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Many biochemical oscillators are driven by the peri-
odic rise and fall of protein concentrations or activ-
ities. A negative feedback loop underlies such os-
cillations. The feedback can act on different parts
of the biochemical network. Here, we mathemat-
ically compare time-delay models where the feed-
back affects production and degradation. We show
a mathematical connection between the linear sta-
bility of the two models, and derive how both mech-
anisms impose different constraints on the produc-
tion and degradation rates that allow oscillations.
We show how oscillations are affected by the in-
clusion of a distributed delay, of double regulation
(acting on production and degradation), and of en-
zymatic degradation.
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Introduction

Biological oscillators

Periodic phenomena influence many aspects of our
lives. Perhaps the most obvious examples are the re-
peating of the seasons and cycles of day and night.
Periodicity also plays an important role on the cellular
level. The 24h-rhythm that aligns with day and night is
present in single cells, and many other cyclic processes
govern development and survival of cells, and by exten-
sions of tissues and whole organisms. Besides the cir-
cadian rhythms, examples include the cell cycle or the
segmentation clock among numerous others (Beta and
Kruse 2017).

The periodic nature of these phenomena in the cell is
typically manifested by cyclic changes in the concen-
tration or activity of different molecules. These cycles
are the result of the interactions between many different
genes and proteins. Despite the often bewildering com-
plexity of protein interaction networks, many oscillatory
systems rely on core network motifs to generate their
oscillations (Novak and Tyson 2008).

One of these motifs is the time-delayed, nonlinear, neg-
ative feedback loop. In a negative feedback loop, a com-
ponent inhibits its own activity. This property is essen-
tial for oscillations: in order to obtain periodic behavior,
the system needs to be reset after one cycle. Negative

feedback in itself is not sufficient for oscillations, but can
also lead to stable steady states. However, feedback
that acts with a sulfficient time delay can result in os-
cillations (Casani-Galdon and Garcia-Ojalvo 2022; Fer-
rell, Tsai, et al. 2011; D. S. Glass et al. 2021). There
are many mechanisms that can lead to time delays in
biological systems. Examples include the time a sig-
nal takes to move to another location (Macnamara and
Chaplain 2016; Naqib et al. 2012), or the presence of
multiple intermediate steps in a system of chemical re-
actions (Beguerisse-Diaz et al. 2016; Korsbo and Jons-
son 2020).

The study of biological oscillators has benefitted sig-
nificantly from the tools of mathematical modeling.
The mathematical study of (bio)chemical oscillators ar-
guably started with the work of Lotka (1910, 1920),
who showed that relatively simple chemical reactions
could lead to periodic behavior. This work and later
studies, such as those on the Belousov-Zhabotinsky re-
action, showed that chemical systems do not have to
monotonously evolve to equilibrium (Epstein and Poj-
man 1998; Winfree 1984). With the advent of molecu-
lar biology and the unraveling of genetic interaction net-
works, mathematical modeling was put to use to better
understand how biochemical interactions could lead to
oscillations in living systems. Here, the work of Brian
Goodwin was very influential. He put forward several
mathematical models to illustrate feedback mechanisms
in biochemical systems, the most famous one being the
three-variable Goodwin model (Goodwin 1965; Giriffith
1968).

The Goodwin model and production-inhibition os-
cillators

The Goodwin model consists of the equations
dX k1

S X
at  Kmyzm I

dy

8 X — Y 1
o = kX a2 (1)
dz

8 Y — a2,

dt 3 q3

The equations model how RNA X is translated into pro-
tein Y, which activates another molecule Z. This finally
acts as a repressor for the gene and inhibits the produc-
tion of X (Fig. 1(a)). The inhibition is modeled by a de-
creasing Hill function, whose steepness is determined
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by the Hill exponent m (Fig. 1(b)). Goodwin performed
simulations of the model with m = 1 and obtained os-
cillatory behavior. However, this was probably due to
numerical artefacts: Griffith (1968) later showed analyt-
ically that oscillations are only possible when m > 8. An
extension of the Goodwin model includes more interme-
diate species (Fig. 1(a)):

dX, k1
= ——q1 X1
dt K™+ Xy
i (2
dtz ZkiXi_l—ini fort=2...N.

Tyson and Othmer (1978) showed that in this model, the
following condition is necessary for oscillations to exist:

m > sec™y (%) . (3)

Bounds of this kind are often called secant conditions,
for the secant function appearing in the inequality. The
bound is indeed equal to 8 for N = 3 and asymptotically
approaches 1 as N goes to infinity. Systems with more
variables thus relax the requirement of high Hill expo-
nents, which has been criticised as an unrealistic as-
sumption for real biological systems (Gonze and Abou-
Jaoudé 2013). The many different steps induce an ef-
fective time delay between the rise of X; and the in-
hibitory effect on its own production, which promotes os-
cillations. An example of such oscillations in the Good-
win model are shown in Fig. 1(c), for N = 3 and m = 10.
Goodwin’s model has inspired many mathematical re-
sults, from the early days (Tyson and Othmer 1978) to
more recent work (e.g. Woller et al. 2014). The Goodwin
model also provided an important conceptual example
in whose light many other biological oscillations can be
viewed. The model, or variations of it, have been used
to study properties of the circadian clock (e.g. Anan-
thasubramaniam, Schmal, et al. 2020; Ruoff and Rens-
ing 1996), somitogenesis (e.g. Lewis 2003; Monk 2003)
and other biological cycles, and has had a profound in-
fluence on the field of biological oscillators. An excellent
overview of its impact was given recently by Gonze and
Ruoff (2021).

The cell cycle model and degradation-activation os-
cillators

The negative feedback in Goodwin’s model acts on the
production step: the final chemical species in the reac-
tion chain inhibits the production of the first (Fig. 1(d)).
Alternatively, the negative feedback could act on the
degradation (Fig. 1(h)). In such a system, production is
unregulated, but the degradation is induced by another
molecule. A prominent biological example is the early
embryonic cell cycle (Fig. 1(e)), which is driven by the
periodic accumulation of cyclin proteins (Morgan 2007).
Cyclin B is produced constantly, and binds to the kinase
Cdk1 which is then activated. Active Cdk1 phospho-
rylates many different substrates, leading the cell into
mitosis. One substrate of Cdk1 is a protein complex
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called the Anaphase-Promoting Complex / Cyclosome
(APC/C). This complex targets cyclin B for degradation,
leading to the inactivation of Cdk1 at mitotic exit. Here,
cyclin B indirectly brings about its own destruction: a
delayed negative feedback loop. Both the time delay
and the nonlinear activation of APC/C have been mea-
sured (Yang and Ferrell 2013), even though the molec-
ular mechanism of APC/C activation is not completely
understood (Yamano 2019).

The many mathematical models of the early embryonic
cell cycle essentially describe the feedback loop be-
tween cyclin B-Cdk1 and APC/C. In (Rombouts et al.
2018), we analyzed the equation

dX X(t—7)"

dt _k”_de”+X(t—T)n @
Here, X denotes the concentration of cyclin B-Cdk1
complexes. This concentration increases at a constant
rate k, and is degraded with first-order kinetics with rate
kq. However, degradation is only active when APC/C
activity is high. This activity is modeled explicitly using
a Hill function (Fig. 1(f)) with argument the time-delayed
term X (¢t — 7). Given suitable parameter values, this
model produces cell cycle oscillations (Fig. 1(g)). Inter-
estingly, an equivalent equation has already been used
by Mackey and L. Glass (1977) to model the variation
of CO5 levels in the blood. More generally, a feedback
that activates degradation (Fig. 1(h)) can also be found
in other biological systems, for example in the dynam-
ics of the tumor repressor protein p53 in response to
DNA damage (Elias and Macnamara 2021; Lahav et al.
2004; Lev Bar-Or et al. 2000).

Distributed time delays

The two models — the Goodwin model and the cell cy-
cle model — are both examples of time-delayed nega-
tive feedback loops, with a source of nonlinearity mod-
eled by a Hill function. The time delay is explicit in the
cell cycle model, but appears in an implicit way in the
Goodwin model, through the introduction of multiple dif-
ferent steps. Indeed, in biological systems time delays
often originate from multiple intermediate steps, such
as phosphorylation cascades or multisite phosphoryla-
tion (Heinrich et al. 2002; Salazar and Héfer 2009). The
Goodwin model with NV steps is, in fact, equivalent to a
delay equation with a distributed delay. Instead of a de-
lay term such as X (¢ — 1), a distributed delay equation
contains expressions of the form fUOOX(t —7)G(7)dT
with a distribution function G. This means that not the
value of the variable at a specific point in the past is rel-
evant for the current time evolution, but rather its whole
history, weighted by G (Fig. 2). As shown in the supple-
mentary information, a linear chain of differential equa-
tions of the form

dX;
dt

ZkiXi_l—ini forcr=1...N
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Figure 1. Negative feedback acting on production and degradation. (a) The multivariable Goodwin model describes a gene whose product represses its
transcription. The different steps produce a time delay. (b) Inhibition can be modeled by a decreasing Hill function, with exponent m dictating the steepness. (c)
Representative time series for the 3-variable Goodwin model. (d) The negative feedback in the Goodwin model acts on the production step. (e) Simplified model of
the early embryonic cell cycle. (f) The activation of APC/C is modeled by an increasing Hill function. (f) Representative time series of Cyclin B-Cdk1 concentration in

the cell cycle model. (h) In the cell cycle, the negative feedback acts through activation of degradation.

can be replaced by the expression

Xy = (sz) /OOO Xo(t—7)G(r)dr

N
_ 9 _N-1,—
~N-—117 €
e 4T

N
D | =)

ar —=: géV(T) if g; = q forall

(5)
(see also (Cooke and Grossman 1982; Hinch and
Schnell 2004)). In case of equal ¢;, the distribution is
called the Gamma distribution. The equivalence of a
Gamma-distributed delay with a system of linear ODEs
is also called the linear chain trick (see, e.g. Smith 2010,
Chapter 7). The mean of a Gamma distribution with pa-
rameters ¢, N is given by N/q. By keeping the mean
fixed at 7 and increasing NNV, the distribution g%ﬁ ap-
proaches a delta distribution centered at 7 (Fig. 2b).
This means that a discrete delay equation can be ap-
proximated by a long chain of ODEs, where each step
happens very quickly. This equivalence also shows that
the Goodwin model can be written as a single delay
equation with distributed delay.

Goal and structure of the paper

The Goodwin model on the one hand, and the cell-cycle
model on the other, are examples of two different ways
to implement a negative feedback loop. Each of these
models has been studied in detail. Yet, a detailed math-
ematical study of the differences has not been done.
This is what we aim to do in this paper: to provide
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Figure 2. Distributed time delay. (a) A time-delayed variable with distributed
delay. If the delay distribution is close to a delta distribution, the delayed variable
is close to a time-shifted version of the original variable (the gray line). Here the
red line was computed using a Gamma distribution with N = 50. (b) Gamma
distributions with fixed mean but increasing values of /N approach a delta distri-
bution.

a mathematical analysis of the most basic version of
these two models, and compare their behavior. In par-
ticular, we are interested in differences between the os-
cillatory potential of the two models and the constraints
the mechanism of feedback puts on, for example, the
parameter values. This could lead to insight into why bi-
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ological systems have adopted one or the other mech-
anism.

Our most important tools are analytical: we use linear
stability analysis to determine when oscillations occur
in these systems. This analysis can also be done with a
graphical technique, which is sometimes more insight-
ful than a purely algebraic one. We use this paper as
an opportunity to dust off this technique, which was ex-
tensively used in the book by MacDonald (2008, origi-
nally published in 1989). We also obtain approximations
for the boundaries of stability using asymptotic meth-
ods. The details of the calculations are explained in the
supplementary information. For direct simulation of the
delay equations, we have used the software JiTCDDE
(Ansmann 2018).

Our results on the existence of oscillations have been
described before, for both models: a high nonlinearity
and a larger time delay lead to oscillations. However,
the production and degradation rates that allow oscil-
lations are different differ between the two. Here, we
show how this difference can be explained, in fact, by a
correspondence between the linear stability for the two
mechanisms. |If there is a destabilizing time delay for
one mechanism, there is one for the other — but with
an inverse value of the ratio between production and
degradation rates. We interpret this result in terms of
the biological rate constants and show that it also holds
for Gamma-distributed time delays.

In the limit of large Hill exponents, the delay equations
can be solved analytically and expressions for period
and amplitude can explicitly obtained. This analysis
shows that the time delay affects the amplitude signif-
icantly in one of the two mechanisms, namely the one
where the feedback acts through the activation of degra-
dation.

Finally, we shortly discuss extensions of these models.
In a system where the feedback acts on both the pro-
duction and degradation, we show that the oscillatory
potential of both mechanisms is combined. Enzymatic
degradation has a different effect on the two mecha-
nisms.

Results

Model formulation

The Goodwin model and cell cycle model represent two
implementations of the negative feedback loop. Both
rely on a time delay and nonlinearity, which are the es-
sential ingredients to generate oscillations. In order to
study their differences, we condense these mechanisms
into two delay equations that can be compared. We
study the following two models, based on the Goodwin
model and the cell-cycle model respectively (see Fig. 1):
The production-inhibition (Pl) model

dX K™

P: — =ky——
dt — PKm4Xm

—kgX. (6)
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The degradation-activation (DA) model

dx xm

DA: 7:kp—kdw

7 @

Here X will represent a concentration. Both models are
modifications of the equation

dX

T kp—kqX (8)
that describes constant production and first-order
degradation. The Pl model includes a delayed inhibi-
tion of the production rate, modeled by a decreasing Hill
function (Fig. 1(a)-(d)). In the DA model, the degrada-
tion is activated with a time delay (Fig. 1(e)-(h)). With
slight abuse of notation we use X, to denote either a
variable with discrete delay 7 or a distributed one with
average .
In order to streamline the calculations, we nondimen-
sionalize these equations. Setting v = X/K and s =
k4t leads to the following equations for the production-
inhibition (Eq. (6)) and degradation-activation (Eq. (7))
system, respectively:

Pl: v =cg(ug)—u, (9)
DA: v =c— f(up)u, (10)

where we used the notation

m

f) = T (1)
o) = (12

for the increasing and decreasing Hill functions and use
a prime for the time derivative. Note that f(u) =1—
g(u) = g(1/u). The only parameters in these rescaled
equations are:

Hill exponent: m, (13)
Rescaled time delay: 0 = k47, (14)
k
Dimensionless rate ratio: ¢ = —% (15)

Kkq'

The important parameter c is proportional to the ratio of
production and degradation rates.

Hopf bifurcation for the system with discrete delay
In this section, we perform the Hopf bifurcation analysis
of the Pl and DA models (9)-(10) and compare the re-
sults. A similar analysis for the DA model can also be
found in our earlier paper (Rombouts et al. 2018). For
the PI model, Tyson (2002) shows the calculation. The
details of the analysis can be found in the supplemen-
tary information.

First, we look at the steady states of the models. These
are the values of u that satisfy g(u) = u/c for the PI
model, and f(u) = ¢/u for the DA model. Plotting the
two sides of these equalities (Fig. 3(a)-(b)) shows that
there is exactly one positive steady state for each value
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of m and c. The value of the steady state increases
monotonically with ¢ and is independent of the time de-
lay. To assess the stability of the steady state u, we
perform a linear stability analysis. For a discrete delay
ug = u(t — @), the linear stability analysis leads to the
following equation for the eigenvalues of the systems:

A+a+pBe N =0. (16)

This equation is the same for both models, but oz and
are different and depend on the steady state u:

B=—cg'(u) (17)
p=uf'(u). (18)

These values are always positive. For nonzero delays,
the characteristic equation Eq. (16) is a transcenden-
tal equation with an infinite number of solutions. The
steady state is unstable if at least one eigenvalue has
positive real part. If the delay is zero, there is a single
solution A = —a — 3. The steady state is thus stable
in the absence of a delay. We next analyze whether
increasing the delay can lead to oscillations through a
Hopf bifurcation (see Erneux 2009; MacDonald 2008;
Smith 2010). We thus look for values of the parameter
values such that A\ = jw is a solution of Eq. (16). Sub-
stituting this condition into Eq. (16) leads to

Pl a=1
DA o= f(u)

iw+a+ f(cos(wh) —isin(wh)) = 0. (19)

Separating real and imaginary parts and performing
some algebra leads to conditions on m,c and 6, which
can be used to plot regions in parameter space where
the steady state is unstable (Fig. 3(c)-(f)). In these re-
gions the model shows oscillations. For both the Pl and
the DA models, a sufficient delay and nonlinearity —
meaning large m — are needed to obtain oscillations.
There is a trade-off: if the Hill exponent m is larger, a
smaller delay is sufficient for oscillations to occur. An
asymptotic analysis, worked out in the supplementary
information, reveals that the critical time delay scales as
1/m for large m (see also Supp. Fig. S1,S2). In partic-
ular,

c w1

P g~ S T~ form—oo (20
c—12m
1 n1

The oscillatory regions in the (c,0)-plane are different
between the two mechanisms: for the Pl model, a large
value of ¢ promotes oscillations, and oscillations are im-
possible when c is roughly less than 1 (Fig. 3(i)). For
the DA model, oscillations are only possible when c is
between zero and (approximately) 1 (Fig. 3(j)).

More insight into the existence of a destabilizing time
delay can be gained by considering the Hopf bifurcation
condition in a geometric way (MacDonald 2008). We
rewrite Eq. (19) as

w ., « ;
—5i-g= e?. (22)
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A Hopf bifurcation is possible if there exist values of w
and 6 such that this equality holds. When freely varying
w and 6, the left hand side describes a vertical line in the
bottom half of the complex plane. This line intersects
the real axis at —«a/3, which is less than zero since «
and (3 are positive. The right hand side describes the
unit circle. If the line and the circle intersect, there is a
time delay that destabilizes the steady state (Fig. 3(k)).
Whether there is an intersection only depends on the
value of «/3, which in turn only depends on the pa-
rameters m and c. In particular, there is an intersection
if «/f < 1. Fig. 3(I) shows the region in (¢, m)-plane
where this condition is satisfied. The boundaries have
an analytical expression (see the supplementary infor-
mation). For values of ¢ and m above the lines, there
exists a destabilizing time delay. Remarkably, there is a
correspondence between these regions for the Pl and
the DA model: they map onto each other under the cor-
respondence ¢ <> 1/c. Concretely: if for the Pl model
with parameters (c,m) there exists a critical time delay
which makes the steady state unstable, then there also
exists such a time delay for the DA model with parame-
ters (1/c,m). This correspondence is essentially due to
the fact that the geometric picture for the corresponding
models is the same. We show the correspondence now
algebraically, by rewriting the condition o/ < 1.

We use Egs. (17) and (18), together with the condition
for the steady state, to rewrite this condition for both
models:

57 —m
PI: 1+api(m,c)™™ <1. (23)
m
bt m
pa; LHuoamo™ (24)
m

We have explicitly written the steady states of each
models as a function of m and ¢ here. These conditions
cannot be satisfied for m = 1 since the steady state « is
larger than zero. This shows that for both models, os-
cillations are impossible for m = 1. The conditions have
the same form, except that for the Pl model the numer-
ator contains «~™ and for the DA model it is ™. To
show that these conditions are the same for both mod-
els, when using ¢ for one and 1/¢ for the other, we now
show that )

upi(m,1/c) = m

We have that upi(m,1/c) is the single positive root of
the equation

%g(u) =us %g(u) =c.

As g(u) = f(1/u), the equation becomes
1
Ef(l/u) =6

which states that 1/« is the unique positive steady state
of the DA model with parameter c.
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Figure 3. Comparison of the Hopf bifurcation for the models with discrete delay. (a) There is a unique positive steady state of the PI model, which satisfies
g(u) = wu/c. (b) The unique positive steady state of the DA model satisfies f(u) = c¢/u. (c) Oscillatory region in the (m,6)-plane for the Pl model, with period
in color. (d) Oscillatory region in the (m, 0)-plane for the DA model, with period in color. (e) Oscillatory region in the (m, 6)-plane for the Pl model, with amplitude
in color. (c) Oscillatory region in the (m, 6)-plane for the DA model, with amplitude in color. In (c,e), we used ¢ = 4 and in (d,f), ¢ = 1/4. (g) Time series of the
oscillations in the PI model, corresponding to the colored dots in panels (c,e). (h) Time series of the oscillations in the DA model, corresponding to the colored dots
in panels (d,f). (i) Oscillatory region for the PI model in the (c, 0)-plane for different values of m. The dotted lines are the large m asymptotic expressions given in
Eq. (20). (j) Oscillatory region for the DA model in the (c, 8)-plane for different values of m. The dotted lines are the large m asymptotic expressions given in Eq. (21).
(k) Geometric interpretation of the existence of a destabilizing delay. There exists a destabilizing time delay if the circle and the vertical line intersect. (I) Regions in
the (¢, m)-plane for both models, where a destabilizing time delay exists (disregarding its numerical value). The boundaries are given by ¢ = m(m — 1)*1*1/m
for the Pl model and ¢ = (mm — 1)1+1/™ /m for the DA model. The boundaries map onto each other under ¢ > 1/c.
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These calculations show that a Hopf bifurcation occurs
at a critical time delay in the Pl model if and only if it hap-
pens in the DA model, with inverse value of c. However,
the actual values of the critical time delays need not be
the same. From the geometrical picture and Eq. (22),
we know that the coordinates in the complex plane of
the intersection point are the same for both models (tak-
ing into account the ¢ +— 1 /¢ correspondence), such that

WpA _ WPT

2bA _ LPL 25
Bpa  PBpr (29)
wpabpa =wprfpr, (26)
from which we derive
Opr _ wpa _ Bpa @7)

0pa wpr  Bpr’

By working this out, and using the relation between the
steady states of both models, we find

Opr

o glupr) <1. (28)
DA

This entails that the delay needed to destabilize the Pl
model is smaller than the delay for the corresponding
(that is, inverse c-value) DA model. The difference can
be very large: the regime diagram for the Pl model in
the (c,0) plane (Fig. 3(i)) shows that if ¢ — oo, the crit-
ical time delay approaches a finite value, which can be
computed as (see supplementary information)

arctan (—\/ m?2 — 1)
vm?2—1

For the DA model model, however, the critical time delay
goes to infinity as ¢ — 0 (Fig. 3(j)).

The difference between both mechanisms thus mainly
lies in the role of the parameter ¢, which we defined
as ¢ = kp/(Kkq). The way the negative feedback acts
constrains the production and degradation rates that al-
low oscillations. For the Pl model, the production rate
can be very large without compromising the potential
for oscillations, but a low production rate prohibits oscil-
lations. The inverse holds for the DA model. The value
of ¢ =1 corresponds to k,/k; = K. The ratio ky/k4 is
the steady state of the production-degradation system
without any regulation: X’ = ks — k4 X. The condition
on c thus corresponds to comparing the steady state of
the unregulated system with the threshold of the activa-
tion/inhibition functions.

0—

for ¢— oo0. (29)

Hopf bifurcation for distributed delay

A discrete delay is somewhat artificial, and unlikely to
represent biological delay mechanisms accurately. A
more realistic description uses a distributed delay. A
convenient delay distribution is the Gamma distribution,
as discussed above (see Fig. 2). We now consider
the dynamics of a system with a Gamma-distributed
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delay. We fix the mean delay 6 and change the vari-
ance by varying the parameter V. Increasing N corre-
sponds to a sharper distribution (Fig. 2b). As detailed in
the supplementary information, the characteristic equa-
tion analogous to Eq. (16) in the case of a Gamma-
distributed delay with average delay 6 and parameter
Nis
N

A+a+ﬂ@+ﬁﬂ =0. (30)
The parameters a and 3 are the same as previously
for both models. This equation can be rewritten as a
polynomial equation, echoing the equivalence between
a system with Gamma-distributed delay and a set of
ODEs. Performing the Hopf ansatz A = iw and rewriting
yields

a w wh, _ N
5 Zﬁ (1+ N )

We apply the same geometric reasoning to this equa-
tion as to Eq. (22). The left-hand side describes a ver-
tical line in the lower half of the complex plane, whose
position is determined by the ratio /3. The right hand
side describes a spiral parameterized by w6f whose
shape depends on N (Fig. 4a and Supp. Fig. S3). For
N =1, the curve is a half-circle with only positive real
part. This shows that for N = 1, an instability cannot oc-
cur. For N =2, the curve is the lower half of a cardioid.
In general, a polar form of the spiral is given by

(31)

7(0) = cos™ (/N). (32)

This is also called a sinusoidal spiral. As N become
large, the part of the spiral that lies in the bottom half of
the complex plane approaches a semicircle: the curve
for the case of a discrete time delay.

This geometrical description directly shows that also for
Gamma-distributed delays, there is a correspondence
between the Pl model and the DA model when it comes
to the possibility of a Hopf bifurcation. Given N, there
exists an average delay that destabilizes the steady
state for one mechanism if and only if it exists for the
other mechanism with inverse c¢. Fig. 4c shows this
graphically: the lines demarcate the regions in (¢,m)-
space where a critical time delay exist. These lines map
onto each other for the two models under the transfor-
mation ¢ <» 1/c. There is an analytical formula for the
critical ¢ as function of m given in the supplementary in-
formation. It can be derived by solving —a/8 = Q(N),
where Q(N) is the minimal real part of the spiral.
There are values of «//3 for which the vertical intersects
the spiral twice (Fig. 4a). In such a situation, there are
two critical average time delays. When the time delay
increases past the first value, the steady state becomes
unstable and there are oscillations. When the time de-
lay increases even more and crosses the second critical
value, the steady state regains stability. This behavior is
not seen for discrete delays. The restabilization is also
clear from the regime diagrams in Fig. 4b: for certain
values of ¢, there are two critical time delays. A further
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Figure 4. Hopf bifurcation for systems with Gamma-distributed delay. (a)
Spirals corresponding to Gamma distributions with increasing IN. A critical time
delay exist if the spiral intersects with the vertical line at —a/3. (b) Stability
boundaries in the (c, #) plane for different values of N, for both models. Darker
color is the DA model, lighter color is the Pl model. Dashed lines are the stability
boundaries for the models with discrete time delay. We used m = 15. (c) Re-
gion in the (¢, m) plane where a destabilizing average delay exist, for different
values of . Darker color: DA model, lighter color: Pl model. For each N, the
dark and light curve map onto each other through ¢ <+ 1/c.

discussion of this phenomenon can be found in Mac-
Donald’s book (MacDonald 2008).

Analytical solution for the limit of large Hill expo-
nents

The Hill functions we use to model the feedback ap-
proach a step function in the limit of large Hill exponents
(see also Fig. 1(b,f)). In the system with discrete delay,
this can be exploited to obtain an analytically solvable
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system (Erneux 2009; Mackey 1997). For example, for
m — oo the Pl system reduces to

, c—u
u =
—U

This equation is piecewise linear. Solving on each piece
and gluing together the results gives an expression for
u(t). The time series are shown in Fig. 5(a,b) and Supp.
Fig. S5. The details of the calculation are given in the
supplementary information. Of interest to us are the re-
sulting explicit expressions for period P and amplitude
A. For the model with inhibition of production (Pl) we
find

A=c(1—e?)

ifug <1

33
if ug > 1. (33)

(34)
e_efc
: C) (35)

P=20+In(c+(1—cle %) +In (
and for the model with activation of degradation (DA) we
have

A=(1—-c)1—e ) +ch

¢ 9> +1oC0 e,
C

(36)

P29+ln(1+1 (37)
Important to note is that we are working with scaled
units. The unscaled amplitude is multiplied by K and
period by 1/k4. Moreover, the formulas are only valid
for ¢ > 1 in the case of the PI model and for 0 < ¢ < 1in
the case of the DA model. These formulae give a good
approximation of the amplitude and a very good approx-
imation of the period, even for not-so-large values of m
(Fig. 5(c-h). We can use these formulae to analyze dif-
ferences between the oscillators far from the oscillatory
instability.

For large time delays, the amplitude depends on the
time delay for the DA model, but is independent of it for
the Pl model. The fact that amplitude does not depend
strongly on the time delay seems to be more generally
true for oscillators based on delayed inhibition of pro-
duction (Jérg 2017). Since ¢ < 1 for the DA model, we
see that the amplitude A satisfies A < 1—e~? +6 for
this model. So, very large amplitude oscillations in the
DA model are only possible for large time delays. For
both models, the period contains a term 26: the time
delay contributes significantly to the period. One inter-
esting question, inspired by the paper by Mather et al.
(2009), is whether oscillations are possible that have a
much longer period than the time delay. The answer is
yes in principle, for both models: for the Pl model, the
period diverges for ¢ — co and ¢ — 1. For the DA model,
P goes to infinity for c — 0 and ¢ — 1. Large periods are
thus possible if the production and degradation rates are
either very imbalanced, or when k), /kq, ~ K. However,
the divergence of P is logarithmic, so very slow, except
in the case of the DA model with ¢ — 0. This suggests
that between these mechanisms, the most efficient way
of obtaining periods much larger than the time delay is
in the DA model, with production rate much smaller than
degradation rate.
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Figure 5. The models with m — oo are analytically solvable, and provide good approximations for period and amplitude. Top row: results for the Pl model, bottom
row: results for the DA model. (a,b) Time series of the models for m — oo. The equation can be solved exactly on the up and down parts. (c, d) One-parameter
bifurcation diagram: maximal and minimal value of u as function of c. The black lines are analytical expressions obtained in the limit m — oo. The dashed line is the
steady state which is unstable in the case of oscillations. (e,f) Period as function of time delay for different values of m, with the analytical prediction as dashed line.
Note that the lines for finite m do not start at @ = 0, but only at the critical 6 defined by the Hopf bifurcation. (g,h) Amplitude as function of time delay for different
values of m, compared to the analytical prediction for m — oo (dashed). For panels (e) and (g), ¢ = 2 and for panels (f) and (h), c = 1/2.

Enzymatic degradation

We finally consider two variations of the model. First,
we study a variation of the model where the rate of
degradation is limited by the availability of an enzyme.
The possible importance of saturating degradation was
already present in Goodwin’s early work (Gonze and
Ruoff 2021; Goodwin 1965). Moreover, it has been sug-
gested that including a enzymatic degradation in one of
the variables can alleviate the necessity of high Hill ex-
ponents in the classic Goodwin model (Tyson 2002).
For the Pl model, changing first-order into Michaelis-
Menten-like kinetics for the degradation yields

dX K™
Pl: — =k —k —kp X
at PRy xm pax (38)
For the DA model we have
dX Xxm X
DA: —=k,—k T —kyX. (39
@ MR xRt (39)

The degradation is no longer given by k;X but by
kqaX/(14+~X)+ kyX. We have included a basal first-
order degradation at rate k; in order to avoid the unbi-
ological situation in which there exist no steady states,
which may happen for k;, = 0 in the DA model if the
maximal enzymatic degradation rate is smaller than the
production rate. In order to stay close to the models of
the previous sections we consider k;, < ky. We also
restrict ourselves to the discrete delay case.

For small values of X, the term kdﬁ is approxi-
mately equal to k4 X. This corresponds to the situation
where there is enough enzyme such that the degrada-
tion is proportional to the concentration X. For larger
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values of X, the new degradation term saturates and
approaches kq/v. Performing the same rescaling as
before leads to the two equations

Pl: « =cg(ug) —h(u) —du (40)
DA: u' =c— f(ug)h(u)—du, (41)

with f and g defined above, ¢ =k, /(kqK), d = ky/kq

and
u

h(u) = 1 with k = K. (42)

+ Ku

For d = k =0, these equations reduce the ones from the
previous sections. It is thus instructive to start by look-
ing at the behavior of these models for relatively small x
and d, to see how the introduction of enzymatic degra-
dation changes the dynamics relative to the basic mod-
els. The linear stability analysis of this system is given
in the supplementary information. We find differences
in the Pl and DA mechanisms.

For the Pl model, a non-zero but relatively small value
of k increases the range of both m and c¢ for which
oscillations exist (Fig. 6(a,c,e)), but the effect is par-
tially reversed when x becomes large (Fig. 6(g)). Re-
markably, oscillations are also possible for values of m
smaller than one. However, the time delay needed for
the steady state to become unstable typically increases.
For the DA model, on the other hand, a « slightly larger
than zero leads to a smaller region in the parameter
planes where oscillations exist (Fig. 6(b,d)). It seems,
however, that it is mainly the time delay which needs to
be much larger, since the effect in the (¢, m)-plane is
more mixed: increasing ~ leads to oscillations for lower
m, but also for a smaller range of ¢, which is also the
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trend for much larger values of . As before, we can plot
the oscillatory regions in the (¢, m)-planes (Fig. 6(e-h)).
The regions in this plane indicate values of ¢ and m for
which a destabilizing delay exist — but it says nothing
about how large this delay should be.

The results for small « tell us something about the bi-
ological system where the enzyme is only limiting for
large concentrations of X, i.e. where there is a large
availability of enzyme. A more biologically relevant situ-
ation is when the enzyme is limited and the degradation
saturates quickly, corresponding to large values of . As
shown in Fig. 6(g,h), oscillations in this regime can ap-
pear even for small values of m, but they require small
values of ¢ too. Moreover, the stability lines can develop
different bumps and wiggles, indicating nontrivial sta-
bility changes (see also Supp. Figs. S6,S7). Finally, in
this system it might be possible to have both oscillations
and a stable steady state for the same set of param-
eters, such that the stability boundaries do not corre-
spond with the existence of oscillations per se (see sup-
plementary information). We leave the more detailed
analysis of the models with enzymatic degradation to
future work.

Double regulation

What if the Pl and DA mechanisms are combined into
a system where both production and degradation are
regulated? Such a system would be modeled by the
equation

K™ X7

X' =k —k
PEm+Xm MIr X7

X.  (43)

In principle, the thresholds, Hill exponents and delays
for both terms can be different. Here, we do not provide
a detailed analysis for all possible parameters. Instead,
we aim to illustrate some properties of this model by
analyzing the case of equal parameters: m=p, K =L
and 7 = (. With this assumption, rescaling leads to

u’ = cg(ug) — f(up)u. (44)

The stability analysis is done as before, and reveals that
this model combines the oscillatory potential of Pl and
DA models: oscillations are possible for any positive
value of ¢ (Fig. 7a). This is also true for the model with a
Gamma-distributed delay: whether a destabilizing time
delay exists for a given N only depends on m and not on
¢, because the value of /3 is exactly equal to 1/m for
this model. For this model, it is straightforward to com-
pute the values of N for which there is a destabilizing
delay, and for which values of IV and m the steady state
is restabilized for increasing time delays (Fig. 7b). In the
supplementary information we explain that a restabiliza-
tion occurs for values of m, N such that
N T 1 N1 _ T

cos N<m<cos Nil (45)
For N = 2, this means that there is a restabilization for
allm > 8 and for N = 3, for m between 4 and 8. For N <
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2, no oscillations are possible. The range of values of
m for which restabilization is possible becomes smaller
and smaller as IV increases (see also Supp. Fig. S4).

Discussion

Biological oscillations are typically characterized by
cyclic changes in the concentration or activity of differ-
ent molecules. Whereas activities can be modulated,
for example, by posttranslational modifications, concen-
tration changes are often generated by regulated pro-
duction and degradation. In this work, we have com-
pared two mechanisms that are key to generate such
production-degradation oscillations. Whereas the high-
level logic of both mechanisms is the same — a time-
delayed negative feedback loop — the molecular imple-
mentation is different. In one oscillator, the feedback
acts to inhibit production (the Pl model), while in the
other mechanism it acts to activate degradation (the DA
model). Inspired by the Goodwin model and its many
applications on one hand and the cell division cycle on
the other, we studied these oscillators in their most sim-
ple version: a single delay differential equation with non-
linearity modeled by a Hill function.

Our mathematical analysis revealed a connection be-
tween the two oscillators: if oscillations exists (for large
enough time delay) for one model, then this is also the
case for the other model, but with the inverse of the
parameter c¢. The result is valid both for discrete and
Gamma-distributed delays. It implies that both mecha-
nisms impose different constraints on the ratio of pro-
duction to degradation rates: if the feedback is imple-
mented through inhibition of production, the system has
the potential to oscillate when c is large, i.e. produc-
tion rate is much higher than degradation rate, and the
inverse holds for the DA model. This connection does
not address the magnitude of the time delays required to
obtain oscillations. This differs for both models: for large
¢, the required time delay for the Pl model approaches
a constant value, whereas it diverges for small ¢ for the
DA model.

We also derived asymptotic approximations which — to
our knowledge — have not been described in the lit-
erature, such as 1/m scaling of critical time delay as
function of Hill exponent. Analytical results can also
be obtained far from the threshold of instability, by ex-
ploiting the fact that the Hill function approaches a step
function — a trick that has been used many times be-
fore. The calculation yields explicit formulae for ampli-
tude and period, revealing differences between the two
mechanisms. The amplitude continues to increase with
larger time delays in the DA model, while it saturates for
the Pl model. This is consistent with previous findings
that the oscillation amplitude in Pl models does not de-
pend strongly on the delay (J6rg 2017). The main con-
tribution to the oscillation period is given by twice the
delay. Between the two mechanisms considered, the
easiest way to obtain much larger periods than twice
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Figure 6. Enzymatic degradation has a different effect on both mechanisms and generally can lead to oscillations for smaller m. All panels show stability
boundaries defined by the Hopf bifurcation criterion. Top row: Pl model, bottom row: DA model. For (a-d), the steady state is unstable and oscillations exist for
parameter values above the lines. For (e-h), above the line there exists a time delay which destabilizes the steady state, and below delay it is stable for all delay
values. See also Supp. Figs. S6,S7. For all panels, d = 0.01. Panel (a,b): m = 10, panel (c): ¢ = 3, panel (d): ¢ =1/3.
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the delay time is by having the production rate much
smaller than degradation rate in the DA model.

Finally, we showed how two extensions — double regu-
lation and enzymatic degradation — modify the oscil-
latory potential of both oscillators. Since these extra
mechanisms introduce many different parameters, we
only investigated a subset of the possible behavior. We
leave a more in-depth analysis of the dynamics of these
systems for later work.

Some of our results, such as the exact correspondence
of oscillatory potential with the ¢ <+ 1/c correspondence,
rely on specific properties of, for example, the Hill func-
tions. Nevertheless, we believe that the general mes-
sages are likely to be more generally applicable. The
(b) 20 two basic mechanisms we studied here underlie many
real biological oscillators, and our results for the simpli-

fied models can be used to guide the study and interpre-

tation of more complex models. Confirming the generic

results in a more molecularly detailed model would be

an interesting follow-up. In particular, the time delay and

the Hill function are high-level descriptions of what is

happening at the molecular level. There are many dif-

ferent ways in which an ultrasensitive response can be

== ————— generated (see Ferrell and Ha (2014a,b) for an overview

1.0 1.5 2.0 and Jeong et al. (2022) for an example of recent work
c on this) and the same holds for the time delay. We have

assumed these to be independent, but delay and ul-

Figure 7. Oscillations in the system with double regulation. (a) Regime dia-

gram for different mechanisms, defined by the Hopf bifurcation line. Oscillations
exist for parameter values above the curves. (b) Boundary of the oscillatory
region with Gamma-distributed delay for different N. For N = 2, only the pa-
rameter values between the two blue curves lead to an unstable steady state.
Both diagrams were computed with m = 10.
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trasensitivity could also be due to one single molecular
mechanism, connecting these two parameters.

Real biological oscillators can be much more compli-
cated than a single negative feedback loop (see e.g.
Novék and Tyson 2008; Purcell et al. 2010). In many
real systems, the negative feedback is complemented

bioRyiv | 11


https://doi.org/10.1101/2023.03.03.530971
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.03.530971; this version posted March 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

by positive feedback loops. These can make oscilla-
tions more robust and tunable (Ananthasubramaniam
and Herzel 2014; Tsai et al. 2008). In a sense, one type
of positive feedback is included in our model through the
ultrasensitive Hill-type response curve, as such nonlin-
ear switch-like responses can be the result of positive
feedback. However, positive feedback can also gener-
ate bistability, which we have not considered here. The
combination of negative feedback with a single (Novak
and Tyson 2008; Tsai et al. 2008) or multiple (De Boeck
et al. 2021; Parra-Rivas et al. 2023) bistable switches
can lead to robust relaxation oscillations. It would be in-
teresting to systematically investigate the difference be-
tween the PI and DA mechanisms in models that also
incorporate such bistable switches.

The importance of how a negative feedback is imple-
mented has recently also been put forward by Agra-
har and Rust (2022, preprint). In that study, the au-
thors consider different implementations based on reg-
ulation of production and degradation, but they did not
consider explicit time delays. They use a computational
approach: by sampling parameter values, they deter-
mine which oscillator implementations are most likely
to yield oscillations. Some of our current results echo
theirs. For example: Agrahar and Rust (2022) also
found that dual regulation increases oscillatory poten-
tial. Other recent studies have considered the question
of robustness, typically by large-scale sampling of pa-
rameter values. Li et al. (2017) find that adding small
auxiliary motifs to core topologies may enhance the ro-
bustness of the oscillations. Furthermore, they discuss
how an evolutionary process could have generated such
topologies. Besides insights into the evolutionary origin
of regulatory mechanisms, such studies can also be im-
portant to guide the design of synthetic oscillators (e.g.
Woods et al. 2016).

Our current results, which focus on in-depth mathemati-
cal analysis of a basic motif, complement the cited stud-
ies that use a more computational approach. These
studies also suggest useful considerations to develop
further mathematically. Whereas now, we only consid-
ered differences in the parameter ranges that can lead
to oscillations, the Pl and DA models may also show
differences in other aspects. For example, a study of
the energetic cost of the mechanisms would be a useful
next step. An additional factor which may differ between
mechanisms is whether it can be entrained by external
cues (Jiménez et al. 2022). For example, for the circa-
dian clock it is important that it can be entrained to the
24h rhythm of day and night. Whether this requirement
imposes conditions on the negative feedback loop, and
in particular whether it favours a DA or Pl mechanism,
is also an interesting question.

Finally, an important aspect we did not consider in our
study is the role of stochasticity. This has recently been
investigated by Negrete et al. (2021) for a model akin to
our Pl oscillator. The authors make use of the approx-
imation for m — oo to derive statistical distributions for
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the extrema and rise and fall time of the oscillator. They
show that experimental data from the mammalian cir-
cadian clock and the zebrafish segmentation clock can
be well described by this model. There could be differ-
ences in those statistical distributions between PI and
DA model — which are to be determined.

The study of biological oscillators is arguably one of the
oldest topics in mathematical biology. Yet, the many
recent studies illustrate that the subject is very much
alive (see Tyson, Csikasz-Nagy, et al. 2022, for an
overview). Great progress is made using computational
methods, and more and more by incorporating real bio-
logical data. Nevertheless, our current study shows that
there are still things to be learned by analyzing the most
simple mathematical models.
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