids carrying an ampicillin resistance cassette. Transformed colonies that
426 incorporated the plasmids were selected on ampicillin agar plates, expanded overnight at 37 °C in a shaking
427 incubator in 5 x ampicillin LB broth as a starter culture, and then grown in desired quantity (6 – 12 liters) at
428 37 °C until reaching 0.5 – 0.6 OD₆₀₀. Subsequently, the temperature of the shaking incubator was decreased
429 to 18 °C, cultures were induced with 100 µM IPTG and further cultured for 16 h. Following overnight culture,
430 bacteria were pelleted for 45 min at 4 °C, resuspended in base buffer (0.1 M Tris-HCl, pH 7.5, 0.15 M NaCl,
431 0.5 mM TCEP) and lysed using a French press in the presence of 0.1 mg/ml DNase I, 0.5 mg/ml lysozyme
432 and protease inhibitor cocktail (1 mM benzamidine, 0.2 mM PMSF, 5 mM leupeptin). Resulting lysates were
433 then pelleted at 33 000 rcf at 4 °C for 45 min. Supernatant was filtered with a 0.2 µM filter and the pellet was
434 discarded. Clarified supernatant was exposed either to glutathione Sepharose 4B beads for GST tagged
435 protein or NiNTA resin for His tagged protein for affinity purification. Bound protein was either eluted using
436 50 mM glutathione (for GST tagged protein) or 300 mM imidazole (for His tagged protein) in base buffer,
437 buffer exchanged into base buffer only and the tag was cleaved off using 80 units of PreScission protease
438 per prep. Protein was further purified using size exclusion chromatography and stored in solution with 25 %
439 glycerol at – 80 °C.

440

441 *Enzyme assays*

442 Michaelis Menten kinetics of full length recombinant OGT^{WT} and OGT^{C921Y} against acceptor peptide (Ac-
443 KENSPA VTPVSTA-NH₂) were tested in a fluorometric *in vitro* assay as described by Pathak and colleagues
444 (Rafie et al., 2017). The reaction time was 4 h at room temperature. Experiments were repeated three times
445 on different days, each repeat consisting of three technical replicates. Glycosyltransferase activity of
446 recombinant OGT^{WT} and OGT^{C921Y} (323 – 1044) against protein substrate was tested *in vitro* using TAB1 (7
447 – 420) as described previously (Rafie et al., 2017). Experiments were repeated on five times on different
448 days.

449

450 *Differential scanning fluorimetry (DSF) assay*

451 To prepare assay mixtures, OGT^{WT} and OGT^{C921Y} (323 – 1044) were diluted to 1.2 μ M in base buffer
452 containing 50 mM HEPES/NaOH pH 7.5, 150 mM NaCl, 0.5 mM TCEP and mixed with 1:5000 SYPRO
453 Orange Protein Gel Stain (Sigma). 50 μ L of assay mixture was dispensed per well in a white bottom qPCR
454 plate and each condition was performed in technical triplicate. The experiment was repeated three times on
455 different days. The prepared assay plate was exposed to temperature increases from 25 °C to 95 °C with 1
456 °C increments for 5 s each using a CFX Connect Real-Time PCR Detection System (BioRad). SYBR
457 fluorescence was detected after every temperature increase. Data were truncated using Excel and analysed
458 in Prism (GraphPad) as described previously (Huynh and Partch, 2016).

459

460 *Cloning and CRISPR/Cas9 generation*

461 Generation of OGT^{C921Y} mESCs was performed as described previously by (Pravata et al., 2019) with
462 mutation specific parameters. A repair template was generated to create the C921Y mutation. This was
463 cloned as a *Bam*HI-*Not*I fragment into a plasmid based on pGEX6P1. Paired gRNA sequences were selected
464 and cloned as annealing oligos into pBABED-U6 and pX335-U6 plasmids. Silent mutations to remove the
465 gRNA recognition sequences, in addition to a change at codon 935, were introduced by PCR of a gene block
466 followed by restrictionless cloning into the cloned genomic region. The change at position 935 was introduced
467 by the use of the C921Y wobble primer along with the reverse screening primer to generate a mutagenic
468 PCR product and introduced by restrictionless cloning. The repair template was confirmed by DNA
469 sequencing. Sequences of the listed custom-made reagents are listed in Supplementary Table 1.

470 Clones were screened using paired screening primers. These generated a 600bp PCR product which
471 was then digested with Fastdigest Xcel. Wild type clones show two fragments – 277bp and 323bp. Successful
472 incorporation of the repair template results in loss of restriction of the PCR product. Intact PCR products were
473 confirmed by DNA sequencing. Following DNA confirmation of several clones, RNA was extracted, and one-
474 step RT-PCR was carried out using Takara Primescript High fidelity RT-PCR kit with mOGT_solid_ex11_fwd
475 and mOGT_solid_end_rev primers. The resulting PCR product was sequenced to confirm that the region
476 outwith the repair template had not been damaged during repair and mRNA expression included the change.

477

478 *Tissue culture*

479 AW2 mESC culture was performed as described previously in (Pravata et al., 2019). AW2 line is derived from
480 E14-TG2a.IV (129/Ola) ES cells kindly donated from the MRC Centre for Regenerative Medicine, Institute
481 for Stem Cell Research, University of Edinburgh (Zhou et al., 2013). Cells were routinely tested for
482 mycoplasma and kept in strictly sterile conditions with no visible bacterial or fungal infection.

483

484 *Western blotting*

485 Protein was extracted from confluent mESCs. Plates or flasks with attached cells were washed twice with
486 pre-warmed 1 x PBS and then covered with 20 μ L per cm² with ice cold lysis buffer (50 mM Tris pH 7.4, 1 mM
487 EDTA-NaOH, 1 mM EGTA-NaOH, 1% Triton X-100, 1 mM Na₃VO₄, 50 mM NaF, 0.27 M Sucrose, 5 mM
488 protease inhibitor cocktail). Then, prepared plates were frozen at – 20 °C overnight. Cells were then scraped
489 off the plates, vortexed for 10 s and centrifuged for 45 min at 15 000 rcf at 4 °C. Protein concentration in the

490 clarified lysate was determined using Pierce™ 660 nm Protein Assay Reagent (Thermo). For sample
491 resolution and protein detection, 20 µg of protein was mixed with LDS buffer, boiled, loaded onto a 4 – 12 %
492 Bis – Tris gel (Invitrogen) and then transferred onto 0.2 µm nitrocellulose membrane (GE Healthcare).
493 Following membrane blocking with 5 % BSA in 1 x TBS, primary antibodies were applied: Anti-O-GlcNAc
494 Transferase (DM-17, Sigma-Aldrich, catalogue number O6264, 1:5000), RL2 (Novus, catalogue number
495 NB300, 1:1000), O-GlcNAcase (1:500, Sigma, catalogue number SAB420026), Oct3/4 (C-10, Santa Cruz
496 Biotechnologies, catalogue number sc-5279, 1:500), Sox2 (Santa Cruz Biotechnologies, catalogue number
497 sc-365823, 1:500), Histone 3 (Cell Signaling Technologies, catalogue number 9715, 1:2000) and α-Tubulin
498 (Proteintech, catalogue number 11224-1-AP, 1:5000). After incubation with the corresponding LI-COR
499 secondary antibodies (1:10 000), signal was detected using a LI-COR Odyssey scanning system and
500 quantified using Image Studio Lite (LI-COR). Data were normalized and analyzed in Prism (GraphPad).
501 Number of repeats per experiment is detailed in the figure legends.

502 For HCF1 cleavage detection, nuclear fractionation was performed. Briefly, confluent cells were
503 detached from plates using accutase, spun down and washed. Pelleted cells were then covered with ice cold
504 buffer A (10 mM HEPES pH 7.5, 1.5 mM MgCl₂, 10 mM KCl, 0.5 mM DTT, 0.05% NP40 and protease inhibitor
505 cocktail), vortexed and centrifuged at 3000 rpm for 10 min at 4 °C. The resulting supernatant was used as
506 the cytoplasmic lysate fraction. Pelleted material was treated with ice cold buffer B (5 mM HEPES pH 7.9,
507 1.5 mM MgCl₂, 0.2 mM EDTA, 0.5 mM DTT and 26% glycerol (v/v)), homogenized on ice and centrifuged at
508 full speed for 10 min at 4°C. The resulting supernatant was used as the nuclear lysate fraction. Due to low
509 protein concentration, protein was precipitated from samples as described previously by (Clark et al., 2013).
510 20 µg of protein was then loaded onto 4 – 12 % gel as described above. Primary antibodies used were HCF1
511 (Bethyl, 1:1000), Laminin B1 (ZL-5, Abcam, 1:5000) and β-Actin (Proteintech, 1: 10 000). After incubation
512 with corresponding LI-COR secondary antibody (1:10 000), signal was detected using a LI-COR Odyssey
513 scanning system and quantified using Image Studio Lite (LI-COR). Data were normalized and analyzed in
514 Prism (GraphPad).

515

516 RT - PCR

517 RNA was extracted from confluent cells using the RNeasy kit (Qiagen). RNA purity was determined using
518 Nanodrop 1000 (Thermo) and RNA concentration was measured using the Qubit™ RNA Broad Range kit
519 (Thermo). RNA was transcribed into cDNA using the qScript cDNA Synthesis Kit (Quantabio). qPCR
520 reactions were set up in 384 well plates in a total volume of 10 µl using PerfeCTa® SYBR® Green FastMix®
521 for iQ™ (Quanta) with 5 ng of cDNA and 250 nM forward + reverse primer mix. Three housekeeping genes
522 (GAPDH, 18 S and Actin β) were used as reference genes and each condition was run in technical triplicate.
523 No template as well as no reverse transcription controls were used. Reactions were run in a BioRad CFX
524 384 real time detection system (BioRad). Primer sequences are summarized in Supplementary Table 2.
525 Results were analysed using BioRad CFX Manager and Prism (GraphPad). Number of repeats per
526 experiment is detailed in the figure legends.

527

528 Alkaline phosphatase assay

529 For alkaline phosphatase (ALP) assays, cells were well resuspended, passed through a cell strainer to
530 remove clumps and doublets and counted using a hemocytometer. Then, 100 wild type or OGT^{C921Y} mESCs
531 were plated into five wells of a 6-well plate pre-treated with 0.1 % (w/v) porcine gelatin in complete GMEM
532 as described above. Cells were grown in complete media for two days to start forming colonies. From day
533 three until day seven, media was changed in dedicated wells into no-LIF GMEM (GMEM (Gibco)
534 supplemented with 5 % FBS fraction V (Gibco), 1 x NEAA (Gibco), 1 x sodium pyruvate (Gibco), 0.1 mM
535 BME (Thermo)). One well per plate remained without media change. On day seven, media was aspirated,
536 colonies were washed twice with 1 x PBS and fixed with 1 % paraformaldehyde for 2 min. Fixed colonies
537 were stained with the Alkaline Phosphatase kit (Merck) according to manufacturer's instructions. ALP-treated
538 plates were scanned on a flat-bed scanner, and colonies counted and scored (undifferentiated, mixed,
539 differentiated) under a microscope. Colonies were subsequently re-stained with Coomassie to visualize ALP-
540 negative colonies and plates re-scanned. Experiment has been repeated three times using three cell lines
541 per genotype. Colony diameters were determined using ImageJ based on Coomassie scans using a macro
542 attached in the supplementary material. Briefly, colonies were segmented by creating a binary image by
543 setting an automatic threshold using the "MaxEntropy" algorithm and measured using the "Analyze Particles"
544 function. Macro is provided in supplementary materials. Data were analysed using Prism (GraphPad).

545

546 *Cell cycle analysis*

547 Cell cycle analysis was performed using near-confluent OGT^{C921Y} (two lines) and OGT^{WT} (one line) mESCs
548 collected over three subsequent passages. DNA content was assessed using Abcam Propidium Iodide kit
549 (ab139418) according to manufacturer's instructions. Flow cytometry analysis was performed on BD
550 FACSCanto (BD). Data were analysed using FlowJo and Prism (GraphPad) software.

551

552 *Immunofluorescence analysis of colonies*

553 Colonies were plated on coverslips coated with 0.1% (w/v) porcine gelatin in complete GMEM as described
554 above. 6 days after plating, colonies were fixed for 15 min using 4% PFA. PFA was then quenched with 1 x
555 TBS for 10 min. Fixed colonies were then washed with 1 x PBS twice for 5 min each. Samples were
556 subsequently permeabilized and precipitated using ice cold 90% (w/w) methanol at -20 °C for 10 min. Samples
557 were then washed twice with 1 x PBS and blocked blocking buffer (1 x PBS, 1% Tween20 and 5% BSA) for
558 at least 15 min. Primary antibodies (Oct3/4 (D6C8T, Cell Signaling Technology, catalogue number 83932,
559 1:1000), Sox2 (D9B8N, Cell Signaling Technology, catalogue number 23064, 1:1000), Pax6 (H-295, Santa
560 Cruz, catalogue number sc-11357, 1:1000), Sox17 (Santa Cruz, catalogue number sc-130259, 1:1000) and
561 Brachyury (D10, Santa Cruz, catalogue number sc-166962, 1:1000)) were added in blocking buffer overnight.
562 Following primary antibody stain, cells were washed three times for 15 min with 1 x PBS and secondary
563 antibodies (1:2000) were added in blocking buffer. Colonies were washed with 1 x PBS and DAPI, mounted
564 and imaged on a confocal microscope. Images were analyzed using an ImageJ macro, attached in the
565 supplementary material. Briefly, nuclear regions were determined by performing a series of global and local
566 thresholding steps. Non-nuclear regions were determined based on subtraction of nuclear regions from a
567 binary image created by applying an automatic threshold to individual channels using the "MinError"
568 algorithm.

569 **Acknowledgements**

570

571 This work was funded by a Wellcome Trust Investigator Award (WT110061) to D.M.F.v.A. M.O. was funded
572 by a Wellcome Trust 4-year PhD studentship (WT102132). I.C. was funded by a studentship from the National
573 Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs, T001682). We
574 would like to thank the patients and their family who consented to participate in this study. We acknowledge
575 Dr. Lindsay Davidson for advice on experiment design.

576

577 **Author contributions**

578 M.O., T.B.H., Ch.D.F. and D.M.F.v.A conceived the study; A.B. and T.B.H. performed clinical assessment,
579 Ch.D.F. performed the exome analysis, M.O. performed experiments; M.M. and M.O. performed microscopy
580 and cell cycle experiments, I.C. wrote code for alkaline phosphatase and microscopy images analysis, S.G.B.
581 performed molecular docking simulation, V.M.P. generated the CRISPR cell line; A.T.F. performed molecular
582 biology; M.O., M.P.S., A.B. and D.M.F.v.A. interpreted the data and wrote the manuscript with input from all
583 authors.

584

585 **Conflict of interest**

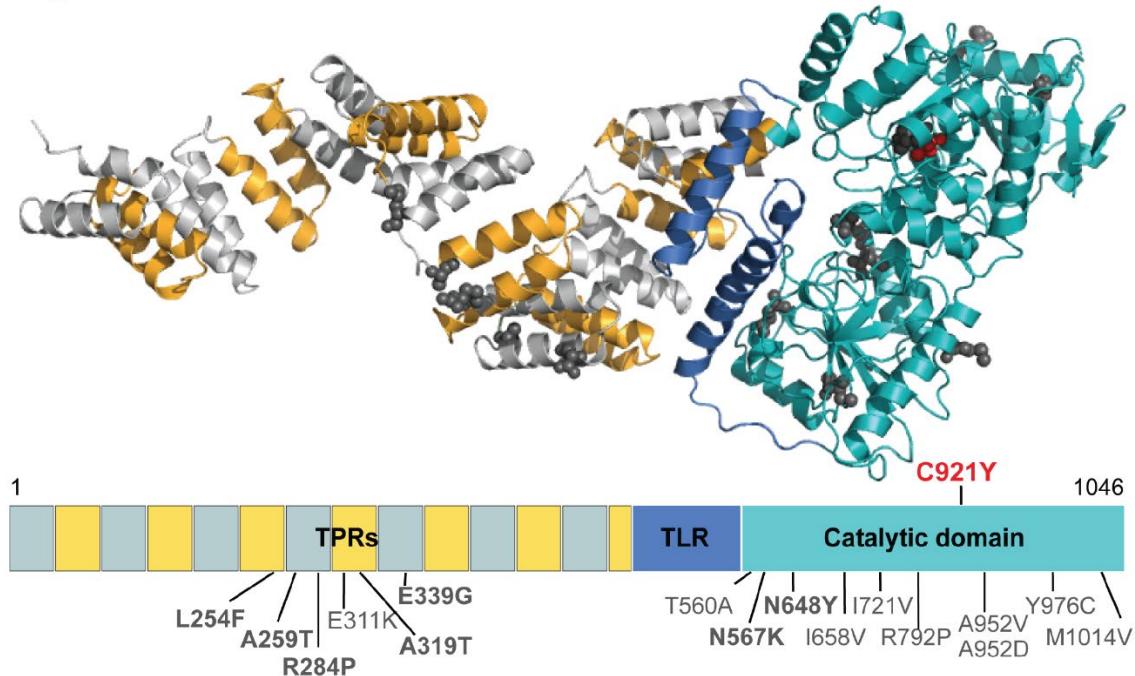
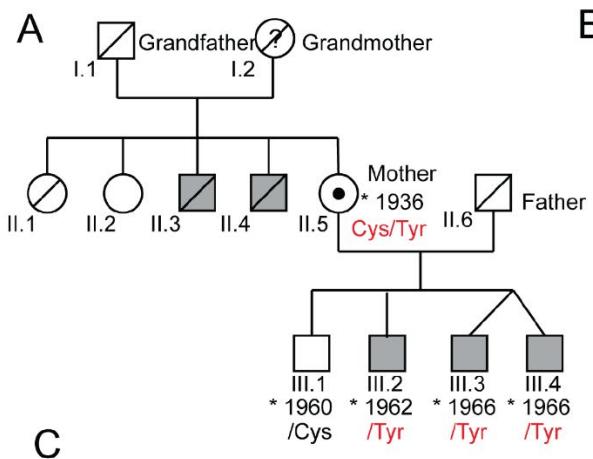
586

587 Authors declare no conflict of interest.

588

589

590



591

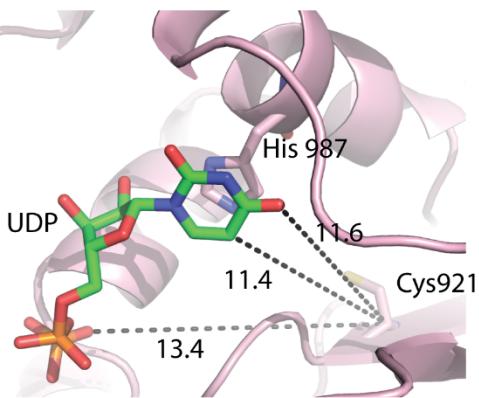
592

593

594

Figure 1

Figure 1: Brothers with intellectual disability carry an inherited variant in the catalytic core of OGT that is absent in their healthy brother


- (a) Pedigree of the affected patients carrying the OGT^{C921Y} variant. Grey shapes denote individuals affected by intellectual disability. Where available, the OGT variant at position 921 is provided. Black dot indicates a female carrier of the OGT^{C921Y} variant.
- (b) **Figure panel censored for BioRxiv submission.** Facial photographs of two brothers carrying OGT^{C921Y} variant with corresponding family tree annotation. Patient III.2 is depicted at age of 58 and patients III.3 and III.4 are depicted at age of 54.
- (c) 3D model of full-length human OGT and the corresponding linear domain structure. TPRs are depicted in alternating gray and yellow, the TLR in dark blue and the catalytic core in cyan. Previously known OGT variants leading to ID and their corresponding residues are highlighted in dark gray. OGT^{C921Y} is highlighted in red. UDP and acceptor peptide molecules are shown yellow and magenta

609
610

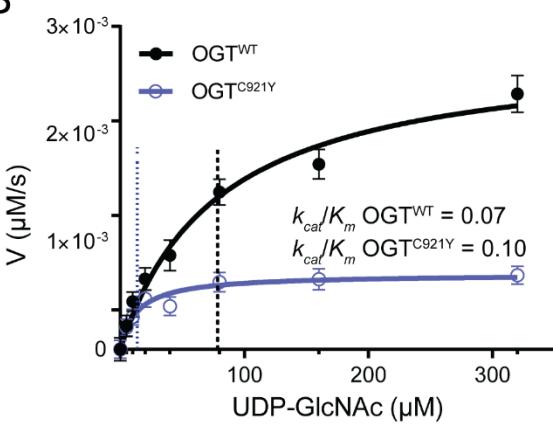
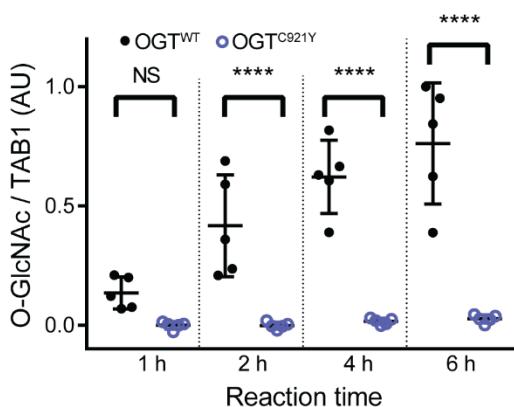
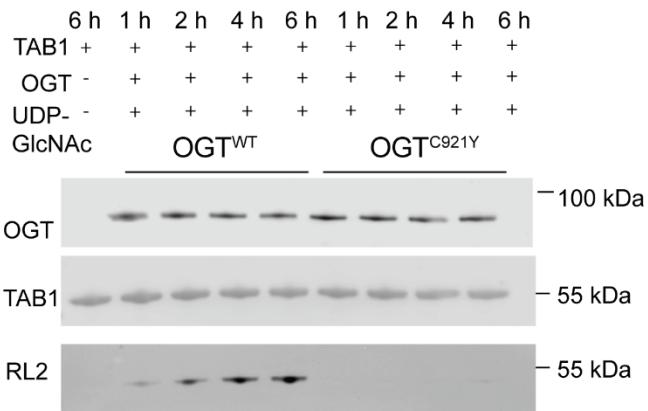

sticks respectively. The 3D model was produced from OGT catalytic core Protein Data Bank code 5C1D, TPR domain Protein Data Bank code 1W3B.

Figure 2



A

B

C

611

612

Figure 2: OGT^{C921Y} is defective in glycosyltransferase activity towards protein substrates *in vitro*

613

614

615

(a) Zoomed view into catalytic domain of OGT. UDP is shown as sticks. Distances between C921 residue and UDP are highlighted by dotted lines (13.3 Å from C921 to the uracil ring in green, 14.3 Å from C921 to the pyrophosphate linker in orange).

616

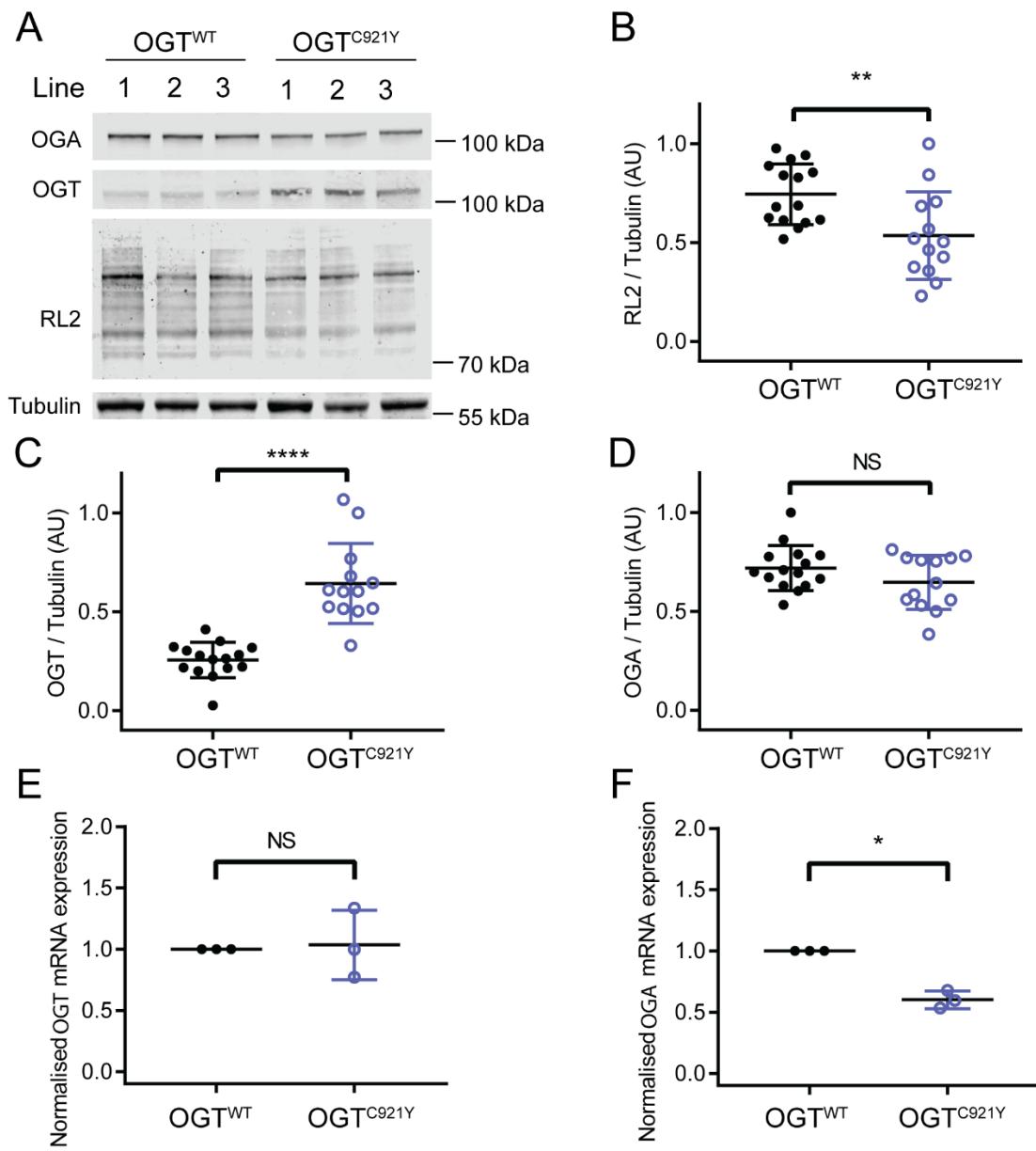
617

618

(b) Michaelis-Menten kinetics of recombinant full length OGT^{WT} and OGT^{C921Y} incubated with acceptor peptide (Ac-KENSPAVTPVSTA-NH₂) and varying concentrations of UDP-GlcNAc, n = 3 repeats, each consisting of three technical replicates.

619

620


621

622

623

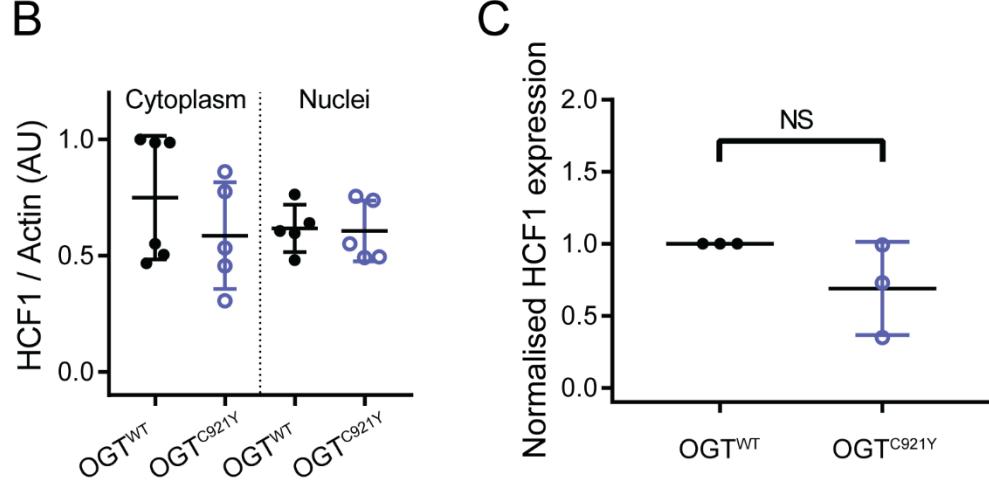
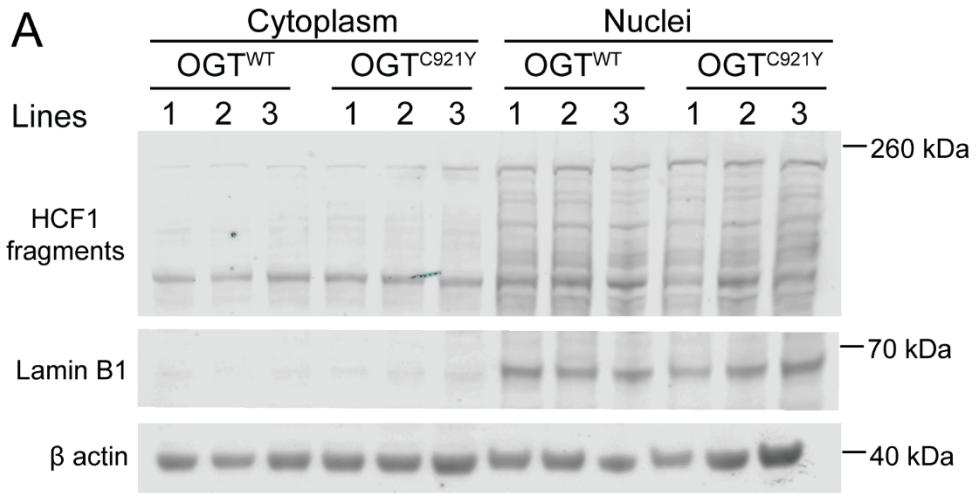
(c) Immunoblot detection of TAB1 O-GlcNAcylation by recombinant OGT^{WT} and OGT^{C921Y} (323-1041) over the course of 1 h, 2 h, 4 h and 6 h *in vitro*. Corresponding immunoblot signal quantification is shown on the right. n = 5 reactions using the same batch of recombinant protein. Repeated Measures two-way ANOVA with Sidak's multiple comparison test, 0 h p = 0.14, 2 h p < 0.0001, 4 h p < 0.0001, 2 h p < 0.0001. Error bars represent standard deviation.

Figure 3

Figure 3: The OGT^{C921Y} variants disrupt O-GlcNAcylation machinery in undifferentiated mESCs.

(a) Immunoblot showing detection of O-GlcNAcylation (RL2), OGT and OGA in mESCs carrying wild type OGT or the OGT^{C921Y} variant. The quantification shown in panels B – D is based on results obtained from three different cell clones per genotype and repeated over four to five passages per clone. Error bars represent standard deviation.

(b) Quantification of RL2 immunoblot signal. RL2 signal was normalized to Tubulin. OGT^{WT} n = 15, OGT^{C921Y} n = 13, Unpaired t test, $p = 0.007$.

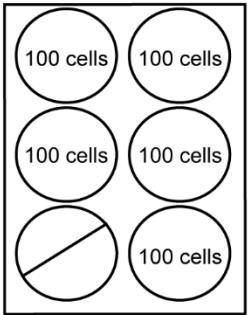


(c) Quantification of OGT immunoblot signal. OGT signal was normalized to Tubulin. OGT^{WT} n = 15, OGT^{C921Y} n = 13, Unpaired t test, $p < 0.0001$.

(d) Quantification of OGA immunoblot signal. OGA signal was normalized to Tubulin. OGT^{WT} n = 15, OGT^{C921Y} n = 13, Unpaired t test, $p = 0.14$.

(e) RT – PCR analysis of OGT mRNA normalized to GAPDH, 18 S and Actin β . Data points representing the mean expression calculated from three separate RT-PCR runs are shown. Each RT - PCR run was set up using several OGT^{WT} and OGT^{C921Y} as biological replicates. Unpaired t test, $p = 0.84$.

639
640
641
642
(f) RT – PCR analysis of OGT mRNA normalized to GAPDH, 18 S and β -Actin. Data points representing
the mean expression calculated from three separate RT-PCR runs are shown. Each RT-PCR run
was set up using several OGT^{WT} and OGT^{C921Y} lines as biological replicates. Unpaired *t* test, p =
0.0007.

Figure 4



643
644
Figure 4: HCF1 processing by undifferentiated OGT^{WT} and OGT^{C921Y} in mESCs.

645
646
647
648
649
650
651
652
653
654
(a) Immunoblot of HCF1 proteolytic fragments in the cytoplasm and nucleus of mESCs harboring either
wild type or OGT^{C921Y} variant. Lamin B1 was used as marker for nuclear fraction. This experiment
was performed using three cell clones per genotype and repeated over two passages.
(b) Quantification of HCF1 signal. HCF1 signal was normalized to Actin β . $n = 6$ biological replicates,
One-way Anova with Tukey comparison test, cytoplasmic fraction $p = 1$, nuclear fraction $p = 0.54$.
Error bars represent standard deviation.
(c) RT – PCR analysis of HCF1 mRNA expression normalized to GAPDH, 18 S and Actin β . Data points
representing the mean expression calculated from three separate RT-PCR runs are shown. Each
RT-PCR run was set up using several OGT^{WT} and OGT^{C921Y} lines as biological replicates. Unpaired
t test, $p = 0.172$.

Figure 5

A Day 0 - plating cells

Three days
culture in
medium
containing LIF
Day 3 - day 7: sequential
LIF removal at indicated
timepoints before harvesting

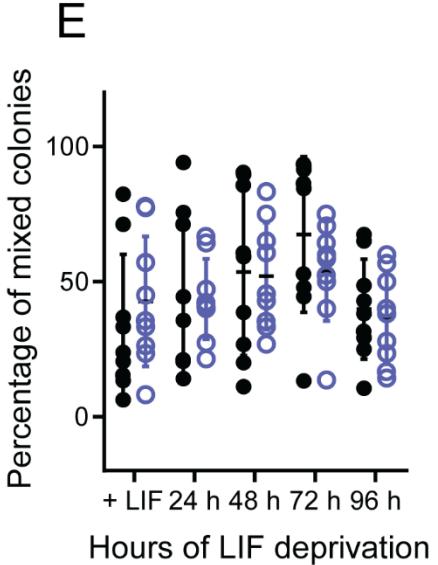
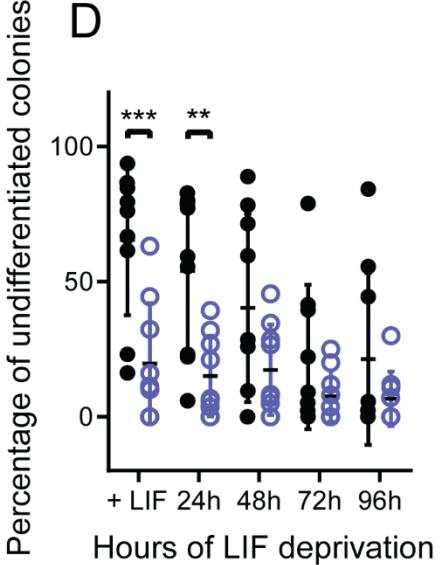
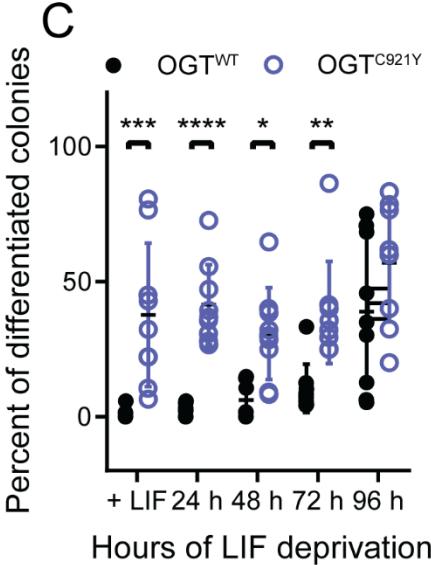
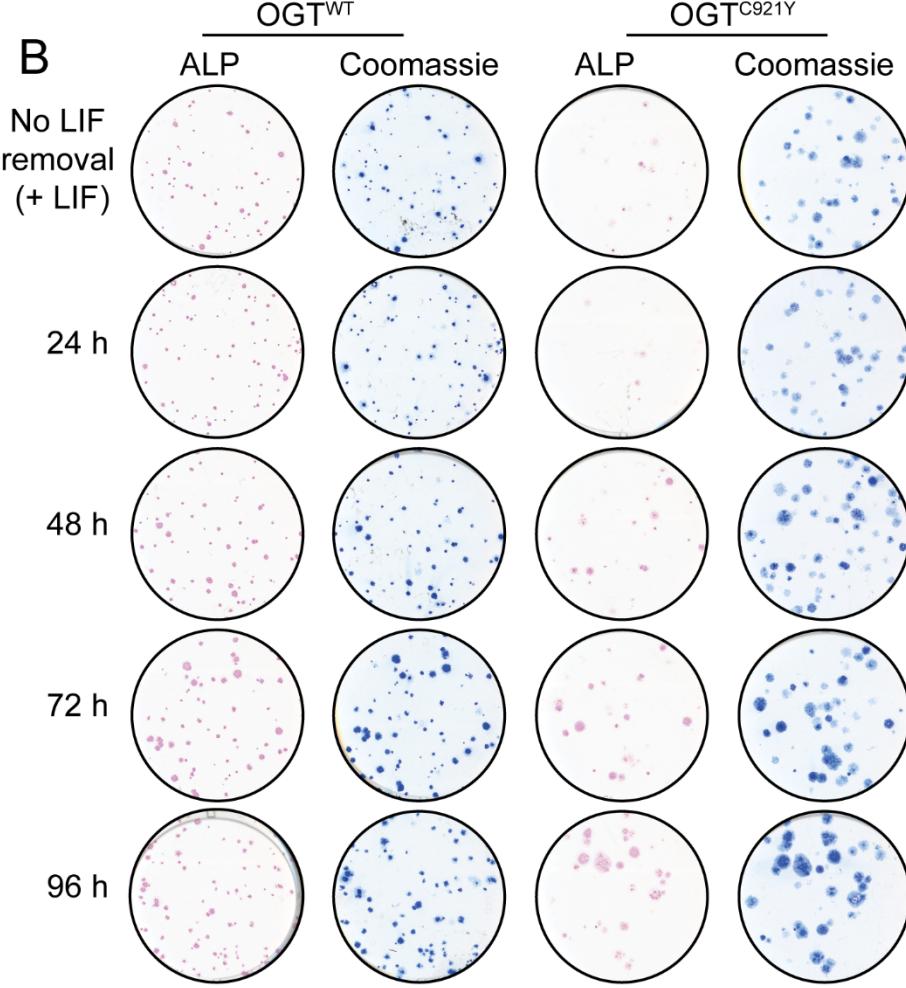
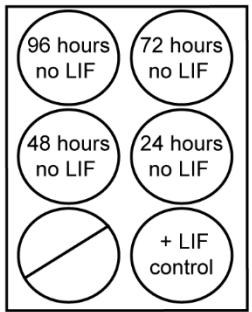
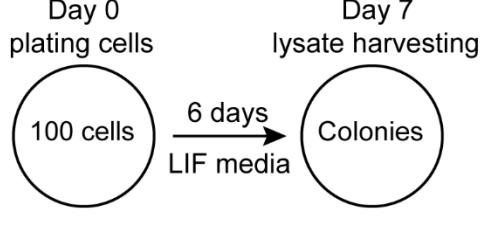






Figure 5: The OGT^{C921Y} variant leads to increased differentiation in response to LIF withdrawal in mESCs.


(a) Schematic representation of experimental set up. This experiment has been performed using three cell clones per genotype and repeated over three passages.

(b) Scans of alkaline phosphatase (ALP, pink) stained colonies of wild type or OGT^{C921Y} mESCs at different time points after LIF withdrawal. Each well was re-stained by Coomassie (blue) to reveal ALP negative colonies.

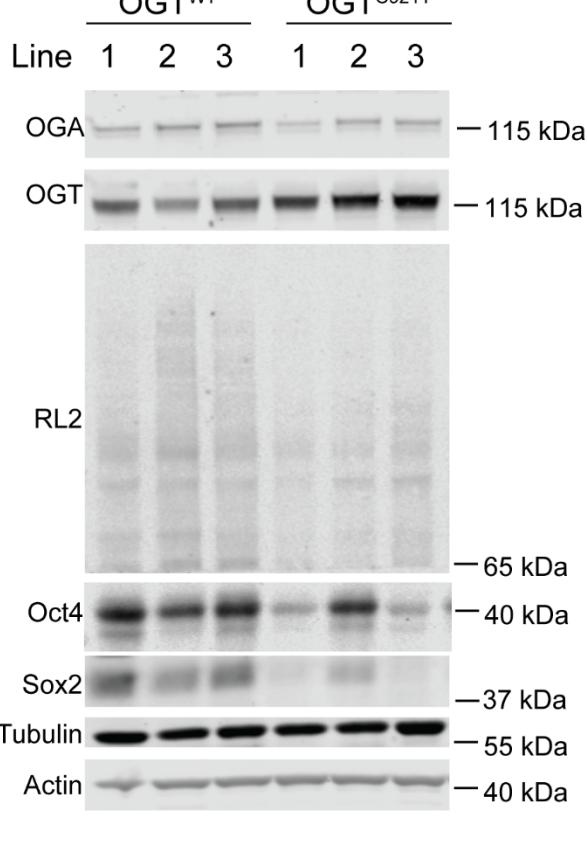
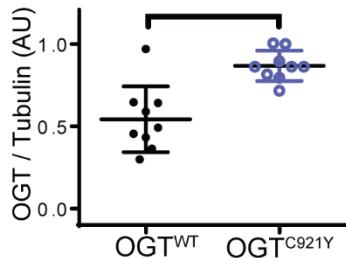
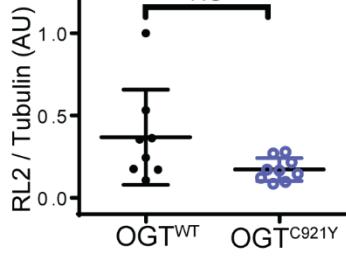
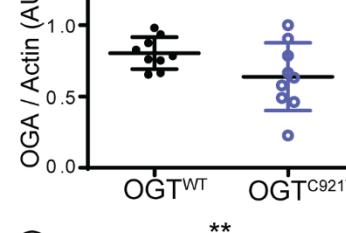
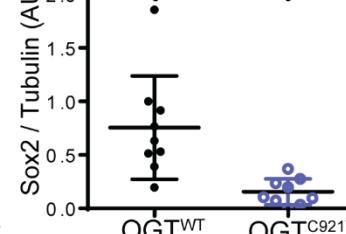

663 (c) Plot of percentages of differentiated colonies in wild type and OGT^{C921Y} mESCs. n = 9 biological
664 replicates, Two-way Anova, +LIF $p = 0.0001$ 24 h $p = 0.005$, 48 h $p = 0.21$, 72 h $p = 0.68$, 96 h $p =$
665 0.67.
666 (d) Plot of percentages of undifferentiated colonies in wild type and OGT^{C921Y} mESCs. n = 9 biological
667 replicates, Two-way Anova, +LIF $p = 0.0006$, 24 h $p < 0.0001$, 48 h $p = 0.017$, 72 h $p = 0.004$, 96 h
668 $p = 0.13$.
669 (e) Plot of percentages of mixed colonies in wild type and OGT^{C921Y} mESCs. n = 9 biological replicates,
670 Two-way Anova, all p values are non-significant.

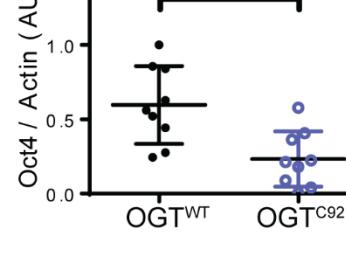
Figure 6


A


B


C


D


E

F

G

671
672
673

Figure 6: mESCs harboring the OGT^{C921Y} variant downregulate Sox2 and Oct4 in response to clonogenic conditions.

674 (a) Schematic representation of experimental set up. The following experiments were performed using
675 three cell clones per genotype and repeated over three passages.

676 (b) Immunoblot showing detection of O-GlcNAcylation (RL2), OGT, OGA, Oct4 and Sox2 in mESC lines
677 carrying wild type or OGT^{C921Y} variant. Lysates were derived from cells grown under clonogenic
678 conditions in presence of LIF as shown in (a).

679 (c) Quantification of OGT immunoblot signal. RL2 signal was normalized to Tubulin. OGT^{WT} n = 9
680 biological replicates, OGT^{C921Y} n = 9 biological replicates, Unpaired t test, $p = 0.0004$. Error bars
681 represent standard deviation.

682 (d) Quantification of RL2 immunoblot signal. RL2 signal was normalized to Tubulin. OGT^{WT} n = 8
683 biological replicates, OGT^{C921Y} n = 9 biological replicates, Unpaired t test, $p = 0.067$. Error bars
684 represent standard deviation.

685 (e) Quantification of OGA immunoblot signal. OGA signal was normalized to Actin. OGT^{WT} n = 9
686 biological replicates, OGT^{C921Y} n = 9 biological replicates, Unpaired t test, $p = 0.077$. Error bars
687 represent standard deviation.

688 (f) Quantification of Sox2 immunoblot signal. Sox2 signal was normalized to Tubulin. OGT^{WT} n = 9
689 biological replicates, OGT^{C921Y} n = 9 biological replicates, Unpaired t test, $p = 0.0023$. Error bars
690 represent standard deviation.

691 (g) Quantification of Oct4 immunoblot signal. Oct4 signal was normalized to Actin. OGT^{WT} n = 9 biological
692 replicates, OGT^{C921Y} n = 9 biological replicates, Unpaired t test, $p = 0.0038$. Error bars represent
693 standard deviation.

695 **References**

696 **Bouazzi, H., Lesca, G., Trujillo, C., Alwasiyah, M. K. and Munnich, A.** (2015). Nonsyndromic X-linked
697 intellectual deficiency in three brothers with a novel MED12 missense mutation [c.5922G>T
698 (p.Glu1974His)]. *Clin. case reports* **3**, 604–609.

699 **Capotosti, F., Guernier, S., Lammers, F., Waridel, P., Cai, Y., Jin, J., Conaway, J. W., Conaway, R. C.**
700 and **Herr, W.** (2011). O -GlcNAc Transferase Catalyzes Site-Specific Proteolysis of HCF-1. *Cell* **144**,
701 376–388.

702 **Castro, V. L., Reyes, J. F., Reyes-Nava, N. G., Paz, D. and Quintana, A. M.** (2020). Hcfc1a regulates
703 neural precursor proliferation and asxl1 expression in the developing brain. *BMC Neurosci.* **21**, 1–17.

704 **Chen, C. Y., Lee, D. S., Yan, Y. T., Shen, C. N., Hwang, S. M., Lee, S. T. and Hsieh, P. C. H.** (2015).
705 Bcl3 Bridges LIF-STAT3 to Oct4 Signaling in the Maintenance of Naïve Pluripotency. *Stem Cells* **33**,
706 3468–3480.

707 **Cherepkova, M. Y., Sineva, G. S. and Pospelov, V. A.** (2016). Leukemia inhibitory factor (LIF) withdrawal
708 activates mTOR signaling pathway in mouse embryonic stem cells through the MEK/ERK/TSC2
709 pathway. *Cell Death Dis.* **7**, e2050.

710 **Clark, P. M., Rexach, J. E. and Hsieh-Wilson, L. C.** (2013). Visualization of O-GlcNAc glycosylation
711 stoichiometry and dynamics using resolvable poly(ethylene glycol) mass tags. *Curr. Protoc. Chem.*
712 *Biol.* **5**, 281–302.

713 **Constable, S., Lim, J. M., Vaidyanathan, K. and Wells, L.** (2017). O-GlcNAc transferase regulates
714 transcriptional activity of human Oct4. *Glycobiology* **27**, 927–937.

715 **Decourcelle, A., Loison, I., Baldini, S., Leprince, D. and Dehennaut, V.** (2020). Evidence of a
716 compensatory regulation of colonic O-GlcNAc transferase and O-GlcNAcase expression in response
717 to disruption of O-GlcNAc homeostasis. *Biochem. Biophys. Res. Commun.* **521**, 125–130.

718 **Drougat, L., Olivier-Van Stichelen, S., Mortuaire, M., Foulquier, F., Lacoste, A. S., Michalski, J. C.,**
719 **Lefebvre, T. and Vercoutter-Edouart, A. S.** (2012). Characterization of O-GlcNAc cycling and
720 proteomic identification of differentially O-GlcNAcylated proteins during G1/S transition. *Biochim.*
721 *Biophys. Acta - Gen. Subj.* **1820**, 1839–1848.

722 **Elena-Herrmann, B., Montellier, E., Fages, A., Bruck-Haimson, R. and Moussaieff, A.** (2020). Multi-
723 platform NMR Study of Pluripotent Stem Cells Unveils Complementary Metabolic Signatures towards
724 Differentiation. *Sci. Rep.* **10**, 1–11.

725 **Firth, H. V. and Wright, C. F.** (2011). The Deciphering Developmental Disorders (DDD) study. *Dev. Med.*
726 *Child Neurol.* **53**, 702–703.

727 **Gao, Y., Wells, L., Comer, F. I., Parker, G. J. and Hart, G. W.** (2001). Dynamic O-glycosylation of nuclear
728 and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-
729 acetylglucosaminidase from human brain. *J. Biol. Chem.* **276**, 9838–9845.

730 **Gundogdu, M., Llabrés, S., Gorelik, A., Ferenbach, A. T., Zachariae, U. and van Aalten, D. M. F.**
731 (2018). The O -GlcNAc Transferase Intellectual Disability Mutation L254F Distorts the TPR Helix. *Cell*
732 *Chem. Biol.* **25**, 513–518.e4.

733 **Hao, Y., Fan, X., Shi, Y., Zhang, C., Sun, D. en, Qin, K., Qin, W., Zhou, W. and Chen, X.** (2019). Next-
734 generation unnatural monosaccharides reveal that ESRRB O-GlcNAcylation regulates pluripotency of

735 mouse embryonic stem cells. *Nat. Commun.* **10**, 1–13.

736 **Hart, G. W.** (2015). Nutrient regulation of transcription and signalling by O-GlcNAcylation. *Perspect. Sci.* **6**,
737 49–57.

738 **He, R., Xhabija, B., Al-Qanber, B. and Kidder, B. L.** (2017). OCT4 supports extended LIF-independent
739 self-renewal and maintenance of transcriptional and epigenetic networks in embryonic stem cells. *Sci. Rep.* **7**,.

740 **Huang, L., Jolly, L. A., Willis-Owen, S., Gardner, A., Kumar, R., Douglas, E., Shoubridge, C.,**
741 **Wieczorek, D., Tzschach, A., Cohen, M., et al.** (2012). A Noncoding, Regulatory Mutation Implicates
742 HCFC1 in Nonsyndromic Intellectual Disability. *Am. J. Hum. Genet.* **91**, 694–702.

743 **Huynh, K. and Partch, C. L.** (2016). Current Protocols in Protein Science: Analysis of protein stability and
744 ligand interactions by thermal shift assay. *Curr Protoc Protein Sci* 1–19.

745 **Iyer, S. P. N. and Hart, G. W.** (2003). Roles of the Tetratricopeptide Repeat Domain in O-GlcNAc
746 Transferase Targeting and Protein Substrate Specificity. *J. Biol. Chem.* **278**, 24608–24616.

747 **Jang, H., Kim, T. W., Yoon, S., Choi, S.-Y., Kang, T.-W., Kim, S.-Y., Kwon, Y.-W., Cho, E.-J. and Youn,**
748 **H.-D.** (2012). O-GlcNAc Regulates Pluripotency and Reprogramming by Directly Acting on Core
749 Components of the Pluripotency Network. *Cell Stem Cell* **11**, 62–74.

750 **Jínek, M., Rehwinkel, J., Lazarus, B. D., Izaurrealde, E., Hanover, J. A. and Conti, E.** (2004). The
751 superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to
752 importin α . *Nat. Struct. Mol. Biol.* **11**, 1001–1007.

753 **Jolly, L. A., Nguyen, L. S., Domingo, D., Sun, Y., Barry, S., Hancarova, M., Plevova, P., Vlckova, M.,**
754 **Havlovicova, M., Kalscheuer, V. M., et al.** (2015). HCFC1 loss-of-function mutations disrupt neuronal
755 and neural progenitor cells of the developing brain. *Hum. Mol. Genet.* **24**, 3335–3347.

756 **Kapuria, V., Röhrlig, U. F., Bhuiyan, T., Borodkin, V. S., van Aalten, D. M. F., Zoete, V. and Herr, W.**
757 (2016). Proteolysis of HCF-1 by Ser/Thr glycosylation-incompetent O-GlcNAc transferase:UDP-
758 GlcNAc complexes. *Genes Dev.* **30**, 960–972.

759 **Kapuria, V., Röhrlig, U. F., Waridel, P., Lammers, F., Borodkin, V. S., Van Aalten, D. M. F., Zoete, V.**
760 **and Herr, W.** (2018). The conserved threonine-rich region of the HCF-1 PRO repeat activates
761 promiscuous OGT:UDP-GlcNAc glycosylation and proteolysis activities. *J. Biol. Chem.* **293**, 17754–
762 17768.

763 **Keembiyehetty, C., Love, D. C., Harwood, K. R., Gavrilova, O., Comly, M. E. and Hanover, J. A.**
764 (2015). Conditional knock-out reveals a requirement for O-Linked N-Acetylglucosaminase (O-
765 GlcNAcase) in metabolic homeostasis. *J. Biol. Chem.* **290**, 7097–7113.

766 **Kim, D. K., Lee, J. S., Lee, E. Y., Jang, H., Han, S., Kim, H. Y., Hwang, I. Y., Choi, J. W., Shin, H. M.,**
767 **You, H. J., et al.** (2021). O-GlcNAcylation of Sox2 at threonine 258 regulates the self-renewal and
768 early cell fate of embryonic stem cells. *Exp. Mol. Med.* **53**, 1759–1768.

769 **Krause, M., Love, D. C., Ghosh, S., Wang, P., Yun, S., Fukushige, T. and Hanover, J. A.** (2018).
770 Nutrient-Driven O-GlcNAcylation at Promoters Impacts Genome-wide RNA Pol II Distribution. *Front.*
771 *Endocrinol. (Lausanne)*. **9**, 521.

772 **Kreppel, L. K., Blomberg, M. a and Hart, G. W.** (1997). Dynamic Glycosylation of Nuclear and Cytosolic
773 Proteins. *J. Biol. Chem.* **272**, 9308–9315.

775 **Lazarus, M. B., Jiang, J., Kapuria, V., Bhuiyan, T., Janetzko, J., Zandberg, W. F., Vocadlo, D. J., Herr, W. and Walker, S.** (2013). HCF-1 is cleaved in the active site of O-GlcNAc transferase. *Science* (80-). **342**, 1235–1239.

776

777

778 **Lefebvre, T., Baert, F., Bodart, J. F., Flament, S., Michalski, J. C. and Vilain, J. P.** (2004). Modulation of O-GlcNAc glycosylation during xenopus oocyte maturation. *J. Cell. Biochem.* **93**, 999–1010.

779

780 **Leturcq, M. and Lefebvre, T.** (2017). O-GlcNAcylation and chromatin remodeling in mammals : an up-to-date overview. *Biochem. Soc. Trans.* **45**, 323–338.

781

782 **Levine, Z. G., Fan, C., Melicher, M. S., Orman, M., Benjamin, T. and Walker, S.** (2018). O -GlcNAc Transferase Recognizes Protein Substrates Using an Asparagine Ladder in the Tetratricopeptide Repeat (TPR) Superhelix. *J. Am. Chem. Soc.* **140**, 3510–3513.

783

784

785 **Li, X., Zhang, Z., Li, L., Gong, W., Lazenby, A. J., Swanson, B. J., Herring, L. E., Asara, J. M., Singer, J. D. and Wen, H.** (2017). Myeloid-derived cullin 3 promotes STAT3 phosphorylation by inhibiting OGT expression and protects against intestinal inflammation. *J. Exp. Med.* **214**, 1093–1109.

786

787

788 **Lin, C. H., Liao, C. C., Chen, M. Y. and Chou, T. Y.** (2021). Feedback Regulation of O-GlcNAc Transferase through Translation Control to Maintain Intracellular O-GlcNAc Homeostasis. *Int. J. Mol. Sci.* **22**,

789

790

791 **Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W. and Gong, C.-X.** (2004). O-GlcNAcylation regulates phosphorylation of tau: A mechanism involved in Alzheimer's disease. *Proc. Natl. Acad. Sci.* **101**, 10804–10809.

792

793

794 **Liu, F., Shi, J., Tanimukai, H., Gu, J., Gu, J., Grundke-Iqbal, I., Iqbal, K. and Gong, C. X.** (2009). Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer's disease. *Brain* **132**, 1820–1832.

795

796

797 **Liu, Y., Li, X., Yu, Y., Shi, J., Liang, Z., Run, X., Li, Y., Dai, C., Grundke-Iqbal, I., Iqbal, K., et al.** (2012). Developmental Regulation of Protein O-GlcNAcylation, O-GlcNAc Transferase, and O-GlcNAcase in Mammalian Brain. *PLoS One* **7**, e43724.

798

799

800 **Lubas, W. A., Frank, D. W., Krause, M. and Hanover, J. A.** (1997). O-linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. *J. Biol. Chem.* **272**, 9316–9324.

801

802

803 **Lubs, H. A., Stevenson, R. E. and Schwartz, C. E.** (2012). Fragile X and X-linked intellectual disability: four decades of discovery. *Am. J. Hum. Genet.* **90**, 579–590.

804

805 **Maulik, P. K., Mascarenhas, M. N., Mathers, C. D., Dua, T. and Saxena, S.** (2011). Prevalence of intellectual disability: A meta-analysis of population-based studies. *Res. Dev. Disabil.* **32**, 419–436.

806

807 **McKenzie, K., Milton, M., Smith, G. and Ouellette-Kuntz, H.** (2016). Systematic Review of the Prevalence and Incidence of Intellectual Disabilities: Current Trends and Issues. *Curr. Dev. Disord. Reports* **3**, 104–115.

808

809

810 **Medford, H. M., Chatham, J. C. and Marsh, S. A.** (2013). 2012 Chronic ingestion of a Western diet increases O-linked-β-N.pdf. *Life Sci.* **90**, 883–888.

811

812 **Michaud, J., Praz, V., Faresse, N. J., JnBaptiste, C. K., Tyagi, S., Schütz, F. and Herr, W.** (2013). HCFC1 is a common component of active human CpG-island promoters and coincides with ZNF143, THAP11, YY1, and GABP transcription factor occupancy. *Genome Res.* **23**, 907–916.

813

814

815 **Muha, V., Fenckova, M., Ferenbach, A. T., Catinozzi, M., Eidhof, I., Storkebaum, E., Schenck, A. and**
816 **van Aalten, D. M. F. (2020). O-GlcNAcase contributes to cognitive function in Drosophila. *J. Biol.***
817 ***Chem.* **295**, 8636–8646.**

818 **Muha, V., Authier, F., Szoke-Kovacs, Z., Johnson, S., Gallagher, J., McNeilly, A., McCrimmon, R. J.,**
819 **Teboul, L. and van Aalten, D. M. F. (2021). Loss of O-GlcNAcase catalytic activity leads to defects in**
820 **mouse embryogenesis. *J. Biol. Chem.* **296**, 100439.**

821 **Muthusamy, S., Hong, K. U., Dassanayaka, S., Hamid, T. and Jones, S. P. (2015). E2F1 Transcription**
822 **Factor Regulates O-linked N-acetylglucosamine (O-GlcNAc) Transferase and O-GlcNAcase**
823 **Expression. *J. Biol. Chem.* **290**, 31013–31024.**

824 **Myers, S. A., Peddada, S., Chatterjee, N., Friedrich, T., Tomoda, K., Krings, G., Thomas, S., Maynard,**
825 **J., Broeker, M., Thomson, M., et al. (2016). SOX2 O-GlcNAcylation alters its protein-protein**
826 **interactions and genomic occupancy to modulate gene expression in pluripotent cells. *Elife* **5**, e10647.**

827 **Olivier-Van Stichelen, S., Wang, P., Comly, M., Love, D. C. and Hanover, J. A. (2017). Nutrient-driven**
828 **O-linked N-acetylglucosamine (O-GlcNAc) cycling impacts neurodevelopmental timing and**
829 **metabolism. *J. Biol. Chem.* **292**, 6076.**

830 **Ortiz-Mezo, R. F., Jiang, J., Lazarus, M. B., Orman, M., Janetzko, J., Fan, C., Duveau, D. Y., Tan, Z.**
831 **W., Thomas, C. J. and Walker, S. (2015). A small molecule that inhibits OGT activity in cells. *ACS***
832 ***Chem. Biol.* **10**, 1392.**

833 **PanelApp Genomics England (2020). Intellectual Disability panel, (Version 3.651).**

834 **Park, J., Ha, H. J., Chung, E. S., Baek, S. H., Cho, Y., Kim, H. K., Han, J., Sul, J. H., Lee, J., Kim, E., et**
835 **al. (2021). O-GlcNAcylation ameliorates the pathological manifestations of Alzheimer's disease by**
836 **inhibiting necroptosis. *Sci. Adv.* **7**,.**

837 **Pathak, S., Borodkin, V. S., Albarbarawi, O., Campbell, D. G., Ibrahim, A. and Van Aalten, D. M. F.**
838 **(2012). O-GlcNAcylation of TAB1 modulates TAK1-mediated cytokine release. *EMBO J.* **31**, 1394–**
839 **1404.**

840 **Pathak, S., Alonso, J., Schimpl, M., Rafie, K., Blair, D. E., Borodkin, V. S., Schüttelkopf, A. W.,**
841 **Albarbarawi, O. and Van Aalten, D. M. F. (2015). The active site of O-GlcNAc transferase imposes**
842 **constraints on substrate sequence. *Nat. Struct. Mol. Biol.* **22**, 744–749.**

843 **Posada De La Paz, M., Taruscio, D. and Groft, S. C. (2017). Rare Diseases Epidemiology: Update and**
844 **Overview. *Adv. Exp. Med. Biol.* **1031**,.**

845 **Pravata, V. M., Muha, V., Gundogdu, M., Ferenbach, A. T., Kakade, P. S., Vandadi, V., Wilmes, A. C.,**
846 **Borodkin, V. S., Joss, S., Stavridis, M. P., et al. (2019). Catalytic deficiency of O-GlcNAc**
847 **transferase leads to X-linked intellectual disability. *Proc. Natl. Acad. Sci. U. S. A.* **116**, 14961–14970.**

848 **Pravata, V. M., Gundogdu, M., Bartual, S. G., Ferenbach, A. T., Stavridis, M., Öunap, K., Pajusalu, S.,**
849 **Žordania, R., Wojcik, M. H. and van Aalten, D. M. F. (2020a). A missense mutation in the catalytic**
850 **domain of O-GlcNAc transferase links perturbations in protein O-GlcNAcylation to X-linked intellectual**
851 **disability. *FEBS Lett.* **594**, 717–727.**

852 **Pravata, V. M., Omelková, M., Stavridis, M. P., Desbiens, C. M., Stephen, H. M., Lefeber, D. J., Gecz,**
853 **J., Gundogdu, M., Öunap, K., Joss, S., et al. (2020b). An intellectual disability syndrome with single-**
854 **nucleotide variants in O-GlcNAc transferase. *Eur. J. Hum. Genet.* 706–714.**

855 **Qian, K., Wang, S., Fu, M., Zhou, J., Singh, J. P., Li, M. D., Yang, Y., Zhang, K., Wu, J., Nie, Y., et al.**
856 (2018). Transcriptional regulation of O-GlcNAc homeostasis is disrupted in pancreatic cancer. *J. Biol.*
857 *Chem.* **293**, 13989–14000.

858 **Rafie, K., Raimi, O., Ferenbach, A. T., Borodkin, V. S., Kapuria, V. and van Aalten, D. M. F.** (2017).
859 Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats. *Open Biol.* **7**,
860 170078.

861 **Richards, S., Aziz, N., Bale, S., Bick, D., Das, S. and Gastier-Foster, J.** (2015). Standards and
862 guidelines for the interpretation of sequence variants: A Joint Consensus Recommendation of the
863 American College of Medical Genetics and Genomics and the Association for Molecular Pathology.
864 *Genet. Med.* **17**, 405–424.

865 **Sakabe, K. and Hart, G. W.** (2010). O-GlcNAc transferase regulates mitotic chromatin dynamics. *J. Biol.*
866 *Chem.* **285**, 34460–34468.

867 **Sakabe, K., Wang, Z. and Hart, G. W.** (2010). β - N -acetylglucosamine (O-GlcNAc) is part of the histone
868 code. *PNAS* **107**, 19915–19920.

869 **Savage, J. E., Jansen, P. R., Stringer, S., Watanabe, K., Bryois, J., De Leeuw, C. A., Nagel, M.,**
870 **Awasthi, S., Barr, P. B., Coleman, J. R. I., et al.** (2018). Genome-wide association meta-analysis in
871 269,867 individuals identifies new genetic and functional links to intelligence. *Nat. Genet.* **50**, 912–919.

872 **Selvan, N., Williamson, R., Mariappa, D., Campbell, D. G., Gourlay, R., Ferenbach, A. T., Aristotelous,**
873 **T., Hopkins-Navratilova, I., Trost, M. and van Aalten, D. M. F.** (2017). A mutant O-GlcNAcase
874 enriches Drosophila developmental regulators. *Nat. Chem. Biol.* **13**, 882–887.

875 **Selvan, N., George, S., Serajee, F. J., Shaw, M., Hobson, L., Kalscheuer, V., Prasad, N., Levy, S. E.,**
876 **Taylor, J., Aftimos, S., et al.** (2018). O-GlcNAc transferase missense mutations linked to X-linked
877 intellectual disability deregulate genes involved in cell fate determination and signaling. *J. Biol. Chem.*
878 **293**, 10810–10824.

879 **Shafi, R., Iyer, S. P. N., Ellies, L. G., O'Donnell, N., Marek, K. W., Chui, D., Hart, G. W. and Marth, J. D.**
880 (2000). The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic
881 stem cell viability and mouse ontogeny. *Proc. Natl. Acad. Sci.* **97**, 5735–5739.

882 **Sheikh, M. A., Emerald, B. S. and Ansari, S. A.** (2020). Stem cell fate determination through protein O-
883 GlcNAcylation. *J. Biol. Chem.* **296**, 100035.

884 **Skuse, D. H.** (2005). X-linked genes and mental functioning. *Hum. Mol. Genet.* **14**, 27–32.

885 **Slawson, C., Copeland, R. J. and Hart, G. W.** (2010). O-GlcNAc signaling: A metabolic link between
886 diabetes and cancer? *Trends Biochem. Sci.* **35**, 547–555.

887 **Smith, A. G., Heath, J. K., Donaldson, D. D., Wong, G. G., Moreau, J., Stahl, M. and Rogers, D.** (1988).
888 Inhibition of pluripotential embryonic stem cell differentiation by. *Nature* **336**, 688–690.

889 **Štefková, K., Procházková, J. and Pacherník, J.** (2015). Alkaline phosphatase in stem cells. *Stem Cells*
890 **Int.** **2015**,.

891 **Streubel, G., Fitzpatrick, D. J., Oliviero, G., Scelfo, A., Moran, B., Das, S., Munawar, N., Watson, A.,**
892 **Wynne, K., Negri, G. L., et al.** (2017). Fam60a defines a variant Sin3a-Hdac complex in embryonic
893 stem cells required for self-renewal. *EMBO J.* **36**, 2216–2232.

894 **Tan, Z. W., Fei, G., Paulo, J. A., Bellaousov, S., Martin, S. E. S., Duveau, D. Y., Thomas, C. J., Gygi, S.**

895 **P., Boutz, P. L. and Walker, S.** (2021). O-GlcNAc regulates gene expression by controlling detained
896 intron splicing. *Nucleic Acids Res.* **48**, 5656–5669.

897 **Tassé, M. J., Luckasson, R. and Schalock, R. L.** (2016). The relation between intellectual functioning and
898 adaptive behavior in the diagnosis of intellectual disability. *Intellect. Dev. Disabil.* **54**, 381–390.

899 **Tejada, M. I. and Ibarluzea, N.** (2020). Non-syndromic X linked intellectual disability : Current knowledge in
900 light of the recent advances in molecular and functional studies. *Clin. Genet.* **97**, 677–687.

901 **Torres, C.-R. and Hart, G. W.** (1984). Topography and polypeptide distribution of terminal N-
902 Acetylglucosamine residues on the surfaces of intact lymphocytes.pdf. *J Biol Chem* **259**, 3308–3317.

903 **Vaidyanathan, K., Durning, S., Wells, L. and Carbohydrate, C.** (2014). Functional O-GlcNAc
904 modifications: Implications in molecular regulation and pathophysiology. *Crit Rev Biochem Mol Biol* **49**,
905 140–163.

906 **Vaidyanathan, K., Niranjan, T., Selvan, N., Teo, C. F., May, M., Patel, S., Weatherly, B., Skinner, C.,**
907 **Opitz, J., Carey, J., et al.** (2017). Identification and characterization of a missense mutation in the O-
908 linked β-N-acetylglucosamine (O-GlcNAc) transferase gene that segregates with X-linked intellectual
909 disability. *J. Biol. Chem.* **292**, 8948–8963.

910 **Webster, D. M., Teo, C., Sun, Y., Wloga, D., Gay, S., Klonowski, K. D., Wells, L. and Dougan, S. T.**
911 (2009). O-GlcNAc modifications regulate cell survival and epiboly during zebrafish development. *BMC*
912 *Dev. Biol.* **9**, 28.

913 **Wells, L., Gao, Y., Mahoney, J. A., Vosseller, K., Chen, C., Rosen, A. and Hart, G. W.** (2002).
914 GLYCOBIOLOGY AND EXTRACELLULAR MATRICES: Dynamic O- Glycosylation of Nuclear and
915 Cytosolic Proteins: Further characterization of the nucleocytoplasmic B-N-Acetylglucosaminidase, O-
916 GlcNAcase. *J. Biol. Chem.* **277**, 1755–61.

917 **Willems, A. P., Gundogdu, M., Kempers, M. J. E., Giltay, J. C., Pfundt, R., Elferink, M., Loza, B. F.,**
918 **Fuijkschot, J., Ferenbach, A. T., van Gassen, K. L. I., et al.** (2017). Mutations in N -
919 acetylglucosamine (O -GlcNAc) transferase in patients with X-linked intellectual disability. *J. Biol.*
920 *Chem.* **292**, 12621–12631.

921 **Williams, R. L., Hilton, D. J., Pease, S., Willson, T. A., Stewart, C. L., Gearing, D. P., Wagner, E. F.,**
922 **Metcalf, D., Nicola, N. A. and Gough, N. M.** (1988). Myeloid leukaemia inhibitory factor maintains the
923 developmental potential of embryonic stem cells. *Nature* **336**, 684–687.

924 **Wolfe, L. A. and Krasnewich, D.** (2013). C d g i d. **225**, 211–225.

925 **Wongkittichote, P., Wegner, D. J. and Shinawi, M. S.** (2021). Novel exon-skipping variant disrupting the
926 basic domain of HCFC1 causes intellectual disability without metabolic abnormalities in both male and
927 female patients. *J. Hum. Genet.*

928 **Wulff-Fuentes, E., Berendt, R. R., Massman, L., Danner, L., Malard, F., Vora, J., Kahsay, R. and**
929 **Olivier-Van Stichelen, S.** (2021). The human O-GlcNAcome database and meta-analysis. *Sci. Data*
930 **8**, 25.

931 **Yang, Y. R., Song, M., Lee, H., Jeon, Y., Choi, E.-J. J., Jang, H.-J. J., Moon, H. Y., Byun, H.-Y. Y., Kim,**
932 **E.-K. K., Kim, D. H., et al.** (2012). O-GlcNAcase is essential for embryonic development and
933 maintenance of genomic stability. *Aging Cell* **11**, 439–448.

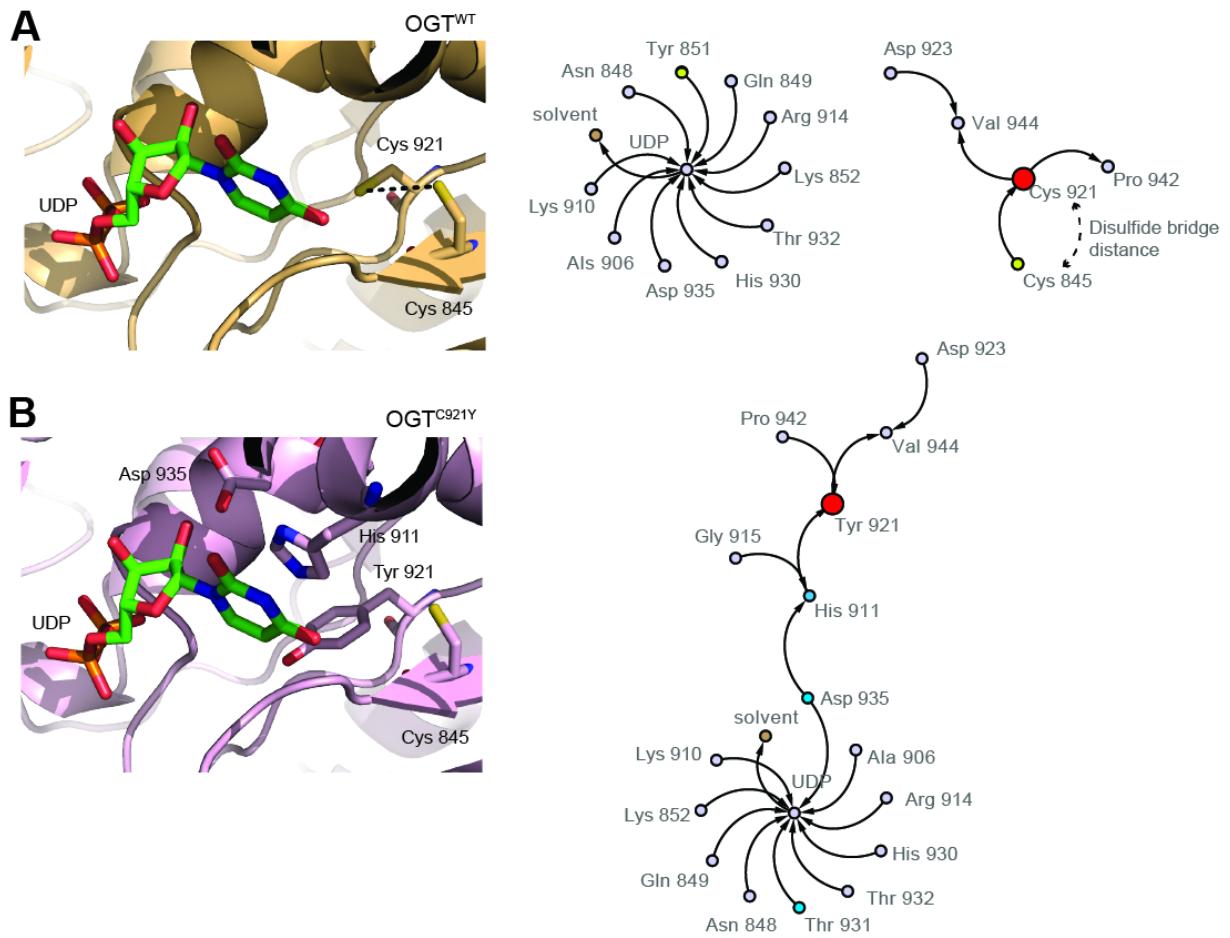
934 **Zechner, U., Wilda, M., Kehrer-Sawatzki, H., Vogel, W., Fundele, R. and Hameister, H.** (2001). A high

935 density of X-linked genes for general cognitive ability: A run-away process shaping human evolution?

936 *Trends Genet.* **17**, 697–701.

937 **Zhang, Z., Tan, E. P., VandenHull, N. J., Peterson, K. R. and Slawson, C.** (2014). O-GlcNAcase
938 Expression is Sensitive to Changes in O-GlcNAc Homeostasis. *Front. Endocrinol. (Lausanne)*. **5**, 206.

939 **Zhang, Z., Parker, M. P., Graw, S., Novikova, L. V., Fedosyuk, H., Fontes, J. D., Koestler, D. C.,
940 Peterson, K. R. and Slawson, C.** (2019). O-GlcNAc homeostasis contributes to cell fate decisions
941 during hematopoiesis. *J. Biol. Chem.* **294**, 1363–1379.


942 **Zhou, X., Smith, A. J. H., Waterhouse, A., Blin, G., Malaguti, M., Lin, C.-Y., Osorno, R., Chambers, I.,
943 and Lowell, S.** (2013). Hes1 Desynchronizes Differentiation of Pluripotent Cells by Modulating STAT3
944 Activity. *Stem Cells* 1511–1522.

945 **Zhu, Q., Cheng, X., Cheng, Y., Chen, J., Xu, H., Gao, Y., Duan, X., Ji, J., Li, X. and Yi, W.** (2020). O-
946 GlcNAcylation regulates the methionine cycle to promote pluripotency of stem cells. *Proc. Natl. Acad.
947 Sci.* 201915582.

948 **Supplementary information**

949
950 **Supplementary figure S1: Figure removed for BioRxiv submission. Profile photos and close
951 up view of patient's eyebrows.**

952 a) and b) Profile photographs of affected brothers carrying OGT^{C921Y} variant.
953 c) Proband III.2 has sparse eyebrows.

955

956

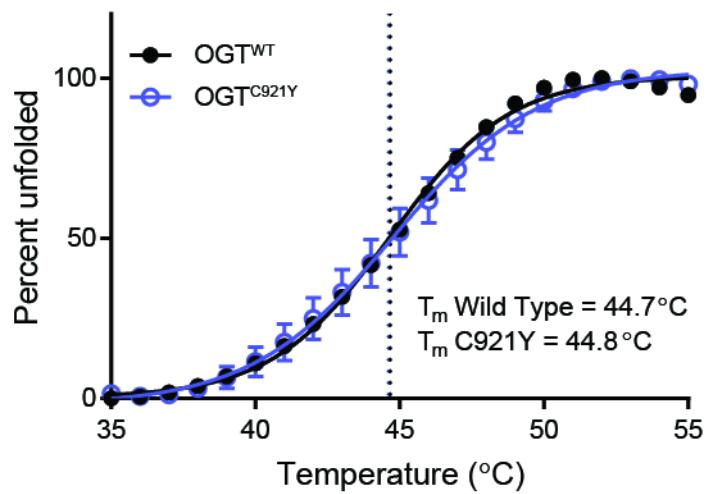
957

Supplementary figure S2: Model of the OGT C921Y substitution and changes in interactions in the catalytic core.

958

959

960


961

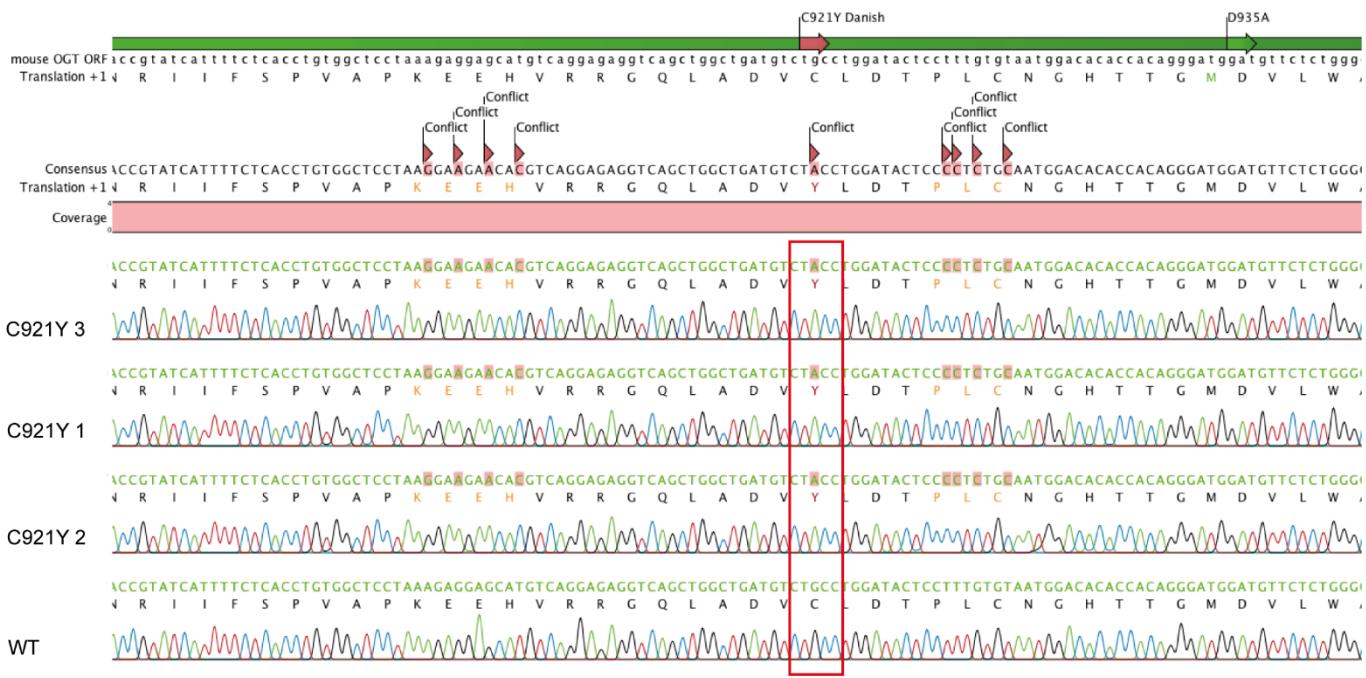
962

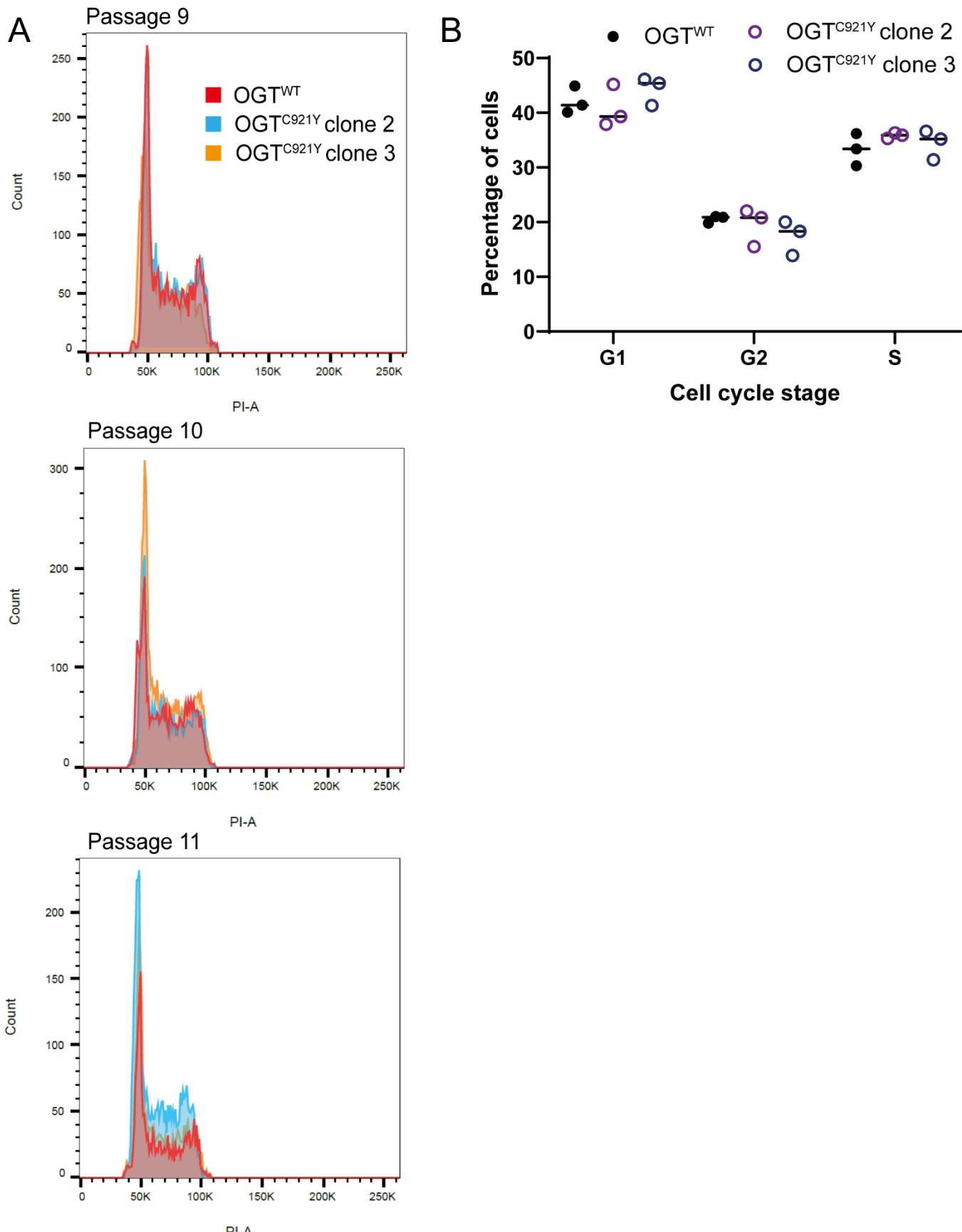
963

964

- The PDB 5LWV containing a UDP molecule sitting in the active site (green sticks) and a fusion protein peptide, removed for our analysis, was used a template for the OGT^{WT} protein. Averaged MD trajectory calculated after 1000 poses is shown in the left side. For clarity, cysteine 921 is represented as a red circle.
- The OGT^{C921Y} variant was modelled over the PDB 5LWV with the same modifications as described for OGT^{WT}. Averaged MD trajectory calculated after 1000 poses is shown in the left side. For clarity the mutant tyrosine 921 is represented with a red circle. All key residues are labelled.

965


966 **Supplementary figure S3: Melting temperature determination for OGT^{WT} and OGT^{C921Y} (323 –
967 1044).**


968 Thermal shift assay performed with recombinant OGT^{WT} and OGT^{C921Y} hOGT (323-1041). This
969 experiment was performed three times, using three technical replicates each time. Error bars
970 represent standard deviation.

A

human	860	AIVYCNFNQLYKIDPSTLQMWNILKRVPNVLWLLRFPAVGEPNIQQYAQNMGLPQNRI	900
mouse		AIVYCNFNQLYKIDPSTLQMWNILKRVPNVLWLLRFPAVGEPNIQQYAQNMGLPQNRI	900
		*****	*****
human		IFSPVAPKEEHVRRGQIADVC L DTPLCNGHTTGMVLWAGTPMVTMPGETLASRVAASQL	960
mouse		IFSPVAPKEEHVRRGQIADVC L DTPLCNGHTTGMVLWAGTPMVTMPGETLASRVAASQL	960
		*****	*****
human		TCLGCLELIAKNRQEYEDIAVKLGTDLLEYLKKVRGKVKWQRISSPLFNTKQYTMELERLY	1020
mouse		TCLGCLELIAKSRQEYEDIAVKLGTDLLEYLKKIRGKVKWQRISSPLFNTKQYTMELERLY	1020
		*****	*****
human		LQMWEHYAAGNKPDHMIKPVEVTESA*	1046
mouse		LQMWEHYAAGNKPDHMIKPVEVTESA*	1046
		*****	*****

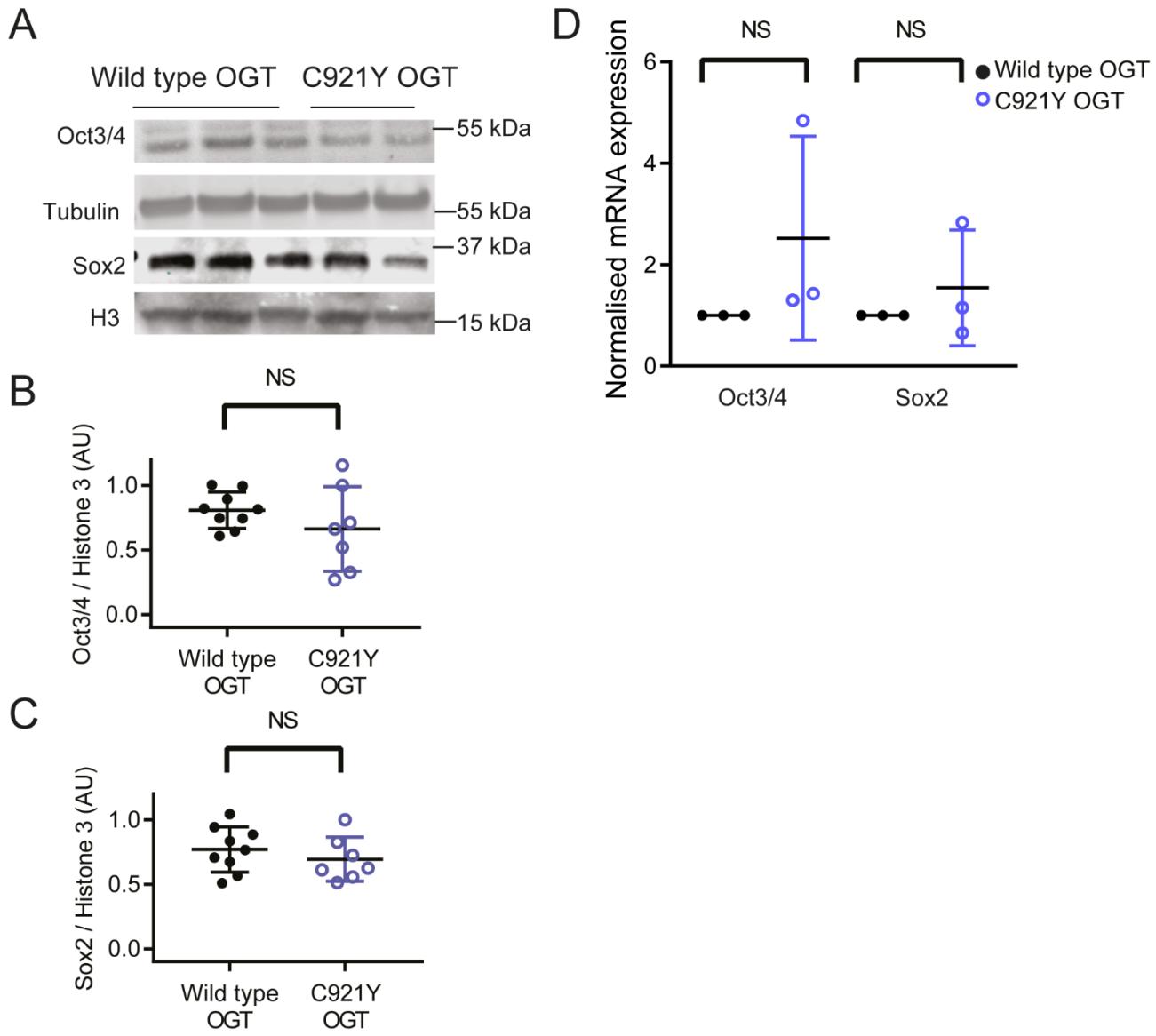
B

978

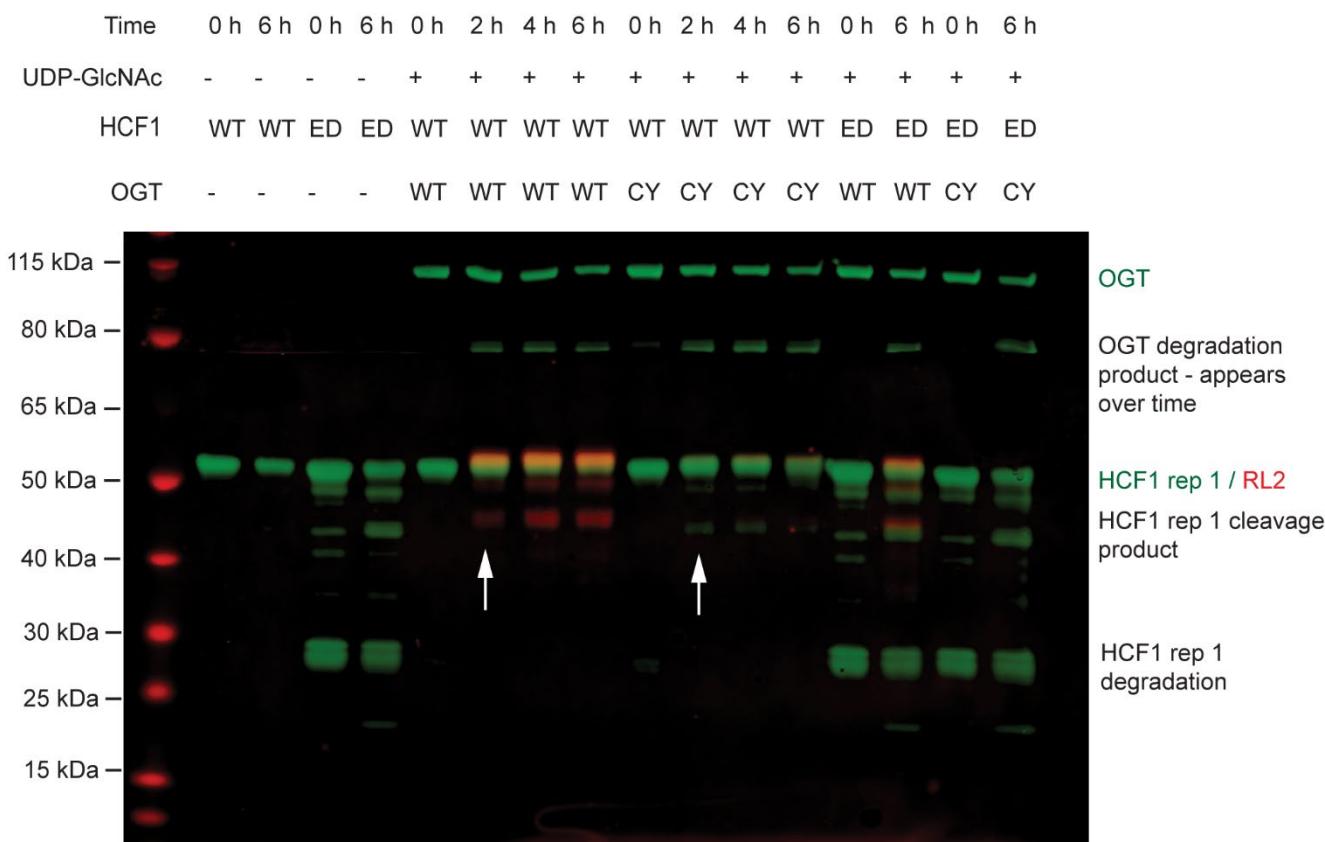
979

Supplementary figure S5: Cell cycle analysis of OGT^{WT} and OGT^{C921Y} mESC.

980

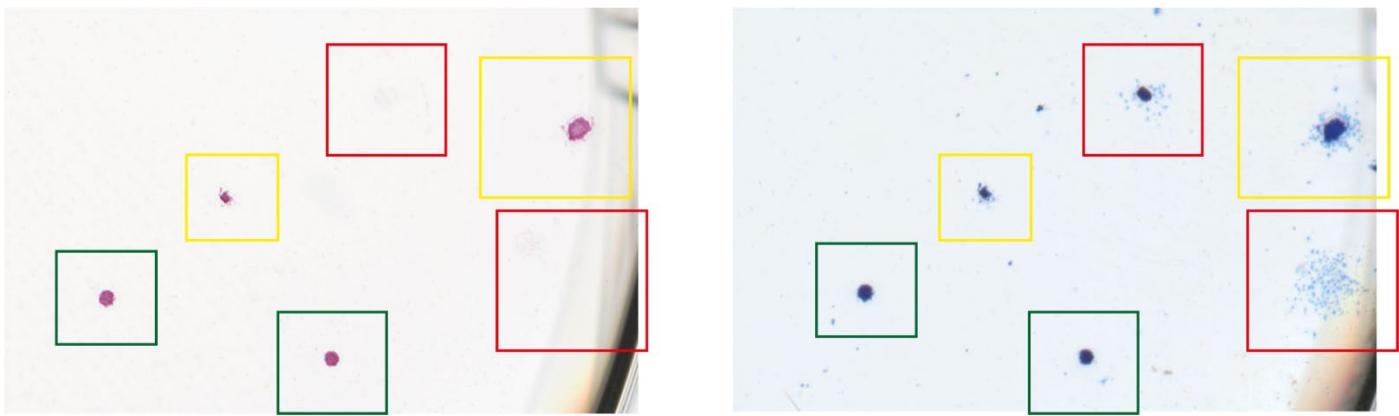

981

982

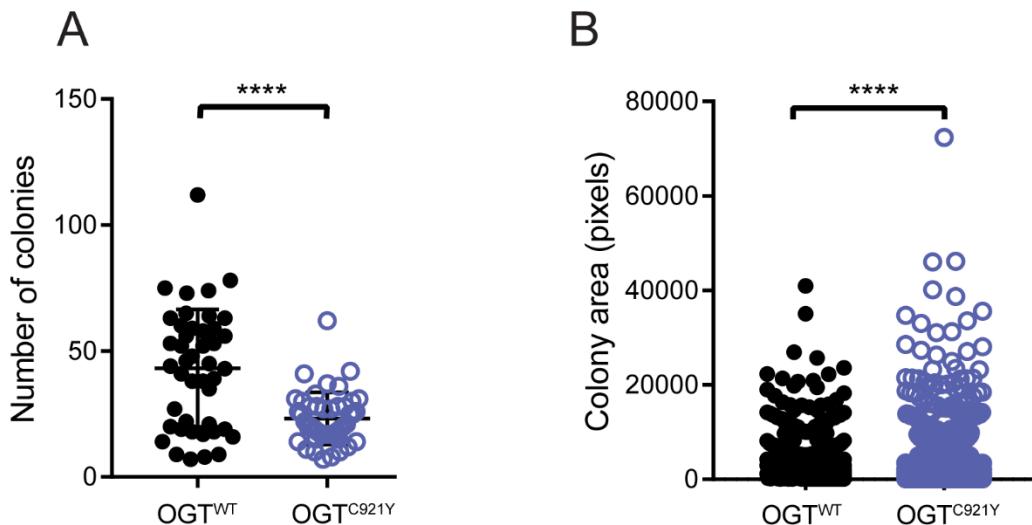

983

984

- Cell cycle profiles of OGT^{WT} and OGT^{C921Y} across three passages using two mutant and one wild type cell line. We aimed to perform cell cycle profiling with the earliest available passages, which is the reason for not using all three cell OGT^{C921Y} cell lines in this experiment.
- Plot of percentages of cells in each cell cycle stage.

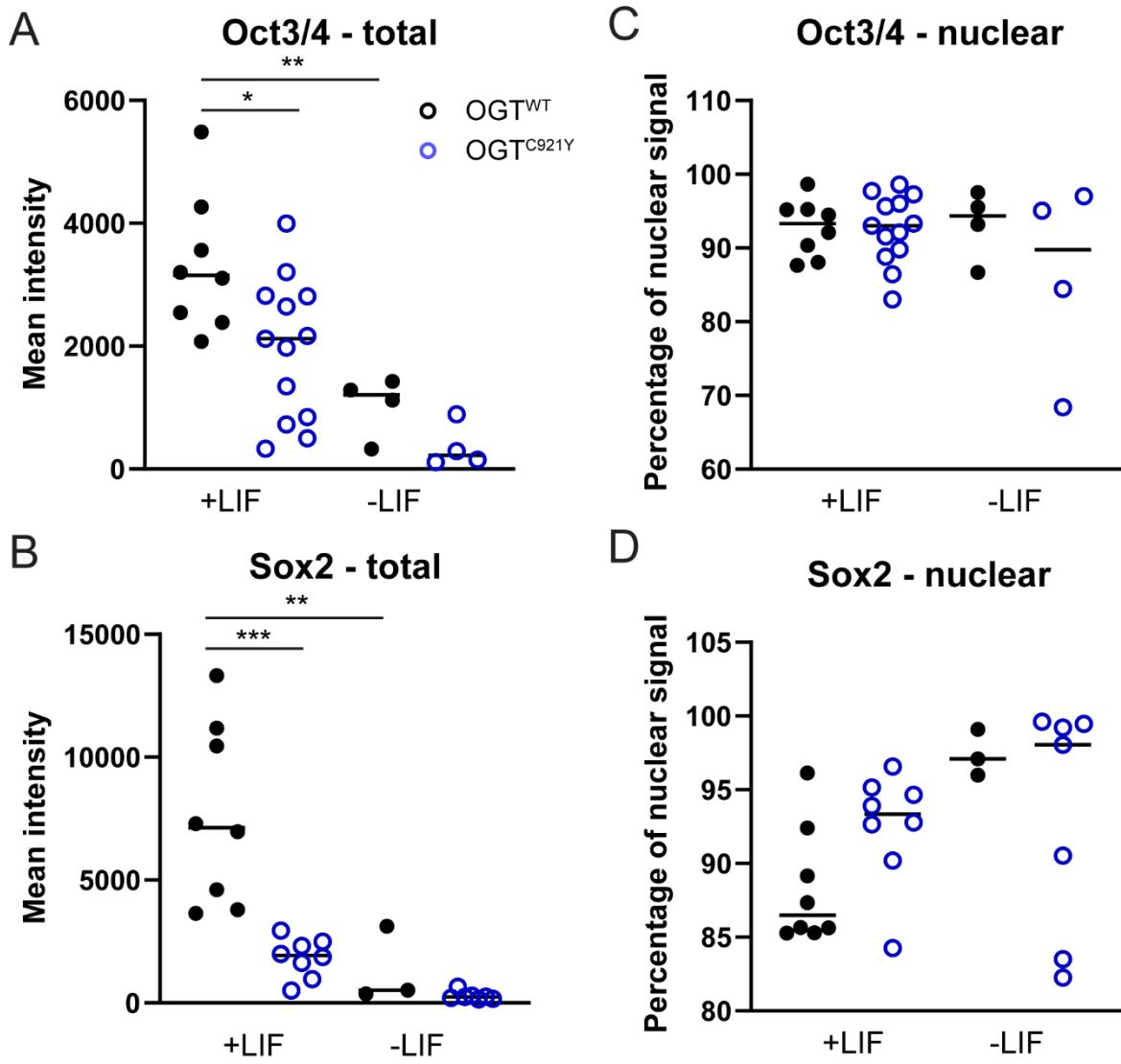


985
986 **Supplementary figure S6: Oct3/4 and Sox2 expression in OGT^{WT} and OGT^{C921Y} mESCs**
987 **propagated in LIF.** The quantification shown in panels B – D is based on results obtained from
988 two to three different cell clones per genotype and repeated over three passages per clone.
989 a) Immunoblot of Oct3/4, Sox2, Tubulin and Histone3.
990 b) Quantification of Oct3/4 signal relative to tubulin. Unpaired *t* test, *p* value = 0.251. Error bars
991 represent standard deviation.
992 c) Quantification of Sox2 signal relative to Histone 3. Unpaired *t* test, *p* value = 0.401. Error bars
993 represent standard deviation.
994 d) mRNA expression of Oct3/4 and Sox2. Unpaired *t* test, Sox2 *p* value = 0.455, Oct3/4 *p* value =
995 0.260. Each data point represents normalised mean expression calculated from three separate
996 RT-PCR runs. Each RT - PCR run was set up using several OGT^{WT} and OGT^{C921Y} as
997 biological replicates. Error bars represent standard deviation.
998

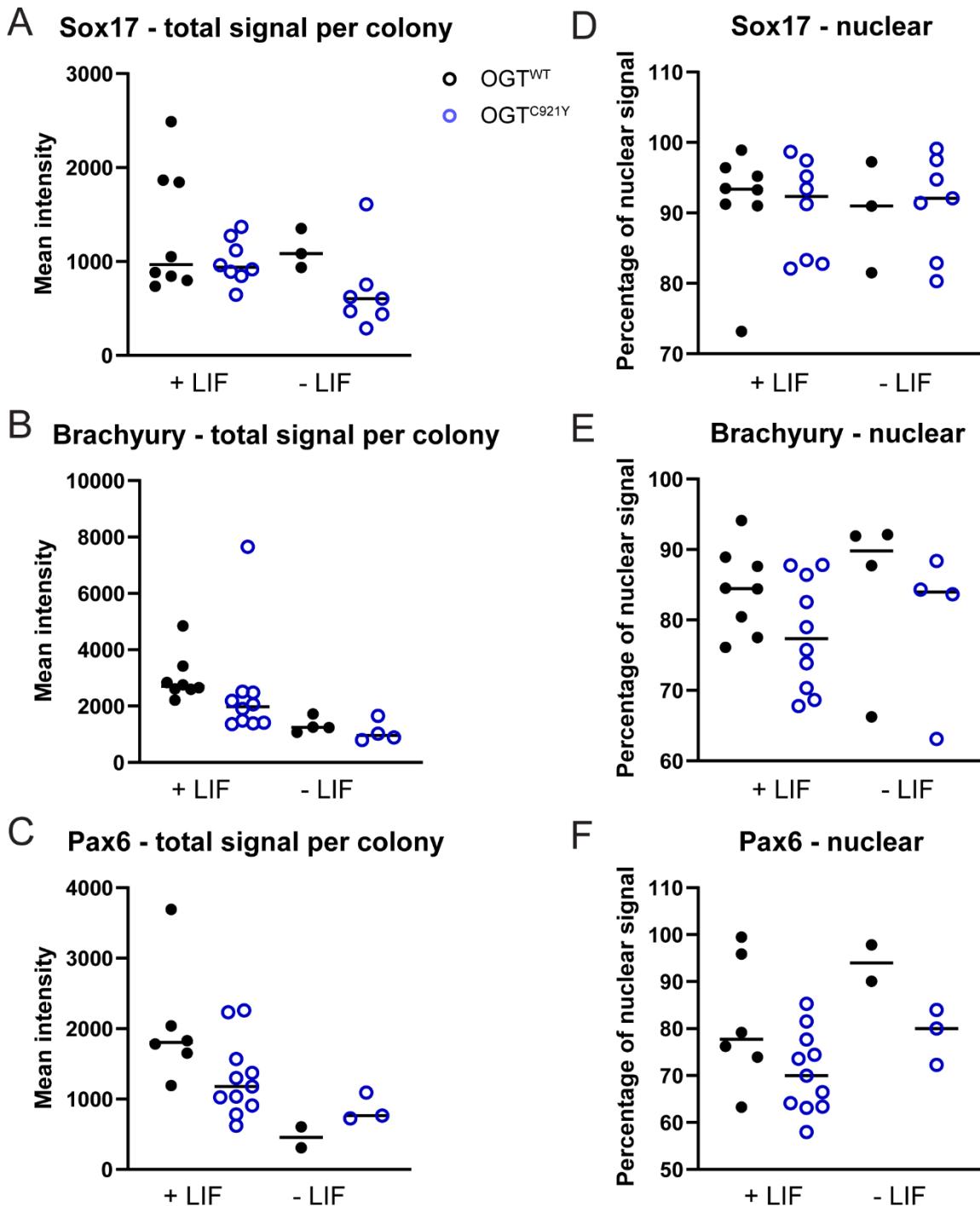

999
000

001 Immunoblot of HCF1 proteolytic fragments produced in a time course *in vitro* reaction using the
002 following human recombinant proteins: wild type (WT) and uncleavable (ED) HCF1 repeat 1
003 (HCF1rep1); OGT^{WT} and OGT^{C921Y}. HCF1 and OGT were detected in the green channel, O-GlcNAc
004 (RL2) was detected in the red channel.

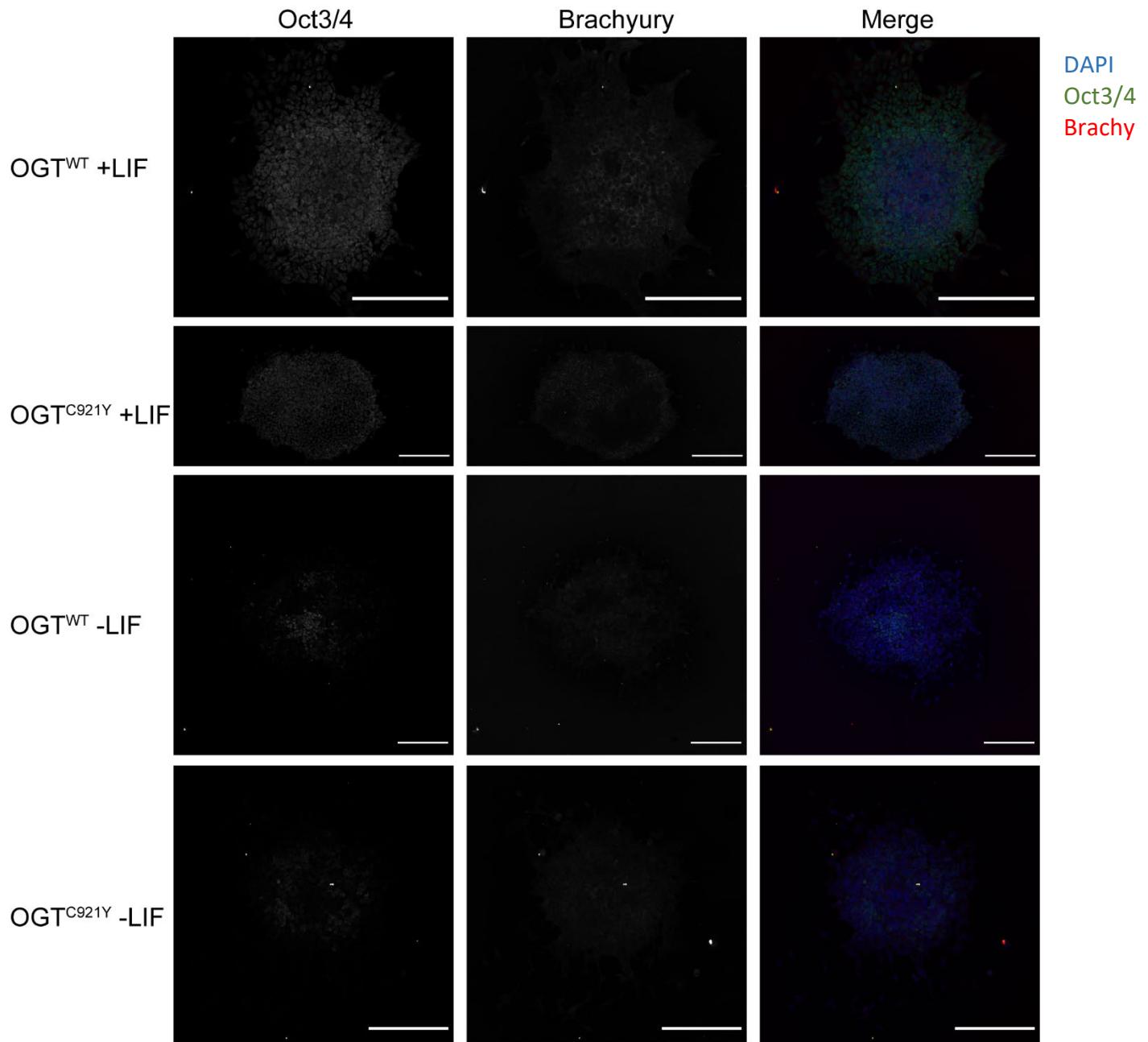
005
006
007
008
009
010
011
012


Supplementary figure S8: Colony scoring criteria. Images corresponding to the same section of a 6-well plate are shown. Image in the left represents colonies stained with ALP and the image on the right represents colonies stained with Coomassie. Compact colonies with strong ALP staining and no signs of differentiation were scored as undifferentiated (green rectangle), ALP positive colonies with signs of differentiation around the perimeter were scored as mixed (yellow rectangle) and dispersed colonies with no ALP signal were scored as differentiated (red rectangle).

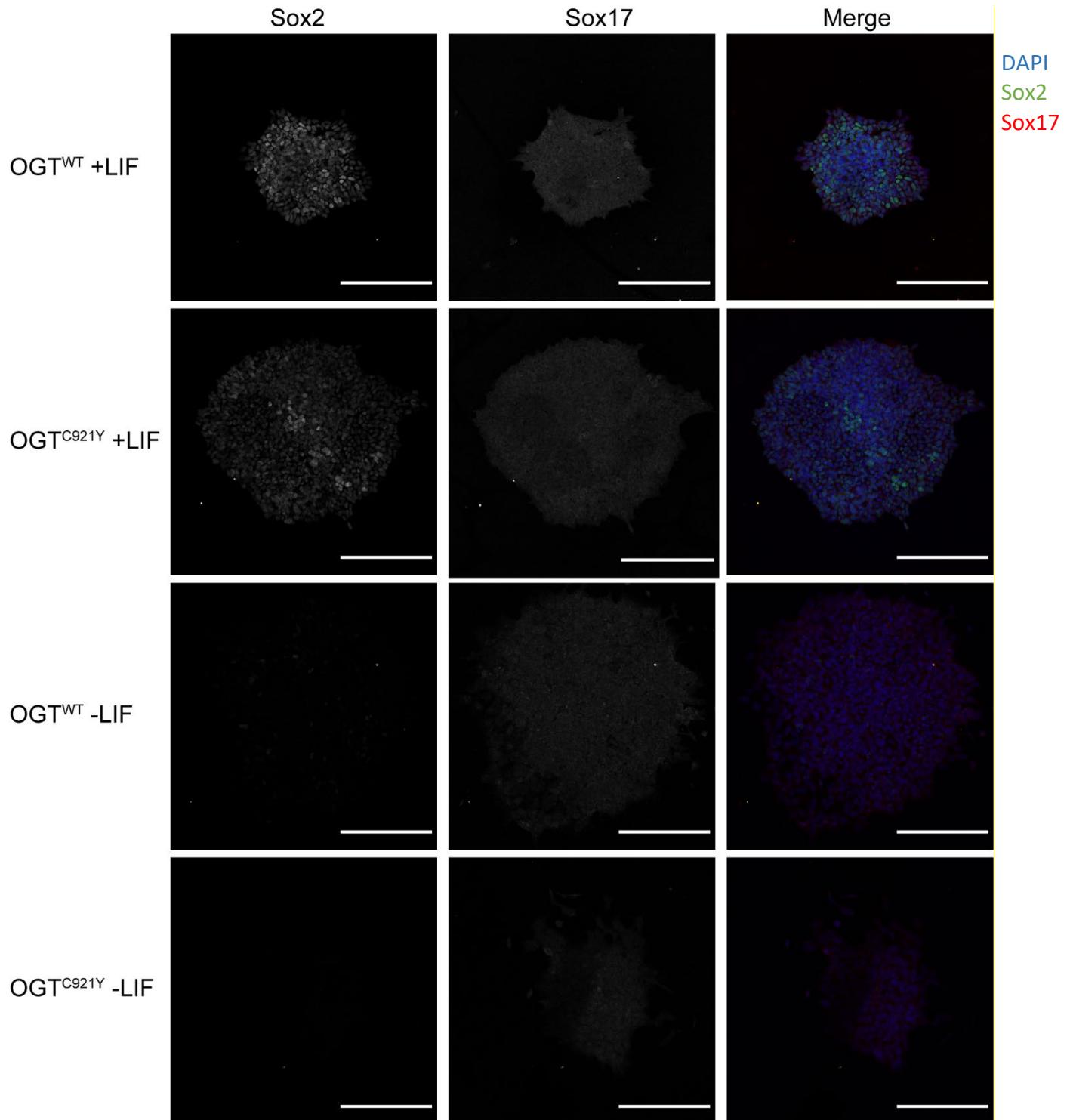
Supplementary figure S9: Number and size of OGT^{WT} and OGT^{C921Y} colonies.


(f) Total number of colonies produced by wild type or OGT^{C921Y} mESCs in any condition. Unpaired t test, n = 45 wells scored, $p < 0.0001$. Error bars represent standard deviation.

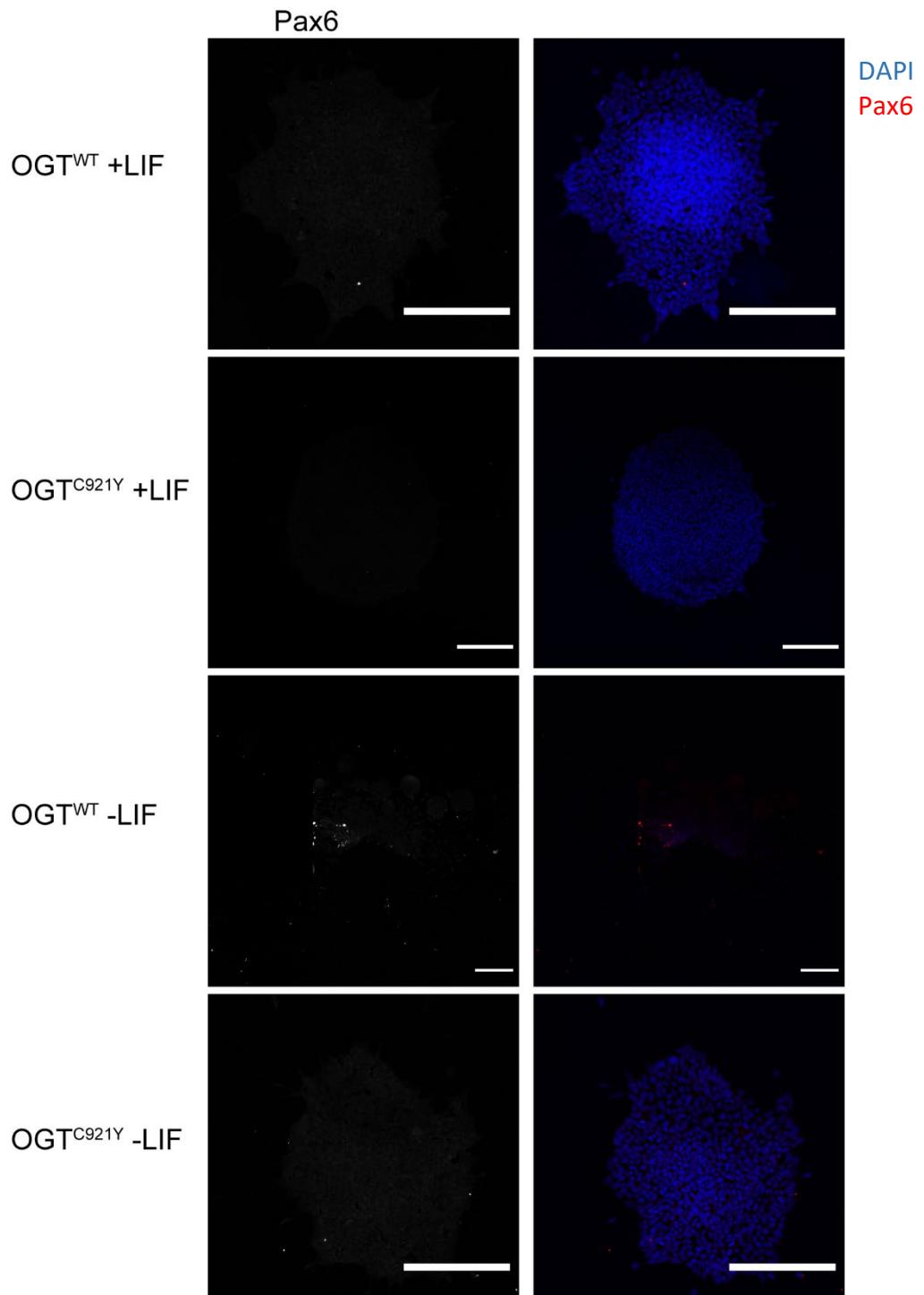
(g) Mean colony area with SEM measured by automated ImageJ macro based on scans of colonies stained with Coomassie. Unpaired t test, wild type n = 2270 measured colonies, OGT^{C921Y} n = 1533 measured colonies, $p < 0.0001$.


Supplementary figure S10: Oct3/4 and Sox2 levels in OGT^{WT} and OGT^{C921Y} colonies.

(A, B) Each data point represents the mean intensity per colony calculated as sum signal intensity divided by colony area. Oct3/4 +LIF OGT^{WT} versus OGT^{C921Y}, p value = 0.035 (One-way ANOVA followed by Sidak's multiple comparison test). Oct3/4 +LIF OGT^{WT} versus -LIF OGT^{C921Y}, p value = 0.006 (One-way ANOVA followed by Sidak's multiple comparison test). Sox2 +LIF OGT^{WT} versus OGT^{C921Y}, p value = 0.0001 (One-way ANOVA followed by Sidak's multiple comparison test). Sox2 +LIF OGT^{WT} versus -LIF OGT^{WT}, p value = 0.002 (One-way ANOVA followed by Sidak's multiple comparison test). (D – F) Each data point represents the percentage of nuclear signal calculated as sum nuclear signal divided by sum signal intensity. Two lines per genotype over two passages were used for this experiment. All the colonies present on a coverslip were imaged. One-way ANOVA showed no significant differences in nuclear signal between tested groups.


034
035 **Supplementary figure S11: Sox17, Brachyury and Pax6 levels in OGT^{WT} and OGT^{C921Y}**
036 **colonies.**

037 (A – C) Each data point represents the mean intensity per colony calculated as sum signal intensity
038 divided by colony area. (D – F) Each data point represents the percentage of nuclear signal
039 calculated as sum nuclear signal divided by sum signal intensity. Two lines per genotype over two
040 passages were used for this experiment. All the colonies present on a coverslip were imaged. One-
041 way ANOVA showed no significant differences between tested groups.
042



043
044
045
046

Supplementary figure S12: representative images of Oct3/4 and Brachyury staining in OGT^{WT} and OGT^{C921Y} colonies. Scale bar = 200 μ M.

047
048 **Supplementary figure S13: representative images of Sox2 and Sox17 staining in OGT^{WT} and**
049 **OGT^{C921Y} colonies. Scale bar = 200 μ M.**
050

051
052 **Supplementary figure S14: representative images of Pax6 staining in OGT^{WT} and OGT^{C921Y}**
053 **colonies. Scale bar = 200 μ M.**

055
056

Supplementary table 1: Sequences of custom-made reagents used for generation of OGT^{C921Y} mESC lines.

Guide RNA	M935_left_F	CACC G ctccgtacatgtcctcttt
Guide RNA	M935_left_R	AAAC aaagaggaggatgtcaggagC
Guide RNA	M935_right_F	CACC G ctggatactccttggtaa
Guide RNA	M935_right_R	AAAC ttacacaaaggaggatccag C
Genomic DNA	M935V6_fwd	aaaGGATCC acacaaaaacaacaactatacatgaagg
Genomic DNA	M935V6_rev	aaaGCGGCCGC ttctctgttaataaagccctaaatatc
Sequencing	M935seq	Ttggcaagctctgccaatag
Geneblock	M935 Wobble	ggagaacccaatattcaacaatatgcacaaaatatgggcctccccagaaccgt atcatttctcacctgtggctctaaGgaAgaAcaCgtcaggagaggtcagctg gctgatgtcgtcgtggatactccCtCtgCaatggacacaccacaggatgg CCgttctctggcaggaacacccatggtactatgccagg
Mutagenesis	C921Y_wobble_F	GAGGTCAGCTGGCTGATGTCTaCCTGGATACTCCCCCTC TGCAATGGACACACCACAGGGATGGatGTTCTCTGGGC AGGAACACC
Genotyping	M935_screen_F	atgtggtttagggactttgtgagctc
Genotyping	M935_screen_R	gagaggatggtgccaagtattcaggc
RT-PCR	mOGT_solid_ex11_fwd	ggaatatcccagaagcaatagcttctac
RT-PCR	mOGT_solid_end_rev	ggctgactcggtgacttcaacaggc
RT-PCR - sequencing	mOGT_ex18_seqF	tcctgatggagggtgacaatc

057

058

Supplementary table 2: Sequences of qPCR primers.

Primer	Sequence (5' -> 3')
<i>Actb</i> Forward	AGATCAAGATCATTGCTCCTCCT
<i>Actb</i> Reverse	ACGCAGCTCAGTAACAGTCC
<i>Gapdh</i> Forward	GGAGAGTGTTCCTCGTCCC
<i>Gapdh</i> Reverse	ACTGTGCCGTTGAATTTGCC
<i>18S</i> Forward	CTCAACACGGGAAACCTCAC
<i>18S</i> Reverse	CGCTCCACCAACTAAGAACG
<i>Ogt</i> Forward	CCCCCTGAGCCCTTCAAAAC
<i>Ogt</i> Reverse	TCGTTGGTTCTGTACTGTCGG
<i>Oga</i> Forward	TGCAGTGGTTAGGGTGTG
<i>Oga</i> Reverse	AGCAAACGCTGGAACCTCTCC
<i>HCFC1</i> Forward	GTGACCCAGGTGGTGCTAAA
<i>HCFC1</i> Reverse	TTGACAGCAGAGACGGTGAC
<i>Oct4</i> Forward	GGTGGAACCAACTCCCGAGG
<i>Oct4</i> Reverse	ACCTTCCAAAGAGAACGCC

059

Supplementary information 1: ImageJ colony analysis macro

```
061 OG = getTitle();
062 n = roiManager("count")
063 for (i=1; i<=n; i++) {
064     roiManager("Select", i-1);
065     run("Duplicate...", "duplicate");
066     run("Tiff...");
067     run("Clear Outside");
068     rename(i);
069     selectWindow(OG);}
070 for (i=1; i<=n; i++) {
071     selectWindow(i);
072     setAutoThreshold("MaxEntropy");
073     setOption("BlackBackground", true);
074     run("Convert to Mask");}
```

```
075     roiManager("reset");
076 for (i=1; i<=nImages-1;i++){
077     roiManager("reset")
078     selectWindow(i);
079     run("Analyze Particles...", "size=80-Infinity circularity=0.01-1.00 display exclude clear add");
080     saveAs("Results");}
081 while (nImages>0) {
082     selectImage(nImages);
083     close();}
084 roiManager("reset");
085 Supplementary information 2: ImageJ colony analysis macro
086 //Clears ROIs and results as well as sets measurement parameters (integrated means sum of
087 pixels)
088 run("Clear Results");
089 roiManager("reset");
090 run("Set Measurements...", "area mean standard min integrated display redirect=None
091 decimal=3");
092
093 //Dialog boxes to choose different thresholding approaches and number of channels in image
094 channel2 = false;
095 channel3 = false;
096 test_mode = false;
097 image_selection = false
098 manual_selection = true
099 ind_nuclei = true
100 //min_nuclear_size = 60
101 //max_nuclear_size = 100
102 //circularity = 0.3
103 threshold_types = newArray("Local", "Global");
104
105 global_thresholds = newArray("Default", "Huang", "Intermodes",
106 "Isodata", "IJ_IsoData", "Li", "MaxEntropy", "Mean", "MinEror",
107 "Minimum", "Moments", "Otsu", "Percentile", "RenyiEntropy",
108 "Shanbhag", "Triangle", "Yen");
109
110 local_thresholds = newArray("Phansalkar", "Otsu", "Berssen", "Contrast", "Mean", "Median",
111 "MidGrey", "Niblack", "Sauvola");
112
113 Dialog.create("Settings");
114 Dialog.addCheckbox("Select which images to include (otherwise all processed)",
115 image_selection);
116 Dialog.addCheckbox("Manually select region of interest", manual_selection);
117 Dialog.addMessage("Number of non-DAPI channels (default 1):");
118 Dialog.addCheckbox("2", channel2);
119 Dialog.addCheckbox("3", channel3);
120 Dialog.addChoice("Thresholding type", threshold_types);
121 Dialog.addString("Total result file name", "Results");
```

```
122 Dialog.show();  
123  
124  
125 image_selection = Dialog.getCheckbox();  
126 manual_selection = Dialog.getCheckbox();  
127 channel2= Dialog.getCheckbox();  
128 channel3 = Dialog.getCheckbox();  
129 threshold_types = Dialog.getChoice();  
130 output_filename = Dialog.getString();  
131  
132  
133 if (threshold_types == "Global"){  
134     Dialog.create("Thresholding");  
135     Dialog.addMessage("Thresholding method:");  
136     Dialog.addChoice("Thresholding method", global_thresholds);  
137     Dialog.show();  
138     threshold_method = Dialog.getChoice();  
139 }  
140  
141 if (threshold_types == "Local"){  
142     Dialog.create("Thresholding");  
143     Dialog.addMessage("Thresholding method (only select try all in test mode):");  
144     Dialog.addChoice("Thresholding method", local_thresholds);  
145     Dialog.show();  
146     threshold_method = Dialog.getChoice();  
147 }  
148  
149 File.setDefaultDir(getDirectory("Choose Folder This is in"))  
150  
151 //Establishes folders to take images from and place masks in  
152 input = File.getDefaultDir + "\\RAW_Input\\";  
153 output = File.getDefaultDir;  
154 output_masks = File.getDefaultDir + "\\Masks\\";  
155  
156 //conditional to either show or hide analysis  
157 if (test_mode == true){  
158     setBatchMode(false);  
159 }  
160 else {  
161     setBatchMode(true);  
162 }  
163  
164 //Makes result file (.csv)  
165 var resultFileLine;  
166  
167 resultFileLineMod("init", "FileName", true);  
168
```

```
169 resultFileLineMod("append", "Nuclear Area", true);
170 resultFileLineMod("append", "Nuclear Mean Signal C1", true);
171 resultFileLineMod("append", "Nuclear StDev Signal C1", true);
172 resultFileLineMod("append", "Nuclear Sum Intensity C1", true);
173 resultFileLineMod("append", "Non-Nuclear C1 Area", true);
174 resultFileLineMod("append", "Non-Nuclear C1 Mean Signal", true);
175 resultFileLineMod("append", "Non-Nuclear StDev Signal C1", true);
176 resultFileLineMod("append", "Non-Nuclear C1 Sum Intensity", true);
177
178 if (channel2 == true){
179     resultFileLineMod("append", "Nuclear Mean Signal C2", true);
180     resultFileLineMod("append", "Nuclear StDev Signal C2", true);
181     resultFileLineMod("append", "Nuclear Sum Intensity C2", true);
182     resultFileLineMod("append", "Non-Nuclear C2 Area", true);
183     resultFileLineMod("append", "Non-Nuclear C2 Mean Signal", true);
184     resultFileLineMod("append", "Non-Nuclear StDev Signal C2", true);
185     resultFileLineMod("append", "Non-Nuclear C2 Sum Intensity", true);
186 }
187
188 if (channel3 == true){
189     resultFileLineMod("append", "Nuclear Mean Signal C3", true);
190     resultFileLineMod("append", "Nuclear StDev Signal C3", true);
191     resultFileLineMod("append", "Nuclear Sum Intensity C3", true);
192     resultFileLineMod("append", "Non-Nuclear C3 Area", true);
193     resultFileLineMod("append", "Non-Nuclear C3 Mean Signal", true);
194     resultFileLineMod("append", "Non-Nuclear StDev Signal C3", true);
195     resultFileLineMod("append", "Non-Nuclear C3 Sum Intensity", true);
196 }
197
198 resultFileLineMod("writeFile", output + output_filename + ".csv", false);
199
200 //function for making and writing to result file
201 function resultFileLineMod(command, parameter, addSeparator){
202     resultFileSeparator=", ";
203     if (command=="init"){
204         resultFileLine="" + parameter;
205         if (addSeparator) {
206             resultFileLine=resultFileLine + "" + resultFileSeparator; } }
207     else if (command=="append") {
208         resultFileLine=resultFileLine + "" + parameter;
209         if (addSeparator) {
210             resultFileLine=resultFileLine + "" + resultFileSeparator; } }
211     else if (command=="report") {
212         print(resultFileLine); }
213     else if (command=="writeFile") {
214         File.append(resultFileLine, parameter); }
215 }
```

```
216
217 //function to saves images (in this context overlay of ROI)
218 function make_overlay(image, selection_index){
219     selectImage(image);
220     //name = getTitle();
221     roiManager("deselect");
222     roiManager("select", selection_index);
223     roiManager("draw");
224     return image
225     //saveAs("Tiff", output_masks + substring(name, 0, lengthOf(name)-5) + s);
226 }
227
228 function title_from_ID(imageID){
229     selectImage(imageID);
230     return getTitle();
231 }
232
233 function select_ROI(){
234     setBatchMode(false);
235     waitForUser("Select region of interest");
236     roiManager("add");
237     roiManager("select", 0);
238     run("Crop");
239     run("Clear Outside");
240     roiManager("reset");
241     resetMinAndMax();
242     if (test_mode == false){
243         setBatchMode(true);
244     }
245 }
246
247 function export_overlay(){
248     overlay_DAPI = title_from_ID(overlay_DAPI_ID);
249     overlay_C2 = title_from_ID(overlay_C2_ID);
250     if (channel3 == true){
251         overlay_C3 = title_from_ID(overlay_C3_ID);
252         overlay_C4 = title_from_ID(overlay_C4_ID);
253         run("Merge Channels...", "c1=[+overlay_DAPI+] c2=[+overlay_C2+]")
254         c3=[+overlay_C3+] c4=[+overlay_C4+] create");
255         saveAs("Tiff", output_masks + Original + s);
256     }
257     else if (channel2 == true){
258         overlay_C3 = title_from_ID(overlay_C3_ID);
259         run("Merge Channels...", "c1=[+overlay_DAPI+] c2=[+overlay_C2+]")
260         c3=[+overlay_C3+] create");
261         saveAs("Tiff", output_masks + Original + s);
262     }
}
```

```
263 else{
264     run("Merge Channels...", "c1=[\"+overlay_DAPI+] c2=[\"+overlay_C2+] create");
265     saveAs("Tiff", output_masks + Original + s);
266 }
267 }
268
269 //Segmentation of nuclei, global threshold approach not optimised, Phansalkar local best
270 function nuclear_mask(DAPI){
271     selectImage(DAPI);
272     run("Duplicate...", " ");
273     //Raw image for mask output
274     for_export = getImageID();
275     if (threshold_types == "Local"){
276         selectImage(DAPI);
277         //blur to reduce effect of uneven nuclear staining
278         run("Median...", "radius=1.5");
279         run("Duplicate...", " ");
280         pDAPI = getImageID();
281         selectImage(DAPI);
282         setAutoThreshold("MinError dark");
283         setOption("BlackBackground", false);
284         run("Convert to Mask");
285         run("Create Selection");
286         roiManager("add");
287         selectImage(pDAPI);
288         //stretches histogram across total range of possible pixel values
289         run("Enhance Contrast...", "saturated=0 equalize");
290         run("Duplicate...", " ");
291         roiManager("select", 0)
292         run("Clear Outside");
293         run("Select None");
294         roiManager("reset");
295         run("Duplicate...", " ");
296         temp_threshold = getImageID();
297         setAutoThreshold("Otsu dark no-reset");
298         //run("Threshold...");
299         setOption("BlackBackground", false);
300         run("Convert to Mask");
301         run("Create Selection");
302         roiManager("add");
303         if (test_mode == true){
304             waitForUser("debug");
305         }
306         close();
307         selectImage(pDAPI);
308         roiManager("select", 0);
309         run("Clear Outside");
```

```
310
311     roiManager("reset");
312     run("Select None");
313     run("8-bit");
314     run("Auto Local Threshold", "method="+threshold_method+" radius=15
315 parameter_1=0 parameter_2=0 white");
316     if (test_mode == true){
317         waitForUser("debug");
318     }
319     run("Invert");
320     run("Erode");
321     run("Erode");
322     run("Dilate");
323     run("Dilate");
324     //run("Watershed");
325     if (test_mode == true){
326         waitForUser("debug");
327     }
328     run("Create Selection");
329     roiManager("add");
330     close();
331     close();
332 }
333 else {
334     selectWindow(DAPI);
335     setAutoThreshold(""+threshold_method+" white");
336     //run("Threshold...");
337     setOption("BlackBackground", false);
338     run("Convert to Mask");
339     run("Dilate");
340     run("Dilate");
341     run("Erode");
342     run("Erode");
343     run("Invert");
344     run("Create Selection");
345 }
346 if (test_mode == true){
347     waitForUser("debug");
348 }
349 return make_overlay(for_export, 0);
350 if (test_mode == true){
351     waitForUser("debug");
352 }
353 //makes conservative i.e. maximal mask of given channel and adds as ROI
354 function channel_masks(channel){
355     selectImage(channel);
```

```
357 run("Select None");
358 run("Duplicate...", "duplicate");
359 mask_image = getImageID();
360 selectImage(mask_image);
361 setAutoThreshold("MinError dark");
362 //run("Threshold...");
363 setOption("BlackBackground", false);
364 run("Convert to Mask");
365 run("Erode");
366 run("Erode");
367 run("Erode");
368 run("Dilate");
369 run("Dilate");
370 run("Dilate");
371 run("Create Selection");
372 roiManager("Add");
373 close();
374 }
375
376 function measure_parameters(channel){
377     //duplicate nuclear roi as roiManager("combine") replaces instead of adding
378     roiManager("select", 0)
379     roiManager("Add")
380     channel_masks(channel);
381     selectImage(channel);
382     nuclear_and_TFs = newArray(1,2);
383     //Make a new ROI representing DAPI signal AND CX signal (i.e. cytoplasm and nuclear
384     signal in one ROI from nuclear and C1 signal)
385     roiManager("select", nuclear_and_TFs);
386     roiManager("Combine");
387     //Make a new ROI representing non-nuclear CX signal (i.e. cytoplasm CX from exclusive
388     OR of nuclear and CX+nuclear signal)
389     //Total signal now has index 1, rest same (i.e. original nuclear at 0, channel at 2)
390     nuclear_and_total = newArray(0, 1);
391     roiManager("select", nuclear_and_total);
392     roiManager("XOR");
393     roiManager("Add");
394     roiManager("show all without labels");
395     //result of XOR at index 3 i.e. inferred cytoplasm
396     nuclear_and_cytoplasmic = newArray(0,3);
397     roiManager("select", nuclear_and_cytoplasmic);
398     selectImage(channel);
399     roiManager("Measure");
400     //as only relevant ROI selected, index of cytoplasm results is 1
401     if (test_mode == true){
402         waitForUser("debug");
403     }
```

```
404     resultFileLineMod("append", getResult("Mean", 0), true);
405     resultFileLineMod("append", getResult("StdDev", 0), true);
406     resultFileLineMod("append", getResult("IntDen", 0), true);
407     resultFileLineMod("append", getResult("Area", 1), true);
408     resultFileLineMod("append", getResult("Mean", 1), true);
409     resultFileLineMod("append", getResult("StdDev", 1), true);
410     resultFileLineMod("append", getResult("IntDen", 1), true);
411     run("Clear Results");
412     overlay = make_overlay(channel, 3);
413     roiManager("select", newArray(1,2,3));
414     roiManager("delete");
415     return overlay
416
417 }
418 //function which ties analysis together
419 function nuclear_vs_non(){
420     Original = getTitle();
421     Original_ID = getImageID();
422     run("Duplicate...", "duplicate");
423     Duplicate = getTitle();
424     run("Split Channels");
425     selectWindow("C1-" + Duplicate);
426     DAPI = getImageID();
427     selectWindow("C2-" + Duplicate);
428     pC2 = getImageID();
429     if (channel2 == true){
430         selectWindow("C3-" + Duplicate);
431         pC3 = getImageID();
432     }
433     if (channel3 == true){
434         selectWindow("C4-" + Duplicate);
435         pC4 = getImageID();
436     }
437
438     resultFileLineMod("init", Original, true);
439     overlay_DAPI_ID = nuclear_mask(DAPI);
440     //measures nuclear area    roiManager("Measure");
441
442     roiManager("Measure");
443     resultFileLineMod("append", getResult("Area", 0), true);
444     run("Clear Results");
445     run("Select None");
446     overlay_C2_ID = measure_parameters(pC2);
447
448     if (channel2 == true){
449         overlay_C3_ID = measure_parameters(pC3);
```

```
451 }
452
453     if (channel3 == true){
454         overlay_C4_ID = measure_parameters(pC4);
455     }
456     export_overlay();
457     print("Analysis Complete: " + Original + s);
458 }
459
460
461 function keep_image(){
462     setBatchMode(false);
463     keep_image_bool = getBoolean("Keep image?");
464     if (test_mode == false){
465         setBatchMode(true);
466     }
467     if(keep_image_bool == true){
468         if (manual_selection == true){
469             select_ROI();
470         }
471         return true;
472     }
473     else{
474         return false;
475     }
476 }
477
478 function bio_formats_open(in_dir, out_dir, filename){
479     run("Bio-Formats Macro Extensions");
480     seriesToOpen = newArray;
481     sIdx = 0;
482     path = in_dir+filename;
483     print(path);
484     Ext.setId(path);
485     Ext.getSeriesCount(seriesCount);
486     for(s = 1; s <= seriesCount; s++){
487         run("Bio-Formats Importer", "open=[" + path + "] autoscale color_mode=Composite
488 rois_import=[ROI manager] view=Hyperstack stack_order=XYCZT series_" +s + "]");
489         if (image_selection == true){
490             if (keep_image() == true){
491                 nuclear_vs_non();
492             }
493             else{
494                 close();
495             }
496         }
497     }
498 }
```

```
498     if (manual_selection == true){
499         select_ROI();
500     }
501     nuclear_vs_non();
502 }
503 run("Close All");
504 resultFileLineMod("writeFile", output + output_filename + ".csv", false);
505 roiManager("reset")
506 }
507 }
508
509 list = getFileList(input);
510
511 for (i = 0; i < list.length; i++){
512     if (test_mode == false){
513         setBatchMode(true);
514     }
515     bio_formats_open(input, output, list[i]);
516 }
517
518 setBatchMode(false);
519
```