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Many biochemical oscillators are driven by the peri-

odic rise and fall of protein concentrations or activ-

ities. A negative feedback loop underlies such os-

cillations. The feedback can act on different parts

of the biochemical network. Here, we mathemat-

ically compare time-delay models where the feed-

back affects production and degradation. We show

a mathematical connection between the linear sta-

bility of the two models, and derive how both mech-

anisms impose different constraints on the produc-

tion and degradation rates that allow oscillations.

We show how oscillations are affected by the in-

clusion of a distributed delay, of double regulation

(acting on production and degradation), and of en-

zymatic degradation.
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Introduction

Biological oscillators

Periodic phenomena influence many aspects of our

lives. Perhaps the most obvious examples are the re-

peating of the seasons and cycles of day and night.

Periodicity also plays an important role on the cellular

level. The 24h-rhythm that aligns with day and night is

present in single cells, and many other cyclic processes

govern development and survival of cells, and by exten-

sions of tissues and whole organisms. Besides the cir-

cadian rhythms, examples include the cell cycle or the

segmentation clock among numerous others (Beta and

Kruse 2017).

The periodic nature of these phenomena in the cell is

typically manifested by cyclic changes in the concen-

tration or activity of different molecules. These cycles

are the result of the interactions between many different

genes and proteins. Despite the often bewildering com-

plexity of protein interaction networks, many oscillatory

systems rely on core network motifs to generate their

oscillations (Novák and Tyson 2008).

One of these motifs is the time-delayed, nonlinear, neg-

ative feedback loop. In a negative feedback loop, a com-

ponent inhibits its own activity. This property is essen-

tial for oscillations: in order to obtain periodic behavior,

the system needs to be reset after one cycle. Negative

feedback in itself is not sufficient for oscillations, but can

also lead to stable steady states. However, feedback

that acts with a sufficient time delay can result in os-

cillations (Casani-Galdon and Garcia-Ojalvo 2022; Fer-

rell, Tsai, et al. 2011; D. S. Glass et al. 2021). There

are many mechanisms that can lead to time delays in

biological systems. Examples include the time a sig-

nal takes to move to another location (Macnamara and

Chaplain 2016; Naqib et al. 2012), or the presence of

multiple intermediate steps in a system of chemical re-

actions (Beguerisse-Díaz et al. 2016; Korsbo and Jöns-

son 2020).

The study of biological oscillators has benefitted sig-

nificantly from the tools of mathematical modeling.

The mathematical study of (bio)chemical oscillators ar-

guably started with the work of Lotka (1910, 1920),

who showed that relatively simple chemical reactions

could lead to periodic behavior. This work and later

studies, such as those on the Belousov-Zhabotinsky re-

action, showed that chemical systems do not have to

monotonously evolve to equilibrium (Epstein and Poj-

man 1998; Winfree 1984). With the advent of molecu-

lar biology and the unraveling of genetic interaction net-

works, mathematical modeling was put to use to better

understand how biochemical interactions could lead to

oscillations in living systems. Here, the work of Brian

Goodwin was very influential. He put forward several

mathematical models to illustrate feedback mechanisms

in biochemical systems, the most famous one being the

three-variable Goodwin model (Goodwin 1965; Griffith

1968).

The Goodwin model and production-inhibition os-

cillators

The Goodwin model consists of the equations

dX

dt
=

k1

Km +Zm
− q1X

dY

dt
= k2X− q2Y

dZ

dt
= k3Y − q3Z.

(1)

The equations model how RNA X is translated into pro-

tein Y , which activates another molecule Z. This finally

acts as a repressor for the gene and inhibits the produc-

tion of X (Fig. 1(a)). The inhibition is modeled by a de-

creasing Hill function, whose steepness is determined
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by the Hill exponent m (Fig. 1(b)). Goodwin performed

simulations of the model with m = 1 and obtained os-

cillatory behavior. However, this was probably due to

numerical artefacts: Griffith (1968) later showed analyt-

ically that oscillations are only possible when mg 8. An

extension of the Goodwin model includes more interme-

diate species (Fig. 1(a)):

dX1

dt
=

k1

Km +Xm
N

− q1X1

dXi

dt
= kiXi−1− qiXi for i = 2 . . .N.

(2)

Tyson and Othmer (1978) showed that in this model, the

following condition is necessary for oscillations to exist:

mg secN
( π

N

)

. (3)

Bounds of this kind are often called secant conditions,

for the secant function appearing in the inequality. The

bound is indeed equal to 8 for N = 3 and asymptotically

approaches 1 as N goes to infinity. Systems with more

variables thus relax the requirement of high Hill expo-

nents, which has been criticised as an unrealistic as-

sumption for real biological systems (Gonze and Abou-

Jaoudé 2013). The many different steps induce an ef-

fective time delay between the rise of X1 and the in-

hibitory effect on its own production, which promotes os-

cillations. An example of such oscillations in the Good-

win model are shown in Fig. 1(c), for N = 3 and m = 10.

Goodwin’s model has inspired many mathematical re-

sults, from the early days (Tyson and Othmer 1978) to

more recent work (e.g. Woller et al. 2014). The Goodwin

model also provided an important conceptual example

in whose light many other biological oscillations can be

viewed. The model, or variations of it, have been used

to study properties of the circadian clock (e.g. Anan-

thasubramaniam, Schmal, et al. 2020; Ruoff and Rens-

ing 1996), somitogenesis (e.g. Lewis 2003; Monk 2003)

and other biological cycles, and has had a profound in-

fluence on the field of biological oscillators. An excellent

overview of its impact was given recently by Gonze and

Ruoff (2021).

The cell cycle model and degradation-activation os-

cillators

The negative feedback in Goodwin’s model acts on the

production step: the final chemical species in the reac-

tion chain inhibits the production of the first (Fig. 1(d)).

Alternatively, the negative feedback could act on the

degradation (Fig. 1(h)). In such a system, production is

unregulated, but the degradation is induced by another

molecule. A prominent biological example is the early

embryonic cell cycle (Fig. 1(e)), which is driven by the

periodic accumulation of cyclin proteins (Morgan 2007).

Cyclin B is produced constantly, and binds to the kinase

Cdk1 which is then activated. Active Cdk1 phospho-

rylates many different substrates, leading the cell into

mitosis. One substrate of Cdk1 is a protein complex

called the Anaphase-Promoting Complex / Cyclosome

(APC/C). This complex targets cyclin B for degradation,

leading to the inactivation of Cdk1 at mitotic exit. Here,

cyclin B indirectly brings about its own destruction: a

delayed negative feedback loop. Both the time delay

and the nonlinear activation of APC/C have been mea-

sured (Yang and Ferrell 2013), even though the molec-

ular mechanism of APC/C activation is not completely

understood (Yamano 2019).

The many mathematical models of the early embryonic

cell cycle essentially describe the feedback loop be-

tween cyclin B-Cdk1 and APC/C. In (Rombouts et al.

2018), we analyzed the equation

dX

dt
= kp−kd

X(t− τ)n

Kn +X(t− τ)n
X. (4)

Here, X denotes the concentration of cyclin B-Cdk1

complexes. This concentration increases at a constant

rate kp and is degraded with first-order kinetics with rate

kd. However, degradation is only active when APC/C

activity is high. This activity is modeled explicitly using

a Hill function (Fig. 1(f)) with argument the time-delayed

term X(t− τ). Given suitable parameter values, this

model produces cell cycle oscillations (Fig. 1(g)). Inter-

estingly, an equivalent equation has already been used

by Mackey and L. Glass (1977) to model the variation

of CO2 levels in the blood. More generally, a feedback

that activates degradation (Fig. 1(h)) can also be found

in other biological systems, for example in the dynam-

ics of the tumor repressor protein p53 in response to

DNA damage (Eliaš and Macnamara 2021; Lahav et al.

2004; Lev Bar-Or et al. 2000).

Distributed time delays

The two models — the Goodwin model and the cell cy-

cle model — are both examples of time-delayed nega-

tive feedback loops, with a source of nonlinearity mod-

eled by a Hill function. The time delay is explicit in the

cell cycle model, but appears in an implicit way in the

Goodwin model, through the introduction of multiple dif-

ferent steps. Indeed, in biological systems time delays

often originate from multiple intermediate steps, such

as phosphorylation cascades or multisite phosphoryla-

tion (Heinrich et al. 2002; Salazar and Höfer 2009). The

Goodwin model with N steps is, in fact, equivalent to a

delay equation with a distributed delay. Instead of a de-

lay term such as X(t− τ), a distributed delay equation

contains expressions of the form
∫

∞

0 X(t− τ)G(τ)dτ
with a distribution function G. This means that not the

value of the variable at a specific point in the past is rel-

evant for the current time evolution, but rather its whole

history, weighted by G (Fig. 2). As shown in the supple-

mentary information, a linear chain of differential equa-

tions of the form

dXi

dt
= kiXi−1− qiXi for i = 1 . . .N
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Figure 1. Negative feedback acting on production and degradation. (a) The multivariable Goodwin model describes a gene whose product represses its

transcription. The different steps produce a time delay. (b) Inhibition can be modeled by a decreasing Hill function, with exponent m dictating the steepness. (c)

Representative time series for the 3-variable Goodwin model. (d) The negative feedback in the Goodwin model acts on the production step. (e) Simplified model of

the early embryonic cell cycle. (f) The activation of APC/C is modeled by an increasing Hill function. (f) Representative time series of Cyclin B-Cdk1 concentration in

the cell cycle model. (h) In the cell cycle, the negative feedback acts through activation of degradation.

can be replaced by the expression

XN =

(

∏

i

ki

)

∫

∞

0
X0(t− τ)G(τ)dτ

with

G(τ) =







qN

(N−1)!τ
N−1e−qτ =: gN

q (τ) if qi = q for all i
∑N

i=1
e−qiτ

∏

j ̸=i
(qj−qi)

if all qi are different.

(5)

(see also (Cooke and Grossman 1982; Hinch and

Schnell 2004)). In case of equal qi, the distribution is

called the Gamma distribution. The equivalence of a

Gamma-distributed delay with a system of linear ODEs

is also called the linear chain trick (see, e.g. Smith 2010,

Chapter 7). The mean of a Gamma distribution with pa-

rameters q,N is given by N/q. By keeping the mean

fixed at τ̄ and increasing N , the distribution gN
N/τ̄ ap-

proaches a delta distribution centered at τ̄ (Fig. 2b).

This means that a discrete delay equation can be ap-

proximated by a long chain of ODEs, where each step

happens very quickly. This equivalence also shows that

the Goodwin model can be written as a single delay

equation with distributed delay.

Goal and structure of the paper

The Goodwin model on the one hand, and the cell-cycle

model on the other, are examples of two different ways

to implement a negative feedback loop. Each of these

models has been studied in detail. Yet, a detailed math-

ematical study of the differences has not been done.

This is what we aim to do in this paper: to provide

Time

X(t) 0 X(t )G( )d

X(t )

(a)

0.0

0.2

0.4

(b)
N=1
N=2
N=10
N=50

Figure 2. Distributed time delay. (a) A time-delayed variable with distributed

delay. If the delay distribution is close to a delta distribution, the delayed variable

is close to a time-shifted version of the original variable (the gray line). Here the

red line was computed using a Gamma distribution with N = 50. (b) Gamma

distributions with fixed mean but increasing values of N approach a delta distri-

bution.

a mathematical analysis of the most basic version of

these two models, and compare their behavior. In par-

ticular, we are interested in differences between the os-

cillatory potential of the two models and the constraints

the mechanism of feedback puts on, for example, the

parameter values. This could lead to insight into why bi-
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ological systems have adopted one or the other mech-

anism.

Our most important tools are analytical: we use linear

stability analysis to determine when oscillations occur

in these systems. This analysis can also be done with a

graphical technique, which is sometimes more insight-

ful than a purely algebraic one. We use this paper as

an opportunity to dust off this technique, which was ex-

tensively used in the book by MacDonald (2008, origi-

nally published in 1989). We also obtain approximations

for the boundaries of stability using asymptotic meth-

ods. The details of the calculations are explained in the

supplementary information. For direct simulation of the

delay equations, we have used the software JiTCDDE

(Ansmann 2018).

Our results on the existence of oscillations have been

described before, for both models: a high nonlinearity

and a larger time delay lead to oscillations. However,

the production and degradation rates that allow oscil-

lations are different differ between the two. Here, we

show how this difference can be explained, in fact, by a

correspondence between the linear stability for the two

mechanisms. If there is a destabilizing time delay for

one mechanism, there is one for the other — but with

an inverse value of the ratio between production and

degradation rates. We interpret this result in terms of

the biological rate constants and show that it also holds

for Gamma-distributed time delays.

In the limit of large Hill exponents, the delay equations

can be solved analytically and expressions for period

and amplitude can explicitly obtained. This analysis

shows that the time delay affects the amplitude signif-

icantly in one of the two mechanisms, namely the one

where the feedback acts through the activation of degra-

dation.

Finally, we shortly discuss extensions of these models.

In a system where the feedback acts on both the pro-

duction and degradation, we show that the oscillatory

potential of both mechanisms is combined. Enzymatic

degradation has a different effect on the two mecha-

nisms.

Results

Model formulation

The Goodwin model and cell cycle model represent two

implementations of the negative feedback loop. Both

rely on a time delay and nonlinearity, which are the es-

sential ingredients to generate oscillations. In order to

study their differences, we condense these mechanisms

into two delay equations that can be compared. We

study the following two models, based on the Goodwin

model and the cell-cycle model respectively (see Fig. 1):

The production-inhibition (PI) model

PI:
dX

dt
= kp

Km

Km +Xm
τ

−kdX. (6)

The degradation-activation (DA) model

DA:
dX

dt
= kp−kd

Xm
τ

Km +Xm
τ

X. (7)

Here X will represent a concentration. Both models are

modifications of the equation

dX

dt
= kp−kdX (8)

that describes constant production and first-order

degradation. The PI model includes a delayed inhibi-

tion of the production rate, modeled by a decreasing Hill

function (Fig. 1(a)-(d)). In the DA model, the degrada-

tion is activated with a time delay (Fig. 1(e)-(h)). With

slight abuse of notation we use Xτ to denote either a

variable with discrete delay τ or a distributed one with

average τ .

In order to streamline the calculations, we nondimen-

sionalize these equations. Setting u = X/K and s =
kdt leads to the following equations for the production-

inhibition (Eq. (6)) and degradation-activation (Eq. (7))

system, respectively:

PI: u′ = cg(uθ)−u, (9)

DA: u′ = c−f(uθ)u, (10)

where we used the notation

f(u) =
um

1+um
, (11)

g(u) =
1

1+um
, (12)

for the increasing and decreasing Hill functions and use

a prime for the time derivative. Note that f(u) = 1−
g(u) = g(1/u). The only parameters in these rescaled

equations are:

Hill exponent: m, (13)

Rescaled time delay: θ = kdτ, (14)

Dimensionless rate ratio: c =
kp

Kkd
. (15)

The important parameter c is proportional to the ratio of

production and degradation rates.

Hopf bifurcation for the system with discrete delay

In this section, we perform the Hopf bifurcation analysis

of the PI and DA models (9)-(10) and compare the re-

sults. A similar analysis for the DA model can also be

found in our earlier paper (Rombouts et al. 2018). For

the PI model, Tyson (2002) shows the calculation. The

details of the analysis can be found in the supplemen-

tary information.

First, we look at the steady states of the models. These

are the values of u that satisfy g(u) = u/c for the PI

model, and f(u) = c/u for the DA model. Plotting the

two sides of these equalities (Fig. 3(a)-(b)) shows that

there is exactly one positive steady state for each value
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of m and c. The value of the steady state increases

monotonically with c and is independent of the time de-

lay. To assess the stability of the steady state ū, we

perform a linear stability analysis. For a discrete delay

uθ = u(t− θ), the linear stability analysis leads to the

following equation for the eigenvalues of the systems:

λ+α +βe−λθ = 0. (16)

This equation is the same for both models, but α and β
are different and depend on the steady state ū:

PI α = 1 β =−cg′(ū) (17)

DA α = f(ū) β = ūf ′(ū). (18)

These values are always positive. For nonzero delays,

the characteristic equation Eq. (16) is a transcenden-

tal equation with an infinite number of solutions. The

steady state is unstable if at least one eigenvalue has

positive real part. If the delay is zero, there is a single

solution λ = −α− β. The steady state is thus stable

in the absence of a delay. We next analyze whether

increasing the delay can lead to oscillations through a

Hopf bifurcation (see Erneux 2009; MacDonald 2008;

Smith 2010). We thus look for values of the parameter

values such that λ = iω is a solution of Eq. (16). Sub-

stituting this condition into Eq. (16) leads to

iω +α +β(cos(ωθ)− isin(ωθ)) = 0. (19)

Separating real and imaginary parts and performing

some algebra leads to conditions on m,c and θ, which

can be used to plot regions in parameter space where

the steady state is unstable (Fig. 3(c)-(f)). In these re-

gions the model shows oscillations. For both the PI and

the DA models, a sufficient delay and nonlinearity —

meaning large m — are needed to obtain oscillations.

There is a trade-off: if the Hill exponent m is larger, a

smaller delay is sufficient for oscillations to occur. An

asymptotic analysis, worked out in the supplementary

information, reveals that the critical time delay scales as

1/m for large m (see also Supp. Fig. S1,S2). In partic-

ular,

PI: θ ∼
c

c−1

π

2

1

m
for m→∞ (20)

DA: θ ∼
1

c(1− c)

π

2

1

m
for m→∞. (21)

The oscillatory regions in the (c,θ)-plane are different

between the two mechanisms: for the PI model, a large

value of c promotes oscillations, and oscillations are im-

possible when c is roughly less than 1 (Fig. 3(i)). For

the DA model, oscillations are only possible when c is

between zero and (approximately) 1 (Fig. 3(j)).

More insight into the existence of a destabilizing time

delay can be gained by considering the Hopf bifurcation

condition in a geometric way (MacDonald 2008). We

rewrite Eq. (19) as

−
ω

β
i−

α

β
= eiωθ. (22)

A Hopf bifurcation is possible if there exist values of ω
and θ such that this equality holds. When freely varying

ω and θ, the left hand side describes a vertical line in the

bottom half of the complex plane. This line intersects

the real axis at −α/β, which is less than zero since α
and β are positive. The right hand side describes the

unit circle. If the line and the circle intersect, there is a

time delay that destabilizes the steady state (Fig. 3(k)).

Whether there is an intersection only depends on the

value of α/β, which in turn only depends on the pa-

rameters m and c. In particular, there is an intersection

if α/β < 1. Fig. 3(l) shows the region in (c,m)-plane

where this condition is satisfied. The boundaries have

an analytical expression (see the supplementary infor-

mation). For values of c and m above the lines, there

exists a destabilizing time delay. Remarkably, there is a

correspondence between these regions for the PI and

the DA model: they map onto each other under the cor-

respondence c´ 1/c. Concretely: if for the PI model

with parameters (c,m) there exists a critical time delay

which makes the steady state unstable, then there also

exists such a time delay for the DA model with parame-

ters (1/c,m). This correspondence is essentially due to

the fact that the geometric picture for the corresponding

models is the same. We show the correspondence now

algebraically, by rewriting the condition α/β < 1.

We use Eqs. (17) and (18), together with the condition

for the steady state, to rewrite this condition for both

models:

PI:
1+ ūPI(m,c)−m

m
< 1. (23)

DA:
1+ ūDA(m,c)m

m
< 1. (24)

We have explicitly written the steady states of each

models as a function of m and c here. These conditions

cannot be satisfied for m = 1 since the steady state ū is

larger than zero. This shows that for both models, os-

cillations are impossible for m = 1. The conditions have

the same form, except that for the PI model the numer-

ator contains ū−m and for the DA model it is ūm. To

show that these conditions are the same for both mod-

els, when using c for one and 1/c for the other, we now

show that

ūPI(m,1/c) =
1

ūDA(m,c)
.

We have that ūPI(m,1/c) is the single positive root of

the equation

1

c
g(u) = uô

1

u
g(u) = c.

As g(u) = f(1/u), the equation becomes

1

u
f(1/u) = c,

which states that 1/u is the unique positive steady state

of the DA model with parameter c.
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Figure 3. Comparison of the Hopf bifurcation for the models with discrete delay. (a) There is a unique positive steady state of the PI model, which satisfies

g(u) = u/c. (b) The unique positive steady state of the DA model satisfies f(u) = c/u. (c) Oscillatory region in the (m,θ)-plane for the PI model, with period

in color. (d) Oscillatory region in the (m,θ)-plane for the DA model, with period in color. (e) Oscillatory region in the (m,θ)-plane for the PI model, with amplitude

in color. (c) Oscillatory region in the (m,θ)-plane for the DA model, with amplitude in color. In (c,e), we used c = 4 and in (d,f), c = 1/4. (g) Time series of the

oscillations in the PI model, corresponding to the colored dots in panels (c,e). (h) Time series of the oscillations in the DA model, corresponding to the colored dots

in panels (d,f). (i) Oscillatory region for the PI model in the (c,θ)-plane for different values of m. The dotted lines are the large m asymptotic expressions given in

Eq. (20). (j) Oscillatory region for the DA model in the (c,θ)-plane for different values of m. The dotted lines are the large m asymptotic expressions given in Eq. (21).

(k) Geometric interpretation of the existence of a destabilizing delay. There exists a destabilizing time delay if the circle and the vertical line intersect. (l) Regions in

the (c,m)-plane for both models, where a destabilizing time delay exists (disregarding its numerical value). The boundaries are given by c = m(m − 1)−1−1/m

for the PI model and c = (m − 1)1+1/m/m for the DA model. The boundaries map onto each other under c ´ 1/c.
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These calculations show that a Hopf bifurcation occurs

at a critical time delay in the PI model if and only if it hap-

pens in the DA model, with inverse value of c. However,

the actual values of the critical time delays need not be

the same. From the geometrical picture and Eq. (22),

we know that the coordinates in the complex plane of

the intersection point are the same for both models (tak-

ing into account the c← 1/c correspondence), such that

ωDA

βDA
=

ωP I

βP I
(25)

ωDAθDA = ωP IθP I , (26)

from which we derive

θP I

θDA
=

ωDA

ωP I
=

βDA

βP I
. (27)

By working this out, and using the relation between the

steady states of both models, we find

θP I

θDA
= g(ūP I) < 1. (28)

This entails that the delay needed to destabilize the PI

model is smaller than the delay for the corresponding

(that is, inverse c-value) DA model. The difference can

be very large: the regime diagram for the PI model in

the (c,θ) plane (Fig. 3(i)) shows that if c→∞, the crit-

ical time delay approaches a finite value, which can be

computed as (see supplementary information)

θ→
arctan

(

−
√

m2−1
)

√
m2−1

for c→∞. (29)

For the DA model model, however, the critical time delay

goes to infinity as c→ 0 (Fig. 3(j)).

The difference between both mechanisms thus mainly

lies in the role of the parameter c, which we defined

as c = kp/(Kkd). The way the negative feedback acts

constrains the production and degradation rates that al-

low oscillations. For the PI model, the production rate

can be very large without compromising the potential

for oscillations, but a low production rate prohibits oscil-

lations. The inverse holds for the DA model. The value

of c = 1 corresponds to kp/kd = K. The ratio kp/kd is

the steady state of the production-degradation system

without any regulation: X ′ = kd− kdX. The condition

on c thus corresponds to comparing the steady state of

the unregulated system with the threshold of the activa-

tion/inhibition functions.

Hopf bifurcation for distributed delay

A discrete delay is somewhat artificial, and unlikely to

represent biological delay mechanisms accurately. A

more realistic description uses a distributed delay. A

convenient delay distribution is the Gamma distribution,

as discussed above (see Fig. 2). We now consider

the dynamics of a system with a Gamma-distributed

delay. We fix the mean delay θ̄ and change the vari-

ance by varying the parameter N . Increasing N corre-

sponds to a sharper distribution (Fig. 2b). As detailed in

the supplementary information, the characteristic equa-

tion analogous to Eq. (16) in the case of a Gamma-

distributed delay with average delay θ̄ and parameter

N is

λ+α +β(1+
λθ̄

N
)−N = 0. (30)

The parameters α and β are the same as previously

for both models. This equation can be rewritten as a

polynomial equation, echoing the equivalence between

a system with Gamma-distributed delay and a set of

ODEs. Performing the Hopf ansatz λ = iω and rewriting

yields

−
α

β
− i

ω

β
= (1+

iωθ̄

N
)−N . (31)

We apply the same geometric reasoning to this equa-

tion as to Eq. (22). The left-hand side describes a ver-

tical line in the lower half of the complex plane, whose

position is determined by the ratio α/β. The right hand

side describes a spiral parameterized by ωθ̄ whose

shape depends on N (Fig. 4a and Supp. Fig. S3). For

N = 1, the curve is a half-circle with only positive real

part. This shows that for N = 1, an instability cannot oc-

cur. For N = 2, the curve is the lower half of a cardioid.

In general, a polar form of the spiral is given by

r(θ) = cosN (θ/N). (32)

This is also called a sinusoidal spiral. As N become

large, the part of the spiral that lies in the bottom half of

the complex plane approaches a semicircle: the curve

for the case of a discrete time delay.

This geometrical description directly shows that also for

Gamma-distributed delays, there is a correspondence

between the PI model and the DA model when it comes

to the possibility of a Hopf bifurcation. Given N , there

exists an average delay that destabilizes the steady

state for one mechanism if and only if it exists for the

other mechanism with inverse c. Fig. 4c shows this

graphically: the lines demarcate the regions in (c,m)-
space where a critical time delay exist. These lines map

onto each other for the two models under the transfor-

mation c´ 1/c. There is an analytical formula for the

critical c as function of m given in the supplementary in-

formation. It can be derived by solving −α/β = Q(N),
where Q(N) is the minimal real part of the spiral.

There are values of α/β for which the vertical intersects

the spiral twice (Fig. 4a). In such a situation, there are

two critical average time delays. When the time delay

increases past the first value, the steady state becomes

unstable and there are oscillations. When the time de-

lay increases even more and crosses the second critical

value, the steady state regains stability. This behavior is

not seen for discrete delays. The restabilization is also

clear from the regime diagrams in Fig. 4b: for certain

values of c, there are two critical time delays. A further

Jan Rombouts et al. | The ups and downs of biological oscillators with time delay | 7

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 3, 2023. ; https://doi.org/10.1101/2023.03.03.530971doi: bioRxiv preprint 

https://doi.org/10.1101/2023.03.03.530971
http://creativecommons.org/licenses/by/4.0/


1 1

(a)

N=1
N=2
N=10
N=50

0 1 2 3 4
c

0

2

4

6

8

10
(b)

N=2
N=3
N=5
N=

0 1 2 3 4
c

0

20

40

m

c1/c

(c)

N=2
N=3
N=5

Figure 4. Hopf bifurcation for systems with Gamma-distributed delay. (a)

Spirals corresponding to Gamma distributions with increasing N . A critical time

delay exist if the spiral intersects with the vertical line at −α/β. (b) Stability

boundaries in the (c, θ̄) plane for different values of N , for both models. Darker

color is the DA model, lighter color is the PI model. Dashed lines are the stability

boundaries for the models with discrete time delay. We used m = 15. (c) Re-

gion in the (c,m) plane where a destabilizing average delay exist, for different

values of N . Darker color: DA model, lighter color: PI model. For each N , the

dark and light curve map onto each other through c ´ 1/c.

discussion of this phenomenon can be found in Mac-

Donald’s book (MacDonald 2008).

Analytical solution for the limit of large Hill expo-

nents

The Hill functions we use to model the feedback ap-

proach a step function in the limit of large Hill exponents

(see also Fig. 1(b,f)). In the system with discrete delay,

this can be exploited to obtain an analytically solvable

system (Erneux 2009; Mackey 1997). For example, for

m→∞ the PI system reduces to

u′ =

{

c−u if uθ < 1

−u if uθ > 1.
(33)

This equation is piecewise linear. Solving on each piece

and gluing together the results gives an expression for

u(t). The time series are shown in Fig. 5(a,b) and Supp.

Fig. S5. The details of the calculation are given in the

supplementary information. Of interest to us are the re-

sulting explicit expressions for period P and amplitude

A. For the model with inhibition of production (PI) we

find

A = c(1−e−θ) (34)

P = 2θ +ln(c+(1− c)e−θ)+ ln

(

e−θ− c

1− c

)

(35)

and for the model with activation of degradation (DA) we

have

A = (1− c)(1−e−θ)+ cθ (36)

P = 2θ +ln

(

1+
c

1− c
θ

)

+
1− c

c
(1−e−θ). (37)

Important to note is that we are working with scaled

units. The unscaled amplitude is multiplied by K and

period by 1/kd. Moreover, the formulas are only valid

for c > 1 in the case of the PI model and for 0 < c < 1 in

the case of the DA model. These formulae give a good

approximation of the amplitude and a very good approx-

imation of the period, even for not-so-large values of m
(Fig. 5(c-h). We can use these formulae to analyze dif-

ferences between the oscillators far from the oscillatory

instability.

For large time delays, the amplitude depends on the

time delay for the DA model, but is independent of it for

the PI model. The fact that amplitude does not depend

strongly on the time delay seems to be more generally

true for oscillators based on delayed inhibition of pro-

duction (Jörg 2017). Since c < 1 for the DA model, we

see that the amplitude A satisfies A < 1− e−θ + θ for

this model. So, very large amplitude oscillations in the

DA model are only possible for large time delays. For

both models, the period contains a term 2θ: the time

delay contributes significantly to the period. One inter-

esting question, inspired by the paper by Mather et al.

(2009), is whether oscillations are possible that have a

much longer period than the time delay. The answer is

yes in principle, for both models: for the PI model, the

period diverges for c→∞ and c→ 1. For the DA model,

P goes to infinity for c→ 0 and c→ 1. Large periods are

thus possible if the production and degradation rates are

either very imbalanced, or when kp/kd ≈K. However,

the divergence of P is logarithmic, so very slow, except

in the case of the DA model with c→ 0. This suggests

that between these mechanisms, the most efficient way

of obtaining periods much larger than the time delay is

in the DA model, with production rate much smaller than

degradation rate.
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Figure 5. The models with m → ∞ are analytically solvable, and provide good approximations for period and amplitude. Top row: results for the PI model, bottom

row: results for the DA model. (a,b) Time series of the models for m → ∞. The equation can be solved exactly on the up and down parts. (c, d) One-parameter

bifurcation diagram: maximal and minimal value of u as function of c. The black lines are analytical expressions obtained in the limit m → ∞. The dashed line is the

steady state which is unstable in the case of oscillations. (e,f) Period as function of time delay for different values of m, with the analytical prediction as dashed line.

Note that the lines for finite m do not start at θ = 0, but only at the critical θ defined by the Hopf bifurcation. (g,h) Amplitude as function of time delay for different

values of m, compared to the analytical prediction for m → ∞ (dashed). For panels (e) and (g), c = 2 and for panels (f) and (h), c = 1/2.

Enzymatic degradation

We finally consider two variations of the model. First,

we study a variation of the model where the rate of

degradation is limited by the availability of an enzyme.

The possible importance of saturating degradation was

already present in Goodwin’s early work (Gonze and

Ruoff 2021; Goodwin 1965). Moreover, it has been sug-

gested that including a enzymatic degradation in one of

the variables can alleviate the necessity of high Hill ex-

ponents in the classic Goodwin model (Tyson 2002).

For the PI model, changing first-order into Michaelis-

Menten-like kinetics for the degradation yields

PI:
dX

dt
= kp

Km

Km +Xm
τ

−kd
X

1+γX
−kbX (38)

For the DA model we have

DA:
dX

dt
= kp−kd

Xm
τ

Km +Xm
τ

X

1+γX
−kbX. (39)

The degradation is no longer given by kdX but by

kdX/(1 + γX) + kbX. We have included a basal first-

order degradation at rate kb in order to avoid the unbi-

ological situation in which there exist no steady states,

which may happen for kb = 0 in the DA model if the

maximal enzymatic degradation rate is smaller than the

production rate. In order to stay close to the models of

the previous sections we consider kb j kd. We also

restrict ourselves to the discrete delay case.

For small values of X, the term kd
X

1+γX is approxi-

mately equal to kdX. This corresponds to the situation

where there is enough enzyme such that the degrada-

tion is proportional to the concentration X. For larger

values of X, the new degradation term saturates and

approaches kd/γ. Performing the same rescaling as

before leads to the two equations

PI: u′ = cg(uθ)−h(u)−du (40)

DA: u′ = c−f(uθ)h(u)−du, (41)

with f and g defined above, c = kp/(kdK), d = kb/kd

and

h(u) =
u

1+κu
with κ = Kγ. (42)

For d = κ = 0, these equations reduce the ones from the

previous sections. It is thus instructive to start by look-

ing at the behavior of these models for relatively small κ
and d, to see how the introduction of enzymatic degra-

dation changes the dynamics relative to the basic mod-

els. The linear stability analysis of this system is given

in the supplementary information. We find differences

in the PI and DA mechanisms.

For the PI model, a non-zero but relatively small value

of κ increases the range of both m and c for which

oscillations exist (Fig. 6(a,c,e)), but the effect is par-

tially reversed when κ becomes large (Fig. 6(g)). Re-

markably, oscillations are also possible for values of m
smaller than one. However, the time delay needed for

the steady state to become unstable typically increases.

For the DA model, on the other hand, a κ slightly larger

than zero leads to a smaller region in the parameter

planes where oscillations exist (Fig. 6(b,d)). It seems,

however, that it is mainly the time delay which needs to

be much larger, since the effect in the (c,m)-plane is

more mixed: increasing κ leads to oscillations for lower

m, but also for a smaller range of c, which is also the
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trend for much larger values of κ. As before, we can plot

the oscillatory regions in the (c,m)-planes (Fig. 6(e-h)).

The regions in this plane indicate values of c and m for

which a destabilizing delay exist — but it says nothing

about how large this delay should be.

The results for small κ tell us something about the bi-

ological system where the enzyme is only limiting for

large concentrations of X, i.e. where there is a large

availability of enzyme. A more biologically relevant situ-

ation is when the enzyme is limited and the degradation

saturates quickly, corresponding to large values of κ. As

shown in Fig. 6(g,h), oscillations in this regime can ap-

pear even for small values of m, but they require small

values of c too. Moreover, the stability lines can develop

different bumps and wiggles, indicating nontrivial sta-

bility changes (see also Supp. Figs. S6,S7). Finally, in

this system it might be possible to have both oscillations

and a stable steady state for the same set of param-

eters, such that the stability boundaries do not corre-

spond with the existence of oscillations per se (see sup-

plementary information). We leave the more detailed

analysis of the models with enzymatic degradation to

future work.

Double regulation

What if the PI and DA mechanisms are combined into

a system where both production and degradation are

regulated? Such a system would be modeled by the

equation

X ′ = kp
Km

Km +Xm
τ

−kd

Xp
ζ

Lp +Xp
ζ

X. (43)

In principle, the thresholds, Hill exponents and delays

for both terms can be different. Here, we do not provide

a detailed analysis for all possible parameters. Instead,

we aim to illustrate some properties of this model by

analyzing the case of equal parameters: m = p, K = L
and τ = ζ. With this assumption, rescaling leads to

u′ = cg(uθ)−f(uθ)u. (44)

The stability analysis is done as before, and reveals that

this model combines the oscillatory potential of PI and

DA models: oscillations are possible for any positive

value of c (Fig. 7a). This is also true for the model with a

Gamma-distributed delay: whether a destabilizing time

delay exists for a given N only depends on m and not on

c, because the value of α/β is exactly equal to 1/m for

this model. For this model, it is straightforward to com-

pute the values of N for which there is a destabilizing

delay, and for which values of N and m the steady state

is restabilized for increasing time delays (Fig. 7b). In the

supplementary information we explain that a restabiliza-

tion occurs for values of m,N such that

cosN π

N
<

1

m
< cosN+1 π

N +1
. (45)

For N = 2, this means that there is a restabilization for

all m > 8 and for N = 3, for m between 4 and 8. For N <

2, no oscillations are possible. The range of values of

m for which restabilization is possible becomes smaller

and smaller as N increases (see also Supp. Fig. S4).

Discussion

Biological oscillations are typically characterized by

cyclic changes in the concentration or activity of differ-

ent molecules. Whereas activities can be modulated,

for example, by posttranslational modifications, concen-

tration changes are often generated by regulated pro-

duction and degradation. In this work, we have com-

pared two mechanisms that are key to generate such

production-degradation oscillations. Whereas the high-

level logic of both mechanisms is the same — a time-

delayed negative feedback loop — the molecular imple-

mentation is different. In one oscillator, the feedback

acts to inhibit production (the PI model), while in the

other mechanism it acts to activate degradation (the DA

model). Inspired by the Goodwin model and its many

applications on one hand and the cell division cycle on

the other, we studied these oscillators in their most sim-

ple version: a single delay differential equation with non-

linearity modeled by a Hill function.

Our mathematical analysis revealed a connection be-

tween the two oscillators: if oscillations exists (for large

enough time delay) for one model, then this is also the

case for the other model, but with the inverse of the

parameter c. The result is valid both for discrete and

Gamma-distributed delays. It implies that both mecha-

nisms impose different constraints on the ratio of pro-

duction to degradation rates: if the feedback is imple-

mented through inhibition of production, the system has

the potential to oscillate when c is large, i.e. produc-

tion rate is much higher than degradation rate, and the

inverse holds for the DA model. This connection does

not address the magnitude of the time delays required to

obtain oscillations. This differs for both models: for large

c, the required time delay for the PI model approaches

a constant value, whereas it diverges for small c for the

DA model.

We also derived asymptotic approximations which — to

our knowledge — have not been described in the lit-

erature, such as 1/m scaling of critical time delay as

function of Hill exponent. Analytical results can also

be obtained far from the threshold of instability, by ex-

ploiting the fact that the Hill function approaches a step

function — a trick that has been used many times be-

fore. The calculation yields explicit formulae for ampli-

tude and period, revealing differences between the two

mechanisms. The amplitude continues to increase with

larger time delays in the DA model, while it saturates for

the PI model. This is consistent with previous findings

that the oscillation amplitude in PI models does not de-

pend strongly on the delay (Jörg 2017). The main con-

tribution to the oscillation period is given by twice the

delay. Between the two mechanisms considered, the

easiest way to obtain much larger periods than twice
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Figure 6. Enzymatic degradation has a different effect on both mechanisms and generally can lead to oscillations for smaller m. All panels show stability

boundaries defined by the Hopf bifurcation criterion. Top row: PI model, bottom row: DA model. For (a-d), the steady state is unstable and oscillations exist for

parameter values above the lines. For (e-h), above the line there exists a time delay which destabilizes the steady state, and below delay it is stable for all delay

values. See also Supp. Figs. S6,S7. For all panels, d = 0.01. Panel (a,b): m = 10, panel (c): c = 3, panel (d): c = 1/3.
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Figure 7. Oscillations in the system with double regulation. (a) Regime dia-

gram for different mechanisms, defined by the Hopf bifurcation line. Oscillations

exist for parameter values above the curves. (b) Boundary of the oscillatory

region with Gamma-distributed delay for different N . For N = 2, only the pa-

rameter values between the two blue curves lead to an unstable steady state.

Both diagrams were computed with m = 10.

the delay time is by having the production rate much

smaller than degradation rate in the DA model.

Finally, we showed how two extensions — double regu-

lation and enzymatic degradation — modify the oscil-

latory potential of both oscillators. Since these extra

mechanisms introduce many different parameters, we

only investigated a subset of the possible behavior. We

leave a more in-depth analysis of the dynamics of these

systems for later work.

Some of our results, such as the exact correspondence

of oscillatory potential with the c´ 1/c correspondence,

rely on specific properties of, for example, the Hill func-

tions. Nevertheless, we believe that the general mes-

sages are likely to be more generally applicable. The

two basic mechanisms we studied here underlie many

real biological oscillators, and our results for the simpli-

fied models can be used to guide the study and interpre-

tation of more complex models. Confirming the generic

results in a more molecularly detailed model would be

an interesting follow-up. In particular, the time delay and

the Hill function are high-level descriptions of what is

happening at the molecular level. There are many dif-

ferent ways in which an ultrasensitive response can be

generated (see Ferrell and Ha (2014a,b) for an overview

and Jeong et al. (2022) for an example of recent work

on this) and the same holds for the time delay. We have

assumed these to be independent, but delay and ul-

trasensitivity could also be due to one single molecular

mechanism, connecting these two parameters.

Real biological oscillators can be much more compli-

cated than a single negative feedback loop (see e.g.

Novák and Tyson 2008; Purcell et al. 2010). In many

real systems, the negative feedback is complemented
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by positive feedback loops. These can make oscilla-

tions more robust and tunable (Ananthasubramaniam

and Herzel 2014; Tsai et al. 2008). In a sense, one type

of positive feedback is included in our model through the

ultrasensitive Hill-type response curve, as such nonlin-

ear switch-like responses can be the result of positive

feedback. However, positive feedback can also gener-

ate bistability, which we have not considered here. The

combination of negative feedback with a single (Novák

and Tyson 2008; Tsai et al. 2008) or multiple (De Boeck

et al. 2021; Parra-Rivas et al. 2023) bistable switches

can lead to robust relaxation oscillations. It would be in-

teresting to systematically investigate the difference be-

tween the PI and DA mechanisms in models that also

incorporate such bistable switches.

The importance of how a negative feedback is imple-

mented has recently also been put forward by Agra-

har and Rust (2022, preprint). In that study, the au-

thors consider different implementations based on reg-

ulation of production and degradation, but they did not

consider explicit time delays. They use a computational

approach: by sampling parameter values, they deter-

mine which oscillator implementations are most likely

to yield oscillations. Some of our current results echo

theirs. For example: Agrahar and Rust (2022) also

found that dual regulation increases oscillatory poten-

tial. Other recent studies have considered the question

of robustness, typically by large-scale sampling of pa-

rameter values. Li et al. (2017) find that adding small

auxiliary motifs to core topologies may enhance the ro-

bustness of the oscillations. Furthermore, they discuss

how an evolutionary process could have generated such

topologies. Besides insights into the evolutionary origin

of regulatory mechanisms, such studies can also be im-

portant to guide the design of synthetic oscillators (e.g.

Woods et al. 2016).

Our current results, which focus on in-depth mathemati-

cal analysis of a basic motif, complement the cited stud-

ies that use a more computational approach. These

studies also suggest useful considerations to develop

further mathematically. Whereas now, we only consid-

ered differences in the parameter ranges that can lead

to oscillations, the PI and DA models may also show

differences in other aspects. For example, a study of

the energetic cost of the mechanisms would be a useful

next step. An additional factor which may differ between

mechanisms is whether it can be entrained by external

cues (Jiménez et al. 2022). For example, for the circa-

dian clock it is important that it can be entrained to the

24h rhythm of day and night. Whether this requirement

imposes conditions on the negative feedback loop, and

in particular whether it favours a DA or PI mechanism,

is also an interesting question.

Finally, an important aspect we did not consider in our

study is the role of stochasticity. This has recently been

investigated by Negrete et al. (2021) for a model akin to

our PI oscillator. The authors make use of the approx-

imation for m→∞ to derive statistical distributions for

the extrema and rise and fall time of the oscillator. They

show that experimental data from the mammalian cir-

cadian clock and the zebrafish segmentation clock can

be well described by this model. There could be differ-

ences in those statistical distributions between PI and

DA model — which are to be determined.

The study of biological oscillators is arguably one of the

oldest topics in mathematical biology. Yet, the many

recent studies illustrate that the subject is very much

alive (see Tyson, Csikasz-Nagy, et al. 2022, for an

overview). Great progress is made using computational

methods, and more and more by incorporating real bio-

logical data. Nevertheless, our current study shows that

there are still things to be learned by analyzing the most

simple mathematical models.
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