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Abstract

In the ongoing debates about eukaryogenesis, the series of evolutionary events leading to the
emergence of the eukaryotic cell from prokaryotic ancestors, members of the Asgard archaea
play a key role as the closest archaeal relatives of eukaryotes. However, the nature and
phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain
unresolved. Here, we analyze distinct phylogenetic marker datasets of an expanded genomic
sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-
the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence,

as a well-nested clade within Asgard archaea, as a sister lineage to Hodarchaeales, a newly
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proposed order within Heimdallarchaeia. Using sophisticated gene tree/species tree
reconciliation approaches, we show that, in analogy to the evolution of eukaryotic genomes,
genome evolution in Asgard archaea involved significantly more gene duplication and fewer
gene loss events compared to other archaea. Finally, we infer that the last common ancestor
of Asgard archaea likely was a thermophilic chemolithotroph, and that the lineage from
which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic
potential to support a heterotrophic lifestyle. Our work provides key insights into the
prokaryote-to-eukaryote transition and the platform for the emergence of cellular

complexity in eukaryotic cells.

Main

Understanding how complex eukaryotic cells emerged from prokaryotic ancestors represents a
major challenge in biology!'~. A main point of contention in refining eukaryogenesis scenarios
revolves around the exact phylogenetic relationship between Archaea and eukaryotes. The use of
phylogenomic approaches with improved models of sequence evolution combined with a much-
improved archaeal taxon sampling — progressively unveiled by metagenomics — has recently
yielded strong support for the “two-domain” tree of life, in which the eukaryotic clade branches
from within Archaea®®. The discovery of the first Lokiarchaeia genome provided additional
evidence for the two-domain topology since this lineage was shown to represent, at the time, the
closest relative of eukaryotes in phylogenomic analyses’. Moreover, Lokiarchaeia genomes were
found to uniquely contain many genes encoding eukaryotic signature proteins (ESPs) —proteins
involved in hallmark complex processes of the eukaryotic cell-, more so than any other prokaryotic

lineage. The subsequent identification and analyses of several diverse relatives of Lokiarchaeia,
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together forming the Asgard archaea superphylum, confirmed that Asgard archaea represented the
closest archaeal relatives of eukaryotes®*!°. Their exact evolutionary relationship to eukaryotes,
however, remained unresolved: it has been unclear whether eukaryotes evolved from within
Asgard archaea, or if they represented their sister-lineage!?. Furthermore, two studies questioned
this view of the tree of life altogether, suggesting that Asgard archaea represent a deep-branching

Euryarchaeota-related clade!!-1?

, and that, in accordance with the “three-domain” tree, eukaryotes
represent a sister group to all Archaea, although this was challenged!>!%. A follow-up study that

included an expanded taxonomic sampling of Asgard archaeal genome data failed to resolve the

phylogenetic position of eukaryotes in the tree of life!”.

Here, we expand the genomic diversity of Asgard archaea by generating 63 novel Asgard
metagenomic-assembled genomes (MAGs) from samples from 11 locations around the world. By
analyzing the improved genomic sampling of Asgard archaea using state-of-the-art
phylogenomics, including recently developed gene tree/species tree reconciliation approaches for
ancestral genome content reconstruction, we firmly place eukaryotes nested within the Asgard
archaea. By revealing key features regarding the identity, nature and physiology of the last Asgard
archaea and eukaryotes common ancestor (LAECA), our results represent important, thus far

missing pieces of the elusive eukaryogenesis puzzle.

Expanded Asgard archaea genomic diversity

To increase the genomic diversity of Asgard archaea, we sampled aquatic sediments and
hydrothermal deposits from eleven geographically distinct sites (Supplementary Table 1,
Supplementary Figure 1). After extraction and sequencing of total environmental DNA, we

assembled and binned metagenomic reads into MAGs. Of these MAGs, 63 were found to belong
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to the Asgard archaea superphylum, with estimated median completeness and redundancy of 83%
and 4.2%, respectively (Supplementary Table 1). To assess the genomic diversity in this dataset,
we reconstructed a phylogeny of ribosomal proteins encoded in a conserved 15-ribosomal protein
(RP15) gene cluster'® from these MAGs, and all publicly available Asgard archaea assemblies
(retrieved June 29", 2021; Figure 1). These analyses expand the genomic sampling across
previously described major Asgard archaea clades (i.e., Loki-, Thor-, Heimdall-, Odin-, Hel-,
Hermod-, Sif-, Jord- and Baldrarchaeia®!%!517:18) and recover a previously undescribed clade of
high taxonomic rank (Candidatus Asgardarchaeia; see Ext. Data Fig. 1 and Supplementary
Information for proposed uniformization of Asgard archaea taxonomic classification that will be
adhered to throughout the present manuscript). We observed that the median estimated Asgard
archaeal genome size (3.8 Mega basepairs (Mbp)) is considerably larger than those of
representative genomes from TACK archaea and Euryarchaeota (median=1.8 Mbp for both) and
DPANN archaea (median=1.2 Mbp) (Supplementary Table 1). Among Asgard archaea,
Odinarchaeia display the smallest genomes (median=1.4 Mb), while Loki- and Helarchaeales
contain the largest (median=4.3 Mbp for both). Unlike other major Asgard archaeal clades,
Heimdallarchaeia possess a wide range of genome sizes, spanning from 1.6 to 7.4 Mbp
(median=3.5 Mbp). Indeed, this large class contains five clades with diverse features. These
include Njordarchaeales (median genome size=2.4 Mbp) followed by Kariarchaeaceae (median
genome size=2.7 Mbp), Gerdarchaeales (median genome size=3.4 Mbp), Heimdallarchaeaceae
(median genome size=3.7 Mbp), and finally Hodarchaeales (median genome size=5.1 Mbp). The
smallest heimdallarchaeial genome corresponds to the only Asgard archaecal MAG recovered from
a marine surface water metagenome (Heimdallarchaeota archaecon RS678)!°, in agreement with

reduced genome sizes typically observed among prokaryotic plankton of the euphotic zone?° .
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79
80  Identification of phylogenetic conflict

81 Inferring deep evolutionary relationships in the tree of life is considered one of the hardest
82  problems in phylogenetics. To interrogate the evolutionary relationships within the present set of
83  Asgard archaeal phyla, and between Asgard archaea and eukaryotes, we performed an exhaustive
84  range of sophisticated phylogenomic analyses. We analyzed a preexisting marker dataset
85  comprising 56 concatenated ribosomal protein sequences (RP56)%!? for a phylogenetically diverse
86  set of 331 archaeal (175 Asgard archaea, 41 DPANN, 43 Euryarchaeota, and 72 TACK archaea
87  representatives), and 14 eukaryotic taxa (see Supplementary Table 2). Of note, the inclusion of an
88  expanded diversity of 12 new Korarchacota MAGs among these TACK archaea considerably
89  affected phylogenomic analyses (see below). Initial maximum-likelihood (ML) phylogenetic
90 inference based on this RP56 dataset confirmed the existence of 12 major Asgard archaeal clades
91  of high taxonomic rank (Supplementary Figure 2). These include the previously described Loki-,
92  Odin-, Heimdall-, Thor->!°, Helarchaeia'®, for which we here present 36 new genomes, and the
93  recently proposed Sif-'8, Hermod-!7, Jord->!, Wukong-!°> and Baldrarchaeia'®, for most of which
94  we also identified new near-complete MAGs. Finally, we identified 15 MAGs representing the
95  recently described Njordarchaeales?? (which we show below is a divergent candidate order within
96  Heimdallarchaeia), and a single MAG representing a new candidate class, Asgardarchaeia (which
97  will be discussed in a separate manuscript; Tamarit et al, in prep) (Figure 1). Importantly, careful
98  inspection of the obtained RP56 tree uncovered a potential artefact: Njordarchaeales, considered
99  bona fide Asgard archaea based on the presence of many encoded ‘typical’ Asgard-like ESPs!?,
100  were found to branch outside of the Asgard archaea, at the base of the TACK superphylum and as

101  asister lineage to Korarchaeota in the RP56 tree. In addition, eukaryotes were found to branch at
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102 the base of the clade formed by Korarchaeota and Njordarchaeales, although with weak support.
103 Hereafter, we focused on disentangling the historically correct phylogenetic signal from noise and

104  artefacts.
105
106  Alternative phylogenomic markers

107  Despite often being used in phylogenomic analyses, ribosomal proteins have been suggested to
108  contribute to phylogenetic artefacts due to inherent compositional sequence biases?*,
109  Additionally, considering the inconsistency of the obtained placement of eukaryotes compared to
110  previous analyses, the incoherent placement of Njordarchaeales, and the presence of long branches
111  at the base of both of these clades in the RP56 tree, we sought to use an alternative phylogenetic
112 marker set to obtain a stable Asgard archaeal species tree, and to further investigate the
113 phylogenetic position of eukaryotes. We constructed an independent ‘new marker’ dataset
114 comprising 57 proteins of archaeal origin in eukaryotes (NM57 dataset; see Methods). The NM57
115  proteins are mostly involved in diverse informational, metabolic, and cellular processes, but do
116  not include ribosomal proteins (Supplementary Table 2). Besides being longer, and hence
117  putatively more phylogenetically informative compared to the RP56 markers, the broader
118  functional distribution of NM57 markers is less likely to cause phylogenetic reconstruction
119  artefacts induced by strong co-evolution between proteins — something that is to be expected for
120  functionally and structurally cohesive ribosomal proteins®. Indeed, in case co-evolving protein
121  sequences are compositionally biased, and hence violate evolutionary model assumptions of fixed
122 composition over species, their concatenation is expected to strengthen the artefactual, non-

123 phylogenetic signal and the statistical support for incorrect relationships?®. We thus decided to

124 independently evaluate the concatenated NM57 and RP56 marker datasets for downstream

6
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125  phylogenomic analyses. We observed that ML phylogenomic analyses of the NMS57 dataset did
126  not only recover Njordarchaeales as bona fide Asgard archaea, they were also placed as the closest
127  relatives of eukaryotes (BS=98%; Supplementary Figure 3), as was proposed in a recent analysis?2.
128  To investigate the underlying causes for the contradicting results between the NM57 and RP56
129  datasets, we first assessed the effect of taxon sampling on phylogenetic reconstructions by
130  removing eukaryotic and/or DPANN and/or Korarchaeota sequences from the alignments, for two
131  main reasons: (1) eukaryotes and DPANN archaea represent long-branching clades potentially
132 inducing long branch attraction (LBA) artefacts; and (2) we wanted to investigate the effects of
133 removing eukaryotes and Korarchaeota, which were the sister lineages of Njordarchaeales in the
134  NMS57 and RP56 phylogenetic analyses, respectively. Following this, we recoded the alignments
135  into 4 states (using SR4-recoding?’) to ameliorate potential phylogenetic artefacts arising from
136  model misspecification at mutationally saturated or compositionally biased sites!*?%-30, Further,
137  with a similar goal, we applied a fast-evolving site removal (FSR) procedure to the concatenated
138  datasets, since fast-evolving sites are often mutationally saturated. We performed phylogenetic
139  analyses of the above-mentioned datasets in both ML and Bayesian Inference (BI) frameworks,
140  under sophisticated evolutionary models that account for sequence heterogeneity in the

141  substitution process across sites (mixture models; Supplementary Table 2).

142 Phylogenomic analyses of the above-mentioned combinations of taxon sampling, data treatments
143  and phylogenetic frameworks revealed that Njordarchaeales are artefactually attracted to
144  Korarchaeota in RP56 datasets (Supplementary Information). This attraction is likely caused by
145  the high compositional similarity of njord- and korarchaeal RP56 ribosomal protein sequences,
146  which is probably linked to their shared hyperthermophilic lifestyle (Supplementary Figures 4-6).

147  Analyses of RP56 datasets from which Korarchaeota were removed, recovered Njordarchaeales as
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148  an order at the base of or within Heimdallarchaeia (Supplementary Figure 7), consistent with
149  phylogenomic analyses of the NM57 dataset that included Korarchaeota (Supplementary Figure
150  3). Next, in our efforts to resolve the phylogenetic placement of eukaryotes, we initially performed
151  phylogenomic analyses on variations of the RP56 and NM57 datasets (Supplementary Table 2 and
152 Discussion). However, since compared to the RP56 dataset, the NM57 dataset is larger and less
153  compositionally biased, and is thus expected to have retained a stronger and more congruent

154  phylogenetic signal, we focused the rest of our study on this more reliable dataset.

155

156  Eukarya represent a well-nested clade within Heimdallarchaeia

157  Subsequent phylogenetic analyses of untreated NMS57 datasets with various taxon sampling
158  wvariations recovered eukaryotes as sister-clade to Njordarchaeales in ML analyses (e.g.,
159  Supplementary Figure 3, Supplementary Table 2 and Supplementary information). However, ML
160  analyses of the SR4-recoded datasets retrieved a complex phylogenetic signal, as in some cases
161  eukaryotes were placed at the base of all Heimdallarchaeia (including Njordarchaeales) and
162 Wukongarchaeia. This strongly suggests that the previously observed phylogenetic affiliation
163  between Njordarchaeales and eukaryotes could represent an artefact. Furthermore, when both SR4-
164  recoding and FSR treatments were combined, eukaryotes were nested within Heimdallarchaeia, as
165  sister-group to the order Hodarchaeales (Figure 2; Supplementary Figure 8), and this position was
166  supported by ML analyses of NM57 datasets across all taxon selection variations (removing
167 DPANN archaea, and/or Korarchaeota and/or Njordarchaeales). Congruently, the monophyly of
168  eukaryotes and Hodarchaeales was systematically recovered by BI of recoded datasets (both with
169  and without FSR; Figure 2, Supplementary Table 2). In addition, the position of Njordarchaeales

170  shifted during these analyses, moving from a deep position at the base of Heimdallarchaeia and
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171  Wukongarchaeia, to a more nested position forming a clade with Gerdarchaeales and Kari- and
172 Heimdallarchaeaceae (Supplementary Discussion). This shift is observed in both the NM57 and
173 the RP56 datasets analyses when SR4-recoding and FSR was combined (Supplementary Figures
174  9-10), supporting that Njordarchaeales represent a divergent order-level linecage of

175  Heimdallarchaeia.

176  In summary, resolving the position of eukaryotes relative to Asgard archaea is anything but trivial
177  (see Supplementary Discussion). In our efforts to extract the true phylogenetic signal, we provide
178  confident support for eukaryotes forming a well-nested clade within the Asgard archaea phylum,
179  consistent with the 2D tree of life scenario. More specifically, we observe that eukaryotes affiliate
180  with the Heimdallarchaeia in analyses in which we systematically reduce phylogenetic artefacts,
181  predominantly converging on a position of eukaryotes as sister to Hodarchaeales, which is also in

182  line with the observed ESP content and genome evolution dynamics (see below).
183
184  Informational ESPs in Hodarchaeales

185  We found that most of the ESPs previously identified in a limited sampling of Asgard archaea®!°
186  are widespread across all phyla included in the present study (Figure 3, Supplementary Table 3).
187  Notably, we observed some exceptions in support of the phylogenetic affiliation between
188  Hodarchaeales and eukaryotes, particularly among ESPs involved in information processing: (1)
189  the ¢ DNA polymerase subunit is only found in Hodarchaeales; (2) ribosomal protein L28e
190  (Rpl28e/Mak16) homologs are unique to Njord- and Hodarchaeales members; (3) many archaea
191  that lack genes coding for the synthesis of diphthamide, a modified histidine residue which is
192 uniquely present in archaeal and eukaryotic elongation factor 2 (EF-2), instead encode a second
193 EF-2 paralog that misses key-residues required for diphthamide modification®!. Interestingly, we

9
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194  found that among all Asgard archaea, only MAGs of all sampled Hodarchaeales members encode
195  dph genes in addition to a single gene encoding canonical EF-2, which branches at the base of their
196  eukaryotic counterparts in phylogenetic analyses (Supplementary Figure 11; Supplementary
197  Information); (4) While RPL22e and RNA polymerase subunit RPB8 are found in several Asgard
198  archaeal phyla, the only Heimdallarchaeia genomes encoding these genes are members of the
199  Hodarchaeales. Finally, (5) we identified N-terminal histone tails characteristic of eukaryotic
200  histones in all three Hodarchaeales MAGs, as well as in three Njordarchaeales genomes (see
201  Supplementary Information). Altogether, the identification of these key-informational ESPs, in
202  agreement with phylogenomic analyses described above, supports that Hodarchaeales represent

203  the closest archaeal relatives of eukaryotes.
204
205 Expanded eukaryotic-like protein translocation repertoire

206  In our search for putative new ESPs in the expanded Asgard archaeal genomic diversity, we
207  uncovered several additional homologs of proteins associated with the eukaryotic translocon, a
208  protein complex primarily responsible for the post-translational modification of proteins, and
209  subsequent insertion into, or transport across the membrane of the endoplasmic reticulum (ER)?2.
210  The eukaryotic translocon is comprised of the core Sec61 protein-conducting channel, and several
211 accessory components, including the oligosaccharyltransferase (OST) and translocon-associated
212 protein (TRAP) complexes (Figure 3b), both of which are involved in the biogenesis of N-
213 glycosylated proteins*. The eukaryotic TRAP complex is composed of two to four subunits in
214  eukaryotes. Using distant-homology detection methods, we identified homologs from three of
215  these subunits to be broadly distributed across Asgard archaeal genomes, while the fourth one was

216  detected only in a few thorarchaeial MAGs (Figure 3b). The eukaryotic OST complex generally

10
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217  comprises 6-8 subunits organized into three subcomplexes that are collectively embedded in the
218  ER membrane** (Figure 3b). Apart from STT3/AgIB (OST subcomplex-II), which represents the
219  catalytic subunit and is universally found across all three domains of life, other OST subcomplexes
220  generally do not possess prokaryotic homologs beyond the Ost1/Ribophorin I (OST subcomplex-
221  I) and Ost3/Tusc3 (OST subcomplex-II) subunits previously reported in Asgard archaea'®. Here,
222 we report the identification of Asgard archaeal homologs of all five additional subunits,
223 Ost2/Dadl, Ost4, Ost5/TMEM258, SWP1/Ribophorin II and WBP1/Ost48. While we identified
224 homologs of Ost4 and Ost5 (OST subcomplex-I) in most Asgard archaeal classes, the distribution
225  of Ost2, WBP1, and Swpl, the first subcomplex-III subunits described in prokaryotes to date, was
226  restricted to Heimdallarchaeia, including Njordarchaeales for WBPI1, further supporting their
227  monophyly. Our findings indicate that Asgard archaea and, by inference, LAECA, potentially
228  encode relatively complex machineries for the N-linked glycosylation and translocation of proteins

229  (Figure 3b).
230
231  Vesicular biogenesis and trafficking proteins

232 Intracellular vesicular transport represents a key process that emerged during eukaryogenesis.
233 Previous studies have reported that Asgard archaeal genomes encode homologs of eukaryotic
234  proteins comprising various intracellular vesicular trafficking and secretion machineries, including
235  the ESCRT (endosomal sorting complexes required for transport), TRAPP (transport protein
236  particle) and COPII (coat protein complex IT) vesicle coatomer protein complexes®!?. Furthermore,
237  as much as 2% of the genes of Asgard archaeal genomes were found to encode small GTPase
238  homologs — a broad family of eukaryotic proteins, encompassing the Ras, Rab, Arf, Rho and Ran

239  subfamilies, that are broadly implicated in budding, transport, docking and fusion of vesicles in

11
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240  eukaryotic cells*!?, Here, we report the identification of Asgard archaeal homologs of subunits of
241  additional vesicular trafficking complexes (Figure 3, Ext. Data Fig. 2, Supplementary Table 3).
242 Noticeably, we found putative homologs of all four subunits composing eukaryotic adaptor
243 proteins (AP) and coatomer protein (COPI) complexes, which, in eukaryotic cells, are involved in
244  the formation of clathrin-coated pits and vesicles responsible for packaging and sorting cargo for
245  transport through the secretory and endocytic pathways?>. Those complexes are composed of two
246  large subunits, belonging to the - and y-families, a medium p-subunit, and a small o-subunit. We
247  found homologs of all functional domains composing those subunits, albeit sparsely distributed
248  (Ext. Data Fig. 2, Supplementary Information). Additionally, we found homologs of several
249  protein complexes involved in eukaryotic endosomal sorting such as the retromer, the
250 HOPS/CORVET and the GARP complexes (Figure 3, red shading). Retromer is a coat-like
251  complex associated with endosome-to-Golgi retrograde traffic*® and we detected four of its five
252 subunits in Asgard MAGs. One of these subunits is Vps5-BAR, which in Thorarchaeia is often
253  fused to Vps28, a subunit of the ESCRT-I subcomplex, suggesting a functional link between BAR
254  domain proteins and the thorarchaeial ESCRT complex. The GARP (Golgi-associated retrograde
255  protein) complex is a multisubunit tethering complex located at the trans-Golgi network in
256  eukaryotic cells, where it also functions to tether retrograde transport vesicles derived from

257  endosomes’’3%

, similarly to the retromer. GARP comprises four subunits, three of which we could
258  detect in Asgard archaeal genomes, with a sparse and punctuated distribution. Functioning in
259  opposite direction from the retromer and GARP complexes are the CORVET (Class C core

260  vacuole/endosome tethering) and HOPS (Homotypic fusion and protein sorting) complexes®”.

261  Endosomal fusion and autophagy in eukaryotic cells depend on them and they share four core
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262  subunits*’, three of which can be found in Asgard archaea, in addition to one of the HOPS specific

263  subunits*!.

264  Finally, while numerous components of the ESCRT-I, II and III systems have been previously
265  detected in Asgard archaea®!%*2, we report here the identification of Asgard homologs for the

266  ESCRT-III regulators Vfal, Vtal, Istl, and Brol.
267
268  Ancestral Asgard archaea genome reconstruction

269  The analysis of Asgard archaeal genome data obtained through metagenomics, combined with the
270 insights derived from cytological observations of the first two cultured Asgard archaea
271  ‘Candidatus Prometheoarchacum syntrophicum’* and ‘Candidatus Lokiarchaeum ossiferum’#,
272 have generated new hypotheses about the nature of the archaeal ancestor of eukaryotes*3#-4%,
273  However, these theories are mostly based on a limited number of features displayed by a single,
274  or a few Asgard archaeal lineages. While informative, features of present-day Asgard archaea do
275  not necessarily resemble those of LAECA, as these are potentially separated by over 2 Gya of
276  evolution®. Furthermore, Asgard archaeal phyla display a highly variable genome content with

277  respect to ESPs and predicted metabolic features*3:46:48.50,51

, suggesting a complex evolutionary
278  history of those traits. In light of these considerations, we inferred ancestral features of LAECA
279 by using an ML evolutionary framework. We employed a recently developed probabilistic gene-
280 tree species-tree reconciliation approach®?°? in combination with the extended taxonomic
281  sampling of Asgard archaeal genomes to reconstruct the evolutionary history of homologous gene
282  families and ancestral gene content across the Asgard archaeal species tree. For this, we inferred
283 ML phylogenetic trees of all 17,200 protein families encoded across 181 archaeal genomes,

284  including representatives from Asgard and TACK archaea, and Euryarchaeota clades. Importantly,
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285  as missing genes and potential contaminations in MAGs will be regarded as recent gene loss and
286  gain events in our ancestral reconstruction analyses, the use of incomplete MAGs with low
287  contamination levels is unlikely to have a major impact on the inferred gene content of the deep
288  archaeal ancestors that were reconstructed in the present study (also see Supplementary

289  Information).

290  We first compared the distributions of estimated ancestral proteome sizes, and numbers of inferred
291  gene duplications, losses and gains (i.e., horizontal gene transfers and originations) in all archaeal
292 ancestral nodes (Supplementary Figure 12). Intriguingly, we observed that Heimdall- (and
293  particularly the ancestor of Hodarchaeales) and Lokiarchaeia ancestors display significantly higher
294  gene duplication rates compared to TACK and Euryarchaeota ancestors (Figure 4a). In addition,
295  we found that most Asgard archaeal ancestors displayed gene loss rates comparable to other
296  archaea, with the exception of Thorarchaeia, Lokiarchaeales and Jordarchaeia, which showed
297  significantly lower loss rates. In agreement with the observed evolutionary genome dynamics, we
298  found that predicted proteome sizes of most Asgard archaea ancestors are significantly larger than
299  other archaeal ancestors (P<0.001), with Lokiarchaeia ancestors displaying the largest estimated
300 proteome size (Supplementary Figure 13). Similarly, the Hodarchaeales ancestor had an estimated
301  proteome size of 4,053 proteins, versus 3,134 for the last Asgard archaca common ancestor
302  (LAsCA), reflecting the high duplication and low loss rates in that clade. The streamlined genome
303  content of the Odinarchaeia ancestor represents an exception to the general trend of genome

304  expansion across Asgard archaea, and possibly reflects an adaptation to high temperatures*.

305
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306 Ancestral features of LAECA

307 Using the approach described above, we also reconstructed the ancestral metabolic and
308 physiological properties across the Asgard archaeal species tree, including the proposed closest
309 archaeal relatives of eukaryotes, the Hodarchaeales. We infer that the LAsCA was a
310  chemolithotroph that required the synthesis of organic building blocks via the Wood-Ljungdahl
311  pathway (WLP) (Figure 4b and Supplementary information), for which we inferred the presence
312 of key enzymes, including carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS)
313  and the formylmethanofuran dehydrogenase (FmdABCDE). In addition, our analyses revealed that
314  the last common ancestors of individual Asgard archaeal phyla either had the genetic potential to
315  switch between autotrophy and heterotrophy (Loki-, Thor-, Jord- and Baldrarchaeia) or a
316  predominantly heterotrophic fermentative (Odin- and Heimdallarchaeia) lifestyle (Figure 4b,
317  Supplementary Information). Specifically, we observed that the WLP was lost prior to the split
318  between Njordarchaeales and the other Heimdallarchaeia (and therefore prior to the emergence of

319 LAECA), indicating that LAECA was a heterotrophic fermenter (Supplementary Table 4).

320  Furthermore, we infer that the central carbon metabolism of Heimdallarchaeia (including
321  Hodarchaeales) included the Embden-Meyerhof-Parnas (EMP) pathway and a partial oxidative
322  pentose phosphate (OPP) pathway - both considered core modules of present-day eukaryotic
323 central carbon metabolism. While the enzymes of these pathways in Asgard archaea do not share
324  a common evolutionary origin with those of eukaryotes, this indicates that LAECA had a similar

325  central carbon metabolism compared to modern eukaryotes (Supplementary Figure 14-15).

326  In addition, our analyses support the idea that the last common ancestor of Heimdallarchaeia
327  contained several components of the electron transport chain (ETC)*. We inferred that the last

328  common ancestor of Hodarchaeales likely contained CI, CII, CIV and a nitrate reductase complex
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329  (NarGHLJ), indicating that nitrate might have been used as a terminal electron acceptor to perform
330  anaerobic respiration. As such, the last Hodarchaeales common ancestor likely generated ATP
331 using an electron transport chain where electrons from NADH and succinate were transferred
332 through a series of membrane-associated complexes with quinones and cupredoxins as electron

333 carriers to ultimately reduce nitrate™.

334  As indicated above, a significant fraction of the currently sampled Asgard archaea diversity
335  originates from geothermal or hydrothermal environments. Indeed, using an algorithm based on
336  genome-derived features®, we confirmed that (most) Njordarchaeales, Baldr- and Jordarchaeia are
337  hyperthermophiles, Odinarchaeia are thermophiles, and Loki- and Thorarchaeia are mesophiles
338  (Figure 4c, Supplementary Table 5). While Heimdallarchaeia seem to contain both meso- and
339  thermophiles, we infer a mesophilic physiology for Hodarchaeales, obtaining the lowest predicted
340 optimal growth temperatures among all Asgard archaea (median=36.7 °C). Asgard archaeal
341  hyperthermophiles contain reverse gyrase, a topoisomerase that is typically encoded by
342 hyperthermophilic prokaryotes®’. We infer that a reverse gyrase was possibly present in LASCA
343  and that it was subsequently lost in all heimdallarchaeial orders except for Njordarchaeales. This
344  observation would be compatible with a scenario in which Asgard archaea have a
345  hyperthermophilic ancestry, but in which eukaryotes evolved from an Asgard archaea lineage that

346  had adapted to mesophilic growth temperatures.
347
348  Discussion

349 Beyond genomic exploration, several studies have started to unveil important physiological,
350 cytological and ecological aspects of Asgard archaea*>>%-%0, Yet, while such insights are certainly
351  relevant, the cellular and physiological characteristics of present-day Asgard archaea will almost
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352 certainly not resemble those of LAECA. Therefore, inferences about the identity and nature of
353  LAECA and the process of eukaryogenesis should be made within an evolutionary context. We
354  used an evolutionary framework to analyze an expanded Asgard archaeal genomic diversity,
355 comprising 11 clades of high taxonomic rank. Using comprehensive phylogenomic analyses
356  involving the evaluation of distinct marker protein datasets and systematic assessment of suspected
357  phylogenetic artefacts and state-of-the-art models of evolution, we identified Hodarchaeales, a
358  class-level clade within the Heimdallarchaeia, as the closest relatives of eukaryotes. Evidently,
359  phylogenomic analyses aiming to pinpoint the phylogenetic position of eukaryotes in the tree of
360 life are extremely challenging, and our results stress the importance of testing for possible sources
361  of bias affecting phylogenomic reconstructions, as was recently reviewed®'. The implementation
362  ofaprobabilistic gene tree/species tree reconciliation approach allowed us to infer the evolutionary
363  dynamics and ancestral content across the archaeal species tree providing several new insights into
364  the Asgard archaeal roots of eukaryotes. Altogether, our results reveal a picture in which the
365  Asgard archaeal ancestor of eukaryotes had, compared to other archaea, a relatively large genome,
366  resulting mainly from more numerous gene duplication and fewer gene loss events. It is tempting
367  to speculate that the elevated gene duplication rates observed in our analyses represent an ancestral
368  feature of LAECA, and that it remained the predominant modus of genome evolution during the
369  early stages of eukaryogenesis. We also inferred that the duplicated gene content of LAECA
370  included several protein families involved in cytoskeletal and membrane-trafficking functions,
371  including among others actin homologs, ESCRT complex subunits and small GTPase homologs.
372 Our findings complement those of another study®® reporting that eukaryotic proteins with an

373  Asgard archaeal provenance, as opposed to those inherited from the mitochondrial symbiont,
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374  duplicated the most during eukaryogenesis, particularly proteins of cytoskeletal and membrane-

375  trafficking families.

376  Beyond genome dynamics, our analyses of inferred ancestral genome content across the Asgard
377  archaeal species tree indicates that, while Asgard archaea likely had a thermophilic ancestry, the
378 lineage from which eukaryotes evolved was adapted to mesophilic conditions, which is compatible
379  with a generally assumed mesophilic ancestry of eukaryotes. Furthermore, we infer that LAECA
380 had the genetic potential to support a heterotrophic lifestyle, and may have been able to conserve
381  energy via nitrate respiration. In addition, based on taxonomic distribution and evolutionary
382  history of ESPs we show that complex pathways involved in protein targeting and membrane
383 trafficking, and in genome maintenance and expression in eukaryotes were inherited from their
384  Asgard archaeal ancestor. Of note, we identified additional Asgard archaeal homologs of
385  eukaryotic vesicular trafficking complex components. Of these, some Asgard archaeal proteins
386  display sequence similarity to proteins which, in eukaryotes, are part of the clathrin adaptor protein
387  complexes and of the COPI complex. These complexes are particularly interesting since they are
388 involved in the biogenesis of vesicles responsible for sorting cargo and subsequent transport
389  through the secretory and endocytic pathways®. Altogether, these results further suggest a
390  potential for membrane deformation, and possibly trafficking, in Asgard archaea. The ability to
391  deform membranes was recently shown in two papers reporting the first cultivated Lokiarchaeia

3 and ‘Ca. Lokiarchaeum ossiferum’#*, whose cells

392 lineages, ‘Ca. P. syntrophicum strain MK-D1
393  both displayed unique morphological complexity including long and often branching protrusions
394 facilitated by a dynamic actin cytoskeleton. Thus far no*, or only limited** visible endomembrane

395  structures were observed in these first cultured representatives of Asgard archaea. However, it is

396  important to restate here that, being separated by some 2 Gya of evolution, the cellular features of
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present-day Asgard archaeal lineages do not necessarily resemble those of LAECA. Furthermore,
given the disparity of the distribution patterns of membrane trafficking homologs in Asgard
archaea, it will be crucial to isolate representatives of phyla other than Lokiarchaeia and study their
cell biological features and potential for endomembrane biogenesis. Of particular interest would
be members of the Heimdallarchaeia, and specifically Hodarchaeales, as the currently identified
closest relatives of eukaryotes, as well as Thorarchaeia lineages, which seem to generally contain

a particularly rich suite of homologs of eukaryotic membrane trafficking proteins.

By phylogenetically placing eukaryotes as a firmly-nested clade within the presently identified
Asgard archaeal diversity, and by inferring ancestral genomic content across the Asgard archaea,
our work provides insights into the identity and nature of the Asgard archaeal ancestor of
eukaryotes, guiding future studies aiming to uncover new pieces of the elusive eukaryogenesis

puzzle.
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Figure 1. Phylogenomic analysis of 15 concatenated ribosomal proteins expands Asgard
archaea diversity. Maximum-likelihood tree (IQ-TREE, WAG+C60+R4+F+PMSF model) of
concatenated protein sequences from at least five genes, encoded on a single contig, of a 15
conserved ribosomal protein (RP15) gene cluster retrieved from publicly available and newly
reported Asgard archaeal MAGs. Bootstrap support (100 pseudo-replicates) is indicated by circles
at branches, with filled and open circles representing 90% and 70% support, respectively. Leaf
names indicate geographical source and isolate name (inner and outer label, respectively) for the
MAGs reported in this study. Scale bar denotes the average number of substitutions per site.
Abbreviations: AB: Aarhus Bay (Denmark); ABE: ABE vent field, Eastern Lau Spreading Center;
ALCG: Asgard Lake Cootharaba Group; CR: Colorado River (USA); GB: Guaymas Basin
(Mexico); JZ: Jinze (China); LC: Loki’s castle; LCB: Lower Culex Basin (USA); Mar: Mariner
vent field, Eastern Lau Spreading Center; NSCS: Northern South China Sea; OWC: Old Woman

Creek (USA); QC: QuCai village (China); QZM: QuZhuoMu village (China); RP: Radiata Pool
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716  (New Zealand); RS: Red sea; SHR: South Hydrate Ridge; TNS: Taketomi Island (Japan); WOR:

717  White Oak River (USA).
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720  Figure 2. Phylogenomic analyses based on 57 concatenated non-ribosomal proteins support
721  the emergence of eukaryotes as sister to Hodarchaeales. a. Bayesian inference (BI) based on
722 278 archaeal taxa, using Euryarchaeota and TACK archaea as outgroup (not shown) (NM57-

723  nDK sr4 alignment, 15,733 amino acid positions). The concatenation was SR4-recoded and
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analyzed using the CAT+GTR model (4 chains, ~25,000 generations). b. Schematic representation
of the shift in the position of eukaryotes (grey branches) in ML and BI analyses of this dataset
under different treatments. Untreated: unprocessed dataset; Recoding: SR4-recoded dataset;
Recoding+Fast-Site Removal: Fast-site removal combined with SR4-recoding (the topology most
often recovered after removing 10% to 50% fastest-evolving sites, in steps of 10%, is shown). 175
and 68 refer to phylogenomic datasets containing 175 and 68 Asgard archaea, respectively. Note
that BI was not performed for the 175 untreated dataset due to computational limitations (for
detailed overview of phylogenomic analyses, see Supplementary Table 3). Scale bar denotes the

average expected number of substitutions per site.
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736  Figure 3. Eukaryotic signature proteins in Asgard archaea. a. Distribution of ESP homologs
737  in Asgard archaea grouped by function. Shaded rectangles above protein names indicate ESPs
738  newly identified as part of this study. Predicted homologs are depicted by colored circles: fully
739  filled circles indicate that we detected homologs in at least half of the representative genomes of
740  the clade; half-filled circles indicate that we detected homologs in fewer than half of the
741  representative genomes of the clade. Hodarchaeales homologs are highlighted with a grey
742  background. Accession numbers are available in Supplementary Table 3. b. Asgard archaea encode
743 homologs of eukaryotic protein complexes involved in N-glycosylation. The Sec61, the OST and
744  TRAP complexes are depicted according to their eukaryotic composition and localization. On the
745  right-hand side of the panel, dark-colored subunits represent eukaryotic proteins which have
746  prokaryotic homologs in Asgard archaea newly identified as part of this work; Light-colored

747  subunit homologs have been described previously!. Figure generated with Biorender.com.
748
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a b Optimal growth temperatures predicted by genomic features
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Figure 4. Genome dynamics, Optimal Growth Temperature predictions, and metabolic
reconstruction of Asgard ancestors. a. Duplication (upper panel) and loss rates (lower panel)
inferred for Asgard archaeal ancestors, normalized by proteome size and plotted by phylum. P-
values for each Wilcoxon test against the median values of internal nodes belonging to TACK and
Euryarchaeota are shown above each category, where *: p-value <= 0.05, **: p-value <=0.01, ***:
p-value <=0.001. b. Optimal Growth Temperature (OGT) predictions, in degrees Celsius. OGT
were predicted for the genomes presented here based on genomic and proteomic features®®
(Supplementary Table 5). Since nucleotide fractions of the ribosomal RNAs are used in this
method, only those genomes with predicted rRNA genes could be analyzed. The right-hand panel
depicts OGT within Heimdallarchaeia. Note that Njord- and Gerdarchaeales are predicted to be

thermophiles (most genomes encode a reverse gyrase). In contrast, Hodarchaeales display the
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763  lowest OGT among Heimdallarchaeia. c. Based on the presence/absence of the thermophily-
764  diagnostic enzyme reverse gyrase and the following metabolic signatures in each of the ancestors,
765  we predict that the last Asgard common ancestor probably transitioned from a hyperthermophilic
766  fermentative lifestyle to a mesophilic mixotroph lifestyle. The LAsCA likely encoded
767  gluconeogenic pathways via the reverse EMP gluconeogenic pathway and via FBP
768  aldolase/phosphatase (FBP A/P). The major energy-conserving step in the early Asgard ancestors
769  could have been the ATP synthesis by fermentation of small organic molecules (i.e., acetate,
770  formate, formaldehyde). The reverse ribulose monophosphate pathway (rRuMP) was a key
771  pathway in the LAsCA for the generation of reducing power. The Wood-Ljungdahl pathway
772 (WLP) appeared only to be present in the LAsCA and was lost in the more recent ancestors (of
773  Heimdallarchaeia and Hodarchaeales) indicated here. The tricarboxylic acid (TCA) cycle is
774  predicted to be complete in all five investigated Asgard ancestors. The inferred presence of the
775  electron transport chain (ETC) components is shown for selected ancestors of major Asgard
776  archaea groups, with the Hodarchaeales common ancestor encoding the most complete set of ETC
777  subunits, and likely using nitrate as a terminal electron acceptor. Therefore, membrane-associated
778  ATP biosynthesis coupled to the oxidation of NADH and succinate and reduction of nitrate to
779  nitrite within the respiratory chain could have been present in the LAECA. Abbreviations: Q:
780  quinone; c: cupredoxin, FBP A/P: Fructose 1,6-bisphosphate aldolase/phosphatase; EMP:
781  Embden-Meyerhof-Parnas; OPPP: Oxidative pentose phosphate pathway; rRuMP: Reversed
782  ribulose monophosphate pathway; RHP: reductive hexulose-phosphate; RuBisCO: Ribulose-1,5-
783  bisphosphate  carboxylase/oxygenase; PRK: phosphoribulokinase; AMP: adenosine
784  monophosphate salvage pathway. Details of copy numbers of key enzymes involved in central

785  carbon metabolism are found in Supplementary Table 4.
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786  Methods

787 Sample collection, sequencing, assembly and binning

788  We sampled aquatic sediments from eleven geographically distant sites: Guaymas Basin (Mexico),
789  Lau Basin (Eastern Lau Spreading Center and Valu Fa Ridge, south-west Pacific Ocean), Hydrate
790  Ridge (offshore of Oregon, USA), Aarhus Bay (Denmark), Radiata Pool (New Zealand), Taketomi
791  Island Vent (Japan), the White Oak River estuary (USA), and Tibet Plateau and Tengchong
792  (China) (Supplementary Table 1).

793 a. Jordarchaeote JZB50, QC4B49, QZMA23B3, QZMA2BS5, QZMA3BS

794  Hot spring sediment samples were collected from Tibet Plateau and Yunnan Province (China) in
795  2016. The microbial community compositions have been described and reported previously®-64,
796  Samples were collected from the hot spring pools using a sterile iron spoon into 50 ml sterile
797  plastic tubes, then transported to the lab on dry ice, and stored at -80°C for DNA extraction. The
798  genomic DNA of the sediment samples was extracted using FastDNA Spin Kit for Soil (MP
799  Biomedicals, Irvine, CA) according to the manufacturer's instructions. The obtained genomic
800  DNA was purified for library construction, and sequenced on an Illumina HiSeq2500 platform (2
801 X 150 bp). The raw reads were filtered to remove Illumina adapters, PhiX and other [llumina trace
802  contaminants with BBTools v38.79, and low-quality bases and reads using Sickle (v1.33;
803  https://github.com/najoshi/sickle). The filtered reads were assembled using metaSPAdes (v3.10.1)
804  with a kmer set of “21, 33, 55, 77, 99, 127”. The filtered reads were mapped to the corresponding
805  assembled scaffolds using bowtie2 v2.3.5.19. The coverage of a given scaffold was calculated
806  using the command of “jgi summarize bam contig_depths” in MetaBAT v2.12.1%. For each

807  sample, scaffolds with a minimum length of 2.5 kbp were binned into genome bins using MetaBAT

808  v2.12.1, with both tetranucleotide frequencies (TNF) and scaffold coverage information
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809  considered. The clustering of scaffolds from the bins and the unbinned scaffolds was visualized
810  using ESOM with a minimum window length of 2.5 kbp and max window length of 5 kbp, as
811  previously described®’. Misplaced scaffolds were removed from bins and unbinned scaffolds
812  whose segments were placed within the bin areas of ESOMs were added to the corresponding bins.
813  Scaffolds with a minimum length of 1 kbp were uploaded to ggKbase
814  (http://ggkbase.berkeley.edu/). The ESOM-curated bins were further evaluated based on
815  consistency of GC content, coverage and taxonomic information, and scaffolds identified with
816  abnormal information were removed. The ggKbase genome bins were curated individually to fix
817  local assembly errors using ra2.py .

818 b. Njordarchaeote A173, A3132, M288 and Thorarchaeote A361, A381, A399

819  Hydrothermal vent deposits were collected from the ABE (ABE 1, 176° 15.48'W, 21° 26.68'S,
820 2142 m; ABE 3, 176° 15.59'W, 21° 26.95'S, 2131 m) and Mariner (176° 36.07'W, 22° 10.81'S,
821 1914 m) vent fields along the Eastern Lau Spreading Center in April/May of 2015 during the
822  RRI1507 Expedition on the RV Roger Revelle. Sample collection and processing were done as
823  previously described®. DNA was extracted from homogenized rock slurries using the DNeasy
824  PowerSoil kit (Qiagen) as per the manufacturer’s instructions. Samples were prepared for
825  sequencing on the Illumina HiSeq 3000 using Nextera DNA Library Prep kits (Illumina), and
826  metagenomes (2x150 bp) were sequenced at the Oregon State University Center for Genome
827  Research and Computing. Trimmomatic’® v.0.36 was used to trim low-quality regions and adapter
828 sequences from raw reads (parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10,
829  LEADING:20, SLIDINGWINDOW:4:20, MINLEN:50). Clean paired reads were then interleaved
830 using the khmer software package’!. Interleaved and unpaired reads were assembled with

831 MEGAHIT v.1.1.1-2-g02102¢1 (--k-min 31, --k-max 151, --k-step 20, --min-contig-len 1000)
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832 7273, Trimmed reads were mapped back to the contigs to determine read coverage using Bowtie 2
833  v.2.2.9 7% and SAMtools v.1.3.17°. Binning was performed with MetaBAT v.0.32.4% using
834  tetranucleotide frequency and read coverage. Bin completion and contamination were estimated

835  with CheckM v.1.0.77°.

836 c. Lokiarchaeote ABR0O1, ABR02, ABR03, ABR04, ABR0S5, ABR06, ABROS, ABRI11, ABRI3,
837 ABRIS5, Thorarchaeote ABR09, ABRI10 and Heimdallarchaeote ABRI14, ABR16 MAGs
838 were obtained as previously described?!.

839 d. Archaeon WORAI, WORB2, Heimdallarchaeote WORE3, Lokiarchaeote WORBA4,
840 WORCS and Thorarchaeote WORH6

841  Sampling, DNA extraction, sequencing library preparation and sequencing methods were
842  previously described”’. Published assemblies and raw reads for the samples WOR-1-36_30
843  (SAMNO06268458; Gp0056175), WOR-1-52-54 (SAMNO06268416; Gp0059784), WOR-3-24 28
844  (SAMNO06268417; Gp0059785) were downloaded from JGI. Short reads were trimmed using
845  Trimmomatic’® v0.33 (PE ILLUMINACLIP:2:30:10 SLIDINGWINDOW:4:15 MILEN:100).
846  Contigs shorter than 1000 bp were excluded from the assembly using SeqTK v1.0r75
847  (https://github.com/lh3/seqtk). Each assembly was binned using CONCOCT v0.4.17% and coverage
848  information from the three datasets, and Asgard bins were subsequently identified based on
849  phylogenies of concatenated ribosomal proteins!. Identified Asgard MAGs were used together
850  with publicly available Asgard genomes to recruit trimmed-reads originated from Asgard genomes
851  using CLARK v1.2.3 with the -m 0 option”. For each dataset, recruited Asgard reads were
852  independently assembled using SPAdes®’ and IDBA-UD?! and further binned using CONCOCT,
853  using a minimum contig length of 1000 bp. Bins with higher completeness and lower

854  contamination values as predicted by miComplete v1.003? were selected and manually curated
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855  using mmgenome v0.7.13%84

using the coverage information, paired-reads linkage, composition
856  and marker genes information. The samples and assembly method used for each final MAG were:
857  Archaecon WORA1 (WOR-1-52-54; spades), Archacon WORB2 (WOR-1-52-54; IDBA-UD),
858  Heimdallarchacote WORE3 (WOR-3-24 28; spades), Lokiarchacote WORB4 and WORCS
859 (WOR-1-36_30; IDBA-UD), and Thorarchacote WORH6 (WOR-1-36 30; spades).

860 e. Jordarchaeote RPD1, RPF2 and Odinarchaeote RPA3

861  Information about the location of the hot spring sediments from Radiata Pool, sampling and DNA
862  extraction procedures was previously reported!?. Short paired-end Illumina reads were generated
863 and preprocessed using Scythe (https://github.com/vsbuffalo/scythe) and  Sickle
864  (https://github.com/najoshi/sickle) to remove adapters and low-quality reads. Reads were
865  subsequently assembled of IDBA-UD 1.1.3 (--maxk 124). The Jordarchaeote RPF2 MAG was
866  generated by binning contigs according to their tetranucleotide frequencies using esomWrapper.pl
867  (https://github.com/tetramerFreqs/Binning) with a minimum contig length 5000 bp and a window
868  size of 10 Kbp. ESOM maps were manually delineated using the Databionic ESOM viewer
869  (http://databionic-esom.sourceforge.net/). Jordarchacote RPD1 and Odinarchaecote RPA3 were

870  binned following the methodology described in above (section d), but re-assembling the recruited

871  reads only with IDBA-UD (--maxk 124)8!.

872 f. Jordarchaeote GBS0I, GBS02, GBS03, GBS04, GBS05, GBS06, GBS07,
873 Heimdallarchaeote GBS0S8, GBS09, GBSI10, GBSII, Lokiarchaeote GBSI4,
874 Njordarchaeote GBS15, GBS16, GBS17, GBS18, GBS19, GBS20, GBS21, GBS22, GBS23,
875 GBS24, GBS25, GBS26, TNSO8 and Thorarchaeote GBS28, GBS29, GBS33, GBS34
876 MAGs were obtained as described in 3.

877 g. Heimdallarchaeote B3 JM 08 MAG was obtained as described in %,
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878 h. Thorarchaeote OWC bin2, OWC bin3 and OWC bin4 MAGs were obtained as described
879 in 31,
880 i. Heimdallarchaeote GBSI1

881  Samples were made available by the Gulf Coast Repository (GCR) and were collected on the
882  Ocean drilling Program (ODP) Leg 204 at site 1244 (44°35.17N, 125°7.19W) on July 14th, 2002
883  (hole C and core 2). The ODP site is found at a water depth of 890 m on the eastern side of the
884  South Hydrate Ridge on the Cascadia Margin. This site has been well characterized physically and
885  geochemically®’. Furthermore, the microbial community structure has been surveyed using 16S
886  rRNA gene sequencing®?°, Two sediment samples, designated DCO-2-5 (sample ID 1489929)
887 and DCO-2-7 (sample ID 1489924), were collected at a sediment depth of 12.40 and 14.96 m
888  below the seafloor, respectively, and stored at -80°C at GCR. A total amount of 10 g of each of
889  the two sediment samples was used to extract DNA using the MoBio DNA PowerSoil Total kit. A
890  total amount of 100 ng DNA was used to prepare sequencing libraries that were 150 bp paired-end
891  sequenced at the Marine Biological Laboratory (Woods Hole, MA, USA) on an Illumina MiSeq
892  sequencer. Adaptors and DNA spike-ins were removed from the forward and reverse reads using
893  cutadapt v1.12%.  Afterwards, reads were interleaved using interleave fasta.py

894  (https:/github.com/jorvis/biocode/blob/master/fasta/interleave fasta.py), and further trimmed

895  using Sickle with default settings (Fass JN) (https://github.com/najoshi/sickle). Metagenomic
896  reads from both samples were co-assembled using IDBA-UD using the following parameters:
897  --pre_correction, -mink 75, -maxk 105, --step 10, --seed_kmer 55 8!, Metagenomic binning was
898  performed on scaffolds with a length >3,000 bp using ESOM, including a total of 4,939 scaffolds
899  with a length of 30,693,002 bp®”#!. CheckM v1.0.5 was employed to evaluate the accuracy of the

900  binning approach by determining the percentage of completeness and contamination’®.
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901 j.  Heimdallarchaeote GBS09
902 MAG was obtained as previously described’!.

903

904 Exploration of phylogenetic diversity in Asgard assemblies and MAGs

905  To assess the presence of potential Asgard-related lineages in our assemblies, we reconstructed a
906  phylogeny of ribosomal proteins encoded in a conserved 15-ribosomal protein (RP15) gene
907  cluster'®. As ingroup, we used all MAGs presented in this study, plus all genomes classified as
908  Asgard archaea in NCBI as of June 25" 2021, plus those classified as “archacon” corresponding
909 to  Hermodarchaecia  (GCA _016550385.1, GCA 016550395.1, GCA_016550405.1,
910 GCA_016550415.1, GCA _016550425.1, GCA _016550485.1, GCA_016550495.1,
911 GCA 016550505.1). and all Asgard archaecal MAGs released by Sun et al.?!. To obtain an
912  adequate outgroup dataset, we downloaded all archaeal genomes from the Genome Taxonomy
913  Database®?, data revision 89, and selected one genome sequence per species-level cluster as
914  defined in https://data.gtdb.ecogenomic.org/releases/release89/89.0/sp _clusters r89.tsv. We then
915  selected a set of 216 genomes classified as Bathyarchaeia, Nitrososphaeria and Thermoprotei, and
916  used them as outgroup. Genes were detected and individually aligned and trimmed as previously
917  described!?. Ribosomal protein sequences were selected if they were encoded in a contig
918  containing at least five of the 15 ribosomal protein genes. ModelFinder” was run as implemented
919  in IQ-TREE v. 2.0-rc2 to identify the best model among all combinations of the LG, WAG, JTT
920  and Q.pfam models, as well as their corresponding mixture models by adding +C20, +C40 and
921  +C60, and the additional mixture models LG4M, LG4X, UL2 and UL3, with rate heterogeneity
922  (none, +R4 and +G4) and frequency parameters (none, +F). A PMSF approximation® of the

923  chosen model (WAG+C60+R4+F) was then used for a final reconstruction using 100 non-
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924  parametric bootstrap pseudoreplicates for branch statistical support. The obtained tree revealed a
925  broad genomic diversity of Asgard lineages (Figure 1).

926

927  Environmental distribution of Asgard archaea

928 16S rRNA gene sequences were predicted with Barrnap v 0.9
929  (https://github.com/tseemann/barrnap) with the option “--kingdom arc”. Since none of the two
930  Helarchaeales bins contained 16S rRNA gene sequences, helarchaeal 16S rRNA gene sequences
931 identified by Seitz et al.’® were used as representatives of this phylum. These sequences were
932  submitted to the IMNGS platform as queries for Paraller similarity searches against all available
933  NCBI sequence read archive (SRA) samples with a 95% similarity threshold and a minimum
934  alignment size of 200 bp®. Available metadata for detected SRA samples were then manually
935 assessed to link environmental context descriptions for individual SRA samples to broader
936  environment categories. The sequence abundance output file generated by IMNGS was then
937  analysed using R and the package tidyverse to calculate the number of SRA samples belonging to

938  each environment per phylum®.
939
940  Gene prediction

941  Gene prediction was performed using Prokka® v1.12 (prokka --kingdom Archaea --norrna --
942  notrna). TrRNA  genes and tRNA  genes were predicted with  Barrnap

943 (https://github.com/tseemann/barrnap) and tRNAscan-SE®%, respectively.
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944

945  Optimal growth temperature prediction

946  Optimal growth temperatures were predicted for the genomes presented here based on genomic
947  and proteomic features®® (see Supplementary Information). Since ribosomal RNAs nucleotide

948  composition are used in this method, only genomes with predicted rRNAs were analyzed.

949

950 Identification of homologous protein families

951  All-versus-all similarity searches of all predicted proteins from the A64 taxon selection (64
952 Asgard, 76 TACK, 43 Euryarchaeota and 41 DPANN archaea; see Supplementary Table 2) were
953  performed using diamond®® blastp (--more-sensitive --evalue 0.0001 --max-target-seqs 0 --outfmt
954  6). The file generated was used to cluster protein sequences into homologous families using
955  SiLiX!'% v.1.2.10, followed by Hifix!°! v1.0.6. The identity and overlap parameters required by
956  Silix were setto 0.2 and 0.7, respectively, after inspecting a wide range of values (--ident [0.15,0.4]
957  and --overlap [0.55-0.9], with increments of 0.05) and selecting the values that maximized the

958  number of clusters containing at least 80% of the taxa.
959
960  Functional annotation of homologous protein families

961  Protein families, excluding singletons, were aligned using mafft-linsi'%? v7.402 and converted into
962 HHsearch format (.hhm) profiles using HHblits!'® v3.0.3. Profile-profile searches were
963  subsequently performed against a database containing profiles from EggNOG 4.5'%, arCOGs!%
964 and PFAM databases!'® that had been previously converted to the hhm format using HHblits!%3

965  v3.0.3.
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966

967  Automatic functional annotation of individual proteins

968  Individual proteins were annotated using the HMMscan tool of the HMMer suite against PFAM
969  v32'%, Interproscan'?’ 5.25-64.0, EggNOG mapper v0.12.7 against the NOG database v4.5'%4,
970  diamond aligner v0.9.9.110% against the nr database, arCOG!?, and GhostKoala annotation

971  server'®, Putative hydrogenases were further classified using HydDB!%.

972
973  Detailed analysis of ESPs

974  In-depth analysis of potential ESPs involved a combination of automatic screens and manual
975  curation. We first manually searched for homologs of previously described ESPs*!%4? by using a
976  variety of sequence similarity approaches such as BLAST, HMMer tools, profile-profile searches
977  using HHblits, combined with phylogenetic inferences, and, in some cases, the Phyre2 structure
978  homology search engine!*!'01!1 'We did not use fixed cutoffs, as the e-value between homologs
979  will vary depending on the protein investigated, hence the need for manual examination of

980  potential homologs and a combination of lines of evidence.

981 In addition, to identify potential new ESPs, we first used our profile-profile searches against
982 EggNOG and manually investigated Asgard orthologous groups which had a best hit to a
983  eukaryotic-specific EggNOG cluster. We also extracted PFAM domains whose taxonomic
984  distribution is exclusive to eukaryotes as per PFAM v32, and investigated cases where they
985  represented the best domain hit in Asgard archaea sequences identified by HMMscan. Finally, we
986  manually investigated dozens of proteins known to be involved in key eukaryotic functions based

987  on our knowledge and literature searches. In Figure 2, we are only reporting cases based on the
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988  strict cutoff that the diagnostic HMM profile had the best score among all profiles detected for a
989  protein. An exception was made for the ESCRT domain Vps28, Steadiness box, UEV, Vps25,
990 NZF, GLUE and Vps22 domains which are usually found in combination with other protein
991  domains and thus do not necessarily represent the best scoring domain in a protein even if they

992  represent true homologs.
993

994  Phylogenetic analyses of concatenated proteins for species tree inference

995  Two sets of phylogenetic markers were used to infer the species tree. The first one (RP56) is based
996  onapreviously published dataset of 56 ribosomal proteins used to place the first assembled Asgard
997  genomes!'’. The second one (NM57, for ‘new markers’) corresponds to 57 proteins extracted from
998  a set of 200 markers previously identified as core archaeal proteins that can be used to robustly

112

999 infer the tree of archaea''~. These 57 markers were selected because they were found in at least a

1000  third of representatives of each of the 11 Asgard clades, as well as in 10 out of 14 eukaryotes, and

1001  were inherited from archaea in eukaryotes.

1002 We initially assembled an RP56 dataset for a phylogenetically diverse set of 222 archaeal
1003 and 14 eukaryotic taxa. These included all 11 Asgard archaeca MAGs and genomes available at the
1004  NCBI as of May 12, 2017, as well as the 53 most diverse novel MAGs from this work (out of 63).
1005  We gathered orthologs of these genes from all proteomes by using sequences from the previously
1006  published alignment!'®!!2 as queries for BLASTp. For each marker, the best BLAST hit from each
1007  proteome was added to the dataset. For the first iteration, each dataset was aligned using mafft-
1008  linsi!'® and ambiguously aligned positions were trimmed using BMGE (-m BLOSUM30)!'!4. All

1009 56 trimmed RP alignments were concatenated into an RP56-A64 supermatrix (236 taxa including
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1010 64 Asgard archaea, 6332 amino acid positions). Once this taxon set was gathered, we identified
1011 homologs of the NM57 gene set as described above, thus generating supermatrix NM57-A64 (236

1012  taxa, 14,847 amino acid positions).

1013 We carried out a large number of phylogenomic analyses on variations of these two RP56-
1014  A64 and NM57-A64 datasets with different phylogenetic algorithms. Notably, preparing these
1015  datasets must be done with great care and is therefore time-consuming, and subsequent
1016  phylogenomic analyses generally require an enormous amount of computational running time.
1017  However, the rapid expansion of available Asgard archaecal MAGs, notably by Liu and colleagues
1018  asof April 2021'3, urged us to update and re-run many of the computationally demanding analyses.
1019  As some of the work that was based on a more restrained taxon sampling is still deemed valuable,
1020  such as some of the Bayesian phylogenomic analyses and ancestral genome content

1021  reconstructions, we retained these in the present study.

1022 An updated Asgard archaeal genomic sequence dataset was constructed by including all
1023 230 Asgard archaeal MAGs and genomes available at the NCBI database as of May 12, 2021, as
1024 well as 63 novel MAGs described in the present work. All 56 trimmed RP alignments were
1025  concatenated into an RP56-A293 supermatrix (465 taxa including 293 Asgard archaea, 7112 amino
1026  acid positions), which was used to infer a preliminary phylogeny with FastTree v2!!°
1027  (Supplementary Figure 16). Given the high computational demands of the subsequent analyses,
1028  we then used this phylogeny to select a subsample of Asgard archaea representatives. For this, we
1029  first removed the most incomplete MAGs encoding fewer than 19 ribosomal proteins (i.e., 1/3 of
1030  the markers) in the matrix. We also used the preliminary phylogeny to sub-select among closely
1031  related taxa: among taxa that were separated by branch lengths of <0.1, we only kept one

1032 representative. This led to a selection of 331 genomes, including 175 Asgard archaea, 41 DPANN,
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1033 43 Euryarchaeota, and 72 TACK representatives (RP56-A175 dataset). Out of these 175 Asgard
1034  archaea, 41 correspond to MAGs newly reported here. Once this taxon set was gathered, we
1035  identified homologs of the NM57 gene set as described above, thus generating supermatrix NM57-
1036  A175. All datasets and their composition are summarized in Supplementary Table 2.

1037  To test for potential phylogenetic reconstruction artefacts, our datasets were subjected to several
1038  treatments. Supermatrices were recoded into four categories, using the SR4 scheme?’. The
1039  corresponding phylogenies were reconstructed with IQ-TREE (using a user-defined previously
1040  described model referred to as ‘C60SR4’, based on the implemented ‘LG+C60’ model and
1041  modified to analyze the recoded data!) and Phylobayes (under the CAT+GTR model)!°. We also
1042  used the estimated site rate output generated by IQ-TREE (-wsr) to classify sites into 10 categories,
1043 from the fastest to the slowest evolving, and we removed them in a stepwise fashion, removing
1044 from 10% to 90% of the data. Finally, we combined both approaches by applying SR4 recoding to
1045  the alignments obtained after each fast-site removal step. All phylogenetic analyses performed are
1046  summarized in Supplementary Table 2. See Supplementary Information for details and discussion.
1047

1048  Analyses of individual proteins

1049  For individual proteins of interest, we gathered homologs using various approaches, depending on
1050  the level of conservation across taxa. In order to detect putative Asgard homologs of eukaryotic
1051  proteins, we used a combination of tools including BLASTp!'!® and the HMMer toolkit
1052 (http://hmmer.org/) if HMM profiles were available, and queried a local database containing our
1053 240 archaeal representatives (including all Asgard predicted proteomes). We then investigated the

1054  Asgard candidates by 1) using them as seed for BLASTp searches against nr; 2) by 3D modelling
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1055  using Phyre2 and Swissmodel when sequence similarity was low; 3) by annotating them using
1056  Interproscan 5.25-64.0'7 EggNOG mapper v0.12.7''7, against the NOG database'!’, and
1057  GhostKoala annotation server!%; 4) by annotating the archaeal orthologous cluster they belonged
1058  to using profile-profile annotation as described above. Eukaryotic homologs were gathered from
1059  the UniRef50 database!!8. Depending on the divergence between homologs, they were aligned
1060  using mafft-linsi and trimmed using TrimAI'!? (--automated1) or BMGE!!4, or, in cases where we
1061  investigated a specific functional domain, we used the hmmalign tool from the HMMer package
1062  with the --trim flag to only keep and align the region corresponding to this domain. When
1063  divergence levels allowed, phylogenetic analyses were performed using IQ-TREE with model
1064  testing including the C-series mixture models (-mset option)!?’. Statistical support was evaluated

1065  using 1000 ultrafast bootstrap replicates (for IQ-TREE)!'"°,

1066

1067  Ancestral reconstruction

1068  For the ancestral reconstruction analyses, only a subset of 181 taxa were included (64 Asgard, 74
1069  TACK and 43 Euryarchaeota, see Supplementary Table 2 for details). Protein families with more
1070  than three members were aligned and trimmed using mafft-linsi v7.402!'3 and trimAl v1.4.rev15
1071  with the --gappyout option'!®. Tree distributions for individual protein families were estimated
1072 using IQ-TREE v1.6.5 (-bb 1000 -bnni -m TESTNEW -mset LG -madd LG+C10,LG+C20 -seed
1073 12345 -wbtl -keep-ident)'?2. The species phylogeny together with the gene tree distributions were
1074  subsequently used to compute 100 gene-tree species tree reconciliations using ALEobserve v0.4
1075 and ALEml undated®*>, including the fraction missing option that accounts for incomplete
1076  genomes. The genome copy number was corrected to account for the extinction probability per

1077  cluster (github.com/maxemil/ALE/commit/136b78e). The missing fraction of the genome was
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1078  calculated as 1 minus the completeness values (in fraction) as estimated by CheckM v1.0.5 for
1079  each of the 181 taxa’®. Protein families containing only one protein (singletons) were considered
1080  as originations at the corresponding leaf. The ancestral reconstruction of 5 protein families that
1081  included more than 2000 proteins raised errors and could not be computed. The minimum
1082  threshold of the raw reconciliation frequencies for an event to be considered was set to 0.3 as

123-126

1083  commonly done and recommended by the authors of ALE (Gergely Szol6si, personal

1084  communication).
1085
1086  Ancestral metabolic inferences

1087  Metabolic reconstruction of the Asgard ancestors was based on the inference, annotation and copy
1088  number of genes in ancestral nodes. The presence of a given gene was scored if its copy number
1089 in the ancestral nodes was above 0.3. A protein family was scored as “maybe present” if the
1090 inferred copy number was between 0.1 and 0.3. The protein annotation of each of the clusters
1091  containing the ancestral nodes was manually verified for each of the enzymatic steps involved in

1092  the pathways detailed in Supplementary Table 4.

1093

1004 Data availability

1095  The MAGs reported in this study have been deposited at DDBJ/EMBL/GenBank. BioProject IDs,
1096  BioSample IDs and GenBank assembly accession numbers are available in Supplementary Table
1097 1 and will be released upon publication of the manuscript. All raw data underlying phylogenomic

1098  analyses (raw and processed alignments and corresponding phylogenetic trees) will be deposited
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1099  on Figshare (https:/figshare.com/account/home#/projects/111912) upon publication of the

1100  manuscript.
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Extended data figures
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Extended Data Figure 1. Cladogram of proposed taxonomic scheme for the ranks of family,
order and class for Asgard archaeal lineages employed in this study. Equivalent names in
GTDB are shown after a double slash (//). Cases with differing or new names have been

highlighted in colored bold italics.
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1166  Extended Data Figure 2. Identification of previously undetected vesicular trafficking ESPs
1167 in Asgard archaea. Schematic representation of a eukaryotic cell in which ESPs involved in
1168  membrane trafficking and endosomal sorting that have been identified in Asgard archaea are
1169  highlighted. Colored subunits have been detected in some Asgard archaea while grey ones seem
1170  to be absent from all current representatives. Only major protein complexes are depicted.
1171  Additional components can be found in Figure 2. From left to right, top to bottom: RC, Retromer
1172 complex. Retromer is a coat-like complex associated with endosome-to-Golgi retrograde traffic®.
1173 Itis formed by Vacuolar protein sorting-associated protein 35, Vps5, Vps17, Vps26 and Vps29'%7.
1174  During cargo recycling, retromer is recruited to the endosomal membrane via the Vps5-Vpsl7
1175  dimer. Cargo recognition is thought to be mediated primarily through Vps26 and possibly by
1176 Vps35. Finally, the BAR domains of Vps5-Vps17 deform the endosomal membrane to form cargo-
1177  containing recycling vesicles. Their distribution is sparse, but we have detected Asgard archaeal
1178  homologs of all subunits except for Vps17. Interestingly, the Thorarchaeota Vps5-BAR domain is
1179  often fused to Vps28, a subunit of the ESCRT machinery complex I, suggesting a functional link
1180  between BAR domain proteins and the thorarchaeial ESCRT complex. The best-characterized
1181  retromer cargo is Vpsl0. This transmembrane protein receptor is known in yeast and mammal
1182  cells to be involved in the sorting and transport of lipoproteins between the Golgi and the
1183  endosome. The Vps10 receptor releases its cargo to the endosome and is recycled back to the Golgi
1184  via the retromer complex!?®. CORVET: Class C core vacuole/endosome tethering complex;
1185  HOPS: Homotypic fusion and protein sorting complex. Endosomal fusion and autophagy depend
1186  on the CORVET and HOPS hexameric complexes®; they share the core subunits Vpsl11, Vps16,
1187  Vpsl8, and Vps33*. In addition, HOPS is composed of Vps4l and Vps39*'. Vps39, found

1188  associated to late endosomes and lysosomes, promotes endosomes/lysosomes clustering and their
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1189  fusion with autophagosomes'?®. AP, Adaptor Proteins. Asgard archaea genomes from diverse
1190  phyla encode key functional domains of the AP complexes. The eukaryotic AP tetraheteromeric
1191  structure is depicted, each color corresponding to a PFAM functional domain (Medium green:
1192  Adaptin, N terminal region; Dark green: Alpha adaptin, C-terminal domain; Light green: Beta2-
1193 adaptin appendage, C-terminal sub-domain; Dark pink/clear outline: Clathrin adaptor complex
1194  small chain; Light pink/dark outline: C-ter domain of the mu subunit); all five domains were
1195  detected in Asgard archaea, although not fused to each other. GARP: Golgi-associated retrograde
1196  protein complex. The GARP complex is a multisubunit tethering complex located at the trans-
1197  Golgi network where it functions to tether retrograde transport vesicles derived from
1198  endosomes®”*8. GARP comprises four subunits, VPS51, VPS52, VPS53, and VPS54. ESCRT:
1199  Endosomal Sorting Complex Required for Transport system. This complex machinery performs a
1200  topologically unique membrane bending and scission reaction away from the cytoplasm. While
1201  numerous components of the ESCRT-I, II and III systems have been previously detected in Asgard
1202 archaea®!%*2 we here report Asgard homologs for several ESCRT-III regulators Vfal, Vtal, Istl,
1203  and Brol. The bottom panel shows where these complexes mainly act in eukaryotic cells. Ub:
1204  Ubiquitin; Vps: vacuolar protein sorting. Subunit names in grey indicate that no homologs were
1205  detected in Asgard archaea. Domains newly identified as part of this study are indicated with an

1206  asterisk. Created with BioRender.com.
1207

1208

57


https://doi.org/10.1101/2023.03.07.531504
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.07.531504; this version posted March 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1209 Supplementary information

1210

1211 Supplementary Information. This file contains Supplementary Methods, Supplementary
1212 Discussions, Supplementary Figures 1-32, Supplementary Tables 1-8, Supplementary Data and
1213 Supplementary References.

1214

1215  Correspondence and requests for materials should be addressed to thijs.ettema@wur.nl.


https://doi.org/10.1101/2023.03.07.531504
http://creativecommons.org/licenses/by-nc-nd/4.0/

