

1 From maternal glucocorticoid and thyroid hormones to epigenetic regulation of gene expression: an
2 experimental study in a wild bird species

3

4 Mikaela Hukkanen^{1*}, Bin-Yan Hsu², Nina Cossin-Sevrin², Mélanie Crombecque², Axelle Delaunay³, Lotta
5 Hollmen², Riina Kaukonen⁴, Mikko Konki^{4,5}, Riikka Lund⁴, Coline Marciau^{2,6}, Antoine Stier^{2,7§}, Suvi
6 Ruuskanen^{2,8§}

7

8 ¹Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland

9 ²Department of Biology, University of Turku, Turku, Finland

10 ³Institut des Sciences de l'Evolution de Montpellier (ISEM), Université de Montpellier, CNRS, IRD, EPHE,
11 Montpellier, France

12 ⁴Turku Bioscience Centre, University of Turku and Åbo Akademi University, Finland

13 ⁵Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland

14 ⁶Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia

15 ⁷Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France

16 ⁸Department of Biological and Environmental Science, University of Jyväskylä, Finland

17

18 [§]equal contributions, shared last authorship

19 * corresponding author: Mikaela Hukkanen

20 email: mikaela.hukkanen@gmail.com, mikaela.hukkanen@helsinki.fi

21

22

23 Offspring phenotype at birth is determined by its genotype and the prenatal environment including exposure
24 to maternal hormones. Variation in both maternal glucocorticoids and thyroid hormones can affect offspring
25 phenotype. However, the underlying molecular mechanisms shaping the offspring phenotype, especially those
26 contributing to long-lasting effects, remain unclear. Epigenetic changes (such as DNA methylation) have been
27 postulated as mediators of long-lasting effects of early-life environment. In this study, we determined the
28 effects of elevated prenatal glucocorticoid and thyroid hormones on handling stress response (breath rate),
29 DNA methylation and gene expression of glucocorticoid receptor (GCR) and thyroid hormone receptor (THR)
30 in great tit (*Parus major*). Eggs were injected before incubation onset with corticosterone (main avian
31 glucocorticoid) and/or thyroid hormones (thyroxine and triiodothyronine) to simulate variation in maternal
32 hormone deposition. Breath rate during handling and gene expression of GCR and THR were evaluated 14
33 days after hatching. Methylation status of GCR and THR genes were analyzed from the longitudinal blood
34 samples taken 7 and 14 days after hatching, as well as in the following autumn. Elevated prenatal corticosterone
35 level significantly increased the breath rate during handling, indicating enhanced stress response and/or
36 metabolism. Prenatal corticosterone manipulation had CpG-site-specific effects on DNA methylation at the
37 GCR putative promoter region, while it did not significantly affect GCR gene expression. GCR expression
38 was negatively associated with earlier hatching date and chick size. THR methylation or expression did not
39 exhibit any significant relationship with the hormonal treatments or the examined covariates, suggesting that
40 TH signaling may be more robust due to its crucial role in development. This study supports the view that
41 maternal corticosterone may influence offspring metabolism and stress response via epigenetic alterations, yet
42 their possible adaptive role in optimizing offspring phenotype to the prevailing conditions, context-
43 dependency, and the underlying molecular interplay needs further research.

44 Keywords: Epigenetics; methylation; *Parus major*; prenatal; hormone; maternal effects

45

46

47 1. Introduction

48 Maternal effects occur when parental phenotype directly affects the offspring phenotype (Bernardo 1996).
49 These effects may persist throughout one's lifetime and even to subsequent generations (Bernardo 1996;
50 Mousseau & Fox 1998). Maternal effects may have adaptive value when mothers' experience of the
51 environment is transmitted to the next generation (for example via molecular markers, hormones, resources or
52 care), and when this increases offspring fitness (Mousseau & Fox 1998; Love & Williams 2008; Weber et al.
53 2018; Yin et al. 2019; Zhang et al. 2020). However, maternal hormonal effects may also be due to mere
54 physiological constraints, and their adaptive role remains debated (Groothuis et al. 2005; Sánchez-Tójar et al.
55 2020; Zhang et al. 2020). Hormones are one of the main mechanisms of maternal effects because they affect
56 various traits by altering gene expression and cellular functions (Groothuis et al. 2005; Podmokla et al. 2018;
57 Groothuis et al. 2019). Since environmental factors such as food abundance alter maternal hormone production
58 and transport to the offspring, maternal hormones may program the offspring to better cope with the prevailing
59 environmental conditions (Groothuis et al. 2019).

60 Maternal hormonal effects have been widely explored in oviparous species, such as birds. Since the embryo
61 develops outside of the mother's body, embryonic hormones can be measured and manipulated uncoupled from
62 the mother's physiology (Groothuis et al. 2019). Maternally derived steroid hormones have been found to have
63 long-lasting or even transgenerational effects on postnatal phenotype and fitness-related traits such as growth
64 and reproduction (Groothuis et al. 2005; Podmokla 2018). In birds, both glucocorticoids and thyroid hormones
65 are transferred from the mother's blood to the egg yolk, leading to both transient and/or long-lasting phenotypic
66 changes in the offspring (Hayward & Wingfield 2004; Schoech et al. 2011; Ruuskanen & Hsu 2018). For
67 instance, great tits (*Parus major*) hatching from eggs with experimentally elevated corticosterone (main avian
68 glucocorticoid) levels exhibit prolonged begging behavior and increased breath rates (Tilgar et al. 2016).
69 Breath rate is at least partly controlled by the autonomic nervous system and reflects indirectly metabolism,
70 but also stress response (Carere & van Oers 2004; Careau et al. 2008; Yackle et al. 2017), and it shows
71 repeatability, heritability, and significant variation between individuals at handling (Fucikova et al. 2008). The

72 effects of *in ovo* corticosterone manipulations have been found to alter the hypothalamus-pituitary-adrenal
73 (HPA) axis responses, which is crucially involved in stress physiology (Love and Williams 2008; Haussmann
74 et al. 2012; Tilgar et al. 2016). Differences in the behavior, metabolism, and stress response may represent
75 different strategies to cope with environmental challenges (Koolhaas et al. 1999; Carere et al. 2001; Romero
76 2004). As the most advantageous coping strategy can be dependent on the prevailing environmental conditions
77 (e.g. food abundance, predation pressure, population density, weather unpredictability; Koolhaas et al. 1999;
78 Carere et al. 2005; Careau et al. 2008), prenatal exposure to maternal hormones may be important in preparing
79 the offspring for the expected environmental conditions after hatching to maximize fitness prospects. Yet —
80 regardless of whether maternal hormonal effects are adaptive or not, the molecular mechanisms underlying
81 effects on phenotype remain poorly understood (Groothuis & Schwabl 2008; Groothuis et al. 2019; Bentz
82 2021).

83 Changes in the epigenetic regulation (*i.e.* mechanisms translating the information of a genotype to various
84 phenotypes; Waddington 1942) of the hormonal pathways could be one such mechanism (Jimeno et al. 2019;
85 Ruiz-Raya et al. 2023). One of the best-studied epigenetic mechanisms is DNA methylation, which facilitates
86 changes in gene expression, imprinting, and transposon silencing (Jaenisch & Bird 2003, Vogt 2021, Laine et
87 al. 2022), and is known to be affected by age, environmental quality, and physiological condition (De Paoli-
88 Iseppi et al. 2018; Lindner et al. 2021; Mäkinen et al. 2022). Epigenetic alterations may function as a tool for
89 individuals to acclimatize to changing environmental conditions, but they may also mediate transgenerational
90 adaptation (Guerrero-Bosagna et al. 2018; Sepers et al. 2021; Vogt 2021). Epigenetic alterations of the HPA-
91 axis, especially hormone receptor genes such as glucocorticoid receptor (GCR, transcribed by *NR3C1*), have
92 been suggested to mediate the effects of prenatal exposure to glucocorticoids (Groothuis & Schwabl 2008;
93 Ahmed et al. 2014; Zimmer & Spencer 2014). Indeed, high concentrations of *in ovo* corticosterone have been
94 found to increase offspring GCR methylation and decrease the receptor protein expression in chicken (*Gallus*
95 *gallus domesticus*) hypothalamus (Ahmed et al. 2014). The role of receptor methylation in mediating the
96 effects of prenatal thyroid hormones has received less attention in previous studies: Van Herck et al. (2012)
97 discovered that TH supplementation to chicken egg yolk increased TH concentration in the brains of chicken

98 embryos 24h after manipulation and altered TH membrane transporter expression; however, the effects on
99 thyroid hormone receptor (THR, transcribed by *THRA* and *THRΒ*) expression or methylation have not been
100 investigated. The few studies (Ahmed et al. 2014; Zimmer & Spencer 2014; Van Herck *et al.* 2012) that have
101 addressed the epigenetics of prenatal hormonal effects by directly manipulating the egg hormone
102 concentrations have (1) mainly focused on glucocorticoids, and (2) hormone manipulation occurred when
103 incubation already started. Manipulations during incubation do not mimic maternal deposition and could lead
104 to different effects since CORT and TH are likely to be at least partly metabolized by the growing embryos
105 (CORT: Vassallo et al. 2019; TH: Ruuskanen et al. 2022). Additionally, the impact on methylation pattern has
106 only been examined cross-sectionally for a relatively short period after hatching so far, which precludes to
107 evaluate the potential long-lasting nature of epigenetic changes induced by maternal hormonal effects,
108 knowing that human studies have shown both consistency and flexibility in methylation patterns with time
109 within an individual (Komaki et al. 2021).

110 To fill these gaps, we experimentally elevated glucocorticoid (i.e. corticosterone) and thyroid (i.e.
111 triiodothyronine, T3 and thyroxine, T4) hormone concentrations within the natural range in wild great tit (*Parus*
112 *major*) eggs before incubation onset to simulate the causal effects of maternally elevated hormones on
113 offspring phenotype. Breath rate in response to handling was calculated as an indirect measure of acute stress
114 response and metabolism (Carere et al. 2001; Carere & van Oers 2004; Fucikova et al. 2008). We then
115 investigated possible alterations in the methylation status of the glucocorticoid and thyroid hormone receptors
116 using a longitudinal study design (blood sampling of the same individuals at days 7 and 14 post-hatching, as
117 well as early adulthood), and assessed gene expression patterns at a single time-point (day 14 post-hatch).

118 Considering their effect on stress response and metabolism, we predict that the prenatal glucocorticoid and
119 thyroid hormone exposure will increase the offspring breath rate during handling, (*reviewed in* Thayer et al.
120 2018). Given that hormonal responses are regulated by a negative feedback system (McNabb 2007; Cottrell &
121 Seckl 2009), higher prenatal exposure and possibly enhanced intrinsic hormonal production during early
122 development may have increased the receptor gene methylation and downregulated its mRNA expression.

123 These predictions are supported by an association between high baseline plasma corticosterone and low GCR
124 expression in zebra finches (*Taeniopygia guttata*, Jimeno et al. 2019), as well as by the fact that prenatal stress
125 has been found mainly to decrease GCR expression (*reviewed in* Kapoor et al. 2006; Cottrell & Seckl 2009,
126 yet see Zimmer et al. 2017). We predict decreased methylation patterns with age, following Gryzinska et al.
127 (2013), who reported decreased global methylation in chicken blood between one-day-old chicks and 32-week-
128 old hens (yet see De Paoli-Iseppi et al. 2018). However, directional predictions of the age-related methylation
129 changes in our target genes need to be approached with caution; all genes may not follow the global pattern
130 and could even exhibit opposite patterns to global trends (De Paoli-Iseppi et al. 2018).

131 2. Materials and methods

132 2.1. Study population

133 The study was conducted in a wild great tit nest box population (374 boxes in 10 plots, all within 3 km range)
134 in Ruissalo, Southwestern Finland (60° 26' N, 22° 10' E). Nesting activity was monitored every four-five days.
135 The nests where egg-laying had started were visited daily until hormone manipulation was completed. The
136 experimental protocol has been described in detail in (Cossin-Sevrin et al. 2022): this study concerns a
137 subsample of the nests included in the larger study.

138 2.2 Hormone manipulations

139 The mean final clutch size of great tit nests was 8.2 (SD=1.83), ranging from 2 to 10. All eggs from one nest
140 received the same treatment. The nests were assigned to four treatment groups: control (CO, N=11 nests),
141 glucocorticoid hormone supplementation (CORT, N=12), thyroid hormone supplementation (TH, N=12), and
142 a combination of glucocorticoid and thyroid hormone (CORT+TH; N=10). The treatments were assigned to
143 the nests randomly, but sequentially so that all treatments would be equally distributed across the breeding
144 season, and attention was given to geographical distribution (i.e., all treatments present in all forest plots). Egg
145 injection started on the day of the 5th egg (as females may start to incubate before clutch completion) and every
146 day thereafter for newly-laid eggs, which ensured that no incubation had occurred at the time of the injection.

147 The doses of TH and CORT were chosen to increase the average content in the yolks by 2SD (Podmokla et al.
148 2018). Each egg in the TH group was injected with a combination of 0.32 ng of T4 and 0.04 ng of T3. For the
149 corticosterone treatment group, 0.2 ng was injected per egg. The combination group (CORT+TH) received the
150 sum of all hormones (0.32 ng T4, 0.04 ng T3 and 0.2 ng corticosterone). Each egg received an injection of 2
151 µl, containing the hormone in question, dissolved in 0.1 mol/l NaOH (TH) or 99% ethanol (CORT), and diluted
152 in 0.9% NaCl. For more details on the injection procedure, see Cossin-Sevrin *et al.* (2022).

153 Table 1. Number of individuals and nests by treatment group in the whole experiment and for different analyses (breath rate,
154 methylation, gene expression). Numbers of nests are given in brackets. Treatment groups are coded as follows: CO=control;
155 CORT=corticosterone; CORT+TH=corticosterone and thyroid hormone combination group; TH=thyroid hormone. There were 1-3
156 randomly selected individuals per nest for the breath rate analysis (36 nests). One randomly selected individual per nest was included
157 in the methylation and gene expression analyses. All individuals in the gene expression analyses were included in the methylation
158 analyses. We tried to also maximise the overlap between data on breath rate, methylation and gene expression from the same
159 individuals, but this was not always possible due to limited blood sample availability. In the end, 18 individuals with methylation data
160 had also breath data data, and 16 individuals with gene expression data had also breath rate data. There were 45 different nests in total
161 (CO=11; CORT=12; CORT+TH=10;TH=12).

<i>In ovo</i> treatment					
	CO	CORT	CORT+TH	TH	Total
N breath rate	27 (10)	20 (10)	16 (7)	20 (9)	83
N methylation	10 (10)	10 (10)	9 (9)	10 (10)	39 (39)
N gene expression (NR3C1/THRA)	10/10 (10)	8/9 (9)	6/6 (6)	9/8 (9)	34 (45)

162

163 2.3 Phenotypic measurements

164 The nests were visited daily starting 2 days before the predicted hatching to record the hatch date (= day 0).
165 Nestlings were visited 2, 7, and 14 days after hatching for identification, phenotypic measurements (weight,
166 wing length) and blood sampling (day 7 and 14) as described in Cossin-Sevrin *et al.* (2022). Additionally, 14
167 days after hatching, we measured handling stress response as a proxy of different stress-related coping
168 strategies (Carere & van Oers 2004; Fucikova *et al.* 2008) by calculating the individual's breath rate (see
169 below) in response to handling (Carere & van Oers 2004; Fucikova *et al.* 2008; Liang *et al.* 2018). Breath rate

170 was measured from one to three randomly-selected chicks per nest, immediately after taking each individual
171 from the nest (before other measurements) following the protocols described in Carere and van Oers (2004)
172 and Fucikova *et al.* (2009). The breath rate was measured as breast movements during a 60-second time. The
173 entire measurement lasted for 75 seconds per individual (15s interval x4, 5s in between). Breath rate was
174 calculated as the sum of breast movements during the four intervals. Sex of the individuals was determined
175 from 14d blood samples using a qPCR approach adapted from Ellegren and Sheldon (1997) and Chang *et al.*
176 (2008). Details are described in Cossin-Sevrin *et al.* (2022).

177 Individuals were recaptured as juveniles (ca. 9–20 weeks after fledging) in the following autumn: 20 of the 39
178 individuals included in the methylation analysis were recaptured. Mist nets (with playback) were set up in 7
179 feeding stations across the study area. Each feeding station was visited for 3 hours per netting on 3 distinct
180 days during October-November (total of 100 hours of mistnetting). Weight and wing length measurements, as
181 well as blood samples were collected for juvenile individuals applying the same workflow as above.

182 2.1 Methylation analysis

183 2.1.1 DNA methylation: DNA extraction

184 DNA methylation of glucocorticoid receptor gene *NR3C1* and thyroid hormone receptor B (*THRB*) were
185 detected by bisulfite conversion followed by pyrosequencing. For each nest, one randomly selected individual
186 was used in the methylation analysis. DNA was extracted from the frozen blood samples of 40 great tit
187 individuals, each of which were sampled longitudinally 2 or 3 times (Table 2). The DNA samples were stored
188 at -80 °C after extraction. DNA extraction and quality assessment are described in Cossin-Sevrin *et al.* (2022).

189

190 Table 2. Sample sizes as number of individuals/CpG-sites included in the methylation analysis after quality filtering for each gene
191 (*NR3C1*=glucocorticoid receptor; *THRB*=thyroid hormone receptor β), treatment group (CO=control; CORT=corticosterone; CORT +
192 TH=corticosterone and thyroid hormone; TH=thyroid hormone) and age (DAH=days after hatching).

NR3C1					
Age	CO	CORT	CORT + TH	TH	Total
7 DAH	10/119	9/108	9/106	10/112	38/445
14 DAH	10/112	10/120	8/95	10/117	38/444
Juvenile	5/59	5/60	5/54	5/60	20/233
Total	25/290	24/288	22/255	25/289	96/1122

THRB					
Age	CO	CORT	CORT + TH	TH	Total
7 DAH	10/40	10/39	8/32	10/39	38/150
14 DAH	10/39	10/40	7/28	10/40	37/147
Juvenile	5/18	4/16	5/20	5/20	19/74
Total	25/97	24/95	22/80	25/99	96/379

193
194 2.1.2 DNA methylation: Bisulfite conversion

195 Bisulfite conversion of the DNA samples was conducted by using EpiTect Fast DNA Bisulfite Kit (Qiagen,
196 cat. 59824) and by following the manufacturer's high concentration protocol. For each sample 20 μ l of
197 genomic DNA (10 ng/ μ l) was used as a starting material. The cleaned bisulfite converted DNA samples were
198 stored at 4 °C, and the following PCR was conducted within 24 hours.

199 Thyroid hormone receptors are coded by two genes: alfa and beta. The epigenetic regulation of *THRB* has
200 previously been shown to be involved in many human phenotypes such as cancer, obesity, and aging (Joseph
201 et al. 2007; Ling et al. 2010; Kim et al. 2013; Pawlik-Pachucka et al. 2018; Shimi et al. 2022), and affected by
202 exposures to e.g. thyroid hormones and environmental toxins in mice (Cho et al. 2021; Laufer et al. 2022), and
203 thus we were interested in investigating if that is the case also in the context of avian maternal hormones, and
204 chose *THRB* for the methylation analyses.

205 Chromosomes 13 (for *NR3C1*, GenBank assembly accession GCA_001522545.3) and 2 (for *THRB*, GenBank
206 assembly accession CM003710.1) of the great tit genome (GenBank assembly accession GCA_001522545.3)
207 were retrieved from NCBI's repository (NCBI Resource Coordinators 2016; Yates *et al.* 2019). For both genes,
208 *NR3C1* and *THRB* (transcript variant X5), a region from 1800 base pairs upstream to 100 base pairs
209 downstream of the transcription start site was selected as the putative regulatory region as with zebra finches
210 in a study by Jimeno *et al.* (2019) on *NR3C1*. Within this region, primers were designed to amplify CpG-
211 dinucleotide dense regions with PyroMark Assay Design Software 2.0. Primers were validated in PCR with
212 bisulfite-treated samples (8 samples tested) and gel electrophoresis (1.5%, 90 V). Primer characters are shown
213 in Table 3.

214 Table 3. Primers sequences used to detect the methylation status of the putative promoter regions of the glucocorticoid receptor gene
215 (*NR3C1*) and thyroid hormone receptor gene β (*THRB*). Forward and reverse primer sequences are presented with the number of CpG-
216 sites (N°) within each sequence to analyze.

NR3C1		Gene ID:107210791		CpG (N°):16
Primer ID	Direction			Sequence
PCR F1	Forward			AGAAGGTAGAGTTGGAGGTAGATAG
PCR R1	Reverse			ACCCCCCTCTATATACCAAATTAAAAA
Sequencing S1	Forward			TTGTAGGGTGTATTATTTAAGTAG

THRB		Gene ID: 107215324		CpG (N°):16
Primer ID	Direction			Sequence
PCR F1	Forward			GGGGTGTATGTTGTTGTGT
PCR R1	Reverse			TCCCCCCCCCTCCCACAATCA
Sequencing S1	Forward			ATTTTTGGAGTAGTAGTTAATT

217

218 2.1.3 DNA methylation: PCR

219 The target regions of the genes of interest were prepared for amplification by using PyroMark PCR Kit
220 (Qiagen, cat. 978903) following the manufacturer's protocol. Bisulfite-treated DNA (4 µl, 10ng/µl) was added
221 to the reaction mixture (without optional MgCl₂). The thermal cycler (Applied Biosystems 2720) program
222 varied according to the target gene: 15 min at 95°C, 45 cycles of 20 s at 94°C, 30 s at 56°C (*NR3C1*) or 60°C
223 (*THRB*), 30 s at 95°C, and a final extension of 10 min at 72°C. The concentration (>20ng/µl) of the amplified

224 samples and the negative controls were measured with NanoDrop ND-1000, Thermo Scientific. Samples were
225 frozen (-20 °C) after PCR, and pyrosequencing was conducted within 3 weeks.

226 2.1.4 DNA methylation: Pyrosequencing

227 For pyrosequencing, (*NR3C1* and *THRB*), all the samples (N=99 individuals, a total of 198 samples) were
228 analyzed in 5 batches. All samples from the same individual at different ages were in the same batch, and the
229 treatments were distributed as evenly as possible between the batches. One pyrosequencing run included only
230 one gene assay (*NR3C1/THRB*).

231 Pyrosequencing was conducted by using PyroMark Q24 Advanced CpG Reagents (Qiagen, cat. 970922) and
232 with PyroMark Q24 Pyrosequencing instrument (Qiagen), following the manufacturer's protocol using 15 µl
233 of PCR product and 2 µl Streptavidin Sepharose High Performance beads (GE Healthcare, cat. GE17-5113-
234 01).

235 2.1.5 DNA methylation: Quality filtering

236 Pyrosequencing results were first assessed in PyroMark Q24 Advanced Software (3.0.1). The pyrosequencing
237 results included the methylation percentage and quality ranking for each CpG-site ($N_{NR3C1}=16$, $N_{THRB}=16$)
238 within each sample ($N_{\text{Sample}} = 99$, in total 1584 sites for both genes where methylation was detected). Sites
239 where the quality was classified as “Failed” by the software were discarded (*NR3C1*: 205/1584 discarded;
240 *THRB*: 703/1584 discarded. As the quality of the methylation percentages decreased towards the 3' end of the
241 sequence, most of the discarded “Failed” data was in the 3' end of the analyzed sequence. To ensure no sites
242 were significantly underrepresented in the analysis, all CpG-sites with data from less than 85 samples (=86%)
243 were discarded from the analysis (*NR3C1* 4/16 CpG-sites discarded, for *THRB* 12/16 CpG-sites discarded).
244 All the methylation percentage observations with clearly deviating residuals after fitting the statistical models
245 were considered as technical outliers and thus discarded (*NR3C1*: 3/1125 observations , DNAm% range with
246 outliers 0-24.5%, without outliers 0-5.09%, i.e. >9 SD ; *THRB* none).

247 After quality filtering, there were data from 12 CpG-sites of 96 samples from 39 individuals for the
248 glucocorticoid receptor gene *NR3C1* (Table 2). For *THRB*, there was data from 4 CpG-sites of 96 samples of
249 the same 39 individuals (Table 2). Sex ratios per treatment group are given in Table S1.

250 2.2 Gene expression analysis

251 The expression of glucocorticoid receptor gene (*NR3C1*) and thyroid hormone receptor genes (*THRA* and
252 *THRB*) was examined with RT-qPCR (reverse transcription quantitative PCR) following the MIQE guidelines
253 (Bustin *et al.* 2009). *THRB* could not be properly quantified (qPCR quantification cycle values >30, which
254 may be due to an absence of expression in blood cells); thus the final analysis included *NR3C1* and *THRA* as
255 genes of interest and two reference genes (*SDHA*, *RPL13*).

256 2.2.1 Gene expression: RNA isolation and reverse transcription

257 RNA was successfully isolated from blood cells of 34 14-day-old great tits with NucleoSpin RNA Plus Kit
258 (Macherey-Nagel). Packed blood cells (10 µl per sample) were transferred to lysis buffer and homogenized
259 with a sterile micro-pestle, after which the remaining steps were conducted following the manufacturer's
260 protocol with a final elution in 50 µl of RNase-free H₂O. The purity and concentration of extracted RNA were
261 measured with a spectrophotometer (ND-1000, Thermo Scientific). Absorbance ratios 260/280 > 1.8 and
262 260/230 > 1.8 were considered thresholds for purity. Samples with RNA concentration less than 25ng/µl
263 concentration were re-extracted from the original samples when possible. RNA integrity was validated using
264 gel electrophoresis (E-Gel 2%, Invitrogen) and the ribosomal RNA 18S vs. 28S bands intensities. Samples not
265 fulfilling the above-mentioned quality criteria were discarded (6/40). Isolated RNA samples were stored at -
266 80 °C for three weeks before reverse transcription. For each sample, 600 ng of isolated RNA was reverse
267 transcribed to complementary DNA (cDNA) with SensiFAST cDNA Synthesis -kit (Bioline) following the
268 manufacturer's protocol. Reverse transcribed cDNA samples were stored at 4 °C and were analyzed in qPCR
269 within a week.

270 2.2.2 Gene expression: RT-qPCR primers

271 The primers for the quantitative PCR are shown in Table 4. Primers for the great tit glucocorticoid receptor
272 (*NR3C1*, NCBI ID: 107210791) were designed by Casagrande *et al.* (2020). Thyroid hormone receptor α
273 (*THRA*, NCBI ID: 107215324) primers were designed using Primer-BLAST (Ye *et al.* 2012) using the great
274 tit genome (GenBank assembly accession GCA_001522545.3). The reference genes used in the analyses were
275 *SDHA* (succinate dehydrogenase complex flavoprotein subunit A, NCBI ID: 107200805) and *RPL13*
276 (ribosomal protein L13, NCBI ID: 107209800), for which the primers were designed and validated by
277 Verhagen *et al.* (2019).

278 Table 4. Primer sequences and performance for the genes of interest (*NR3C1* and *THRA*) and reference genes (*SDHA* and *RPL13*) used
279 in RT-qPCR. Forward and reverse primer sequences are presented with expected amplicon lengths (BP). Cq is the average
280 quantification cycle value for each gene with associated standard error (SE). E refers to the average amplification efficiency calculated
281 by LinRegPCR algorithm described by Ramakers *et al.* (2003) with the formula: $E = 10^{slope} - 1$. The slope is determined with linear
282 regression from the amplification curve. Intraplate CV (%) is the average coefficient of variation for the duplicate samples, and
283 interplate CV (%) is the coefficient of variation for two repeated qPCR plates. Technical repeatability (R) for duplicate samples is also
284 given.

Target	Forward	Reverse	BP	Cq (SE)	E (SE)	Intraplate CV (%)	Interplate CV (%)	R (SE)
NR3C1	GGAATAGGTGCCAGG GATCG	TTCCAGGGCTGAATAG CCA	102	25.58 (0.17) (0.41)	94.92 (0.14)	0.67 (0.15)	0.94 (0.15)	0.97 (0.01)
THRA	GAGGGCTGCAAGGGTT T	CTGGTTGCGGGTGATCT T	107	25.34 (0.16)	91.92 (0.32)	0.64 (0.10)	0.82 (0.36)	0.98 (0.01)
SDHA	GGGCAATAACTCCACG GCAT	TTGTATGGCAGGTCTCT ACGA	99	20.78 (0.10)	95.80 (0.30)	0.61 (0.07)	0.60 (0.08)	0.99 (0.01)
RPL13	TACTCCTTCAGCCTCT GCAC	ACAAGAAGTTGCCCGG ACT	99	18.78 (0.17)	91.08 (0.38)	0.39 (0.05)	0.58 (0.18)	1.00 (<0.01)

285

286 Primers for qPCR were first validated using pooled cDNA from four distinct great tit individuals that were not
287 included in the final analysis. Primer specificity and optimal annealing temperature were confirmed by
288 ensuring each primer produced a single narrow peak in the melt curve. NT-controls (sterile MQ-H₂O) and
289 template RNA (no reverse transcription) were confirmed to show no amplification before at least 5 cycles after
290 the higher Cq of the samples of interest. A two-fold serial dilution of template cDNA from 1.5 ng to 24 ng was
291 used to create a standard curve to evaluate primer efficiency at a wide range of starting RNA concentrations.
292 A high-resolution melt curve analysis was used to assess the uniformity of the amplified DNA sequences as

the dissociation behavior of the double stranded DNA depends on the DNA sequence. Gel electrophoresis was used to ensure a single PCR product of the expected length for a random subset of samples. Reference gene stability was assessed with geNorm (Qbase+, Biogazelle, Belgium; Vandesompele *et al.* 2002), which calculates the stability of expression (M) for each gene. M_{SDHA} and M_{RPL13} were both below 0.7, which is the recommended upper limit for the stability value (M) of a reference gene (Vandesompele *et al.* 2002). The reference gene expression (Cq) did not differ between the treatment groups (ANOVA-test: $SDHA$: $F_{3,29}=0.31$, $p=0.81$, $RPL13$: $F_{3,29}=1.12$, $p=0.36$).

300 2.2.3 Gene expression: Quantitative PCR

The relative quantity of the reverse transcribed target cDNA was assessed using magnetic induction cycler (micPCR, Bio Molecular Systems) and SensiFAST SYBR Lo-ROX Kit (Bioline). For each gene, samples were analyzed in two 48-well qPCR plates. All biological samples were run as technical duplicates on the same plate. Additionally, pooled samples from four great tit samples were run in quadruplicates to serve as calibrator samples for expression normalization. Each plate also included duplicates of sterile H₂O as no template controls and RNA samples which were not reverse transcribed as controls. For each well, 5 µl of cDNA (1.2 ng/µl) was combined with 6 µl SensiFAST SYBR Lo-Rox Mix, 0.18 µl forward and reverse primers (300nM) and 0.64 µl sterile H₂O (V_{tot}=12 µl) in strip tubes preloaded with mineral oil. Quantitative PCR was run in the magnetic induction cycler with the following program: 95°C 120s, (95°C 5s, 60°C 20s) x 45.

2.2.4 Gene expression: Gene expression normalization and quality filtering

311 Each plate was confirmed to have a single amplification peak for each primer set and NT-controls were
312 confirmed to show no amplification. Relative expression for each sample was assessed with Pfaffl method
313 (Pfaffl 2001) using the formula below:

$$314 \quad \text{Relative gene expression} = \frac{E_{GOI}^{\Delta Cq \text{ GOI (calibrator-sample of interest)}}}{\text{Geom. mean } [(E_{REF})^{\Delta Cq \text{ REF (calibrator-sample of interest)}}]}$$

315 E refers to the average efficiency for each gene in each plate (theoretical maximum would be perfect doubling
316 at each PCR cycle = 2). Efficiencies were obtained from micPCR Software output, which calculates them
317 using the LinRegPCR algorithm described by Ramakers *et al.* (2003) with the formula: $E = 10^{slope} - 1$. The
318 slope is determined with linear regression from the amplification curve. Cq is the quantification cycle value
319 for each sample as the number of cycles needed for the fluorescence (describing PCR product quantity) to
320 reach a threshold set by the LinRegPCR algorithm (Ruijter *et al.* 2009). The calibrator Cq is the pooled sample
321 in each run.

322 Relative gene expression for each individual was calculated as the mean relative expression for the technical
323 duplicates, which was \log_2 transformed for further statistical analyses. Samples with over 30% CV between
324 the relative expression values of the technical duplicates were discarded. Model residuals showed no outlier
325 samples.

326 2.3 Statistical analysis

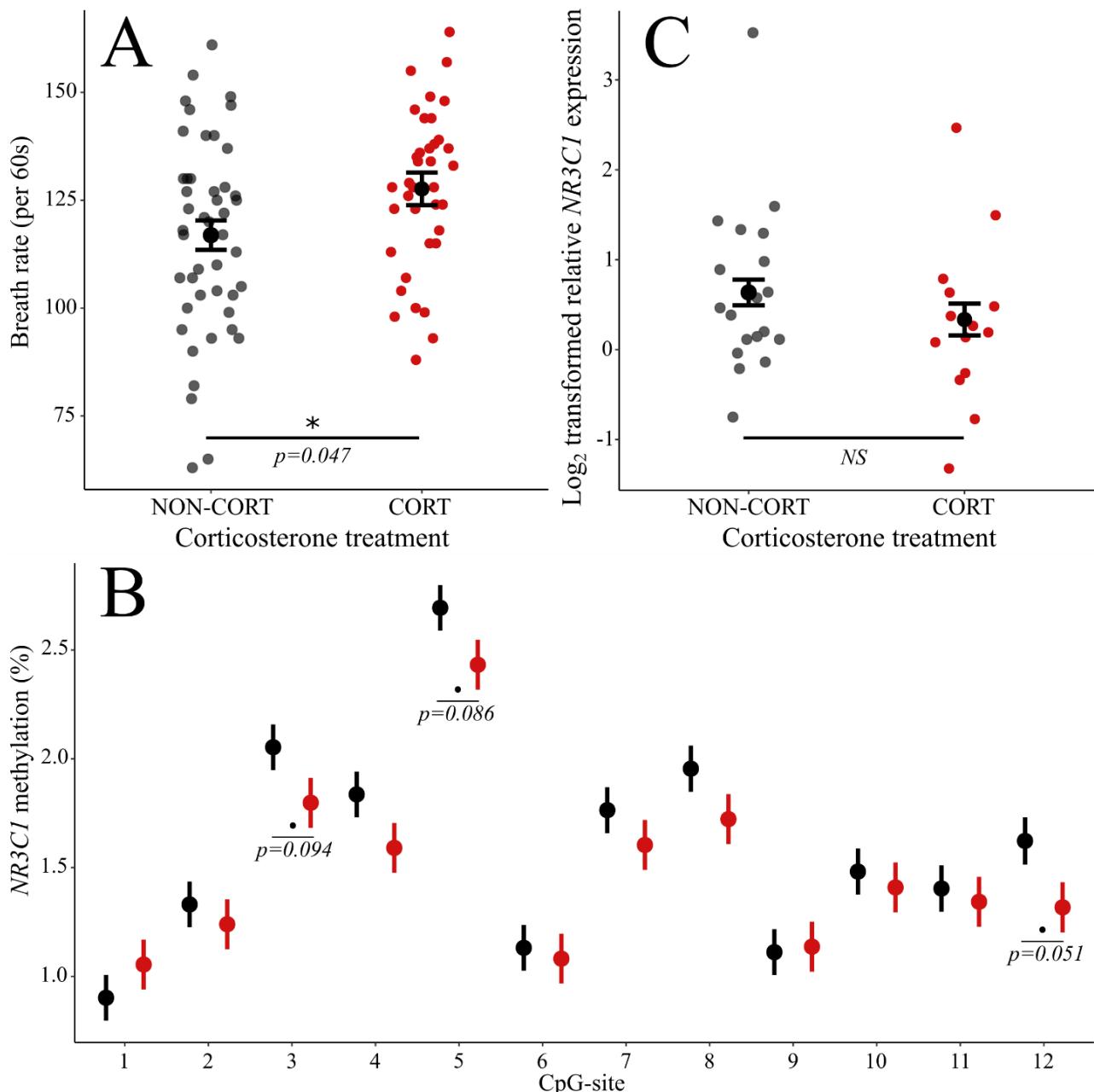
327 All statistical analyses were conducted in R Studio (version 4.0.3, R Core Team 2020). To examine variation
328 in breath rate, DNA methylation and gene expression, we used linear (mixed) models, using base R and
329 package *lme4* (Bates *et al.* 2015), while type III ANOVA were calculated using the package *lmerTest*
330 (Kuznetsova *et al.* 2017) and *car* (Fox & Weisberg 2019). We inspected the normality and homogeneity of
331 variance visually from the model residuals. F-statistics (with associated degrees of freedom) and p-values from
332 type III ANOVA were calculated with the Kenward-Roger method for the mixed models (breath rate and
333 methylation analysis). Random effect significance was calculated using likelihood ratio test by comparing
334 models with and without the random effects. Post-hoc comparisons were assessed with package *emmeans*
335 (Lenth 2021) using Tukey's multiple comparison procedure. *emmeans* was also used to calculate effect sizes
336 of the hormone treatments. R packages *ggplot2* (Wickham 2016) and *ggpubr* (Kassambara 2020) were used to
337 create figures.

338 The hormone treatments were considered 2-level factors (CORT yes/no and TH yes/no). CORT, TH and their
339 interaction CORT*TH were fixed effects in all the models examining the effects of hormone treatment. Model
340 covariates were selected based on biological hypotheses. Non-significant interactions were removed to avoid
341 overfitting in all of the models.

342 For modeling breath rate at 14 days post-hatch, the model included the following covariates that were
343 hypothesized to explain variation in individual metabolism and stress response: wing length (proxy of
344 individual structural size), brood size at 2 days post-hatch (proxy of parental condition and nestling
345 environment) and hatching date (proxy of parental condition and food availability). Breath rate -models
346 included nest ID as a random effect to account for non-independence between individuals from the same nest.
347 As 37 out of the 83 individuals in the breath rate analyses were not molecularly sexed, and sex did not have a
348 significant effect on breath rates in this subset of sexed individuals ($F_{1,29.7}=0.47$, $p=0.50$), we did not include
349 sex in this model.

350 For modeling the longitudinal DNA methylation measurements, the fixed effects, in addition to the hormone
351 treatments, were sex, age (categorical variable: 7 or 14 days after hatching, or juvenile), the interaction between
352 age and treatment (since the hormonal treatment may have distinct effects at different developmental stages),
353 CpG-site identity, and the interaction between CpG site and hormonal treatment (since methylation at different
354 genomic positions may have different consequences on gene expression, projecting into the phenotype). Sex
355 was also included in the model as a fixed effect since the target genes were hypothesized to have sex-specific
356 expressions (Nätt *et al.* 2014) and all the individuals were sexed. Due to a relatively small sample size (96
357 samples from 39 individuals) and many levels of CpG-site identity consuming the degrees of freedom, we did
358 not add other covariates or non-significant interactions to the model at the expense of overfitting. Random
359 effects in the DNA methylation model were sample ID (12 and 4 CpG-sites from the same sample for *NR3C1*
360 and *THRB*, respectively), and individual ID (2 or 3 longitudinal samples from the same individual).

361 For modeling gene expression measured only at 14 days post-hatch, the response variable was the \log_2
362 transformed relative gene expression. We included sex (as all individuals were sexed) as a fixed effect in the


363 model in addition to the hormone treatments. As for the breath rate analysis, we included wing length, brood
364 size at day 2 and hatching date as covariates in the model. The gene expression analysis did not include random
365 effects since there were no repeated measures as only one individual at a single time point was included in this
366 analysis as well as methylation analysis.

367 Furthermore, we hypothesized some associations between breath rates, methylation and gene expression. Gene
368 promoter methylation was hypothesized to correlate negatively with gene expression (Bird 2002).
369 Additionally, breath rate was assumed to correlate with receptor gene expression (reviewed in Kapoor et al.
370 2006). For both genes, the effect of mean methylation per sample on their respective \log_2 transformed relative
371 gene expression, and the effect of \log_2 transformed relative gene expression on breath rates was examined with
372 Pearson's correlation at 14 days post-hatch.

373

374

3. Results

375

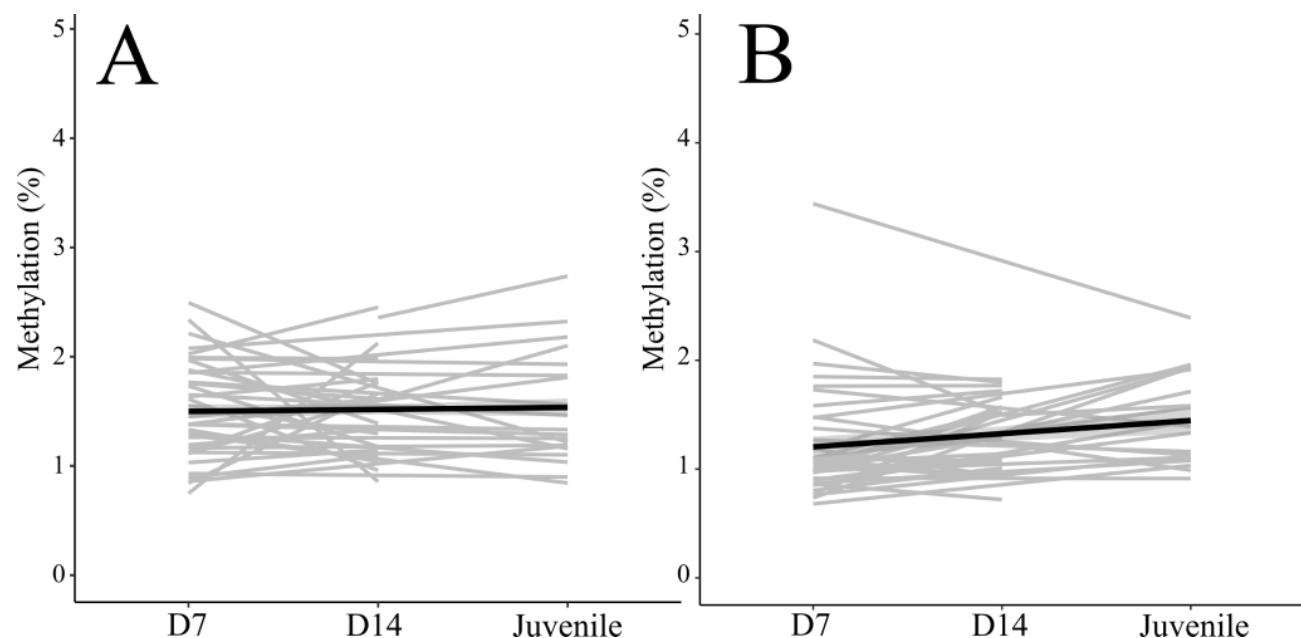
376 Figure 1. Effects of prenatal corticosterone manipulation on (A): breath rate 14 days after hatching (per 60s), (B): DNA methylation
377 (%) at the quantified 12 CpG-sites of NR3C1 promoter region (black=NON-CORT; red=CORT) since a significant CORT*Site
378 interaction was detected, and (C): glucocorticoid receptor NR3C1 relative gene expression in blood cells, . Estimated marginal means
379 and standard errors are given (A-C), with the raw data (A-B). P-values for the effect of corticosterone from type III ANOVA (A-B)
380 and site-specific post-hoc comparison with Tukey's test (C) are also shown for $p<0.10$.

381 Table 5. General linear (mixed) model explaining variation in breath rate, DNA methylation, and gene expression. For fixed effects,
 382 Type III ANOVA F-statistics, associated degrees of freedom, and p-values are presented. Mixed models (breath rate and DNA
 383 methylation) are fit by REML, and degrees of freedom are estimated with Kenward-Roger's method. For random effects, the percentage
 384 of variation explained (VE), and a test of significance (likelihood ratio test, with χ^2 (df) and p-value) are provided (see supplementary
 385 Table S2). Significant effects are marked with asterisks (*: p<0.05; **:p<0.01;***:p<0.001). Brackets [] indicate non-significant
 386 interaction terms removed from the final model.

Response variable					
	DNA methylation (%)		Gene expression (log2 normalized)		
	Breath rate (per 60s)	NR3C1	THRB	NR3C1	THRA
Effect	F(ndf, ddf); p	F(ndf, ddf); p	F(ndf, ddf); p	F(ndf, ddf); p	F(ndf, ddf); p
CORT	4.29(1,30.1); 0.047*	1.08(1,34.1); 0.31	2.03(1,34.7); 0.16	1.80(1);0.19	0.04(1);0.84
TH	0.03(1,28.5); 0.87	0.12(1,34.4); 0.73	1.32(1,34.9); 0.26	0.01(1); 0.94	0.09(1); 0.76
Wing length	3.22(1,71.3); 0.077			26.28(1); <0.001***	3.18(1); 0.086
Brood size D2	0.11(1,31.8); 0.95			1.41(1); 0.25	0.07(1); 0.79
Hatching date	0.29(1,37.6); 0.60			0.60(1); 0.44	1.10(1); 0.30
Sex		1.99(1,34.4); 0.17	1.71(1,34.9);0.20	0.00(1); 0.99	0.07(1); 0.79
Site		99.04(11,1004.56); <0.001***	118.6(3,274.6); <0.001***		
Age		0.24(2,59.9);0.79	2.58(2,56.4); 0.085		
Site*CORT		2.39(11,1004.56); 0.006**	[1.84(3,268.5);0.14]		
Age*CORT		[0.12(02,55.8);0.89]	[0.67(2,52.2);0.52]		
Age*TH		[0.19(2,55.9);0.83]	[0.26(2,52.3);0.77]		
CORT*TH	[1.62(1,28.7); 0.21]	[0.70(1,32.9); 0.41]	[0.31(1,33.7);0.58]	[0.49(1);0.49]	[0.25(1);0.62]
Site*TH		[0.85(11,993.5); 0.59]	[1.23(3,268.6);0.30]		
Random effects					
	Variance explained	Variance explained	Variance explained		
Nest	11.6%				
Individual		21.8%**	42.4%***		
Sample		31.3%***	22.8%***		
Residual	88.4%	46.9%	34.8%		

387 NOTE: The test statistics for the main effects were from the final models without interaction terms. The exception was the model for
388 *NR3C1* DNA methylation, which contains a significant interaction effect between corticosterone (CORT) and CpG-site. Thus, the test
389 statistics for the main effect of CORT represent the contrast with NON-CORT at CpG-site 1, and the main effect of CpG site represents
390 the CpG-site difference in the non-CORT group, respectively. See section 3.2 and Figure 1B for post-hoc comparisons.

391 3.1. Breath rate


392 Prenatal corticosterone treatment significantly increased breath rate during handling 14 days after
393 hatching (Figure 1A, Table 5; effect size = 0.55). Neither prenatal thyroid hormone nor the interaction
394 between prenatal corticosterone and thyroid hormones had a significant effect on breath rates (Table
395 5). While brood size and hatching date were not significantly associated with breath rate, individuals
396 with longer wings (a proxy of individual size) had a marginally higher breath rate (Table 5;
397 estimate \pm SE=1.60 \pm 0.89, although non-significant). The nest identity accounted for 11.6% of the
398 variance in breath rate, which was not significant (Table 5, Table S2).

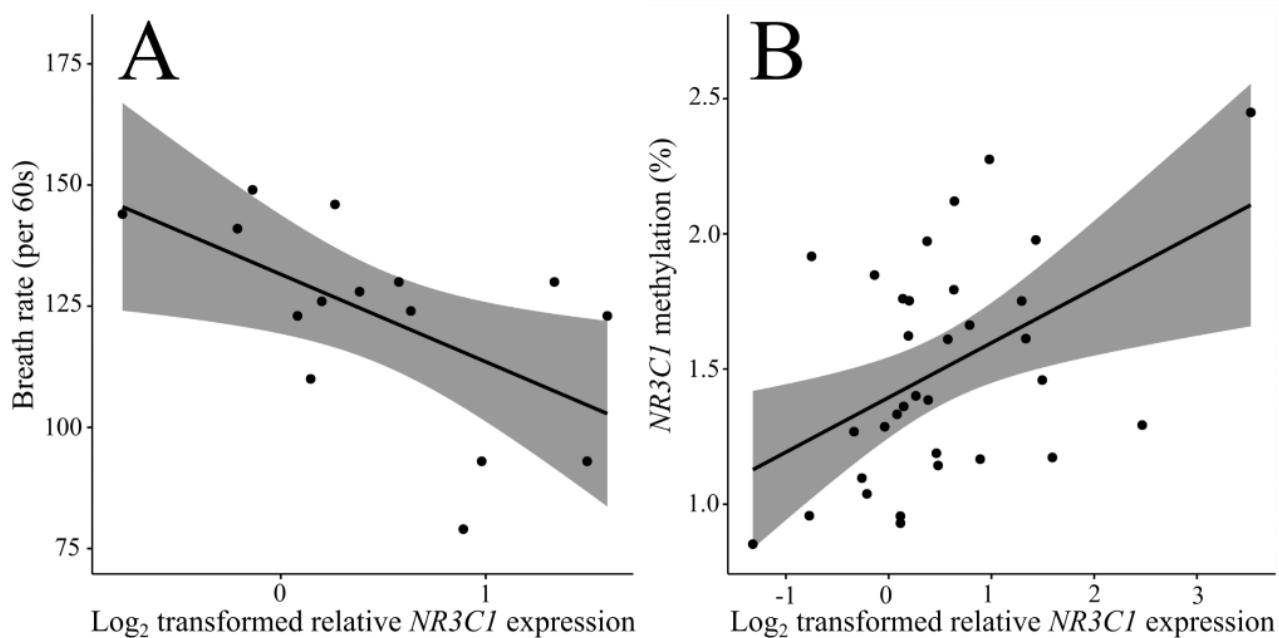
399 3.2. DNA methylation

400 Distinct CpG-sites differed in their methylation value, with site explaining significant variation in
401 DNA methylation for both *NR3C1* and *THRB* (Table 5, Figure 1B). Prenatal corticosterone treatment
402 had CpG-site-specific effects on *NR3C1* promoter methylation (Figure 1B, Table 5; significant
403 CORT*CpG-site interaction). Tukey post-hoc comparisons revealed that for CpG-sites 3, 5 and 12 of
404 the target region, corticosterone decreased DNA methylation coming close to significance (all
405 p<0.094; Figure 1B; effect size= CpG-site 3: -0.59, CpG-site 5: -0.61, CpG-site 12: -0.71). Thyroid
406 hormone treatment, age (Figure 2A), sex, or the interactions between CORT and TH, age, and
407 hormonal treatment, as well as CpG-site and TH had no significant effect on DNA methylation at
408 the *NR3C1* promoter region. A significant amount of variance (conditional on fixed effects) was
409 explained by sample identity (12 CpG-sites from the same sample, 31.3%) and individual identity (2
410 or 3 longitudinal samples from the same individual, 21.8%) (Table 5).

411 For *THR*B, DNA methylation tended to vary with age ($p<0.10$; Table 5; Figure 2B; estimate \pm SE=Age
412 D7: -0.24 ± 0.11 , Age D14: -0.17 ± 0.11 compared to juveniles). Thyroid hormone treatment, sex, or
413 the interactions between CORT and TH, age and hormonal treatment, CORT and CpG-site or TH and
414 CpG-site did not significantly affect *THR*B methylation (Table 5). Individual identity and sample
415 identity explained a significant amount of variance in *THR*B methylation, 22.8% and 42.4%,
416 respectively (Table S2).

417

418
419 Figure 2. 2A: Average methylation percentages pooled across different treatment groups at different ages for glucocorticoid receptor
420 gene *NR3C1*. 2B: Average methylation percentages pooled across different treatment groups at different ages for thyroid hormone
421 receptor gene *THR*B. Black lines represent changes in methylation percentage in the overall mean (across all samples), and the grey
422 lines represent changes in methylation percentage (averaged over all CpG sites) for each individual across ages.


423 3.3. Gene expression

424 Neither corticosterone (Figure 1C, effect size= *NR3C1*: -0.50, *THRA*: 0.08) nor thyroid hormone
425 treatment had a significant effect on gene expression 14 days post-hatch (Table 5). For *NR3C1*, wing

426 length was significantly negatively associated with gene expression (Table 5, estimate \pm SE=-
427 0.14 ± 0.028), whereas sex, brood size and hatching date had no significant effect on gene expression.
428 For *THRA*, only wing length tended to have a significant negative relationship with gene expression
429 (estimate \pm SE=- 0.093 ± 0.052 , although not significant), whereas no other variable exhibited a
430 significant relationship with *THRA* gene expression (Table 5).

431 3.4. Correlations

432 While analyzing possible relationships between the variables of interest at day 14 post-hatch, we
433 found *NR3C1* gene expression to have a significant negative bivariate correlation with breath rates
434 (Figure 3A; R(Pearson)=-0.58, p=0.022). Furthermore, *NR3C1* sample mean methylation had a
435 positive bivariate correlation with gene expression (Figure 3B; R(Pearson)=0.46; p=0.007). *THRA*
436 expression showed no significant relationships with breath rates or *THRB* methylation.

437
438 Figure 3. 3A: Correlation between breath rate (per 60s) and *NR3C1* gene expression. 3B: Correlation between *NR3C1* promoter
439 methylation (%) and relative gene expression. Regression line and 95% confidence limits are given with the raw data.

440 4. Discussion

441 Elevation of prenatal corticosterone increased breath rates in great tits 14 days after hatching. Prenatal
442 corticosterone also tended to decrease GCR gene *NR3C1* promoter methylation in 3 of the 12 studied
443 CpG sites, but no age-specific patterns were observed. Prenatal corticosterone had no significant
444 effect on gene expression of GCR (although effect size was of similar magnitude as for breath rate or
445 methylation) or THR, while GCR gene expression was negatively associated with breath rates and
446 showed a strong association with both wing length and hatching date. Elevation of prenatal THs did
447 not influence breath rate, THR methylation or gene expression.

448 4.1 The effects of prenatal hormones on breath rates, DNA methylation and gene expression

449 4.1.1 Prenatal corticosterone treatment

450 In line with our hypothesis and previous studies (e.g. Tilgar et al. 2016, *reviewed in* Thayer et al.
451 2018), prenatal supplementation of great tit eggs with corticosterone significantly increased breath
452 rate, a measure of stress response and metabolism, at 14 days after hatching. Increased breath rate
453 may result from enhanced glucocorticoid response (Carere & can Oers 2004), which was not directly
454 evaluated in this study, yet the evidence is equivocal: in ovo corticosterone treatment has been found
455 to both increase (Freire et al. 2006; Haussmann et al. 2012; Marasco et al. 2012; Ahmed et al. 2014)
456 and decrease (Hayward et al. 2006; Love & Williams 2008; Tilgar et al. 2016) HPA activity and
457 baseline as well as stress-induced corticosterone levels. Furthermore, Podmokla et al. (2018)
458 concluded in a meta-analysis that experimental corticosterone treatment yields neither overall nor
459 manipulation-specific effects on offspring traits. The discrepancy in previous studies show that HPA
460 axis regulation may be subject to maternal corticosterone, affecting stress response and metabolism,
461 yet there may be other biological mechanisms involved and the effects are likely timing-, context-

462 and dose-dependent. The current study elucidates this discrepancy showing that in altricial species
463 such as great tit, pre-incubation corticosterone can increase offspring breath rates and thus, may alter
464 offspring HPA axis reactivity, highlighting the role of maternal effects in shaping offspring
465 phenotype.

466 The molecular mechanism underlying the observed hormonal effects on breath rates may be related
467 to epigenetic changes since our corticosterone treatment also had CpG-site specific effects, mainly
468 decreasing DNA methylation in the putative promoter area of the glucocorticoid receptor (GCR,
469 *NR3C1*) gene. In line with our results, Ruiz-Raya et al. (2023) found prenatal exposure to alarm calls
470 to reduce GCR promoter methylation in yellow-legged gulls (*Larus michahellis*). However, these
471 results on the site-specific decreased methylation at GCR gene promoter after corticosterone
472 treatment are not in agreement with our primary hypothesis nor with the few previous studies
473 investigating prenatal and early life stress, and GCR methylation: In domestic chickens, a high
474 concentration of corticosterone injected into eggs around mid-incubation increased hypothalamic
475 GCR methylation (Ahmed et al. 2014). Bockmühl et al. (2015) found that postnatal early life stress
476 in mice increased hypothalamic CpG-island shore methylation at certain CpG-sites at GCR. Jimeno
477 et al. (2019) observed an increase in blood GCR promoter methylation resulting from postnatal early
478 life adversity. Azar et al (2022) reviewed prenatal maternal stress to increase offspring peripheral
479 DNA methylation of the GCR gene. Yet, to our knowledge, this is the first study assessing the effects
480 of pre-incubation corticosterone injection on the methylation status of this gene in blood.

481 Corticosterone treatment did not influence GCR expression significantly, though the effect size was
482 of the same magnitude as for the effects of corticosterone treatment on breath rates and GCR
483 methylation (~0.5)). Previous studies have found prenatal stress to alter GCR expression, yet the
484 direction of the change has not been unequivocal (Kapoor et al. 2006; Cottrell & Seckl 2009; Zimmer

485 et al. 2017; Ruiz-Raya et al. 2023). As GCR methylation and gene expression were positively
486 correlated in our study, it could be that prenatal corticosterone causes site-specific GCR methylation
487 alterations that would have consequences on gene expression. This complex, possibly activating role
488 of methylation at some CpG-sites has some support from previous literature: Bockmühl et al. (2015)
489 found early-life stress to increase GCR expression by site-specific CpG island shore
490 hypermethylation. In yellow-legged gulls, Ruiz-Raya et al. (2023) found no correlation between GCR
491 expression and average promoter methylation levels, or CpG-site-specific promoter methylation, yet
492 they did find GCR expression to associate with principal component 2 derived from methylation data,
493 which further supports the multifaceted role of promoter methylation in transcriptional regulation.
494 Yet, the positive relationship between methylation at regulatory CpGs and gene expression contrasts
495 the canonical view of the suppressive role of promoter methylation (Bird 2002) and findings of the
496 few previous studies assessing perinatal stress, GCR methylation and expression (Ahmed et al. 2014;
497 Jimeno et al. 2019).

500 Taken together, increased maternal corticosterone may increase offspring stress response. As DNA
501 methylation was decreased after corticosterone treatment, and changes in the promoter region of GCR
502 did not directly translate to significant differences in GCR expression, the molecular mechanisms
503 remain to be fully elucidated. Our results are in line with those from the same field experiment
504 investigating effects of prenatal corticosterone and thyroid hormones on mitochondrial aerobic
505 metabolism, growth and survival (Cossin-Sevrin et al. 2022). Prenatal corticosterone treatment led to
506 decreased mitochondrial metabolism: It is possible that prenatal corticosterone treatment altered
mitochondrial metabolism through glucocorticoid signaling in our study, since glucocorticoid
signaling is suggested to alter mitochondrial traits (Casagrande et al. 2020; Ridout et al. 2020).

507 4.1.2 Prenatal thyroid hormone treatment

508 Prenatal TH supplementation of great tit eggs did not significantly alter breath rates, GCR or THRB
509 DNA methylation status, or gene expression at the GCR or THRA genes. There are several plausible,
510 mutually non-exclusive, explanations for this. First, it could be that prenatal THs do not have a strong
511 effect on offspring hormonal signaling and stress-related phenotype. The lack of effects of prenatal
512 TH supplementation are in line with Cossin-Sevrin et al. (2022), who also did not find a significant
513 effect of thyroid hormones on growth or mitochondrial metabolism (however, they did find an effect
514 on developmental time), suggesting that experimental corticosterone may have stronger leverage on
515 offspring stress-related phenotype than TH with this experimental set-up. Second, the genes we
516 analysed might not be targets of prenatal THs and their actions on other biological pathways
517 (Vitousek et al. 2019). Third, the effects of maternal hormones are dependent on the expression of
518 transport molecules, cell membrane transporters and deiodinases facilitating the conversion of TH
519 between the inactive and active forms (McNabb & Wilson 1997; Ruuskanen & Hsu 2018). In
520 chickens, a high level of expression of deiodinase (DIO) type 3 by the yolk sac membrane was found
521 since embryonic day 5 (Too et al. 2017), which might have some function in de-activating excessive
522 THs. In passerines, Ruuskanen et al. (2022) also found early-stage embryos to express DIO2, DIO3,
523 THRA, THRB and monocarboxyl membrane transporter MCT8, suggesting that altricial embryos are
524 also able to modulate the effects of egg TH during embryonic development. Fourth, prenatal TH
525 elevation may have tissue-specific effects on gene methylation and expression, such as brain, but not
526 in blood cells (McCormick et al 2000; Bockmühl et al. 2015; Lattin et al. 2015; but see support for
527 between-tissues correlations in Daskalakis et al 2014). Yet, even if blood and brain hormone receptors
528 are not tightly correlated, information on blood levels may provide valuable functional information
529 (Jimeno & Zimmer 2022). Fifth, prenatal THs work in synergy with hormones that were not included
530 in this study, for example, Wang et al. (2007) found that oral dosing of thyroid hormone (T3) together

531 with growth hormone injections had synergist effects on body fat and hepatic gene expression of
532 juvenile chickens.

533 4.2 Patterns of DNA methylation

534 The overall methylation percentages for both genes, glucocorticoid receptor and thyroid hormone
535 receptor, were generally low (median < 2%). These results corroborate with previous findings from
536 birds where CpG-dense promoters and transcription start sites are less methylated specifically for the
537 gene coding for GCR (yellow-legged gulls: Ruiz-Raya et al. 2023), as well as for genome-wide
538 patterns (great tits: Derks et al. 2016; Laine et al. 2016). Derks et al. (2016) found that great tit
539 transcription start sites in the brain and blood are generally lowly methylated in the tissues in which
540 they are anticipated to be expressed. Both genes of interest, glucocorticoid receptor GCR and thyroid
541 hormone receptor THRB, exhibited statistically significant differences between the methylation
542 percentages of individual CpG-sites. These results suggest that certain CpG-site methylation may be
543 more important in the regulation of gene expression rather than the average methylation percentage
544 of a certain CpG-island. Indeed, it has been shown that even within promoters, the entire sequence
545 may not be methylated the same way and short sequences may have distinct methylation patterns
546 depending on which transcription factors bind which sites (Tohgi et al. 1999).

547 For GCR, a large proportion of variance in methylation percentages, conditional on fixed effects, was
548 explained by sample identity (i.e., 31.3%), implying consistency in the methylation percentage
549 between different CpG sites of the same sample, probably partly due to co-methylation over
550 neighboring CpG-sites (Eckhardt et al. 2006; Jimeno et al. 2019). This may be due to sample-specific
551 blood cell type composition, which varies between individuals, although the vast majority of avian
552 blood DNA is from nucleated red blood cells (Husby 2020). A significant amount of variance (i.e.
553 22.0%) was also explained by individual identity, which demonstrates consistent inter-individual

554 differences in methylation through time. For THRB, the largest proportion of variance was explained
555 by individual identity (42.4%), but sample identity also explained a substantial part of the variance
556 (22.8 %). The relatively high within-individual consistency in methylation percentages suggested
557 that methylation patterns for different individuals had persisted from 7 days of age to juvenility. This
558 indicates relatively robust and consistent methylation in the analyzed regions across time. In contrast,
559 Bockmühl et al. (2015) found an age-related (10-days- vs. 6- weeks- vs. 3-months-old) increase in
560 methylation in certain CpG-sites in the shore region of a CpG-island upstream from GCR in the
561 hypothalamus of mice that had been exposed to early life stress. Early-life stress induced an increase
562 in the overall methylation of this CpG-island shore was only observed at the later age (Bockmühl et
563 al. 2015). In turn, Marasco et al. (2012) injected corticosterone to the eggs of Japanese quail and
564 found a hyper-regulated HPA response as elevated circulating corticosterone levels during acute
565 stress at 64 days after hatching, but not at 22 days after hatching. The results of these previous studies
566 suggest that the effects of prenatal hormonal treatments might be more evident at adulthood than
567 during postnatal development. Consequently, the time interval between prenatal hormonal injection
568 and post-hatching days 7 and 14 was maybe too short to detect possible differences in methylation
569 percentages resulting from prenatal hormonal treatment. However, we found no significant impact in
570 juveniles (approximately 4-months-old) either, but the number of juveniles for each treatment group
571 was only 5 (4 for THRB CORT group), which may have been a sample size too small to detect
572 treatment differences in methylation percentages.

573 4.3 Patterns of gene expression

574 There was a negative relationship between body size (i.e. wing length) and GCR gene expression,
575 larger individuals having lower GCR expression levels. Nutritional or developmental stages may
576 explain the relationship between body size and GCR expression. Food insecurity and malnutrition

577 has been found to stimulate stress and increase cortisol levels in humans (Sawaya 2006; Freitas et al.
578 2018), which in turn could influence stress hormone receptor expression (Cottrell & Seckl 2009).
579 Alternatively, it may be that stress responsiveness, as altered GC-receptor expression, may influence
580 energy resources allocated between stress and growth, seen as varying growth rates. Thus, differences
581 in gene expression of the GC-receptor may drive differences in growth rates.
582 In contrast to GCR expression, THRA expression did not correlate with any of the studied biological
583 and ecological covariates (wing length, hatching date, brood size, breath rate). A variety of factors
584 could alter thyroid hormone levels of the nestling's mother's plasma, such as food and iodine
585 availability, endocrine-disrupting molecules, stress, and therefore indirectly also pathogens and intra-
586 and interspecies interactions (Ruuskanen & Hsu 2018). Therefore, a robust regulation in TH receptor
587 expression may be adaptive to protect the developing individuals from environmental and/or
588 physiological variation both pre- and post-hatch.

589 5. Conclusions

590 This study supports the view that maternal corticosterone may influence offspring metabolism and
591 stress response via epigenetic alterations, yet their possible adaptive role needs to be further tested by
592 assessing long-term fitness consequences of these effects across different environments. Further, we
593 encourage future research to analyze whole-genome methylation patterns and transcriptomic profiles
594 to elucidate the pathways linking prenatal hormonal exposure and postnatal HPA response.

595 6. Acknowledgements

596 We are grateful to Meri Lindqvist for guidance with bisulfite conversion and Jorma Nurmi for help in the
597 fieldwork.

598 The study was funded by KLYY foundation (MH), Valto Takala foundation (MH), FIMM-EMBL rotation
599 program (MH), Jenny and Antti Wihuri foundation (MK), Maupertuis Grant (NCS), University of Turku
600 Graduate School (NCS), Ella and Georg Ehrnrooth Foundation (BYH), Turku Collegium for Science and
601 Medicine (AS), European Commission Marie Skłodowska-Curie Fellowship #894963 (AS) and Academy of
602 Finland (#286278 to SR, #332716 to BYH and #325937 to RK).

603 7. Author contribution statement:

604 SR, AS, BYH conceived the study. All authors participated in data collection (field work and/or laboratory
605 methodology). MH, SR, AS, BYH conducted the statistical analyses. MH wrote the original draft, which all
606 authors edited.

607 8. Data availability statement:

608 All data, and R scripts are archived and available in Figshare (DOI: 10.6084/m9.figshare.22153001).

609 9. Supplementary material

610 Supplementary materials include Tables S1 and S2 (submitted as a separate file).

611 10. Ethics

612 The authors confirm that the manuscript has not been submitted elsewhere and that all research meets
613 the ethical guidelines of the study country, Finland. All procedures were approved by the Animal
614 Experiment Committee of the State Provincial Office of Southern Finland (license no.
615 ESAVI/5718/2019) and by the Environmental Center of Southwestern Finland (license no.
616 VARELY/924/2019) granted to SR.

617 11. References

618 Ahmed, A. A., Ma, W., Ni, Y., Zhou, Q., & Zhao, R. (2014). Embryonic exposure to corticosterone modifies
619 aggressive behavior through alterations of the hypothalamic pituitary adrenal axis and the serotonergic system
620 in the chicken. *Hormones and Behavior*, 65(2), 97–105. <https://doi.org/10.1016/j.yhbeh.2013.12.002>

621 Azar, N., & Booij, L. (2022). DNA methylation as a mediator in the association between prenatal maternal
622 stress and child mental health outcomes: Current state of knowledge. *Journal of Affective Disorders*, 319, 142–
623 163. <https://doi.org/10.1016/j.jad.2022.09.008>

624 Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-Effects Models Using lme4.
625 *Journal of Statistical Software*, 67(1), 1–48. <https://doi.org/10.18637/jss.v067.i01>

626 Bentz, A.B., Niederhuth, C.E., Carruth, L.L., & Navara, K.J. (2021) Prenatal testosterone triggers long-term
627 behavioral changes in male zebra finches: unravelling the neurogenomic mechanisms. *BMC Genomics*, 22,
628 158. <https://doi.org/10.1186/s12864-021-07466-9>

629 Bernardo, J. (1996). Maternal Effects in Animal Ecology. *American Zoologist*, 36(2), 83–105.
630 <https://academic.oup.com/icb/article/36/2/83/147166>

631 Bird, A. (2002). DNA methylation patterns and epigenetic memory. *Genes and Development*, 16(1), 6–21.
632 <https://doi.org/10.1101/gad.947102>

633 Bockmühl, Y., Patchev, A., Madejska, A., Hoffmann, A., Sousa, J. C., Sousa, N., Holsboer, F., Almeida, O.
634 F. X., & Spengler, D. (2015). Methylation at the CpG island shore region upregulates Nr3c1 promoter activity
635 after early-life stress. *Epigenetics*, 10(3), 247–257. <https://doi.org/10.1080/15592294.2015.1017199>

636 Borçoi, A. R., Mendes, S. O., Moreno, I. A. A., dos Santos, J., Freitas, F. V., Pinheiro, J. A., de Oliveira, M.
637 M., Barbosa, W. M., Arpini, J. K., Archanjo, A. B., Hollais, A. W., da Silva Couto, C. V. M., David, C. V. C.,
638 Quaioto, B., Sorroche, B. P., Louro, I. D., Arantes, L. M. R. B., & Álvares-da- Silva, A. M. (2021). Food and
639 nutritional insecurity is associated with depressive symptoms mediated by NR3C1 gene promoter 1F
640 methylation. *Stress*, 24(6), 814–821. <https://doi.org/10.1080/10253890.2021.1923692>

641 Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl,
642 M. W., Shipley, G. L., Vandesompele, J., & Wittwer, C. T. (2009). The MIQE Guidelines: Minimum
643 Information for Publication of Quantitative Real-Time PCR Experiments. *Clinical Chemistry*, 55(4), 611–622.
644 <https://doi.org/10.1373/clinchem.2008.112797>

645 Careau, V., Thomas, D., Humphries, M.M. & Réale, D. (2008), Energy metabolism and animal personality.
646 *Oikos*, 117: 641-653. <https://doi.org/10.1111/j.0030-1299.2008.16513.x>

647 Carere, C., Drent, P. J., Privitera, L., Koolhaas, J. M., & Groothuis, T. G. G. (2005). Personalities in great tits,
648 *Parus major*: Stability and consistency. *Animal Behaviour*, 70(4), 795–805.
649 <https://doi.org/10.1016/j.anbehav.2005.01.003>

650 Carere, C., & van Oers, K. (2004). Shy and bold great tits (*Parus major*): Body temperature and breath rate in
651 response to handling stress. *Physiology and Behavior*, 82(5), 905–912.
652 <https://doi.org/10.1016/j.physbeh.2004.07.009>

653 Carere, C., Welink, D., Drent, P. J., Koolhaas, J. M., & Groothuis, T. G. G. (2001). Effect of social defeat in a
654 territorial bird (*Parus major*) selected for different coping styles. *Physiology and Behavior*, 73(3), 427–433.
655 [https://doi.org/10.1016/S0031-9384\(01\)00492-9](https://doi.org/10.1016/S0031-9384(01)00492-9)

656 Casagrande, S., Stier, A., Monaghan, P., Loveland, J. L., Boner, W., Lupi, S., Trevisi, R., & Hau, M. (2020).
657 Increased glucocorticoid concentrations in early life cause mitochondrial inefficiency and short telomeres. *The
658 Journal of Experimental Biology*, 223, 222513. <https://doi.org/10.1242/jeb.222513>

659 Chang, H. W., Cheng, C. A., Gu, D. L., Chang, C. C., Su, S. H., Wen, C. H., Chou, Y. C., Chou, T. C., Yao,
660 C. Tsai, C. L., & Cheng, C. C. (2008). High-throughput avian molecular sexing by SYBR green-based real-
661 time PCR combined with melting curve analysis. *BMC Biotechnology*, 8, 12. [https://doi.org/10.1186/1472-6750-8-12](https://doi.org/10.1186/1472-
662 6750-8-12)

663 Cho Y. W., Huang C. C. J., Liu H., Fu Y., Forrest D. (2021). Transcriptional and Genomic Regulation of
664 Pituitary Function by Thyroid Hormone Receptor Beta. *Journal of the Endocrine Society*, 3(5), 980–981.
665 <https://doi.org/10.1210/jendso/bvab048.2005>

666 Cicchetti, D., & Handley, E. D. (2017). Methylation of the glucocorticoid receptor gene, nuclear receptor
667 subfamily 3, group C, member 1 (*NR3C1*), in maltreated and nonmaltreated children: Associations with
668 behavioral undercontrol, emotional lability/negativity, and externalizing and internalizing symptoms.
669 *Development and Psychopathology*, 29(5), 1795–1806. <https://doi.org/10.1017/S0954579417001407>

670 Cossin-Sevrin, N., Hsu, B.-Y., Marciau, C., Viblanc, V. A., Ruuskanen, S., & Stier, A. (2022). Effect of
671 prenatal glucocorticoids and thyroid hormones on developmental plasticity of mitochondrial aerobic
672 metabolism, growth and survival: an experimental test in wild great tits. *Journal of Experimental Biology*,
673 225(9), 243414. <https://doi.org/10.1242/jeb.243414>

674 Cottrell, E. C., & Seckl, J. R. (2009). Prenatal stress, glucocorticoids and the programming of adult disease.
675 *Frontiers in Behavioral Neuroscience*, 3, 19. <https://doi.org/10.3389/neuro.08.019.2009>

676 Daskalakis, N. P., Cohen, H., Cai, G., Buxbaum, J. D., & Yehuda, R. (2014). Expression profiling associates
677 blood and brain glucocorticoid receptor signaling with trauma-related individual differences in both sexes.
678 *Proceedings of the National Academy of Sciences*, 111(37), 13529–13534.
679 <https://doi.org/10.1073/pnas.1401660111>

680 De Paoli-Iseppi, R., Deagle, B. E., Polanowski, A. M., McMahon, C. R., Dickinson, J. L., Hindell, M. A., &
681 Jarman, S. N. (2019). Age estimation in a long-lived seabird (*Ardenna tenuirostris*) using DNA methylation-
682 based biomarkers. *Molecular Ecology Resources*, 19(2), 411–425. <https://doi.org/10.1111/1755-0998.12981>

683 Derks, M. F. L., Schachtschneider, K. M., Madsen, O., Schijlen, E., Verhoeven, K. J. F., & van Oers, K. (2016).
684 Gene and transposable element methylation in great tit (*Parus major*) brain and blood. *BMC Genomics*, 17(1).
685 <https://doi.org/10.1186/s12864-016-2653-y>

686 Eckhardt, F., Lewin, J., Cortese, R., Rakyan, V. K., Attwood, J., Burger, M., Burton, J., Cox, T. v., Davies, R.,
687 Down, T. A., Haefliger, C., Horton, R., Howe, K., Jackson, D. K., Kunde, J., Koenig, C., Liddle, J., Niblett,
688 D., Otto, T., Pettett, R., Seemann, S., Thompson, C., West, T., Rogers, J. Olek, A., Berlin, K., & Beck, S.
689 (2006). DNA methylation profiling of human chromosomes 6, 20 and 22. *Nature Genetics*, 38(12), 1378–
690 1385. <https://doi.org/10.1038/ng1909>

691 Fox, J., & Weisberg, S. (2019). An R Companion to Applied Regression (3rd Edition). Sage Publications.

692 Freire, R., van Dort, S., & Rogers, L. J. (2006). Pre- and post-hatching effects of corticosterone treatment on
693 behavior of the domestic chick. *Hormones and Behavior*, 49(2), 157–165.
694 <https://doi.org/10.1016/j.yhbeh.2005.05.015>

695 Freitas, F. V., Barbosa, W. M., Silva, L. A. A., de Oliveira Garozi, M. J., de Assis Pinheiro, J., Borçoi, A. R.,
696 Conti, C. L., Arpini, J. K., de Paula, H., de Oliveira, M. M., Archanjo, A. B., Silva De Freitas, É. A., de
697 Oliveira, D. R., Borloti, E. B., Louro, I. D., & Alvares-da-Silva, A. M. (2018). Psychosocial stress and central
698 adiposity: A Brazilian study with a representative sample of the public health system users. *PLoS ONE*, 13(7),
699 e0197699. <https://doi.org/10.1371/journal.pone.0197699>

700 Fucikova, E., Drent, P. J., Smits, N., & van Oers, K. (2009). Handling stress as a measurement of personality
701 in great tit nestlings (*Parus major*). *Ethology*, 115(4), 366–374. [https://doi.org/10.1111/j.1439-0310.2009.01618.x](https://doi.org/10.1111/j.1439-
702 0310.2009.01618.x)

703 Groothuis, T. G. G., Hsu, B. Y., Kumar, N., & Tscharren, B. (2019). Revisiting mechanisms and functions of
704 prenatal hormone-mediated maternal effects using avian species as a model. *Philosophical Transactions of the
705 Royal Society B: Biological Sciences*, 374(1770). <https://doi.org/10.1098/rstb.2018.0115>

706 Groothuis, T. G. G., Müller, W., von Engelhardt, N., Carere, C., & Eising, C. (2005). Maternal hormones as a
707 tool to adjust offspring phenotype in avian species. *Neuroscience and Biobehavioral Reviews*, 29(2), 329–352.
708 <https://doi.org/10.1016/j.neubiorev.2004.12.002>

709 Groothuis, T. G. G., & Schwabl, H. (2008). Hormone-mediated maternal effects in birds: Mechanisms matter
710 but what do we know of them? *Philosophical Transactions of the Royal Society B: Biological Sciences*,
711 363(1497), 1647–1661. <https://doi.org/10.1098/rstb.2007.0007>

712 Gryzinska, M., Blaszcak, E., Strachecka, A., & Jezewska-Witkowska, G. (2013). Analysis of age-related
713 global DNA methylation in chicken. *Biochemical Genetics*, 51, 554–563. <https://doi.org/10.1007/s10528-013-9586-9>

715 Guerrero-Bosagna, C., Morisson, M., Liaubet, L., Rodenburg, T.B., de Haas, E.N., Košťál, L., & Pitel, F.
716 (2018). Transgenerational epigenetic inheritance in birds. *Environmental Epigenetics*, 4(2), dvy008.
717 <https://doi.org/10.1093/EEP/DVY008>

718 Haussmann, M. F., Longenecker, A. S., Marchetto, N. M., Juliano, S. A., & Bowden, R. M. (2012). Embryonic
719 exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length.
720 *Proceedings of the Royal Society B: Biological Sciences*, 279(1732), 1447–1456.
721 <https://doi.org/10.1098/rspb.2011.1913>

722 Hayward, L. S., Richardson, J. B., Grogan, M. N., & Wingfield, J. C. (2006). Sex differences in the
723 organizational effects of corticosterone in the egg yolk of quail. *General and Comparative Endocrinology*,
724 146(2), 144–148. <https://doi.org/10.1016/j.ygcen.2005.10.016>

725 Hayward, L. S., & Wingfield, J. C. (2004). Maternal corticosterone is transferred to avian yolk and may alter
726 offspring growth and adult phenotype. *General and Comparative Endocrinology*, 135(3), 365–371.
727 <https://doi.org/10.1016/j.ygcen.2003.11.002>

728 Husby, A. (2020). On the Use of Blood Samples for Measuring DNA Methylation in Ecological Epigenetic
729 Studies. *Integrative and Comparative Biology*, 60(6), 1558–1566. <https://doi.org/10.1093/icb/icaa123>

730 Jaenisch, R., & Bird, A. (2003). Epigenetic regulation of gene expression: How the genome integrates intrinsic
731 and environmental signals. *Nature Genetics* 33(3S), 245–254. <https://doi.org/10.1038/ng1089>

732 Jimeno, B., Hau, M., Gómez-Díaz, E., & Verhulst, S. (2019). Developmental conditions modulate DNA
733 methylation at the glucocorticoid receptor gene with cascading effects on expression and corticosterone levels
734 in zebra finches. *Scientific Reports*, 9(1), 15869. <https://doi.org/10.1038/s41598-019-52203-8>

735 Jimeno, B., & Zimmer, C. (2022). Glucocorticoid receptor expression as an integrative measure to assess
736 glucocorticoid plasticity and efficiency in evolutionary endocrinology: A perspective. *Hormones and*
737 *Behavior*, 145, 105240. <https://doi.org/10.1016/j.yhbeh.2022.105240>

738 Joseph, B., Ji, M., Liu, D., Hou, P., & Xing, M. (2007). Lack of Mutations in the Thyroid Hormone Receptor
739 (TR) α and β Genes but Frequent Hypermethylation of the TR β Gene in Differentiated Thyroid Tumors. *The*
740 *Journal of Clinical Endocrinology & Metabolism*, 92(12), 4766–4770. <https://doi.org/10.1210/jc.2007-0812>

741 Kapoor, A., Dunn, E., Kostaki, A., Andrews, M. H., & Matthews, S. G. (2006). Fetal programming of
742 hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids. *The Journal of Physiology*,
743 572(1), 31–44. <https://doi.org/10.1113/jphysiol.2006.105254>

744 Kassambara, A. (2020). *ggpubr: 'ggplot2' Based Publication Ready Plots*. R package version 0.4.0.

745 Kim, W. G., Zhu, X., Kim, D. W., Zhang, L., Kebebew, E., & Cheng, S. (2013). Reactivation of the Silenced
746 Thyroid Hormone Receptor β Gene Expression Delays Thyroid Tumor Progression. *Endocrinology*, 154(1),
747 25–35. <https://doi.org/10.1210/en.2012-1728>

748 Komaki, S., Ohmomo, H., Hachiya, T., Sutoh, Y., Ono, K., Furukawa, R., Umekage, S., Otsuka-Yamasaki,
749 Y., Tanno, K., Sasaki, M., & Shimizu, A. (2021). Longitudinal DNA methylation dynamics as a practical
750 indicator in clinical epigenetics. *Clinical Epigenetics*, 13(1), 219. <https://doi.org/10.1186/s13148-021-01202-6>

752 Koolhaas, J. M., Korte, S. M., de Boer, S. F., van der Vegt, B. J., van Reenen, C. G., Hopster, H., de Jong, I.,
753 C., Ruis, M. A. W., & Blokhuis, H. J. (1999). Coping styles in animals: current status in behavior and stress-

754 physiology. *Neuroscience & Biobehavioral Reviews*, 23(7), 925-935. [https://doi.org/10.1016/S0149-7634\(99\)00026-3](https://doi.org/10.1016/S0149-7634(99)00026-3)

756 Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: Tests in Linear Mixed
757 Effects Models. *Journal of Statistical Software*, 82(13), 1–26. <https://doi.org/10.18637/jss.v082.i13>

758 Laine, V. N., Gossman, T. I., Schachtschneider, K. M., Garroway, C. J., Madsen, O., Verhoeven, K. J. F., de
759 Jager, V., Megens, H. J., Warren, W. C., Minx, P., Crooijmans, R. P. M. A., Corcoran, P., The Great Tit
760 HapMap Consortium, Sheldon, B. C., Slate, J., Zeng, K., van Oers, K., Visser, M.E., & Groenen, M. A. M.
761 (2016). Evolutionary signals of selection on cognition from the great tit genome and methylome. *Nature
762 Communications*, 7, 10474. <https://doi.org/10.1038/ncomms10474>

763 Laine, V. N., Sepers, B., Lindner, M., Gawehtns, F., Ruuskanen, S., & van Oers, K. (2022). An ecologist's
764 guide for studying DNA methylation variation in wild vertebrates. *Molecular Ecology Resources, Online
765 Version of Record before inclusion in an issue*. <https://doi.org/10.1111/1755-0998.13624>

766 Lattin, C. R., Keniston, D. E., Reed, J. M., & Romero, L. M. (2015). Are Receptor Concentrations Correlated
767 Across Tissues Within Individuals? A Case Study Examining Glucocorticoid and Mineralocorticoid Receptor
768 Binding. *Endocrinology*, 156(4), 1354–1361. <https://doi.org/10.1210/en.2014-1811>

769 Laufer, B. I., Neier, K., Valenzuela, A. E., Yasui, D. H., Schmidt, R. J., Lein, P. J., & LaSalle, J. M. (2022).
770 Placenta and fetal brain share a neurodevelopmental disorder DNA methylation profile in a mouse model of
771 prenatal PCB exposure. *Cell Reports*, 38(9), 110442. <https://doi.org/10.1016/j.celrep.2022.110442>

772 Lenth, R. (2022). Emmeans: Estimated marginal means, aka least-squares means. R Package Version 1.8.1-
773 1.

774 Liang, D., He, C., Luo, X., Liu, Y., Goodale, E., & Pagani-Núñez, E. (2018). Breath rate of passerines across
775 an urbanization gradient supports the pace-of-life hypothesis and suggests diet-mediated responses to handling
776 stress. *Ecology and Evolution*, 8(18), 9526–9535. <https://doi.org/10.1002/ece3.4460>

777 Lindner, M., Verhagen, I., Viitaniemi, H. M., Laine, V. N., Visser, M. E., Husby, A., & van Oers, K. (2021).

778 Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue

779 comparisons. *BMC Genomics*, 22(1), 36. <https://doi.org/10.1186/s12864-020-07329-9>

780 Ling, Y., Xu, X., Hao, J., Ling, X., Du, X., Liu, X., & Zhao, X. (2010). Aberrant methylation of the *THR*B

781 gene in tissue and plasma of breast cancer patients. *Cancer Genetics and Cytogenetics*, 196(2), 140–145.

782 <https://doi.org/10.1016/j.cancergenryo.2009.09.010>

783 Love, O. P., & Williams, T. D. (2008). Plasticity in the adrenocortical response of a free-living vertebrate: The

784 role of pre- and post-natal developmental stress. *Hormones and Behavior*, 54(4), 496–505.

785 <https://doi.org/10.1016/j.yhbeh.2008.01.006>

786 Mäkinen, H., van Oers, K., Eeva, T., & Ruuskanen, S. (2022). The effect of experimental lead pollution on

787 DNA methylation in a wild bird population. *Epigenetics*, 17(6), 625–641.

788 <https://doi.org/10.1080/15592294.2021.1943863>

789 Marasco, V., Robinson, J., Herzyk, P., & Spencer, K. A. (2012). Pre- and post-natal stress in context: Effects

790 on the stress physiology in a precocial bird. *Journal of Experimental Biology*, 215(22), 3955–3964.

791 <https://doi.org/10.1242/jeb.071423>

792 Maunakea, A. K., Nagarajan, R. P., Bilenky, M., Ballinger, T. J., D’Souza, C., Fouse, S. D., Johnson, B. E.,

793 Hong, C., Nielsen, C., Zhao, Y., Turecki, G., Delaney, A., Varhol, R., Thiessen, N., Shchors, K., Heine, V.

794 M., Rowitch, D. H., Xing, X., Fiore, C., Schillebeeckx, M., Jones, S. J. M., Haussler, D., Marra, M. A., Hirst,

795 M., Wang, T., & Costello, J. F. (2010). Conserved role of intragenic DNA methylation in regulating alternative

796 promoters. *Nature*, 466(7303), 253–257. <https://doi.org/10.1038/nature09165>

797 McCormick, J. A., Lyons, V., Jacobson, J., Noble, J., Diorio, M., Nyirenda, S., Weaver, W., Ester, J. L. W.,

798 Yau, M. J., Meaney, J. R., Seckl, K. E., & Chapman, J. A. M. (2000). 5-Heterogeneity of Glucocorticoid

799 Receptor Messenger RNA Is Tissue Specific: Differential Regulation of Variant Transcripts by Early-Life
800 Events. <https://doi.org/10.1210/mend.14.4.0438>

801 McNabb, F. M. A. (2007). The hypothalamic–pituitary–thyroid (HPT) axis in birds and its role in bird
802 development and reproduction. *Critical Reviews in Toxicology*, 37(1-2), 163–193.
803 <https://doi.org/10.1080/10408440601123552>

804 Mcnabb, F. M. A., & Wilson, C. M. (1997). Thyroid Hormone Deposition in Avian Eggs and Effects on
805 Embryonic Development. *American Zoologist*, 37(6), 553–560. <https://doi.org/10.1093/icb/37.6.553>

806 Mousseau, T., Fox, C. (1998) The adaptive significance of maternal effects. *Trends in Ecology & Evolution*:
807 13(10), 403–407. [https://doi.org/10.1016/S0169-5347\(98\)01472-4](https://doi.org/10.1016/S0169-5347(98)01472-4)

808 Murgatroyd, C., Patchev, A., Wu, Y., Micale, V., Bockmühl, Y., Fischer, D., Holsboer, F., Wotjak, C. T.,
809 Almeida, O. F. X., & Spengler, D. (2009). Dynamic DNA methylation programs persistent adverse effects of
810 early-life stress. *Nature Neuroscience*, 12(12), 1559–1566. <https://doi.org/10.1038/nn.2436>

811 NCBI Resource Coordinators. (2016). Database resources of the National Center for Biotechnology
812 Information. *Nucleic Acids Research*, 44(D1), D7–D19. <https://doi.org/10.1093/nar/gkv1290>

813 Nätt, D., Agnvall, B., & Jensen, P. (2014). Large sex differences in chicken behavior and brain gene expression
814 coincide with few differences in promoter DNA-methylation. *PLoS ONE*, 9(4), e96376.
815 <https://doi.org/10.1371/journal.pone.0096376>

816 Parade, S. H., Huffines, L., Daniels, T. E., Stroud, L. R., Nugent, N. R., & Tyrka, A. R. (2021). A systematic
817 review of childhood maltreatment and DNA methylation: candidate gene and epigenome-wide approaches.
818 *Translational Psychiatry*, 11(1), 134. <https://doi.org/10.1038/s41398-021-01207-y>

819 Parent, J., Parade, S. H., Laumann, L. E., Ridout, K. K., Yang, B. Z., Marsit, C. J., Seifer, R., & Tyrka, A. R.
820 (2017). Dynamic stress-related epigenetic regulation of the glucocorticoid receptor gene promoter during early

821 development: The role of child maltreatment. *Development and Psychopathology*, 29(5), 1635–1648.

822 <https://doi.org/10.1017/S0954579417001298>

823 Pawlik-Pachucka, E., Budzinska, M., Wicik, Z., Domaszewska-Szostek, A., Owczarz, M., Roszkowska-
824 Gancarz, M., Gewartowska, M., & Puzianowska-Kuznicka, M. (2018). Age-associated increase of thyroid
825 hormone receptor β gene promoter methylation coexists with decreased gene expression. *Endocrine Research*,
826 43(4), 246–257. <https://doi.org/10.1080/07435800.2018.1469648>

827 Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic
828 Acids Research*, 29(9), e45. <https://doi.org/10.1093/nar/29.9.e45>

829 Podmokła, E., Drobniak, S. M., & Rutkowska, J. (2018). Chicken or egg? Outcomes of experimental
830 manipulations of maternally transmitted hormones depend on administration method – a meta-analysis.
831 *Biological Reviews*, 93(3), 1499–1517. <https://doi.org/10.1111/brv.12406>

832 Ramakers, C., Ruijter, J. M., Deprez, R. H. L., & Moorman, A. F. M. (2003). Assumption-free analysis of
833 quantitative real-time polymerase chain reaction (PCR) data. *Neuroscience Letters*, 339(1), 62–66.
834 [https://doi.org/10.1016/S0304-3940\(02\)01423-4](https://doi.org/10.1016/S0304-3940(02)01423-4)

835 Ridout, K. K., Coe, J. L., Parade, S. H., Marsit, C. J., Kao, H. T., Porton, B., Carpenter, L. L., Price, L. H., &
836 Tyrka, A. R. (2020). Molecular markers of neuroendocrine function and mitochondrial biogenesis associated
837 with early life stress. *Psychoneuroendocrinology*, 116, 104632.
838 <https://doi.org/10.1016/j.psyneuen.2020.104632>

839 Romero, L. M. (2004). Physiological stress in ecology: Lessons from biomedical research. *Trends in Ecology
840 and Evolution*, 19(5), 249–255. <https://doi.org/10.1016/j.tree.2004.03.008>

841 Ruijter, J. M., Ramakers, C., Hoogaars, W. M. H., Karlen, Y., Bakker, O., van den Hoff, M. J. B., & Moorman,
842 A. F. M. (2009). Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data.
843 *Nucleic Acids Research*, 37(6), e45–e45. <https://doi.org/10.1093/nar/gkp045>

844 Ruiz-Raya, F., Noguera, J. C., Velando, A. (2023). Covariation between glucocorticoid levels and receptor
845 expression modulates embryo development and postnatal phenotypes in gulls. *Hormones and Behavior*, 149,
846 105316, <https://doi.org/10.1016/j.yhbeh.2023.105316>

847 Ruuskanen, S., Hukkanen, M., Garcin, N., Cossin-Sevrin, N., Hsu, B.-Y., & Stier, A. (2022). Altricial Bird
848 Early-Stage Embryos Express the Molecular “Machinery” to Respond to and Modulate Maternal Thyroid
849 Hormone Cues. *Physiological and Biochemical Zoology*, 95(6), 544–550. <https://doi.org/10.1086/721556>

850 Ruuskanen, S., & Hsu, B. Y. (2018). Maternal thyroid hormones: An unexplored mechanism underlying
851 maternal effects in an ecological framework. *Physiological and Biochemical Zoology*, 91(3), 904–916.
852 <https://doi.org/10.1086/697380>

853 Sánchez-Tójar, A., Lagisz, M., Moran, N. P., Nakagawa, S., Noble, D. W. A., & Reinhold, K. (2020). The jury
854 is still out regarding the generality of adaptive ‘transgenerational’ effects. *Ecology Letters*, 23(11), 1715–1718.
855 <https://doi.org/10.1111/ele.13479>

856 Sarraude, T., Hsu, B. Y., Groothuis, T. G. G., & Ruuskanen, S. (2020). Testing different forms of regulation
857 of yolk thyroid hormone transfer in pied flycatchers. *Journal of Experimental Biology*, 223(21), 226688..
858 <https://doi.org/10.1242/jeb.226688>

859 Sawaya, A. L. (2006). Malnutrition: long-term consequences and nutritional recovery effects. *Estudos
860 Avançados*, 20(58). <https://doi.org/10.1590/S0103-40142006000300016>

861 Schoech, S. J., Rensel, M. A., & Heiss, R. S. (2011). Short-and long-term effects of developmental
862 corticosterone exposure on avian physiology, behavioral phenotype, cognition, and fitness: A review. *Current
863 Zoology*, 57(4), 514–530. <https://doi.org/10.1093/czoolo/57.4.514>

864 Sepers, B., Erven, J.A.M., Gaweihns, F., Laine, V.N. & van Oers, K. (2021) Epigenetics and Early Life Stress:
865 Experimental Brood Size Affects DNA Methylation in Great Tits (Parus major). *Frontiers in Ecology and
866 Evolution*, 9, 609061. <https://doi.org/10.3389/fevo.2021.609061>

867 Sepers, B., van den Heuvel, K., Lindner, M., Viitaniemi, H., Husby, A., van Oers, K. (2019). Avian ecological
868 epigenetics: pitfalls and promises. *Journal of Ornithology*, 160, 1183–1203. <https://doi.org/10.1007/s10336-019-01684-5>

870 Shimi, G., Pourvali, K., Ghorbani, A., Nooshin, S., Zare Karizi, S., Iranirad, R., & Zand, H. (2022). Alterations
871 of DNA methylation and expression of genes related to thyroid hormone metabolism in colon epithelium of
872 obese patients. *BMC Medical Genomics*, 15(1), 229. <https://doi.org/10.1186/s12920-022-01387-6>

873 Thayer, Z. M., Wilson, M. A., Kim, A. W., & Jaeggi, A. v. (2018). Impact of prenatal stress on offspring
874 glucocorticoid levels: A phylogenetic meta-analysis across 14 vertebrate species. *Scientific Reports*, 8(1),
875 4942. <https://doi.org/10.1038/s41598-018-23169-w>

876 Tilgar, V., Mägi, M., Lind, M., Lodjak, J., Moks, K., & Mänd, R. (2016). Acute embryonic exposure to
877 corticosterone alters physiology, behaviour and growth in nestlings of a wild passerine. *Hormones and
878 Behavior*, 84, 111–120. <https://doi.org/10.1016/j.ybeh.2016.06.008>

879 Tohgi, H., Utsugisawa, K., Nagane, Y., Yoshimura, M., Ukitsu, M., & Genda, Y. (1999). The methylation
880 status of cytosines in a τ gene promoter region alters with age to downregulate transcriptional activity in human
881 cerebral cortex. *Neuroscience Letters*, 275(2), 89–92. [https://doi.org/10.1016/S0304-3940\(99\)00731-4](https://doi.org/10.1016/S0304-3940(99)00731-4)

882 Too, H. C., Shibata, M., Yayota, M., Darras, V. M., & Iwasawa, A. (2017). Expression of thyroid hormone
883 regulator genes in the yolk sac membrane of the developing chicken embryo. *Journal of Reproduction and
884 Development*, 63(5), 463–472. <https://doi.org/10.1262/jrd.2017-017>

885 Van Herck, S. L. J., Geysens, S., Delbaere, J., Tylzanowski, P., & Darras, V. M. (2012). Expression profile
886 and thyroid hormone responsiveness of transporters and deiodinases in early embryonic chicken brain
887 development. *Molecular and Cellular Endocrinology*, 349(2), 289–297.
888 <https://doi.org/10.1016/j.mce.2011.11.012>

889 Vandesompele, J., de Preter, K., Pattyn, F., Poppe, B., van Roy, N., de Paepe, A., & Speleman, F. (2002).
890 Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal
891 control genes. *Genome Biology*, 3(7), research0034.1. <https://doi.org/10.1186/gb-2002-3-7-research0034>

892 Vassallo, B. G., Litwa, H. P., Haussmann, M. F., & Paitz, R. T. (2019). In ovo metabolism and yolk
893 glucocorticoid concentration interact to influence embryonic glucocorticoid exposure patterns. *General and*
894 *Comparative Endocrinology*, 272, 57–62. <https://doi.org/10.1016/j.ygcen.2018.11.013>

895 Verhagen, I., Laine, V. N., Mateman, A. C., Pijl, A., de Wit, R., van Lith, B., Kamphuis, W., Viitaniemi, H.
896 M., Williams, T. D., Caro, S. P., Meddle, S. L., Gienapp, P., van Oers, K., & Visser, M. E. (2019). Fine-tuning
897 of seasonal timing of breeding is regulated downstream in the underlying neuro-endocrine system in a small
898 songbird. *Journal of Experimental Biology*, 222(17): 202481. <https://doi.org/10.1242/jeb.202481>

899 Vitousek, M. N., Taff, C. C., Ryan, T. A., & Zimmer, C. (2019). Stress Resilience and the Dynamic Regulation
900 of Glucocorticoids. *Integrative and Comparative Biology*, 59(2), 251–263. <https://doi.org/10.1093/icb/icz087>

901 Vogt, G. (2021). Epigenetic variation in animal populations: Sources, extent, phenotypic implications, and
902 ecological and evolutionary relevance. *Journal of Biosciences*, 46(1), 24. <https://doi.org/10.1007/s12038-021-00138-6>

904 Waddington, C. H. (1942). The epigenotype. *Endeavour*: 18–20. *Reprinted in 2012 in International Journal*
905 *of Epidemiology*, 41(1), 10–13. <https://doi.org/10.1093/ije/dyr184>

906 Wang, X., Carré, W., Saxton, A. M., & Cogburn, L. A. (2007). Manipulation of thyroid status and/or GH
907 injection alters hepatic gene expression in the juvenile chicken. *Cytogenetic and Genome Research*, 117(1–4),
908 174–188. <https://doi.org/10.1159/000103178>

909 Weber, B. M., Bowers, E. K., Terrell, K. A., Falcone, J. F., Thompson, C. F., & Sakaluk, S. K. (2018). Pre-
910 and postnatal effects of experimentally manipulated maternal corticosterone on growth, stress reactivity and

911 survival of nestling house wrens. *Functional Ecology*, 32(8), 1995–2007. <https://doi.org/10.1111/1365-2435.13126>

913 Wickham, H. (2016). *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. ISBN 978-3-319-24277-4

915 Yackle, K., Schwarz, L. A., Kam, K., Sorokin, J. M., Huguenard, J. R., Feldman, J. L., Luo, L., & Krasnow, M. A. (2017). Breathing control center neurons that promote arousal in mice. *Science*, 355(6332), 1411–1415. <https://doi.org/10.1126/science.aai7984>

918 Yates, A. D., Achuthan, P., Akanni, W., Allen, J., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M., Azov, A. G., Bennett, R., Bhai, J., Billis, K., Boddu, S., Marugán, J. C., Cummins, C., Davidson, C., Dodiya, K., Fatima, R., Gall, A., ... Flicek, P. (2019). Ensembl 2020. *Nucleic Acids Research*. 48(D1), D682–D688. <https://doi.org/10.1093/nar/gkz966>

922 Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S., & Madden, T. L. (2012). Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. *BMC Bioinformatics*, 13(1), 134. <https://doi.org/10.1186/1471-2105-13-134>

925 Yin, J., Zhou, M., Lin, Z., Li, Q. Q., & Zhang, Y. Y. (2019). Transgenerational effects benefit offspring across diverse environments: a meta-analysis in plants and animals. *Ecology Letters*: 22(11), 1976–1986. <https://doi.org/10.1111/ele.13373>

928 Zhang, Y. Y., Yin, J., Zhou, M., Lin, Z., & Li, Q. Q. (2020). Adaptive transgenerational effects remain significant. *Ecology Letters*, 23(11), 1719–1720. <https://doi.org/10.1111/ele.13589>

930 Zimmer, C., Larriva, M., Boogert, N. J., & Spencer, K. A. (2017). Transgenerational transmission of a stress-coping phenotype programmed by early-life stress in the Japanese quail. *Scientific Reports*, 7, 46125. <https://doi.org/10.1038/srep46125>

933 Zimmer, C., & Spencer, K. A. (2014). Modifications of glucocorticoid receptors mRNA expression in the
934 hypothalamic-pituitary-adrenal axis in response to early-life stress in female Japanese quail. *Journal of*
935 *Neuroendocrinology*, 26(12), 853–860. <https://doi.org/10.1111/jne.12228>

936 Zoeller, R. T., Tan, S. W., & Tyl, R. W. (2007). General background on the hypothalamic-pituitary-thyroid
937 (HPT) axis. *Critical Reviews in Toxicology*, 37(1–2), 11–53. <https://doi.org/10.1080/10408440601123446>

938 [dataset and R scripts] Hukkanen, Mikaela, Hsu, Bin-Yan, Cossin-Sevrin, Nina, Crombecque, Mélanie,
939 Delaunay, Axelle, Hollmen, Lotta, Kaukonen, Riina, Konki, Mikko, Lund, Riikka, Marciau, Coline, Stier,
940 Antoine, Ruuskanen, Suvia. (2023): *Hukkanen et al. 2023 data: Great tit DNA methylation, gene expression*
941 *and breath rate. figshare. Dataset.* <https://doi.org/10.6084/m9.figshare.22153001.v1>

942 [Figure 1 legend] Figure 1. Effects of prenatal corticosterone manipulation on (A): breath rate 14 days after
943 hatching (per 60s), (B): DNA methylation (%) at the quantified 12 CpG-sites of NR3C1 promoter region
944 (black=NON-CORT; red=CORT) since a significant CORT*Site interaction was detected, and (C):
945 glucocorticoid receptor NR3C1 relative gene expression in blood cells, . Estimated marginal means and
946 standard errors are given (A-C), with the raw data (A-B). P-values for the effect of corticosterone from type
947 III ANOVA (A-B) and site-specific post-hoc comparison with Tukey's test (C) are also shown for p<0.10.

948 [Figure 2 legend] Figure 2. 2A: Average methylation percentages pooled across different treatment groups at
949 different ages for glucocorticoid receptor gene NR3C1. 2B: Average methylation percentages pooled across
950 different treatment groups at different ages for thyroid hormone receptor gene THRB. Black lines represent
951 changes in methylation percentage in the overall mean (across all samples), and the grey lines represent
952 changes in methylation percentage (averaged over all CpG sites) for each individual across ages.

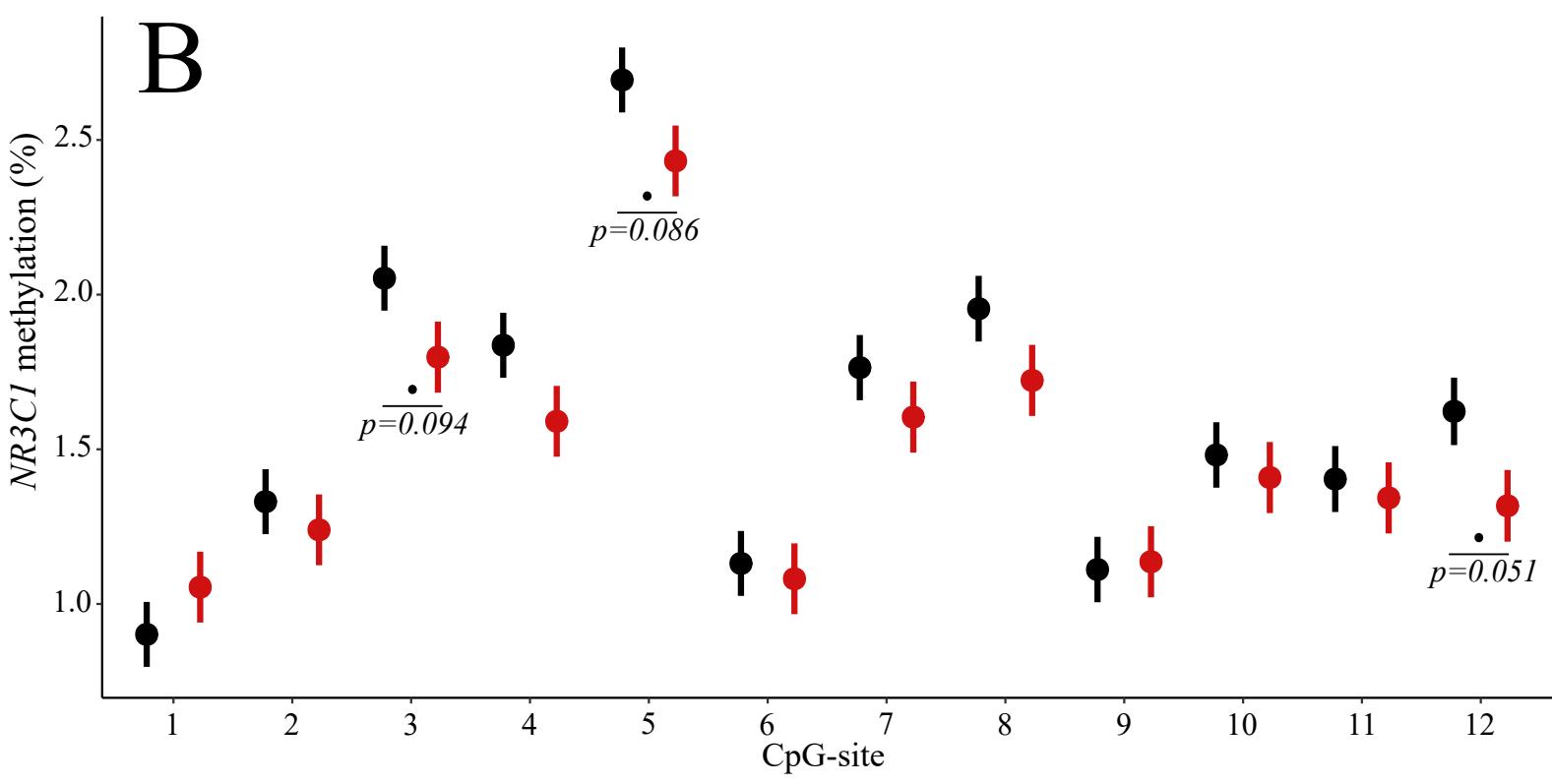
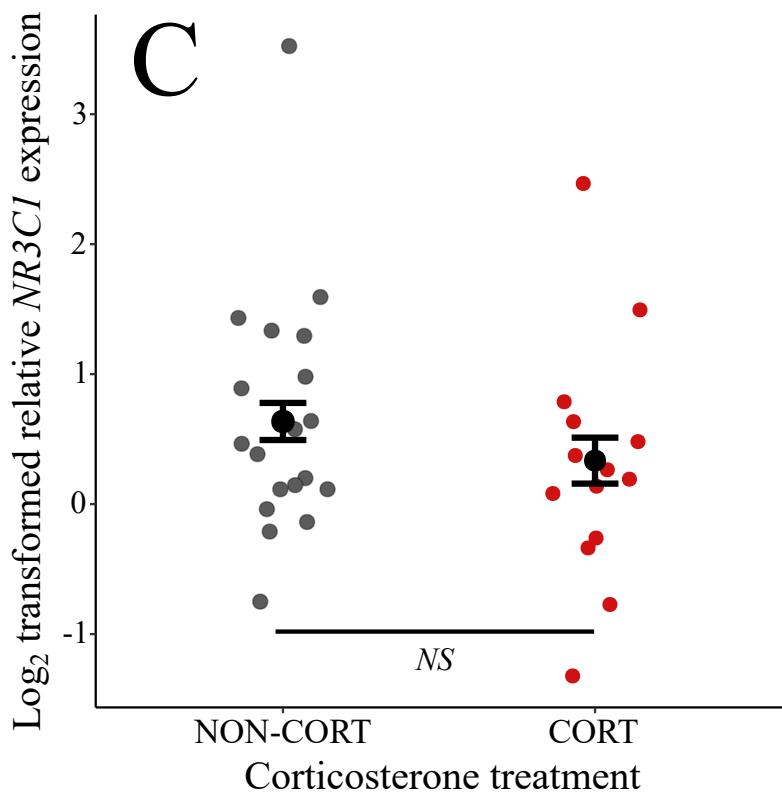
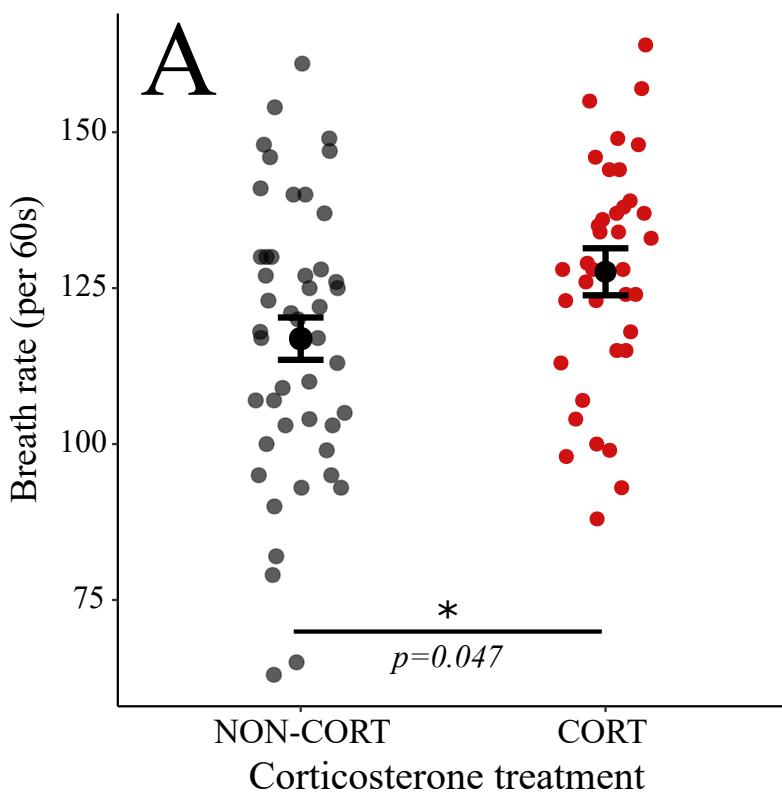
953 [Figure 3 legend] Figure 3. 3A: Correlation between breath rate (per 60s) and NR3C1 gene expression. 3B:
954 Correlation between NR3C1 promoter methylation (%) and relative gene expression. Regression line and 95%
955 confidence limits are given with the raw data.

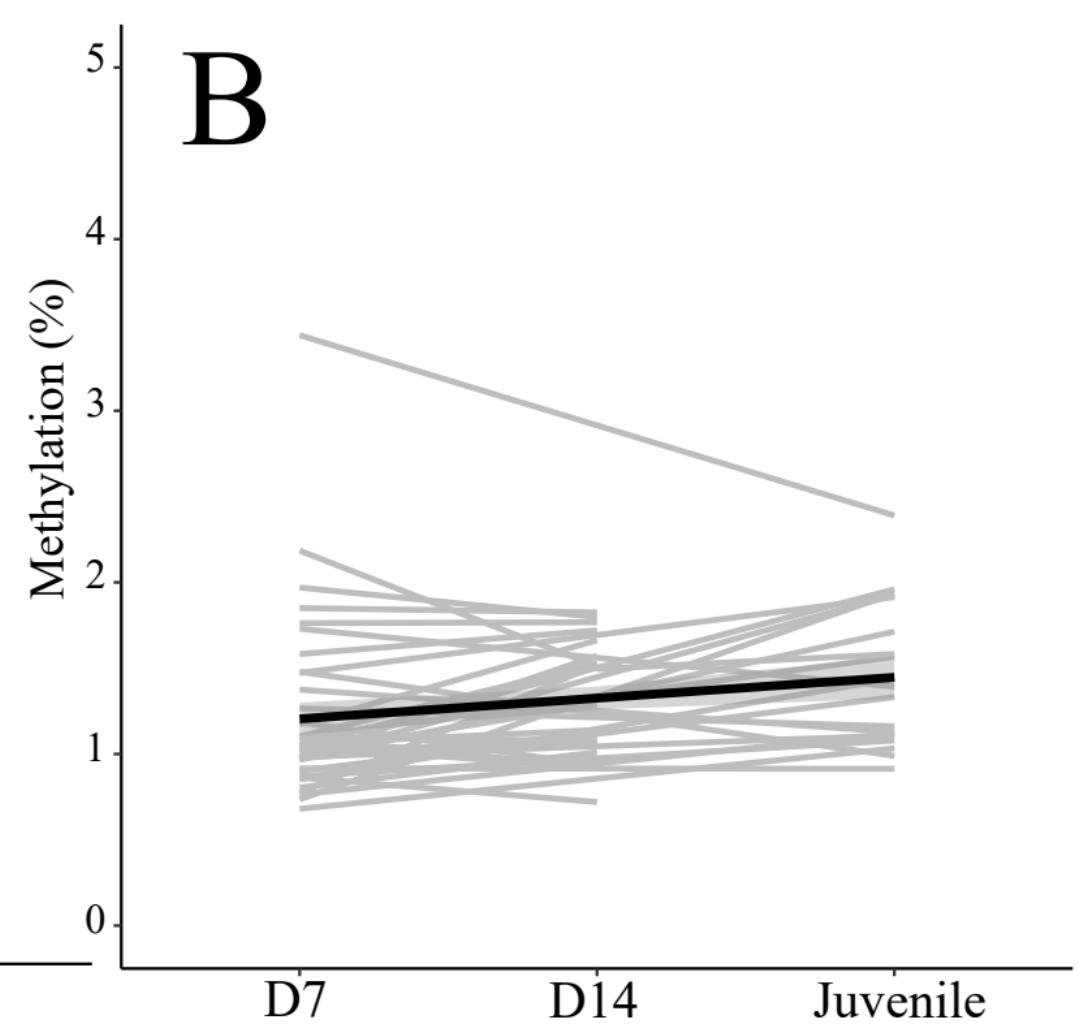
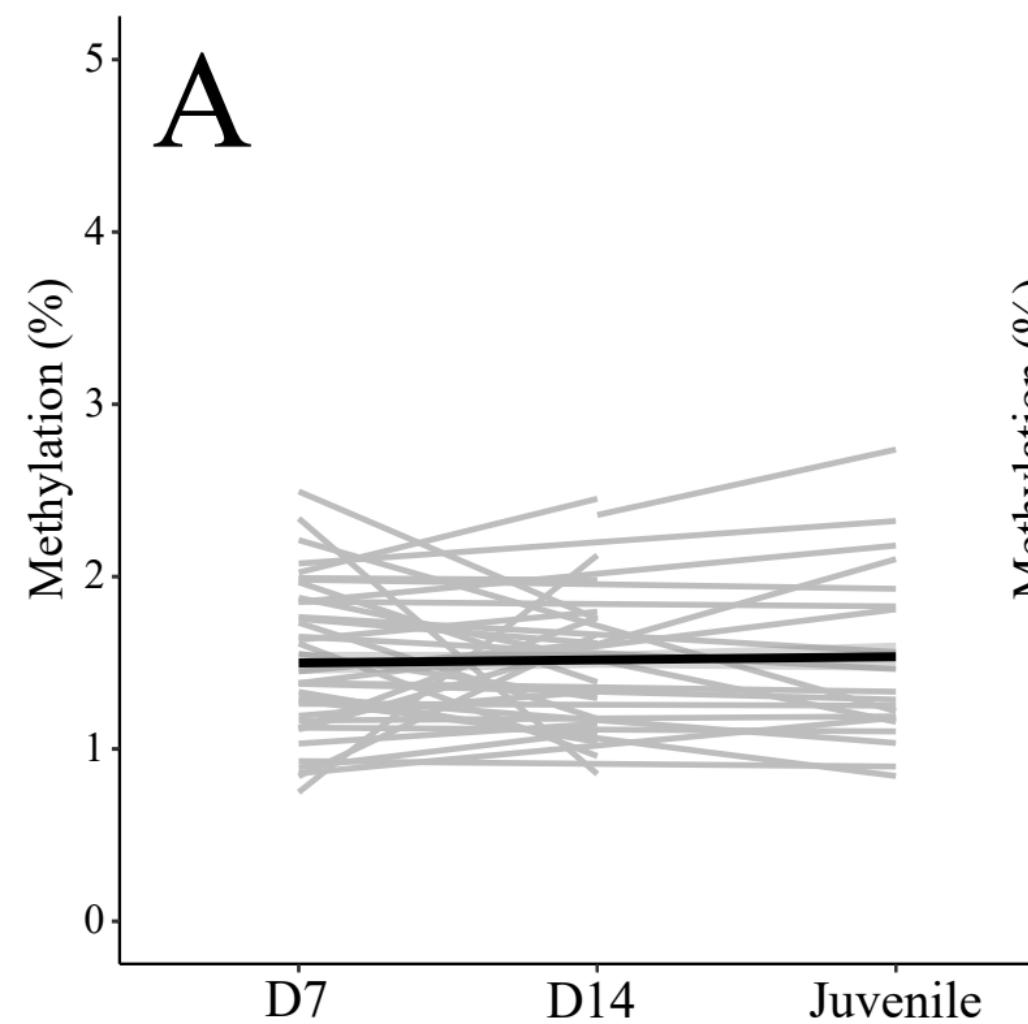
956 [Table 1 legend] Table 1. Number of individuals and nests by treatment group in the whole experiment and for
957 different analyses (breath rate, methylation, gene expression). Numbers of nests are given in brackets.
958 Treatment groups are coded as follows: CO=control; CORT=corticosterone; CORT+TH=corticosterone and
959 thyroid hormone combination group; TH=thyroid hormone. There were 1-3 randomly selected individuals per
960 nest for the breath rate analysis (36 nests). One randomly selected individual per nest was included in the
961 methylation and gene expression analyses. All individuals in the gene expression analyses were included in
962 the methylation analyses. We tried to also maximise the overlap between data on breath rate, methylation and
963 gene expression from the same individuals, but this was not always possible due to limited blood sample
964 availability. In the end, 18 individuals with methylation data had also breath data data, and 16 individuals with
965 gene expression data had also breath rate data. There were 45 different nests in total (CO=11; CORT=12;
966 CORT+TH=10;TH=12).

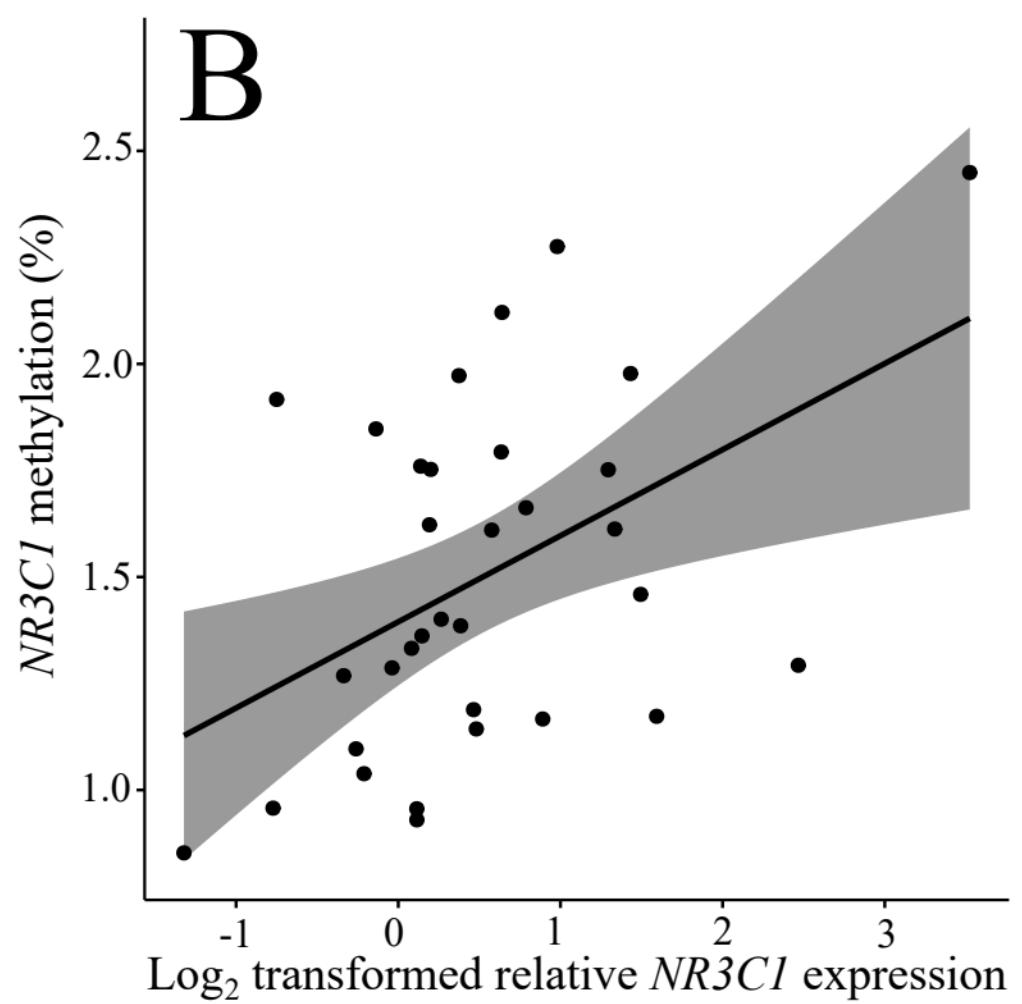
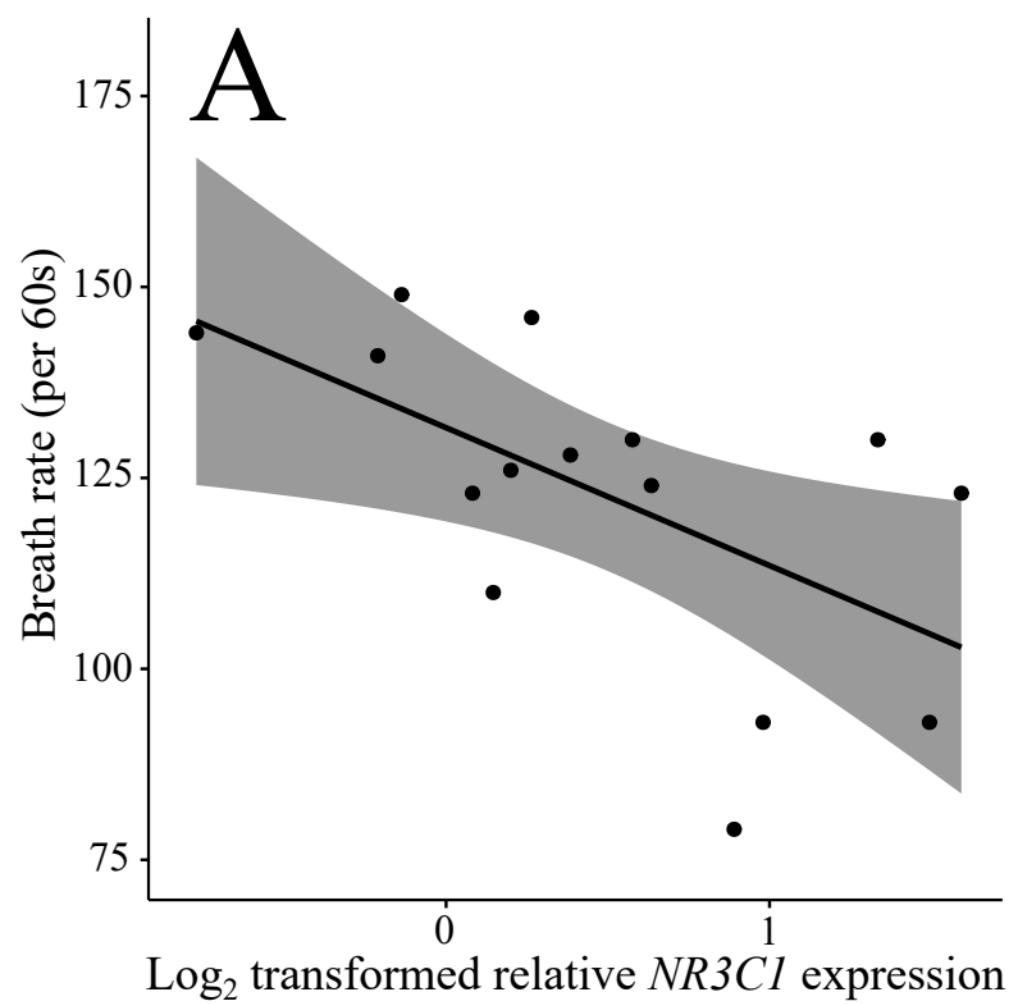
967 [Table 2 legend] Table 2. Sample sizes as number of individuals/CpG-sites included in the methylation analysis
968 after quality filtering for each gene (NR3C1=glucocorticoid receptor; THRB=thyroid hormone receptor β),
969 treatment group (CO=control; CORT=corticosterone; CORT + TH=corticosterone and thyroid hormone;
970 TH=thyroid hormone) and age (DAH=days after hatching).

971 [Table 3 legend] Table 3. Primers sequences used to detect the methylation status of the putative promoter
972 regions of the glucocorticoid receptor gene (NR3C1) and thyroid hormone receptor gene β (THRB). Forward
973 and reverse primer sequences are presented with the number of CpG-sites (N°) within each sequence to
974 analyze.

975 [Table 4 legend] Table 4. Primer sequences and performance for the genes of interest (NR3C1 and THRA)
976 and reference genes (SDHA and RPL13) used in RT-qPCR. Forward and reverse primer sequences are
977 presented with expected amplicon lengths (BP). Cq is the average quantification cycle value for each gene
978 with associated standard error (SE). E refers to the average amplification efficiency calculated by LinRegPCR
979 algorithm described by Ramakers et al. (2003) with the formula: $E = 10^{slope} - 1$. The slope is determined
980 with linear regression from the amplification curve. Intraplate CV (%) is the average coefficient of variation




981 for the duplicate samples, and interplate CV (%) is the coefficient of variation for two repeated qPCR plates.



982 Technical repeatability (R) for duplicate samples is also given.



983 [Table 5 legend] General linear (mixed) model explaining variation in breath rate, DNA methylation, and gene
984 expression. For fixed effects, Type III ANOVA F-statistics, associated degrees of freedom, and p-values are
985 presented. Mixed models (breath rate and DNA methylation) are fit by REML, and degrees of freedom are
986 estimated with Kenward-Roger's method. For random effects, the percentage of variation explained (VE), and
987 a test of significance (likelihood ratio test, with χ^2 (df) and p-value) are provided (see supplementary Table
988 S2). Significant effects are marked with asterisks (*: $p < 0.05$; **: $p < 0.01$; ***: $p < 0.001$). Brackets [] indicate
989 non-significant interaction terms removed from the final model.

990 [Table S1 legend] Table S1. Sex ratios: number of individuals (F:M) included in the analysis after quality
991 filtering for each gene (NR3C1=glucocorticoid receptor; THRB=thyroid hormone receptor β), treatment group
992 (CO=control; CORT=corticosterone; CORT + TH=corticosterone and thyroid hormone; TH=thyroid
993 hormone) and age (DAH=days after hatching).

994 [Table S2 legend] Table S2. Estimated proportion of variance (%Var) explained by random effects for all
995 models. The proportion of explained variance was calculated as the estimated variance for the random factor
996 in question divided by the total variance. Significance tests were performed by log-likelihood ratio test between
997 models with different random structures. Significance is marked with asterisks (*: $p < 0.05$;
998 **: $p < 0.01$; ***: $p < 0.001$).

