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Abstract 

Epigenetic clocks are age predictors that use machine-learning models trained on DNA CpG 
methylation values to predict chronological or biological age. Increases in predicted epigenetic age 
relative to chronological age (epigenetic age acceleration) are connected to aging-associated 
pathologies, and changes in epigenetic age are linked to canonical aging hallmarks. However, 
epigenetic clocks rely on training data from bulk tissues whose cellular composition changes with 
age. We found that human naive CD8+ T cells, which decrease during aging, exhibit an epigenetic 
age 15–20 years younger than effector memory CD8+ T cells from the same individual. Importantly, 
homogenous naive T cells isolated from individuals of different ages show a progressive increase 
in epigenetic age, indicating that current epigenetic clocks measure two independent variables, 
aging and immune cell composition. To isolate the age-associated cell intrinsic changes, we created 
a new clock, the IntrinClock, that did not change among 10 immune cell types tested. IntrinClock 
showed a robust predicted epigenetic age increase in a model of replicative senescence in vitro and 
age reversal during OSKM-mediated reprogramming. 
 
Keywords: aging, epigenetic clock, immune, inflammaging, differentiation, DNA methylation 
 
Introduction 
 
Epigenetic clocks, age predictors based on DNA methylation levels at selected CpG loci, have grown in 
popularity as a tool to study aging and predict health outcomes in humans. The first epigenetic clocks 
developed by Hannum et al.1 and Horvath2 showed remarkably high accuracy (R > .90) in predictions of 
chronological age. These <first-generation= epigenetic clocks provide unique biological insights into the 
aging process. For example, some but not all forms of senescence accelerate epigenetic clock age 
predictions3. Using a later clock trained on chronological age, Kabacik et al.4 identified nutrient sensing, 
mitochondrial activity and stem cell composition as being associated with epigenetic aging but not 
telomere attrition or genomic instability. A recent report demonstrated the development of an epigenetic 
clock effective at predicting age across a variety of species, providing evidence for a shared mammalian 
aging program5. 

More recently, <second-generation= clocks designed to predict phenotypic aging measures have 
been developed. These clocks, including PhenoAge6 and GrimAge7, show strong associations with 
diseases, such as depression8 and mortality9. DunedinPACE is a similar marker of phenotypic aging that 
captures the pace of aging rather than the accumulation of aging10. These clocks show promise as 
markers of physiological aging, but their two-step construction methodology (training a DNA 
methylation predictor on measures of phenotypic rather than chronological age) adds a secondary layer 
of complexity to interpretation. 

Given the ability of epigenetic clocks to detect aging phenotypes across species and levels of 
organization that include cells, tissues, and organs, there is significant interest in understanding the 
underlying mechanism(s) enabling their function. Recent preprints have been released on this topic, 
notably including one by Levine et al.11 that suggests epigenetic clocks are composites of different 
modules characterized by their changes during aging and reprogramming. Novel epigenetic clocks have 
been developed that seek to capture the aging phenomenon in more defined ways, including by 
identifying CpG sites predicted to be causal by Mendelian randomization12 or those capturing purely 
stochastic variation13. These clocks are informative about aspects of the aging process and have the 
potential to be particularly well-suited for certain use cases. 

One major challenge in understanding the mechanism(s) underlying epigenetic clocks is the 
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confounding effect of age-related changes in cell-type composition of many tissues. While changes in 
cell-type composition are an important part of aging, they can make interpreting epigenetic clocks more 
difficult as the relevant CpG sites may be cell-type-specific markers rather than those affecting cell-
intrinsic aging. Most epigenetic clocks are trained largely on blood, which sees a drop in naïve CD8+ T 
cells with age and a corresponding increase in more terminally differentiated memory T-cell types14. 
Some clocks may be more impacted by changes in cell-type composition than others, depending on how 
they were constructed15. T-cell and NK (natural killer) cell activation have been implicated as major 
drivers in epigenetic clock progression16. 

Other approaches have been explored to create epigenetic age predictions that are less sensitive 
to changes in cell type composition. Most notably, residuals from regression models that include 
epigenetic age and proportions of several blood cell types have been used to generate an < intrinsic 
epigenetic age acceleration=  measure17. While the resulting measure is cell-type independent, it 
becomes challenging to biologically interpret as the underlying signal is derived from a mixture of CpG 
sites that can be either cell type-independent or cell type-dependent. Other modern approaches include 
the development of single-cell epigenetic clocks18,19, though the underlying technology will require 
further maturing before it can match the sensitivity and accuracy of bulk measurement-based clocks. 

In this work, we report our analysis of the differences in epigenetic age predictions derived from 
four epigenetic clocks (Hannum1, Horvath2, Horvath Skin and Blood20, and PhenoAge6) for cytotoxic 
CD8+ T cells at different stages of differentiation. We found that human naïve CD8+ T cells, which 
decrease in humans during aging, exhibit an epigenetic age 15–20 years younger than effector memory 
CD8+ T cells isolated from the same individual. Interestingly, naïve T cells isolated from individuals of 
different ages still show a progressive increase in epigenetic age. Based on these observations, which 
indicate, as predicted, that current epigenetic clocks measure two independent variables, aging and 
immune cell composition, we created a new clock, the IntrinClock, that does not change among 10 
immune cell types tested. Remarkably, this clock shows an increase in a model of replicative senescence 
in vitro and shows decreased aging during OSKM reprogramming. Lastly, we investigate the 
IntrinClock’s applicability for use in studying and detecting the effects of cell-intrinsic perturbations on 
aging. 
 
Results 

 

Existing epigenetic clock age predictions depend on CD8+ T-cell differentiation state. In humans, 
CD8+ T cells decrease in frequency, with a particularly pronounced loss of naive T cells during aging21. 
We used a negative bead-based selection method to isolate total T cells from seven donors of varying 
ages, all of whom were positive for cytomegalovirus (CMV+). We then used FACS to isolate CD8+ 
naive (CD8+ CD28+ CD45RO-), CD8+ central memory (CD8+ CD28+ CD45RO+), CD8+ effector 
memory (CD8+ CD28- CD45RO+), and CD8+ terminal effector memory RA+ (CD8+ CD28- CD45RO-) 
cells (Figure 1A). After DNA isolation and profiling using the Illumina Infinium MethylationEPICTM 
platform, we noted a distinct clustering of CD8+ naive cells away from CD8+ central memory (CM), 
effector memory (EM), and terminal effector memory RA+ cells (TEMRA) (Figure 1B) in UMAP 
analysis. Horvath clock epigenetic ages were measured in each of the CD8 T-cell subsets and found to 
correlate with age across every subset. However, strikingly, naive T cells consistently showed a 
significantly younger epigenetic age than other CD8+ subsets (Figure 1C). This result suggests that 
epigenetic clock measurements are affected by CD8+ T-cell differentiation. Equally interestingly, naive 
CD8+ T cells from individuals of different chronological age showed an increase in epigenetic age that 
was parallel to chronological age but consistently lower than the chronological age (Figure 1C). The 
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same observation was made for CMs, EMs and TEMRAs except that these cells’ epigenetic age 
appeared closer to the chronological age of the donors. 

Next, using differential methylation analysis on methylation M-values, we identified 22,963 
CpGs that changed with age and 370,383 CpGs that changed between naive CD8+ T cells and CD8+ 
CM, CD8+ EM, or CD8+ TEMRA cells. Of the 22,963 aging-related CpGs, 9,992 were also affected by 
differentiation (Figure 1D). To understand how this could affect epigenetic clock predictions, we 
investigated the proportion of CpG sites used for epigenetic age prediction in the Hannum, Horvath, 
Horvath Skin and Blood, and PhenoAge clocks that we identified were affected by CD8+ T-cell 
differentiation. In all four clocks, more than a third of the predictive sites were changed with 
differentiation (Figure 1E), and all four had a difference in age acceleration for CD8+ T-cell subsets. In 
all clocks, CD8+ TEMRA and CD8+ EM cells were predicted to be older than CD8+ CM cells, which 
were predicted to be older than CD8+ naive cells (Figures 1F-1I). The differences in epigenetic ages 
among the CD8+ T-cell subsets varied among clocks. For example, PhenoAge predicts CD8+ naive cells 
to be over 60 years younger than the donor chronological age, but the difference was much smaller for 
both Horvath clocks with an epigenetic age prediction of only approximately 12 years lower than 
chronological age (Figures 1F - 1I). 
 
Development of a novel epigenetic clock (IntrinClock) resistant to changes in immune cell 

composition. Given the overlap of DNA methylation signatures of cellular aging and CD8+ 
differentiation, we sought to create a new epigenetic clock that is unaffected by changes in immune cell 
composition. We began by generating a database of 14,601 DNA methylation samples from 71 different 
datasets1,22–90, generated on either the Illumina InfiniumTM HumanMethylation450 (450K) or the 
Illumina InfiniumTM MethylationEPIC (EPIC) array, all sourced from the Gene Expression Omnibus 
(GEO) database or the Genotype-Tissue Expression project (GTEx) (Supplementary Table 1). The 
number of samples per dataset ranged from six to 1,218, with a mean number of samples per dataset of 
213 (Figure 4A). The distribution of sexes was approximately equal (Figure S4B). Samples were derived 
from a variety of tissues with the majority from blood (Figure S4C), and the DNA methylation assay 
platform was split roughly evenly between the 450K and the EPIC array. (Figure S4D). 

Once the database of samples was assembled, we performed a series of filtering and quality 
control steps. We filtered out all samples that were missing more than 10% of CpG sites measured by 
the 450K array, those that were derived from cancerous tissue, and those that were derived from 
germline tissues. We then removed outliers, defining outliers as those with principal components more 
than two interquartile ranges away from the mean (Figure 2B). After performing a random 75-25 
training/test split, 9104 samples were used to train the model and 2994 were used to validate it.  

Given the unique methylation pattern (Figure 1B) and quiescent biology91 of naive CD8+ T cells, we 
aimed to use them as a basis on which to eliminate CpGs linked to CD8+ T-cell differentiation and 
performed additional filtering steps. When constructing our database of DNA methylation data, we 
initially collected all CpG sites measured by the 450K array for all samples. To increase reliability, we 
first filtered out CpG sites that were present in fewer than 90 percent of samples. To ensure forward 
compatibility, we also included only CpG sites that were present on the Illumina InfiniumTM 
MethylationEPICv2.0 array. Next, we opted to remove any CpG sites that were correlated with a sample 
being a naive CD8+ sample (R > .3) within our CD8+ subset data (i.e., CpG sites whose methylation 
patterns were distinct in CD8+ naive cells as compared to CD8+ CM/EM/TEMRA cells). We also opted 
to include only those CpG sites correlated with age (R > .3) (Figure 2C), to decrease the search space for 
the elastic net algorithm to identify age-predictive sites. Interestingly, we observed a negative 
correlation-of-correlations between the age correlation and naive CD8+ correlation of CpG sites (R = -
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.45) (Figure 2C), indicating that CpG sites that are hypermethylated with age tend to be hypomethylated 
in naive CD8+ cells, and vice-versa. We utilized the elastic net algorithm on the remaining 55,896 CpGs 
to generate a new epigenetic clock based on 410 CpG sites. To increase accuracy and reduce the number 
of necessary prediction sites, we used a novel approach whereby we employed the elastic net algorithm 
a second time on the training data filtered only on the 410 CpG sites used for the clock. This reduced the 
number of predictive CpG sites in the final model (IntrinClock) to 381, and reduced error by 
approximately 3 months (Figure S5). 
 
IntrinClock is accurate across tissues, and its age predictions are not affected by adaptive immune 

cell compositional changes. Next, we tested the IntrinClock on a variety of tissues in the test set and 
observed high overall prediction accuracy (R ~ .972, mean absolute error (MAE) ~ 3.83) (Figure 2D). 
Age prediction errors on blood and saliva were particularly low (MAE ~ 3.25, MAE ~ 3.21, 
respectively) (Figure 2E, 2G). Tissues with less immune infiltration also had high epigenetic age 
correlations with chronological age (R ~ .944 for brain, R ~ .841 for skin). We were interested in 
discovering whether the IntrinClock would predict chronological age in semen samples, as previous 
epigenetic clocks have shown significant age deceleration in sperm2. We found that epigenetic age 
predictions of semen had only a weak correlation with chronological age (R ~ .32), and the predicted age 
of sperm samples, using a previously generated dataset92, appears to consistently be ~ 12 (Figure 2I).  

Importantly and as expected, IntrinClock applied to our generated CD8+ DNA methylation data 
showed no epigenetic age prediction differences among CD8+ T-cell subsets (Figure 3A). As these 
samples were included in the training set for clock construction, we validated our approach on two 
external datasets93,94 with CD8+ naive and CD8+ EM DNA methylation data and found no differences in 
epigenetic age (paired t-test p-value > .05) (Figure 3B). We also tested whether our clock could find a 
shift in epigenetic age between CD4+ naive and CD4+ CM cells, as the proportion of CD4+ naive cells 
also decreases with age95. Using two external data sets96,97, we discovered no evidence for a shift in 
epigenetic age between CD4+ naive and CM cells (Figure 3C) (paired t-test p-value > .05), despite our 
filtering strategy being based only on CD8+ cells. 

We also tested whether the IntrinClock would be similarly unperturbed in other immune cell 
types, particularly naive and memory B cells, which change in frequency with age98. We sorted CD8+ 
naive (CD8+CD28+CD45RO-), CD8+ CM (CD8+CD28+CD45RO+), CD8+ combined EM/TEMRA 
(CD8+CD28-), CD4+ naive (CD4+CD28+CD45RO-), CD4+ CM (CD4+CD28+CD45RO+), B-cell naive 
(CD3-CD19+CD27-IgD+), class-switched B cells (CD3-CD19+CD27+IgD-), CD16+CD56dim NK cells 
(CD3-CD19-CD56dimCD16+), classical monocytes (CD3-CD19-HLADR+CD14+CD16dim), and whole-
peripheral blood mononuclear cell (PBMC) samples from nine donors aged 30–68 and collected DNA 
for methylation analysis. To increase cell recovery, we performed two sequential rounds of positive 
selection for CD8+ and then CD4+ cells using magnetic enrichment kits prior to flow sorting, similar to a 
published strategy33. Concurrently, we analyzed the PBMC samples using high-parameter spectral flow 
cytometry to empirically determine whether changes in immune cell composition of the PBMC samples 
would impact predicted epigenetic age of the whole PBMC fraction. 

As predicted, we found no evidence for an association between cell subset and epigenetic age 
prediction (Figure 3D) or between cell subset and epigenetic age acceleration (ANOVA p-value > .05) 
(Figure S6A). This remained consistent whether epigenetic age acceleration was defined as the 
difference between predicted age and chronological age or as the residual after regressing predicted 
epigenetic age on chronological age. In contrast, cell subset and epigenetic age acceleration were 
significantly correlated, according to the Hannum (Figure S6B), Horvath (Figure S6C), Horvath Skin 
and Blood (Figure S6D), and PhenoAge (Figure S6E) clocks. To further investigate how resistant 
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IntrinClock is to the change in immune cell composition, we analyzed the correlation between the 
PBMC epigenetic age and percentage of several PBMC subsets. As expected, we identified no 
significant relationship between the PBMC epigenetic age acceleration and percentage of CD8+ EM 
cells (Figure 3E), CD4+ CM cells (Figure 3F), class-switched B cells (Figure 3G), CD16+ CD56dim NK 
cells (Figure 3H), or classical monocytes (Figure 3I), relative to their parent populations (Pearson’ s 
correlation p-value > .05). Combined with our observations of the IntrinClock’ s high accuracy across 
many tissues, these observations indicate that shifts in immune cell composition do not impact 
IntrinClock age predictions. 
 
IntrinClock is highly enriched for CpG sites upstream of transcription start sites, and its sites are 

enriched for motifs whose TFs are implicated in cancer. One central challenge in understanding 
epigenetic clocks comes from a lack of knowledge regarding to what extent epigenetic clocks are 
tracking a cell-autonomous or, conversely, a cell-ensemble phenomenon99. Our data provide evidence 
that current epigenetic clocks represent a composite of at least two variables, change in DNA 
methylation associated with aging in a cell intrinsic manner (IntrinClock), and a change in cell 
composition associated with aging. Due to the IntrinClock’s resistance to changes in immune cell 
composition, the CpG sites that constitute the clock may have more readily interpretable cell-
autonomous biology as they are less likely to track markers of changing immune cell composition. This 
prediction could be particularly helpful in the context of identifying a functional or causal relationship 
between epigenetic clock sites and aging. We found that the sites in the IntrinClock that are 
hypermethylated with age are enriched within the region 200–1500 bp upstream of gene transcription 
start sites, and correspondingly strongly depleted in sites distant from genes (25% vs. 15%) (Figure 4A). 
In sites that are hypomethylated with age, there was a significant enrichment within the first exon of 
genes (8% vs. 5%) (Figure 4B). DNA methylation changes within 1500 bp of the transcription start site 
are most closely linked to alterations in gene expression100. Similarly, IntrinClock CpGs are enriched for 
being located near CpG islands (45% vs. 31%) and are depleted from open sea regions (20% vs. 36%) 
(Figure 4C).  

Transcription factor activity and DNA methylation are biologically connected both directly, as in 
the case of E2F family transcription factors requiring methylated DNA to bind101, and indirectly, as in 
the case of passive methylation from lack of TF binding102,103. We investigated regions within 40 bp of 
IntrinClock CpG sites and used HOMER104 to identify enriched motifs associated with transcription 
factor-binding sites (Figure 4D). Motifs associated with TFAP2C, ZNF341, ZFP57, RUNX1, E2F3, 
HOXA1, SP4, MYB, GRHL2, MGA, IRF3, and INSM1 binding were significantly enriched, compared 
to a 40-bp background of basepairs surrounding CpG sites that are assayed by both Illumina Infinium 
HumanMethylation450K and MethylationEPIC chips. Aberrant activity of each corresponding 
transcription factor has been associated with cancer development or worsened prognosis79,105–115. Some 
of these, such as E2F3116 and IRF3117, have been associated with aging-related diseases, whereas a 
connection for others has yet to be discovered. 

We were interested in exploring general patterns of shifts in IntrinClock CpGs with age. To avoid 
uneven distribution of tissue samples across age groups, we focused our analysis on blood samples. 
Given that a linear regression model was used to build the IntrinClock, we were not surprised that the 
two most prevalent patterns were a linear decrease and increase, respectively, of DNA methylation with 
age (Figure S7). However, we also found several CpGs (Clusters 4, 5, and 6) where the CpGs reverse 
their age-related direction of DNA methylation around the age of 21-30. This indicates that, for a subset 
of CpGs in the IntrinClock, there is a distinction between aging prior to and post sexual maturity. 
Interestingly, these CpGs were 2.3-fold (34% vs. 14.9%) enriched for being located 200-1500bp 
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upstream of a TSS, and 2-fold (19.4% vs. 10%) enriched for being located on a genomic south shore 
region (Figure S8), which are stronger enrichments than identified for IntrinClock sites generally 
(Figures 4A – 4C). 
 
IntrinClock epigenetic age is accelerated in models of intrinsic hallmarks of aging and in HIV+ 

individuals. HIV was one of the earliest conditions to be associated with acceleration of epigenetic 
age74. HIV infection is associated with a plethora of clinical manifestations and morbidities consistent 
with accelerated aging. However, HIV also causes major changes in immune cell composition118, which 
could skew previous versions of epigenetic clocks. As a result, it is unclear whether early results 
showcasing epigenetic age acceleration during HIV infection are due to changes in blood cell 
composition or an accelerated intrinsic rate of aging. Using the IntrinClock on previously generated data 
from HIV+ individuals and controls, we identified an HIV-associated increase in epigenetic age of two 
years, supporting the model that HIV leads to accelerated aging independently of shifts in immune cell 
composition (Figure 5A). We also sought to investigate whether the IntrinClock would be accelerated by 
other acute immune-related diseases. Using a dataset primarily generated in 2020, we found that the 
IntrinClock age prediction was not affected by COVID-19 (Figure 5B), contrary to findings in other 
epigenetic clocks where COVID-19 infection was associated with an increase in epigenetic age119. As 
the data analyzed in this study were generated early in the COVID-19 pandemic, most individuals would 
have been acutely, rather than chronically, ill with COVID-19. It remains to be seen whether the 
IntrinClock will predict a higher epigenetic age in those who are infected with COVID-19 for a 
prolonged period (i.e., long COVID). 

One application of epigenetic clocks is in tracking the effect of rejuvenating or aging 
interventions on cells. As the IntrinClock was developed on sites that are not shifting due to immune cell 
compositional changes, we reasoned it may be more sensitive to such interventions. Consistent with this 
idea, we used an external dataset120 to find that the IntrinClock is sensitive to Yamanaka factor–
mediated reprogramming in fibroblasts. The study authors sorted cells positive for TRA-1-60+, a marker 
for de-differentiation, at six time points after initiation of reprogramming. We investigated IntrinClock 
epigenetic age predictions at each time point and found that, from an initial mean predicted epigenetic 
age of 31, the age prediction decreased to 20 after 11 days of OSKM-mediated reprogramming. A mean 
age of 0 was reached after 20 total days of reprogramming (Figure 5C). Conversely, using publicly 
available data using an in vitro fibroblast model of replicative cellular senescence121, we found that the 
IntrinClock was progressively accelerated with cell divisions as cells become progressively more 
senescent. IntrinClock increased from a baseline predicted age of 10 to 15 after 14 population doublings, 
and then further increased to 20 after another 14 population doublings (Figure 5D). This effect was 
comparable to that seen using the PhenoAge clock, and stronger relative to the Hannum, Horvath, and 
Horvath Skin & Blood clocks (Figure S9). 
 
Discussion 

 
Epigenetic clocks hold great promise for the study of longevity due to their high correlation with age 
and (particularly for second-generation clocks) association with aging-related disease state. As 
diagnostic tools, they have the potential to serve as important predictive biomarkers for assessing 
biological age, determining risk for age-associated diseases, and assessing the efficacy of interventions 
that target the aging process122–126. Recent technical advances, such as the development of principal 
component clocks127 and novel techniques for cost reduction128, promise to increase reliability and 
usability further. However, their current status as a composite of multiple aging signals makes them 
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difficult to interpret and to link to specific biological processes. As an example, a recent study in 
patients post-COVID 19 infection demonstrated a significant PhenoAge epigenetic age acceleration in 
individuals over the age of 50, but an epigenetic age reversal for those under the age of 50119. Further, 
the manner in which clocks track healthspan is not fully overlapping, as clocks can be independently 
predictive of mortality even when analyzed jointly129. This challenge in interpretation is equally 
important for cellular models of the hallmarks of aging. In models of senescence or reprogramming, the 
sensitivity or even direction of the perturbation on predicted epigenetic age can dramatically differ, 
depending on the epigenetic clock used. For example, in this study, we identified the Hannum clock as 
predicting an age reversal in a fibroblast model of cellular replicative senescence (Figure S9). 

The immune system changes dramatically with aging, and its decline can exacerbate or lead to 
many aging-related pathologies130. Clocks built solely on inflammatory markers can be used to predict 
age and risk of multimorbidity131. However, the presence of CpG sites that track primarily with immune 
cell markers makes epigenetic clocks applied to cell-intrinsic effects (e.g., cellular reprogramming in 
fibroblast cell culture) difficult to understand. Such sites can introduce background noise to the resulting 
measurement. 

Here, using sorted CD8+ T-cell subsets, we observed that naive T cells consistently showed a 
younger epigenetic age than other CD8+ subsets (Figure 1C), ranging from a 10-year average age under-
prediction in some clocks to as high as a 60-year underprediction in others. This suggests that epigenetic 
clock measurements are significantly affected by CD8+ T-cell differentiation. These observations 
reinforce the finding that current epigenetic clocks represent the integration of at least two variables: cell 
intrinsic aging and changes in immune composition during aging. 

To isolate these variables, we developed a novel epigenetic clock that is based on CpG sites that 
do not change with CD8+ T-cell differentiation (IntrinClock). We further observed that this clock 
predicts the same age in each individual across a wide variety of immune cell types. Interestingly, a 
filtering step based on naive CD8+ T cells can generate a clock that is not affected by differentiation in 
cells from different lineages, such as CD4+ cells or even B cells. This indicates part of a unique <CD8+ 
naive= signal may, in fact, be a conserved quiescence program shared by a variety of immune cells. This 
observation is supported by our finding that methylation patterns associated with naive CD8+ T cells 
have a negative correlation with those changing with aging (Figure 2C). A connection between 
quiescence and aging is found in a wide variety of cell types, including neural stem cells132.  

The IntrinClock’s higher proportion of sites near transcription start sites and CpG islands and its 
expected relationship with reprogramming and senescence suggest that it is tracking an intrinsic cellular 
aging program. Enrichment of IntrinClock CpG sites within motifs bound by transcription factors linked 
to cancer progression is consistent with a recent review investigating the connection between epigenetic 
clocks, global hypomethylation, cancer, and aging133. It will be important in the future to test whether 
acceleration of the IntrinClock is linked to particular disease states. This application could be a novel 
tool used to distinguish age-related diseases caused by aberrant cell-to-cell interactions from those 
caused by intrinsic cellular dysfunction.  

The approach described here reduces the potential of cellular composition changes to be a 
confounder, particularly in blood or saliva samples, and will likely increase our understanding of 
biological aging and age-associated diseases. The IntrinClock holds the promise of being more sensitive 
to cell-intrinsic rejuvenation approaches, as its constituent CpG sites are not affected by immune cell 
composition. It may also be more closely linked to CpG sites with a functional or even causal 
relationship with the aging process. Overall, IntrinClock represents a new instrument to add to the aging 
biomarker toolkit, with a potential wide variety of applications and uses. 
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Methods 
Ethics approval. NIH provided approval for use of phs000424/GRU (GTEx) age data via the dbGaP 
database approval system. Ethics approval was not required for other datasets generated. 
 
Immune cell isolation, sorting, and DNA extraction. PBMCs were extracted from leukopheresis 
chambers from CMV+ donors. Blood was first diluted 1:1 with PBS with 2% FBS. Diluted blood was 
slowly layered on top of 12 mL of Ficoll in a 50-mL Falcon conical tube. The tube was then centrifuged 
for 30 minutes at 2000 rpm at 21°C without applying a break. The layer containing white blood cells 
was removed, diluted with FBS-supplemented PBS, and centrifuged for 3 minutes at 2500 rpm. The cell 
pellet was re-suspended in 15 mL of ACK lysis buffer and incubated for 3 minutes. The cells were 
topped up with PBS with 2% FBS, centrifuged, and resuspended.  

For the initial CD8+ epigenetic clock characterization experiment, an EasySepTM Human T Cell 
Isolation kit was used to extract T cells from the PBMC fraction. T cells were then washed, stained with 
1:500 LIVE/DEADTM Fixable Near-IR Dead Cell staining kit, washed, stained with an antibody cocktail 
(Supplementary Table 2), and washed again. FACS was performed on a BD FACSAriaTM II instrument. 
DNA was isolated using a Zymo Quick-DNATM Microprep Plus kit. 

For the second comprehensive immune cell-sorting experiment, 2 million PBMCs were frozen 
immediately after extraction. The remaining cells were then positively selected for a CD4 fraction using 
the EasySepTM Human CD4 Positive Selection Kit II. The CD4 cells were stained with 1:500 
LIVE/DEADTM Fixable Near-IR Dead Cell staining kit, washed, and stained with CD4/CD8 antibody 
cocktail (Supplementary Table 2), and the remaining cells were positively selected for a CD8 fraction 
using the EasySepTM Human CD8 Positive Selection Kit II. Both CD8+ cells and remaining PBMCs 
were washed, stained with 1:500 LIVE/DEADTM Fixable Near-IR Dead Cell staining kit and washed 
again. CD8+ cells were stained with a CD4/CD8 antibody cocktail (Supplementary Table 2), and the 
remaining PBMCs were stained with a B Cell/NK Cell/Monocyte antibody cocktail (Supplementary 
Table 3), after blocking with human IgG. All three fractions were then subjected to FACS analysis using 
a BD FACSAriaTM II instrument. DNA was isolated using a Zymo Quick-DNA/RNATM Microprep Plus 
kit.  

For both experiments, DNA was quantified using QubitTM HS dsDNA quantification reagents. 
Bisulfite conversion and DNA methylation assessment were performed by Diagenode. For all 
experiments involving FACS, post-sort validations were performed to verify cell sort purity by 
analyzing sorted populations via flow cytometry. The Clock Foundation assisted with facilitating DNA 
methylation assessment and data transfer for the initial CD8+ experiment. 
 
High-dimensional flow cytometry. PBMCs were transferred to a 96-well V-bottom plate. Cells were 
re-suspended in a 1:500 dilution of LIVE/DEADTM Fixable Blue Dead Cell Stain kit in cold PBS and 
incubated for 30 minutes in the dark. Cells were then washed and blocked with human IgG for 30 
minutes. They were then washed twice and stained with a PBMC phenotyping antibody cocktail 
(Supplementary Table 4). Cell phenotyping was performing on a Cytek AuroraTM instrument and 
analyzed using FlowJoTM. 
 
DNA methylation analysis and pre-processing. .idat files were converted into beta values by using the 
minfi R package134, with a functional normalization pre-processing step135. For differential methylation 
analyses, beta values were converted to M-values through the formula M = log2(B / (1-B)). The R 
package umap was used for UMAP dimensionality reduction136. 
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Dataset collection and pre-processing. All datasets used to build the novel epigenetic clock were either 
generated in this study or downloaded from GEO. Exact ages were obtained for GTEx data through 
dbGaP137, as exact chronological ages of tissues were required. For constructing the clock, the 
assembled database of DNA methylation data was first culled of any samples that had more than 10% of 
CpGs missing and of any CpGs that had more than 10% samples missing. All samples derived from 
cancer tissues were removed. To ensure forward compatibility, we filtered out CpGs that were not on the 
Infinium MethylationEPIC v2.0 array. Based on our CD8+ DNA methylation data, we tested the 
correlation of each CpG methylation with age and with naive CD8+ T cells. To assess whether CpGs 
were correlated with naive CD8+ cells, we binarized each naive sample as < 1=  and each non-naive 
(CM, EM, TEMRA) sample as < 0=  and then used the R cor function to compute a Spearman’s 
correlation between methylation and naive T-cell state. All CpGs with an absolute value correlation of .3 
or greater with naive T-cell state were removed, and all CpGs with an absolute value correlation of .3 or 
less with age were removed. 

Once CpGs and samples were filtered, the samples were split 75% for the training set and 25% 
for the test set. Imputation of missing was performed separately between training sets and test sets, and 
separately between different tissues within training sets and test sets (imputation performed using the 
impute R package138). Outliers were detected and removed using the outlyx function in the R watermelon 
package139. Untransformed beta values were used for model creation and age prediction. Prior to training 
the model, ages were transformed using Horvath’s formula used in his original epigenetic clock2. An 
elastic net model using glmnet140 was used to develop the IntrinClock, with alpha value set at .5. Once 
the first model was generated, the training data were a subset of only those CpGs with non-zero 
coefficients, which were used for training the final model. 
 
Statistical methods. For comparisons between two measurements from one individual, as in Figures 1B 
and 1C, paired t-tests were used for assessment of significant changes. For multiple comparisons 
between a group and a background reference, as in Figures 4A, 4B, and 4C, one-sample proportional 
tests using the prop.test function from the R stats package were utilized with Bonferroni multiple-
comparisons correction. For samples of multiple measurements, repeated measures ANOVA 
implemented via the statix packages141 was used to test significance. Most graphs and figures were 
created with aid of the ggplot R package142.  
 

Motif enrichment and pattern analyses. For motif enrichment analysis, the HOMER software tool 
was utilized104. To define sequences of interest, we investigated 40-bp windows surrounding the 381 
CpG sites that compose the IntrinClock. As a background, we investigated 40-bp windows around CpG 
sites in our dataset immediately before removal of CpG sites associated with naive CD8+ cells and those 
not associated with aging. For investigating patterns of IntrinClock CpG shifts with age, beta values 
from blood samples were converted to M values, after which the degPatterns function from the 
DEGreport R package143 was utilized. Patterns with fewer than 10 CpG sites were discarded from 
analysis. Ages were binned into groups of 10 (0-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80, 
81+). Each bin was confirmed to have at least 100 samples. 
 
Epigenetic age acceleration analysis. To compute DNA methylation age for each epigenetic clock, the 
R methylclock package was utilized144. For experiments containing a limited number of donors or cell 
types, epigenetic age acceleration was defined as the difference between epigenetic age prediction and 
chronological age. For larger studies, epigenetic age acceleration was defined as the residual after 
regressing predicted epigenetic age on chronological age. 
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Data availability 
DNA methylation profiles generated in this study will be submitted to the GEO public repository prior 
to publication. Code used to generate the results in this study will be made public on Github prior to 
publication. 
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Figures 

 
Figure 1. CpG site changes during T-cell differentiation. a, Experimental design for determining 
impact of CD8+ differentiation on epigenetic clock age prediction. b, UMAP dimensionality reduction 
of CD8+ DNA methylation profiles. c, Differences between predicted epigenetic age as a function of 
donor age and CD8+ T-cell subset. d, Comparison of shared CpG site changes between age in CD8+ T 
cells and CD8+ cell subset. e, Percent of sites in four epigenetic clocks that are altered by CD8+ T-cell 
differentiation. f-i, Comparison of the (f) Hannum, (g) Horvath, (h) Horvath skin and blood, and (i) 
PhenoAge epigenetic age acceleration predictions for four CD8+ T-cell subsets. *** ANOVA p-value 
less than .001. 
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Figure 2. Preparation of tissues. a, Filtering strategy for CpG sites. b, Filtering strategy for samples. c, 

Visualization of the filtering process for differentiation-independent age-related CpGs. Blue CpGs 
(those correlated with age but not with being a naive cell) were included in the feature set, whereas gray 
CpGs were not. Green dashed line indicates linear least-squared regression line of relationship between 
CpG age correlation and CpG CD8+ naive cell correlation. d, Correlation between age and IntrinClock 
predicted age in a variety of tissues from the test set. e-h, Individual correlation plots for specific tissues 
in the test set. i, Epigenetic age vs. chronological age correlation plot for semen samples. 
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Figure 3. Epigenetic age accelerations by different clocks. a, Differences in epigenetic age 
accelerations in different CD8+ subsets generated in this study. Horvath clock predictions overlaid in 
light gray. b, Epigenetic ages of CD8+ naive cells and effector memory cells, based on data from 
GSE66564 and GSE83156. c, Epigenetic ages of CD4+ naive cells and central memory cells, based on 
data from GSE121192 and GSE71825. d, Epigenetic ages of PBMCs, CD8+ naive, CD8+ central 
memory, CD8+ combined effector and TEMRA, CD4+ naive, CD4+ central memory, B-cell naive, B-cell 
switched memory, CD16+CD56dim NK, and classical monocyte cells. e-i, Association of percentage of e, 
effector memory CD8+ cells, f, central memory CD4+ cells, g, class-switched B cells, h, CD16+ CD56dim 
NK cells, and i, classical monocytes with epigenetic age acceleration. 
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Figure 4. Distributions of CpG positions. a, Distributions of CpG positions relative to genes in 
IntrinClock sites that are hyper-methylated with age relative to background. b, Distributions of CpG 
positions relative to genes in IntrinClock sites that are hypo-methylated with age relative to background. 
c, Genomic distribution of IntrinClock CpG positions. d, HOMER analysis of the top 12 motifs enriched 
within 19bp on either side (5′  or 3′) of IntrinClock sites (40 bp total). *** one-sample proportion t-test 
p-value < .001; * < .05 
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Figure 5. IntrinClock in HIV-infected individuals. a, Increase of IntrinClock epigenetic age in HIV+ 
individuals, DNA methylation data from GSE67751. b, No increase of IntrinClock epigenetic age due to 
COVID, DNA methylation data from GSE167202. c, Epigenetic reprogramming affects fibroblast 
predicted IntrinClock age. DNA methylation data from GSE54848. d, Induced replicative senescence in 
fibroblasts leads to an increase in IntrinClock predicted age. DNA methylation data from GSE91069. T-
test p-values # < .10; * < .05; *** < .001. 
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