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Abstract 
Although thousands of genomic regions have been associated with heritable human diseases, attempts to 
elucidate biological mechanisms are impeded by a general inability to discern which genomic positions are 
functionally important. Evolutionary constraint is a powerful predictor of function that is agnostic to cell 
type or disease mechanism. Here, single base phyloP scores from the whole genome alignment of 240 
placental mammals identified 3.5% of the human genome as significantly constrained, and likely functional. 
We compared these scores to large-scale genome annotation, genome-wide association studies (GWAS), 
copy number variation, clinical genetics findings, and cancer data sets. Evolutionarily constrained positions 
are enriched for variants explaining common disease heritability (more than any other functional 
annotation). Our results improve variant annotation but also highlight that the regulatory landscape of the 
human genome still needs to be further explored and linked to disease. 

Introduction 
In the past 15 years, increasingly larger genomic studies have delivered many novel associations for a wide 
array of human diseases, disorders, biomarkers, and other traits. Approximately 200K genetic associations 
have been identified that span the allelic spectrum, from ultra-rare variants in large sequencing datasets to 
variants common in all humans, in both coding and regulatory regions (see Supplementary Methods, Section 
1). Although these associations meet rigorous standards for statistical significance and replicability, their 
functional importance is generally unknown. Inferring functional importance is crucial to translating the 
results of rare and common variant association studies into the biological, clinical, and therapeutic 
knowledge required to understand and treat human disease. Exceptional efforts have been made to annotate 
the human genome using functional genomics—e.g., ENCODE (1) and GTEx (2)—as well as inferring 
deleterious effects from allele frequencies and location in coding sequence—e.g., gnomAD (3) and 
TOPMed (4). Although these seminal projects greatly expanded knowledge, this “central problem in 
biology” is unresolved and motivated the NHGRI Impact of Genomic Variation on Function initiative.  

Evolutionary constraint is complementary to these efforts. Functional importance is inferred from the 
signatures of evolution in the human genome: “constraint” indicates genomic positions that have changed 
more slowly than expected under neutral drift due to purifying selection. A key advantage of constraint lies 
in its mechanistic agnosticism; a highly constrained base has an impact on some biological process, in some 
cell, at some life stage (discussed in Supplementary Methods, Section 2). Constraint has been used in efforts 
to understand the human genome for over 50 years beginning with cross-species protein sequence 
comparisons. More recently, at the extremes of the allelic spectrum, constraint is often used by clinical 
geneticists to prioritize potentially causal rare variants (5, 6), and common variants in regions under 
constraint are highly enriched in genome-wide association study (GWAS) results (7–9). Despite its reported 
importance, evolutionary constraint is not systematically leveraged in interpreting the function of GWAS 
loci (10–15). 

Our companion paper describes the Zoonomia reference-free alignment of 240 placental mammals 
spanning ~100 million years of evolution (Companion paper #1, Christmas et al.). The analyses showed 
the unprecedented informativeness of this alignment at multiple scales: from exceptionally constrained 100 
kb bins (e.g., all HOX clusters) to smaller ultra-conserved and human accelerated regions, non-coding 
regulatory regions, nuances of the genetic code, and specific base positions in binding motifs. These results 
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strongly suggested the utility of constraint as a functional annotation that can be leveraged to deepen our 
understanding of heritable human diseases. In this paper, we demonstrate the importance of mammalian 
constraint for connecting genotype to phenotype for human disease.  

The properties of evolutionary constraint at single base resolution 
Defining constraint. Placental mammalian constraint was estimated using phyloP scores (16) across 240 
species for 2,852,623,265 bases in the human genome (chr1-22, X, Y; Supplementary Methods, Section 3). 
In our companion paper we estimated that ~13% of the human genome is under some degree of constraint 
due to purifying selection; for these disease-focused analyses, we used an empirical subset with the 
strongest constraint signatures. We defined a base as constrained in mammals if its phyloP score was ≥ 2.27 
(FDR 0.05 threshold, 100,651,377 bases or 3.53% of the genome). We defined constraint across 43 primates 
using a phastCons (17) threshold (≥ 0.961, 101,134,907 bases) selected to match the same fraction of the 
genome annotated as constrained in mammals. Mammalian and primate constraint overlapped significantly 
but not fully (Jaccard index 0.30). In Supplementary Methods, Section 4, we describe the properties of 
constrained genomic positions, from base level to higher order annotations. Briefly, we found that 
mammalian constrained bases had a marked tendency to cluster (median distance 2 bases) compared to 
random expectations (median 24 bases), and that specific genomic elements were highly enriched in 
constrained bases (particularly coding sequence, CDS, as expected) as well as multiple regulatory features 
(Figs. 1A and S1), and that constraint scores captured nuances of the genetic code (fig. S2).  

 
Fig. 1. (A) Evolutionary constraint in multiple genomic partitions. X-axis=fraction of the genome occupied by a partition, Y-
axis=fraction of partition under constraint in placental mammals (orange circles) and primates (blue triangles), grey line is the 
genome mean (0.035). The greatest constraint is found in CDS and key regulatory regions (5’UTR, ENCODE promoter-like 
elements, and 3’UTR). This figure is a subset of fig. S1 which shows more biotypes, protein-coding gene parts, and regulatory 
regions. (B) Whisker plots of constraint in variants from TOPMed WGS, stratified by CDS (red, 6.14 million biallelic SNPs) and 
non-CDS variants (orange, 549.64 million biallelic SNPs). X=six allele count (AC) bins, from singletons (AC=1, 44.8%) to common 
variants (allele frequency, AF ≥ 0.005, 1.4%). (C) PhyloP score density for ClinVar benign (N=231,642), ClinVar pathogenic 
(N=73,885), and gnomAD WGS variant positions with CADD ≥ 20 (N=3,958,488). 

Constraint across the allelic spectrum. Genetic variation is fundamental to heritable human diseases, 
disorders, and other traits. We thus evaluated the relationship between allele frequency and constraint (Fig. 
1B). Using whole genome sequencing data from over 140K humans (TOPMed, v8) (4), we observed an 
inverse correlation between allele count and phyloP score (rho = -0.07) with stronger correlations in CDS 
regions and for non-synonymous variants (rho = -0.12 and -0.18, all P < 2.2x10-308). As expected due to 
negative selection, common genetic variants were depleted for constrained bases (1.85% vs. 3.53% 
expected by chance, P < 2.2x10-308). However, this relatively high fraction of constrained bases highlights 
the ability of mammalian constraint to predict deleterious effects across the allele frequency spectrum. To 
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evaluate these relations more formally, genome-wide models contrasting singletons (AC = 1) to common 
variants (AF ≥ 0.005) found that common variants had lower phyloP scores and a marked increase in CG 
context (fig. S3, Supplementary Methods, Section 4). Models for CDS SNPs found an inverse association 
of AC with constraint, and that common SNPs had greater odds of occurring at a C or G base, and tend not 
to occur in important CDS positions (e.g., codon position 1 or 2, or at bases that could mutate to stop). 

Common constrained SNPs are relevant for human diseases. We conducted additional analyses of 
common SNPs (AF ≥  0.005) as these variants are foundational for GWAS (Supplementary Methods, 
Section 4). Of these 15,777,878 SNPs in TOPMed, 1.85% (N = 291,669) are constrained, far less than 
genome-wide constraint (3.53%). Our modeling showed that constrained SNPs were 22x more likely to 
occur in CDS bases, 3x more likely to occur in promoters, and ~2x more likely to be a “fine-mapped” 
eQTL-SNP or to occur in open chromatin or an enhancer.  

The strong tendency of these constrained SNPs to occur in CDS was unexpected given that (by definition) 
these positions are highly constrained in placental mammals and yet variable in humans. We hypothesized 
that this could occur if selection effects were variable across genes (some generate peptide variability 
whereas others are highly intolerant of CDS variation). We found that 37.8% of protein-coding (PC) genes 
had no constrained CDS SNPs and other genes had appreciable fractions (up to 10% of all CDS bases are 
common SNPs). The top 5% (N = 980) of genes with the most constrained CDS SNPs have medical 
relevance (131 have an OMIM entry including multiple neurological disorders) and were strongly enriched 
for G-protein coupled receptors (GPCR), “druggable” genes (both GPCR and non-GPCR) (18), taste 
receptors, skin development, and multiple immune processes. These biological processes are at the interface 
of a mammal and its environment and allow adaptation to an environmental niche. We suggest that many 
of these genes could be prioritized for gene-environment interactions searches as constrained variants 
reaching high frequency in human populations are relevant for human diseases.  

Base pair resolution of deleterious effects. We contrasted constraint scores to metrics used to aid the 
interpretation of functional variation for human health. First, pathogenic ClinVar (19) variants were 
significantly skewed to higher phyloP in comparison to benign variants (two-tailed Wilcoxon rank sum test, 
P < 2.2x10-16, Fig. 1C), and phyloP scores were strongly associated with the improvement in annotations of 
variants in ClinVar from 2016 to 2021 (e.g. uncertain to benign or to pathogenic; Supplementary Methods, 
Section 5). For a second metric, CADD (6), which incorporates evolutionary constraint, we found variant 
positions with a higher likelihood of deleteriousness were also enriched for constrained phyloP scores (two-
tailed Wilcoxon rank sum test, P < 2.2x10-16, Fig. 1C). A focused analysis of human non-synonymous 
variants at constrained sites across the mammalian tree using TOGA (Tool to infer Orthologs from Genome 
Alignments, Companion paper #1, Christmas et al.; Companion paper #10, Kirilenko et al), identified 
1,570 genes for which a non-synonymous change resulted in a ClinVar pathogenic or likely pathogenic 
phenotype in humans (Supplementary Methods, Section 5). For example, the CFTR gene underlying cystic 
fibrosis (20) showed a high burden of pathogenic compared to benign sites (123 vs. 1 out of 1,585 alignment 
sites). A further 12,889 genes had identifiable constrained sites, but lacked records of non-synonymous 
pathogenic alterations (Supplementary Methods, Section 5). Several of these constrained positions, 
currently lacking ClinVar pathogenic annotations, likely represent novel sources of deleterious variation 
resulting in a disease state. We tested this by leveraging functionally explored variation in two G-protein 
coupled receptors, GPR75 (21) and ADRB2 (22), and showed that functionally important SNP or amino 
acid sites respectively, were marked by higher constraint scores (Supplementary Methods, Section 5). 
Species alignments at this scale also allow for the identification of potential model systems, those for which 
a substitution may result in a human disease state, but is otherwise naturally occurring in non-human 
mammals. We found 697 such sites across 330 genes, including multiple positions in SOD1 (pathogenic 
sites for amyotrophic lateral sclerosis). These observations open the avenue for natural adaptive variants to 
inform the development of new therapies for treatment (Supplementary Methods, Section 5).  
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Fig. 2. SNP-heritability analyses of variants at constrained positions in human complex traits and diseases. (A) Heritability 
enrichment of common SNPs in the top percentiles of constraint scores in placental mammals (phyloP) and primates (phastCons). 
(B) Heritability enrichment as a function of the distance to a constrained base. (C) Heritability enrichment of constrained 
annotations in 11 blood and immune traits and 9 brain diseases (light color) versus other types of traits (dark color). Asterisks 
indicate significance at P < 0.05 and double Asterisks indicate significance at P < 0.05 after Bonferroni correction (0.05/4). (D) 
Heritability enrichment of constrained and functional annotations (left), and corresponding significance of the conditional effect 
while considered in a joint model with 106 annotations (right). (E) Heritability enrichment of constrained annotations intersected 
together and stratified by their genomic function. The dashed grey line represents heritability enrichment in coding regions (plotted 
for comparison purposes). (F) Squared trans-ancestry genetic correlation enrichment (left) with corresponding significance (right) 
for 7 annotations with significant depletion of squared trans-ancestry genetic correlations. (G) Standardized squared effect sizes 
as a function of allele frequency. Results are meta-analyzed across 63 independent GWAS (A, B, C, E), 31 independent traits with 
GWAS available in European and Japanese populations (F), and 27 independent UK Biobank traits (G). Dashed red lines represent 
a null enrichment of 1 (A-E) and a null squared trans-ancestry genetic correlation (f). Error bars are 95% confidence intervals. 
Numerical results are reported in tables S2, S3, S4, S6, S7, S8, and S11. 
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Common variation and human diseases and complex traits  
GWAS have found that the genetic architecture of human diseases and complex traits is highly polygenic 
and dominated by common variants with weak effects (10). Here, we dissected the impact of common 
variants (defined in this section as AF ≥ 0.05) on this architecture via polygenic analyses of disease SNP-
heritability (h2) using stratified LD score regression (S-LDSC) (7, 23, 24) using the results of 63 independent 
European ancestry GWAS (25) (mean N = 314K; table S1, Supplemental Methods, Section 6).  

Constraint scores are proportional to common variant SNP-heritability enrichments. We first 
validated the relevance of our constraint scores to investigate the role of common variants in human diseases 
and complex traits. We found that common variants in the highest constraint score percentiles had greater 
enrichment for GWAS trait associated variants (measured by SNP-h2 enrichment, the proportion of h2 
divided by the proportion of SNPs; Fig. 2A and table S2). We observed decreasing but significant 
enrichments (P < 0.05/15) for SNPs in the four first percentiles of mammalian constraint scores (phyloP) 
(in line with 3.53% of the genome bases being considered as constrained using a 5% FDR threshold), and 
in the first five percentiles of primate (phastCons) constraint scores. We justified the use of different scores 
to measure constraint in mammals and primates by the fact that phyloP scores were unable to detect single-
base constraint in primates due to lack of power and were too noisy to lead to significant h2 enrichment (fig. 
S4). While both phyloP and phastCons scores performed similarly in heritability analyses, phyloP is 
superior for having single-base resolution (fig. S4 and additional justification in Supplemental Methods, 
Section 6).  

Mammal constraint scores are base pair specific. We evaluated the resolution of constraint scores by 
estimating SNP-h2 with different distances to a constrained base. First, we confirmed the base pair resolution 
of mammalian constraint scores by observing that SNPs ~1 bp from a constrained variant were significantly 
less enriched than constrained SNPs (P ≤ 3.35x10-3) (Fig. 2B and table S3). We also observed log-linear 
decrease of h2 enrichment as a function of the distance to a constrained base, with significant h2 enrichment 
up to 100 kb from constrained bases, confirming the larger-scale clustering of constrained bases. Finally, 
demonstrating the power of a broad placental mammal-wide genome sampling, constraint scores obtained 
only from primate species have lower resolution (~10 bp, Fig. 2B) as these are based on fewer species (43), 
from a single mammalian order, and thus less branch length.  

Zoonomia constraint is uniquely informative. Annotations derived from mammal and primate 
constrained positions were more informative for human diseases than key functional annotations, including 
previously published constrained annotations (17, 26, 27) (Fig. 2D and table S4). First, their degrees of 
enrichment (7.84 ± 0.37 fold for mammals and 11.10 ± 0.40 fold for primates) exceeded those of previously 
published constraint and key functional annotations, such as non-synonymous coding variants (7.20 ± 0.78 
fold) or fine-mapped eQTL-SNPs (4.81 ± 0.31 fold) (28). Second, in conditional analyses involving 106 
annotations analyzed jointly (Supplemental Methods, Section 6), we observed that these constrained 
annotations were among the most significant (P = 1.17x10-10 for mammals, and P = 1.19x10-53 for primates, 
respectively), and more significant than previously published constrained annotations (Fig. 2D and table 
S4).  

Variants at constrained positions are less enriched in blood and immune traits heritability than in 
other complex traits. We did not observe disease-specific patterns for our constrained annotations, without 
any trait exhibiting significantly higher h2 enrichment than the mean calculated for the mammal and primate 
constrained annotations (fig. S5 and table S5). However, we observed consistently lower h2 enrichments for 
constrained annotations in a meta-analysis of 11 blood and immune traits, as previously observed (7), but 
no differential enrichment in 9 brain disorders (Fig. 2C, table S1, and table S6).  
Variants at positions constrained in primates are informative for non-coding common variants. 
Surprisingly, SNPs constrained in primates have greater SNP-h2 enrichment than SNPs constrained in 
mammals (Figs. 2A-C). To investigate, we intersected mammalian and primate constraint information, and 
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observed significantly higher h2 enrichment in SNPs constrained in both mammals and primates (16.52 ± 
0.73 fold), compared with constraint only in primates (8.66 ± 0.38 fold), or only in mammals (3.56 ± 0.40 
fold) (Fig. 2E and table S7). We verified that these results are mostly driven by the intersection of mammal 
and primate constrained bases (and not due to the different scoring tests, fig. S6). By stratifying constrained 
mammalian bases by their primate constraint scores, we found that variants identified as constrained in 
mammals but not in primates are not significantly enriched in h2, whereas SNPs constrained in primates 
were significantly enriched regardless of their constraint scores in mammals (fig. S7). These results explain 
the lower SNP-h2 for constraint in mammals, and demonstrate increased informativeness when combining 
information from primates and mammals. Interestingly, we observed consistently higher h2 enrichment for 
SNPs that are constrained in both mammals and primates when stratifying by genomic function (i.e., coding 
regions, promoters, and enhancers), but that constraint is more informative in primates than in mammals 
only for non-coding variants (Fig. 2E). Strikingly, we observed that constrained SNPs defined as non-
functional (see Supplemental Methods, Section 6) were still enriched in h2 (>2.67 fold with P < 1.22x10-4, 
except for SNPs constrained only in mammals or primates; Fig. 2E), emphasizing the informativeness of 
our constrained annotations to annotate non-coding variants with unknown function. 
Disease effect sizes of common variants at constrained positions differ across human populations. 
While our heritability analyses focused on European ancestry GWAS, variant effect sizes differ across 
human populations, especially for variants with stronger gene-environment interactions (29). To quantify 
how effect sizes of constrained common variants differ across populations, we applied S-LDXR (29) on 31 
diseases and complex traits with GWAS data from East Asian (mean N = 90K) and European (mean N = 
267K) populations. Variants at constrained sites in mammals and primates were among the most 
significantly depleted in squared trans-ancestry genetic correlation (P = 4.38x10-9 and P = 1.63x10-14, the 
third and most significant investigated annotation, respectively; Fig. 2F and table S8). These results 
highlight more population-specific causal effect sizes for variants at constrained positions, in line with 
stronger gene-environment interactions at these loci, and potentially explain how genetic variations at 
constrained bases could have become common in human populations. 
Strong effect sizes for coding low-frequency variants at constrained positions. Annotations constrained 
by purifying selection tend to have low-frequency variants (0.5% ≤ AF < 5%) with larger effect sizes 
leading to higher enrichment in low-frequency variant h2 compared to common variant h2 (8). We quantified 
low-frequency SNP-h2 enrichments of constrained annotations by analyzing 27 well-powered independent 
UK Biobank traits (same as in (8); mean N = 355K; table S9). We observed that constrained annotations 
had consistently larger low-frequency h2 enrichment than common h2 enrichment, especially for variants at 
constrained sites in mammals (16.83 ± 0.92 vs. 8.70 ± 0.72 fold; P = 3.22x10-11 for difference) (fig. S8 and 
table S10) in line with greater effect sizes as allele frequency decreases (Fig. 2G and table S11). This 
enrichment difference was driven by coding variants at constrained sites in mammals (48.84 ± 3.10 vs. 
19.42 ± 1.91 fold; P = 6.36x10-16 for difference); we note that the low-frequency h2 enrichment for these 
variants was similar to that of non-synonymous variants (40.38 ± 2.40 fold), suggesting that constraint 
information is as informative as protein change information at the coding level. 

In conclusion, we observed that our mammalian constraint scores have unprecedented base pair resolution 
to investigate common variants in GWAS findings for human complex traits and diseases, are uniquely 
informative compared to known functional annotations and previously published constraint scores, are even 
more informative when combined with primate constraint scores, and could be utilized to investigate 
variants defined as non-functional.  

Leveraging constraint to move from prioritization to function 
Zoonomia constraint scores improve functionally-informed fine-mapping analyses. Based on our 
heritability results, we expect that our constraint scores will improve functionally-informed fine-mapping 
of constrained genetic variants associated with common traits. We compared PolyFun (30) fine-mapping 
results obtained with no annotations (non-functional model), with its default set of annotations (baseline-
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LF model), and with an augmented baseline-LF annotations containing multiple Zoonomia constrained 
annotations (baseline-LF+Zoonomia model) on 24 well-powered UK Biobank diseases and complex traits 
(30, 31) (mean N = 440K; table S12 and Supplemental Methods, Section 7). We observed significantly (P 
< 1.00x10-4) greater posterior inclusion probability (PIP) for variants at constrained sites in mammals and 
primates when using PolyFun with the baseline-LF+Zoonomia model compared to the non-functional and 
baseline-LF models (Figs. 3A and 3B). Notably, PolyFun with the baseline-LF+Zoonomia model detected 
1,407 variants at constrained sites in mammals fine-mapped with high confidence (PIP > 0.75) across all 
the UK Biobank traits (32.80% of high confidence fine-mapped variants), against 732 and 1,216 when using 
the non-functional and baseline-LF and models, respectively (24.50% and 29.67% of high confidence fine-
mapped variants, respectively) (fig. S9).  

 
Fig. 3. Leveraging constraint to move from prioritization to function. (A,B) We report the cumulative distribution function (CDF) 
of posterior inclusion probability (PIP) scores using functionally-informed fine-mapping with different models of functional 
annotations. Distribution functions are split into subpanels by whether the fine-mapped SNP overlaps high constraint scores in 
mammals (A) and primates (B). One-way Komolgorov-Smirnov tests that CDF for PIP obtained from the baselineLF model (gray) 
are lower (above) than the CDF for PIP obtained from the baseline-LF+Zoonomia model (orange) with Bonferroni correction for 
N=4 categories across panels (*** p/N < 0.0001, N.S. not significant). (C,D) Examples of constrained fine-mapped variants. We 
report GWAS P-values (upper panel) and corresponding PIP under different functionally informed fine-mapping models (lower 
panel). Shape of the dots corresponds to constraint information. (E) Fine-mapped variants are not limited to the annotated genome 
as exemplified by rs72782676 (red dot in AF panel) in the GATA3 UNannotated Intergenic COnstraint RegioN (UNICORN) locus. 
(F,G) Constraint is formally linked to function via massively parallel reporter assays (MPRAs) at the (F) regional oligo and (G) 
base pair level for neutral, active and allele specific skewed effect. (H) For the LDLR promoter locus, MPRA effect is strongly 
correlated with phyloP score. Constrained (red), and unconstrained (orange) ClinVar pathogenic variants are plotted to highlight 
known deleterious positions. 

Fine-mapping examples. We highlight the utility of evolutionary constraint scores in fine-mapping 
analyses. First, rs1421085 has a causal and experimentally validated association with BMI (the SNP is 
located in FTO but has regulatory effects on IRX5 and IRX3) (32, 33); this variant is extremely constrained 
in mammals (phyloP = 6.31) and primates (phastCons = 1.00), leading to a higher PIP when using the 
baseline-LF+Zoonomia model (0.84) than when using the non-functional and baseline-LF models (0.13 
and 0.58, respectively; Fig. 3C). Interestingly, the fraction of CDS and promoter bases that are constrained 
for IRX5 (0.79 and 0.58) and IRX3 (0.74 and 0.34) were higher than for FTO (0.61 and 0.23), suggesting 
that constrained variant in regulatory regions could be more likely to target genes with constrained CDS 
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and/or promoters (see below). Second, rs6914622 is constrained in mammals and primates (phyloP = 2.37 
and phastCons = 1.00) and may be causal in hypothyroidism via the baseline-LF+Zoonomia model (PIP = 
0.76; Fig. 3D) but not via the non-functional and baseline-LF models (PIP ≤ 0.14). Conversely, the sentinel 
variant rs9497965 is not evolutionarily constrained but has a notable PIP in the baseline-LF model (PIP ≥ 
0.85) but not in the baseline-LF+Zoonomia model (PIP = 0.24). Using epigenetic marks from four thyroid 
cell types (34) (functional information not in the fine-mapping models), rs6914622 was in an active 
enhancer in all thyroid cell-types and rs9497965 was inferred as being in an enhancer in only one thyroid 
cell type (weak transcription and quiescent for the others), suggesting a causal role for rs6914622 over 
rs9497965. While functional follow-up is necessary, these examples illustrated how Zoonomia constraint 
scores can significantly impact fine-mapping. One method of functional follow-up, Cell-TACIT, is 
explored in a companion paper (Companion paper #11, Phan et al.), in which the conservation of human 
neural cell type-specific open chromatin across mammals is used to improve the fine-mapping of 
GWAS for brain disorders. Some regulatory elements may not be conserved at the nucleotide level but 
lie in a cell type regulatory element predicted to be conserved across mammalians. Fine-mapping genetic 
variants with constraint and Cell-TACIT provide examples of how mammalian genomes can be leveraged 
to discover nucleotide and regulatory conservation to link variation to function. Finally, as discussed in 
another companion paper, Human Accelerated Regions can also improve fine-mapping interpretation 
(Companion paper #8, Keough et al,). 

Measures of constraint can reveal unannotated variants impacting human health. Due to the challenge 
of generating functional datasets in all cell-types and cell-states, much of the genome’s regulatory space is 
still not fully annotated (35). The high levels of constraint and low levels of variant diversity in 
UNannotated Intergenic COnstraint RegioNs (UNICORNs, Supplemental Methods, Section 8, Companion 
paper #1, Christmas et al.) suggest that they are likely of functional importance despite lacking functional 
annotations (consistent with our observation that non-functional constrained SNPs are enriched in h2, Fig. 
2E). While fewer fine-mapped SNPs were located within UNICORNs (833 SNPs) compared to a matched 
set of random unannotated non-constrained intergenic regions (5,895 SNPs) and to SNPs located elsewhere 
in the genome (305,599 SNPs), those variants had higher mean PIP scores (0.15 UNICORNs vs 0.05 for 
the other two regions). This demonstrates that UNICORNs can reveal unannotated variants impacting 
human health and disease. UNICORNs contain fine-mapped SNPs with significantly higher PIP scores 
compared to the background sets across multiple traits (linear regression, P < 0.01 in all cases after 
correcting for multiple testing; table S13). For example, a 163 bp UNICORN contains rs72782676 with 
fine-mapping evidence for multiple traits (e.g., eosinophil count, asthma, eczema, respiratory and ENT 
diseases; AFTOPMed = 0.005; PIP > 0.99 in all GWAS) (Fig. 3E). The nearest gene, GATA3, sits 915 kb 
upstream, and is a master transcriptional regulator for T Helper 2 lineage commitment (36), and is known 
to play an important role in inflammatory disease (37, 38). This UNICORN highlights a strong regulatory 
candidate for GATA3 in a disease-relevant region currently lacking annotation.  

Predicted variant effect validated at single base resolution. Massively parallel reporter assays (MPRAs), 
have been used to rapidly test thousands of genomic variants for their potential regulatory effects on gene 
expression. While the functional output from these high-throughput methods are useful for localising 
putative causal alleles, overlaying constraint scores may help further elucidate functional variants 
(Supplemental Methods, Section 8). To investigate this, we integrated our Zoonomia-derived phyloP scores 
with > 35,000 assayed variants from existing 3’UTR (39) and eQTL (40) MPRAs. Using the 3’UTR MPRA 
data to highlight our results, we found that phyloP scores could differentiate between sequence backgrounds 
with and without regulatory activity, (e.g. across multiple tissues, Neutral vs Active: Polig = 2.32x10-5, Fig. 
3F). PhyloP scores further highlighted variants with allele-specific regulatory effects (e.g. Neutral vs Skew: 
Pbase = 1.4x10-5; Fig. 3G). Additionally, we found that selection on constrained phyloP positions enriched the 
allele-specific regulatory effects by 1.3 fold (Supplemental Methods, Section 8). Similar trends were 
observed in promoter and enhancer saturation mutagenesis MPRAs (41). For example, phyloP constraint 
was a strong predictor for variant effect within the LDLR promoter (Spearman rho = 0.51), with five of the 
most constrained sites providing the strongest regulatory effects and also tagging pathogenic ClinVar 
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positions (Fig. 3H). Further, in our companion paper (Companion paper #? CONDEL, Xue et al), we use 
MPRAs to directly assess the regulatory impacts of bases under high constraint that have been deleted 
specifically in the human lineage. For many we can precisely identify how the deletions impact transcription 
factor binding which is well correlated with the observed regulatory changes, linking sequence change to 
mechanism. We found these human-specific deletions were enriched to overlie psychiatric disease GWAS 
signals (i.e. Schizophrenia, Bipolar), and discovered 717 deletions with significant species-specific 
regulatory effects, providing candidates targets that may have contributed to the prevalence of human 
neurological disorders.  

Evolutionary constraint, protein-coding genes, and human disease 

 
Fig. 4. Evolutionary constraint, protein-coding genes, and human disease. (A) Scatterplot of protein-coding (PC) gene clustering 
(UMAP and DBSCAN). X- and Y-axis are the UMAP coordinates. Each point is a PC gene (N = 19,386). Five clusters are labeled: 
A = 56 genes whose CDS bases are in complex regions that align poorly; B = 221 genes apparently human- or primate-specific; 
C=669 genes with good alignment and possible human-specific functions (e.g., five HLA genes and 14 interferon alpha genes); 
D=15 genes, all highly constrained; and E = all other 18,425 PC genes. Coloring shows fracCdsCons, grey = least and red = 
most constrained with an anticlockwise gradient in mammalian constraint from upper middle to lower right. (B, C) Gene constraint 
deciles versus external gene sets as “lollipop plots”. Each panel has 6 subgraphs for autosomal recessive genes, ClinGen level 3 
genes, essential genes from Hart, essential genes in mouse, olfactory receptors, and severe haploinsufficiency genes. X-axis = 
constraint decile (0 = least,, 9=most constrained, 99 = missing). Y-axis = circles are the fraction of the PC genes in a gene set in 
each decile. (B) Zoonomia fracCdsCons and (C) recapitulates Figure 3 from ref. (3) with LOEUF decile reversed and showing 
missing data. (D, H) Gene heritability enrichment for SNPs linked to genes of each decile of fracCdsCons (D) and of SNPs linked 
to genes of decile of constraint in different gene gene features (H). Dashed red lines represent a null enrichment of 1. Error bars 
are 95% confidence intervals. (E) Spearman correlation of constraint fraction between the parts of PC genes. (F, G) Fraction of 
CDS constraint (fracCdsCons) vs. fraction or promoter constraint (F) and fraction of distal enhancer constraint (shrinked to values 
<0.3) (G). Each point is a PC gene, and HOX genes (purple) and defensin beta (DEFB) genes (green) are highlighted. 

Gene-based measures of evolutionary constraint have an important role in understanding the impact of 
genetic variation on human disease (e.g., LOEUF) (3). As detailed in Supplementary Methods, Section 9, 
we defined 7 measures of gene constraint based on the Zoonomia alignment including fraction of CDS 
constrained, normalization against 32.13 million CDS bases, a model-based approach adjusting for 12 
covariates (codon information, mutational consequences, and positional features), and cross-species amino 
acid constraint (normalized Shannon entropy). After evaluation, we selected the fraction of constrained 
CDS bases per gene (fracCdsCons) as a simple measure of gene constraint, given its continuous distribution, 
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low missingness, high correlations with more complex measures of gene constraint, and external validation 
(Fig. 4A). These gene-based constraint metrics are provided in table S14. 

Given the complexities of human PC genes, it would be surprising if any one gene metric applies to all 
genes (e.g., LOEUF and pLI are missing for 10.1% of PC genes). We used an empirical approach to identify 
gene outliers, and identified 277 genes (1.43%) inaccessible to fracCdsCons (clusters A-B, Fig. 4A; 
Supplementary Methods, Section 10).  

We validated fracCdsCons in several ways (Supplementary Methods, Section 10). First, given its 
widespread use, we compared fracCdsCons to the inverse-scored LOEUF (3) and found rho = -0.55. This 
is notable given the markedly different basis of each measure—constraint over ~100 million years of 
mammalian evolution vs statistical modeling of pLoF counts in human WES catalogs (Supplemental 
Methods, Section 2): empirical confirmation is an important validator for both measures. We next compared 
fracCdsCons to external gene sets with established patterns of constraint (similar to the LOEUF validation 
strategy)(3) and obtained similar patterns between both scores (Figs. 4B and 4C).  

Second, we used an empirical approach to cluster genes based on different constrained metrics (Fig. 4A; 
Supplementary Methods, Section 10; table S14). We identified 277 gene outliers (1.43%) inaccessible to 
fracCdsCons (clusters A-B), and conducted gene set analyses for 19,109 PC genes (clusters C-E, tables S15 
and S16). The 5% most constrained genes (N=955, fracCdsCons 0.811–0.975) were strongly enriched in 
gene sets: basic embryology (stem cell proliferation/differentiation, tube formation, anterior/posterior 
patterning, endoderm/mesoderm formation); organ morphogenesis (central/peripheral nervous system, 
connective tissue, ear, epithelium, eye, gastrointestinal tract, heart, kidney, lung, muscle, myeloid, pancreas, 
skeleton); cell cycle (phase transition, fate, WNT), cell signaling, positive and negative regulatory 
processes; and pre-/post-synaptic processes (synapse assembly, postsynaptic density, neurotransmitter 
regulation, synaptic vesicle cycle, modulation of transsynaptic signaling). The 5% least constrained genes 
(N=956, fracCdsCons 0–0.150) were strongly enriched in gene sets: microbial defense response (adaptive 
immunity, bacteria/virus, cell killing, cytokine/interferon); bitter taste and olfaction; and skin development 
(keratinization, keratinocyte differentiation, epidermal cell differentiation, and epidermis development). 
The most constrained genes captured processes fundamental to the making of a mammal and the least 
constrained genes are central to the adaptive evolution of a mammal to its environment—i.e., the specific 
microbiota, adaptations of smell and taste to detect mates, prey, predators, and poisons, and adaptations of 
skin for temperature regulation, camouflage, and defense.  

Finally, we evaluated the relevance of mammalian gene constraint to human disease. Fig. S10A shows the 
relationship of fracCdsCons with multiple human disease annotations. For all comparisons, increasing 
constraint is correlated with increasing relevance for human disease. Fig. S10B depicts the relation with 
GTEx gene expression, and greater gene constraint is correlated with greater expression in all tissues. 
“Housekeeping” genes that are uniformly expressed across tissues had greater constraint (P < 3x10-197) and 
comprised 3.0% of the least constrained decile and 30.5% of the most constrained decile. Finally, we 
evaluated the impact of common SNPs linked to PC genes in each fracCdsCons decile by estimating their 
gene h2 enrichment (defined as h2 enrichment for the decile annotation divided by the mean h2 enrichment 
over all deciles) using S-LDSC on 63 independent GWAS datasets (Supplemental Methods, Section 10). 
We observed significantly higher gene h2 enrichment for SNPs linked to genes in the most constrained 
deciles (P = 6.96x10-59; Fig. 4D and table S17). Interestingly, we observed stronger gene h2 enrichment 
patterns in a meta-analysis of nine brain disorders, and gene h2 enrichment patterns nearly independent of 
gene constraint in a meta-analysis of 11 blood and immune traits (Fig. 4D and table S17).  

Mammalian constraint is correlated between coding and regulatory elements. We extended our 
approach to measure gene constraint on different regulatory features (including promoters, and ENCODE3 
distal enhancers linked to their genes using EpiMap (34)), as human diseases and complex traits are 
predominantly impacted by common regulatory variants. We found substantial correlations of constraint 
between CDS and the regulatory parts of protein-coding genes, with a higher correlation between CDS and 
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promoter gene constraint (r = 0.55) than between CDS and distal enhancer gene constraint (r = 0.25) (Figs. 
4E-G; gene scores reported in table S18). These correlations are consistent with the idea that if the function 
of a gene in mammals requires high conservation of protein structure, then its regulatory sequences tend to 
also be constrained. Interestingly, we observed families of genes with shared constrained patterns (such as 
HOX genes that have constrained exons, promoters and enhancers), and with distinct constrained patterns 
(such as defensin beta (DEFB) genes, which only have constrained enhancers). Finally, we observed that 
common SNPs linked to genes with constrained promoters and distal enhancers are as enriched in h2 as 
genes with constrained CDS, suggesting that constraint in regulatory elements can be leveraged in the 
analyses of human diseases and complex traits (Fig. 4F and table S17). 

Mammalian constraint and copy number variation 
Copy number variants (CNVs) are genomic segments that have fewer or more copies compared to a 
reference genome. CNVs are important drivers of evolution and risk factors for multiple human diseases 
(42–44). However, CNVs often occur in high repeat/low mappability regions meaning that detecting their 
presence and significance often carries uncertainty (45, 46). We thus evaluated whether mammalian 
constraint could help prioritize potentially disease-related CNVs. First, as a qualitative check, we evaluated 
a pathogenic CNV—a small distal enhancer upstream of SOX9 with a ClinVar pathogenic annotation as a 
cause of Pierre Robin sequence—and found that it was highly constrained (47) (Supplemental Methods, 
Section 11). Second, we evaluated constraint in structural variants (SV) identified in TOPMed (4). We 
found that singleton (AC=1) SV deletions, inversions, and duplications had similar fractions of constrained 
bases. However, common (AF ≥ 0.005) SV deletions had far less constraint than SV inversions or 
duplications. We speculate that singletons are recent mutations relatively unexposed to purifying selection 
whereas common SV deletions are directly exposed to selection pressures due to the impacts of 
haploinsufficiency.  

Third, these analyses suggest that constrained bases could have utility in CNV prioritization and burden 
calculations. Given that CNVs are known risk factors for schizophrenia (48), we obtained the CNV call set 
from the largest published study (21,094 cases, 20,227 controls) (49). After replicating the main analysis, 
we found that schizophrenia cases had greater CNV constraint burden (the total number of conserved bases 
impacted by a CNV) compared to controls. The case-control differences were 4-5 logs more significant 
than two commonly used measures of CNV burden (total number and total bases per person). The 
improvements were particularly notable for CNV deletions. We suggest that the number of constrained 
bases impacted by a CNV is a more direct assessment of functional impact—e.g., a large CNV with no 
constrained bases is less likely to be deleterious than a far smaller CNV that deletes constrained exons, 
promoters, and/or enhancer elements.  

Cancer driver genes identified with mammalian constraint 
Moving from the germline to the somatic genomes, we demonstrated how mammalian constraint in non-
coding regions of the genome could be applied to detect candidate cancer driver genes (Supplementary 
Methods, Section 12). Non-coding constraint mutations (NCCMs, phyloP ≥ 1.2 (50)) were identified using 
whole genome sequencing data (International Cancer Genome Consortium) (51) for two types of brain 
tumors primarily affecting children. Pilocytic astrocytoma is a low-grade tumor (52) and medulloblastomas 
are malignant brain tumors with intertumoral heterogeneity informed by subgroups determined by 
molecular profiling (i.e., Wingless/Integrated (WNT), Sonic Hedgehog Signaling (SHH), Group 3 and 
Group 4) (53). We identified NCCMs within introns, 5´and 3´UTRs, and regions within 100kb of each gene 
(50).  

We found drastically different NCCM rates between the two cancers. In pilocytic astrocytoma, known to 
have coding/translocation mutations primarily in BRAF, high NCCM rates were restricted to the BRAF 
locus, in line with the low somatic mutation burden of this tumor type. Strikingly, for medulloblastoma, 
114 genes had ≥ 2 NCCMs/100 kb (Fig. 5A) and 525 genes had ≥ 5 NCCMs per gene. These genes were 
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enriched for the GO biological processes “nervous system development” (P = 1.32x10-26) and “generation 
of neurons” (P = 1.68x10-22.). Among the top 114 genes, 15 gene loci were primarily seen in adult cases (≥18 
years of age) and 7 loci in pediatric cases (<18 years of age). A subset of these loci is shown in Fig. 5B 
(Companion paper #12, Sakthikumar et al). An example is ZFHX4, previously reported to be differentially 
expressed in medulloblastoma (54), where NCCMs were predominantly identified in adult patients of the 
SHH subgroup, and found in high constraint ZFHX4 intronic regions (Fig. 5C). For the pediatric set of 
medulloblastoma, potential driver genes included BMP4 and the HOXB locus (containing multiple genes), 
mostly in patients diagnosed as Group 3 or Group 4. Multiple NCCMs in these two loci were shown to have 
differential DNA binding capacity in a medulloblastoma cell line (Companion paper #12, Sakthikumar et 
al). Further, we noted differential gene expression in medulloblastoma compared to cerebellum for multiple 
NCCM genes, e.g. HOXB2 (55), for which expression levels correlate with patient survival (56).  

The addition of evolutionary constraint measures may help advance stratification of medulloblastoma, both 
with regard to age, and molecular subgroups. More generally, we demonstrate how NCCM analysis can be 
used as a tool for the identification of novel driver genes in cancer. We suggest that NCCM analysis should 
be evaluated in more cancer types for its potential to yield a better understanding of disease biology and 
improved diagnosis and prognosis. 

 
Fig. 5. Cancer driver genes identified using NCCM rates. (A) Distribution of the rates of NCCM for medulloblastoma. (B) An 
example set of the candidate driver genes found either in pediatric (orange) or adult (purple) samples. Age of diagnosis (years) of 
the patient is indicated together with the tumor subgroup. (C) ZFHX4 locus contains 9 NCCMs drawn from 8 patients. 
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Discussion 
The strength of evolutionary constraint can deepen our understanding of human diseases. The alignment of 
240 placental mammals, representing ~100 million years of evolution, achieved single base resolution that 
allows detailed evaluation of individual mutations in contrast to previous methodologies of only gene-sized 
resolution. Evolutionary constraint compares favourably to huge amounts of functional genomics data as 
functionality in any tissue at any time point will be detected by constraint. We demonstrate that constraint 
can be used to detect candidate causal mutations in both rare and common disease as well as in cancer, and 
could be particularly leveraged for brain diseases that are more impacted by constrained genes and 
biological processes. Finally, we note that primate constraint has a stronger heritability enrichment than 
when measured across placental mammals in non-coding regions suggesting that sequencing more primates 
would complement the current efforts to validate function of the multitude of regulatory elements present 
in the human lineage. 
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