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Abstract

Epigenetic clocks are age predictors that use machine-learning models trained on DNA CpG
methylation values to predict chronological or biological age. Increases in predicted epigenetic age
relative to chronological age (epigenetic age acceleration) are connected to aging-associated
pathologies, and changes in epigenetic age are linked to canonical aging hallmarks. However,
epigenetic clocks rely on training data from bulk tissues whose cellular composition changes with
age. We found that human naive CD8" T cells, which decrease during aging, exhibit an epigenetic
age 15-20 years younger than effector memory CD8* T cells from the same individual. Importantly,
homogenous naive T cells isolated from individuals of different ages show a progressive increase
in epigenetic age, indicating that current epigenetic clocks measure two independent variables,
aging and immune cell composition. To isolate the age-associated cell intrinsic changes, we created
a new clock, the IntrinClock, that did not change among 10 immune cell types tested. IntrinClock
showed a robust predicted epigenetic age increase in a model of replicative senescence in vitro and
age reversal during OSKM-mediated reprogramming.
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Introduction

Epigenetic clocks, age predictors based on DNA methylation levels at selected CpG loci, have grown in
popularity as a tool to study aging and predict health outcomes in humans. The first epigenetic clocks
developed by Hannum et al.! and Horvath? showed remarkably high accuracy (R > .90) in predictions of
chronological age. These “first-generation” epigenetic clocks provide unique biological insights into the
aging process. For example, some but not all forms of senescence accelerate epigenetic clock age
predictions®. Using a later clock trained on chronological age, Kabacik et al.* identified nutrient sensing,
mitochondrial activity and stem cell composition as being associated with epigenetic aging but not
telomere attrition or genomic instability. A recent report demonstrated the development of an epigenetic
clock effective at predicting age across a variety of species, providing evidence for a shared mammalian
aging program°.

More recently, “second-generation” clocks designed to predict phenotypic aging measures have
been developed. These clocks, including PhenoAge® and GrimAge’, show strong associations with
diseases, such as depression® and mortality®. DunedinPACE is a similar marker of phenotypic aging that
captures the pace of aging rather than the accumulation of aging'®. These clocks show promise as
markers of physiological aging, but their two-step construction methodology (training a DNA
methylation predictor on measures of phenotypic rather than chronological age) adds a secondary layer
of complexity to interpretation.

Given the ability of epigenetic clocks to detect aging phenotypes across species and levels of
organization that include cells, tissues, and organs, there is significant interest in understanding the
underlying mechanism(s) enabling their function. Recent preprints have been released on this topic,
notably including one by Levine et al.!! that suggests epigenetic clocks are composites of different
modules characterized by their changes during aging and reprogramming. Novel epigenetic clocks have
been developed that seek to capture the aging phenomenon in more defined ways, including by
identifying CpG sites predicted to be causal by Mendelian randomization'? or those capturing purely
stochastic variation'®. These clocks are informative about aspects of the aging process and have the
potential to be particularly well-suited for certain use cases.

One major challenge in understanding the mechanism(s) underlying epigenetic clocks is the
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confounding effect of age-related changes in cell-type composition of many tissues. While changes in
cell-type composition are an important part of aging, they can make interpreting epigenetic clocks more
difficult as the relevant CpG sites may be cell-type-specific markers rather than those affecting cell-
intrinsic aging. Most epigenetic clocks are trained largely on blood, which sees a drop in naive CD8* T
cells with age and a corresponding increase in more terminally differentiated memory T-cell types'.
Some clocks may be more impacted by changes in cell-type composition than others, depending on how
they were constructed'®. T-cell and NK (natural killer) cell activation have been implicated as major
drivers in epigenetic clock progression'®.

Other approaches have been explored to create epigenetic age predictions that are less sensitive
to changes in cell type composition. Most notably, residuals from regression models that include
epigenetic age and proportions of several blood cell types have been used to generate an “ intrinsic
epigenetic age acceleration” measure!’. While the resulting measure is cell-type independent, it
becomes challenging to biologically interpret as the underlying signal is derived from a mixture of CpG
sites that can be either cell type-independent or cell type-dependent. Other modern approaches include
the development of single-cell epigenetic clocks'®!”, though the underlying technology will require
further maturing before it can match the sensitivity and accuracy of bulk measurement-based clocks.

In this work, we report our analysis of the differences in epigenetic age predictions derived from
four epigenetic clocks (Hannum', Horvath?, Horvath Skin and Blood?’, and PhenoAge®) for cytotoxic
CDS8* T cells at different stages of differentiation. We found that human naive CD8" T cells, which
decrease in humans during aging, exhibit an epigenetic age 15-20 years younger than effector memory
CDS8* T cells isolated from the same individual. Interestingly, naive T cells isolated from individuals of
different ages still show a progressive increase in epigenetic age. Based on these observations, which
indicate, as predicted, that current epigenetic clocks measure two independent variables, aging and
immune cell composition, we created a new clock, the IntrinClock, that does not change among 10
immune cell types tested. Remarkably, this clock shows an increase in a model of replicative senescence
in vitro and shows decreased aging during OSKM reprogramming. Lastly, we investigate the
IntrinClock’s applicability for use in studying and detecting the effects of cell-intrinsic perturbations on

aging.
Results

Existing epigenetic clock age predictions depend on CD8* T-cell differentiation state. In humans,
CDS8" T cells decrease in frequency, with a particularly pronounced loss of naive T cells during aging?'.
We used a negative bead-based selection method to isolate total T cells from seven donors of varying
ages, all of whom were positive for cytomegalovirus (CMV™). We then used FACS to isolate CD8*
naive (CD8* CD28* CD45R0O"), CDS8" central memory (CD8* CD28* CD45R0"), CD8* effector
memory (CD8" CD28 CD45R0O"), and CD8" terminal effector memory RA* (CD8" CD28” CD45R0O")
cells (Figure 1A). After DNA isolation and profiling using the Illumina Infinium MethylationEPIC™
platform, we noted a distinct clustering of CD8* naive cells away from CD8* central memory (CM),
effector memory (EM), and terminal effector memory RA* cells (TEMRA) (Figure 1B) in UMAP
analysis. Horvath clock epigenetic ages were measured in each of the CD8 T-cell subsets and found to
correlate with age across every subset. However, strikingly, naive T cells consistently showed a
significantly younger epigenetic age than other CD8" subsets (Figure 1C). This result suggests that
epigenetic clock measurements are affected by CD8* T-cell differentiation. Equally interestingly, naive
CD8" T cells from individuals of different chronological age showed an increase in epigenetic age that
was parallel to chronological age but consistently lower than the chronological age (Figure 1C). The
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same observation was made for CMs, EMs and TEMRAs except that these cells’ epigenetic age
appeared closer to the chronological age of the donors.

Next, using differential methylation analysis on methylation M-values, we identified 22,963
CpGs that changed with age and 370,383 CpGs that changed between naive CD8* T cells and CD8*
CM, CD8" EM, or CD8" TEMRA cells. Of the 22,963 aging-related CpGs, 9,992 were also affected by
differentiation (Figure 1D). To understand how this could affect epigenetic clock predictions, we
investigated the proportion of CpG sites used for epigenetic age prediction in the Hannum, Horvath,
Horvath Skin and Blood, and PhenoAge clocks that we identified were affected by CD8* T-cell
differentiation. In all four clocks, more than a third of the predictive sites were changed with
differentiation (Figure 1E), and all four had a difference in age acceleration for CD8" T-cell subsets. In
all clocks, CD8" TEMRA and CD8" EM cells were predicted to be older than CD8* CM cells, which
were predicted to be older than CD8* naive cells (Figures 1F-11). The differences in epigenetic ages
among the CD8" T-cell subsets varied among clocks. For example, PhenoAge predicts CD8" naive cells
to be over 60 years younger than the donor chronological age, but the difference was much smaller for
both Horvath clocks with an epigenetic age prediction of only approximately 12 years lower than
chronological age (Figures 1F - 11).

Development of a novel epigenetic clock (IntrinClock) resistant to changes in immune cell
composition. Given the overlap of DNA methylation signatures of cellular aging and CD8*
differentiation, we sought to create a new epigenetic clock that is unaffected by changes in immune cell
composition. We began by generating a database of 14,601 DNA methylation samples from 71 different
datasets'*>_ generated on either the Illumina Infinium™ HumanMethylation450 (450K) or the
Ilumina Infinium™ MethylationEPIC (EPIC) array, all sourced from the Gene Expression Omnibus
(GEO) database or the Genotype-Tissue Expression project (GTEx) (Supplementary Table 1). The
number of samples per dataset ranged from six to 1,218, with a mean number of samples per dataset of
213 (Figure 4A). The distribution of sexes was approximately equal (Figure S4B). Samples were derived
from a variety of tissues with the majority from blood (Figure S4C), and the DNA methylation assay
platform was split roughly evenly between the 450K and the EPIC array. (Figure S4D).

Once the database of samples was assembled, we performed a series of filtering and quality
control steps. We filtered out all samples that were missing more than 10% of CpG sites measured by
the 450K array, those that were derived from cancerous tissue, and those that were derived from
germline tissues. We then removed outliers, defining outliers as those with principal components more
than two interquartile ranges away from the mean (Figure 2B). After performing a random 75-25
training/test split, 9104 samples were used to train the model and 2994 were used to validate it.

Given the unique methylation pattern (Figure 1B) and quiescent biology®! of naive CD8* T cells, we
aimed to use them as a basis on which to eliminate CpGs linked to CD8* T-cell differentiation and
performed additional filtering steps. When constructing our database of DNA methylation data, we
initially collected all CpG sites measured by the 450K array for all samples. To increase reliability, we
first filtered out CpG sites that were present in fewer than 90 percent of samples. To ensure forward
compatibility, we also included only CpG sites that were present on the Illumina Infinjum™
MethylationEPICv2.0 array. Next, we opted to remove any CpG sites that were correlated with a sample
being a naive CD8* sample (R > .3) within our CD8" subset data (i.e., CpG sites whose methylation
patterns were distinct in CD8" naive cells as compared to CD8* CM/EM/TEMRA cells). We also opted
to include only those CpG sites correlated with age (R > .3) (Figure 2C), to decrease the search space for
the elastic net algorithm to identify age-predictive sites. Interestingly, we observed a negative
correlation-of-correlations between the age correlation and naive CD8" correlation of CpG sites (R = -
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45) (Figure 2C), indicating that CpG sites that are hypermethylated with age tend to be hypomethylated
in naive CD8" cells, and vice-versa. We utilized the elastic net algorithm on the remaining 55,896 CpGs
to generate a new epigenetic clock based on 410 CpG sites. To increase accuracy and reduce the number
of necessary prediction sites, we used a novel approach whereby we employed the elastic net algorithm
a second time on the training data filtered only on the 410 CpG sites used for the clock. This reduced the
number of predictive CpG sites in the final model (IntrinClock) to 381, and reduced error by
approximately 3 months (Figure S5).

IntrinClock is accurate across tissues, and its age predictions are not affected by adaptive immune
cell compositional changes. Next, we tested the IntrinClock on a variety of tissues in the test set and
observed high overall prediction accuracy (R ~ .972, mean absolute error (MAE) ~ 3.83) (Figure 2D).
Age prediction errors on blood and saliva were particularly low (MAE ~ 3.25, MAE ~ 3.21,
respectively) (Figure 2E, 2G). Tissues with less immune infiltration also had high epigenetic age
correlations with chronological age (R ~ .944 for brain, R ~ .841 for skin). We were interested in
discovering whether the IntrinClock would predict chronological age in semen samples, as previous
epigenetic clocks have shown significant age deceleration in sperm?. We found that epigenetic age
predictions of semen had only a weak correlation with chronological age (R ~ .32), and the predicted age
of sperm samples, using a previously generated dataset®?, appears to consistently be ~ 12 (Figure 21).

Importantly and as expected, IntrinClock applied to our generated CD8* DNA methylation data
showed no epigenetic age prediction differences among CD8" T-cell subsets (Figure 3A). As these
samples were included in the training set for clock construction, we validated our approach on two
external datasets”** with CD8" naive and CD8" EM DNA methylation data and found no differences in
epigenetic age (paired t-test p-value > .05) (Figure 3B). We also tested whether our clock could find a
shift in epigenetic age between CD4* naive and CD4* CM cells, as the proportion of CD4* naive cells
also decreases with age®®. Using two external data sets”*’, we discovered no evidence for a shift in
epigenetic age between CD4* naive and CM cells (Figure 3C) (paired t-test p-value > .05), despite our
filtering strategy being based only on CD8™ cells.

We also tested whether the IntrinClock would be similarly unperturbed in other immune cell
types, particularly naive and memory B cells, which change in frequency with age”®. We sorted CD8*
naive (CD8*CD28*CD45R0"), CD8* CM (CD8*CD28"CD45R0O"), CD8* combined EM/TEMRA
(CD8*CD28"), CD4" naive (CD4"CD28"CD45R0O"), CD4* CM (CD4*CD28*CD45R0O™), B-cell naive
(CD3°CD19*CD271gD"), class-switched B cells (CD3"CD19*CD27*IgD"), CD16"CD564im NK cells
(CD3CD19CD564imCD16%), classical monocytes (CD3"*CD19°HLADR*CD14*CD164im), and whole-
peripheral blood mononuclear cell (PBMC) samples from nine donors aged 30—-68 and collected DNA
for methylation analysis. To increase cell recovery, we performed two sequential rounds of positive
selection for CD8* and then CD4" cells using magnetic enrichment kits prior to flow sorting, similar to a
published strategy*®. Concurrently, we analyzed the PBMC samples using high-parameter spectral flow
cytometry to empirically determine whether changes in immune cell composition of the PBMC samples
would impact predicted epigenetic age of the whole PBMC fraction.

As predicted, we found no evidence for an association between cell subset and epigenetic age
prediction (Figure 3D) or between cell subset and epigenetic age acceleration (ANOVA p-value > .05)
(Figure S6A). This remained consistent whether epigenetic age acceleration was defined as the
difference between predicted age and chronological age or as the residual after regressing predicted
epigenetic age on chronological age. In contrast, cell subset and epigenetic age acceleration were
significantly correlated, according to the Hannum (Figure S6B), Horvath (Figure S6C), Horvath Skin
and Blood (Figure S6D), and PhenoAge (Figure S6E) clocks. To further investigate how resistant
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IntrinClock is to the change in immune cell composition, we analyzed the correlation between the
PBMC epigenetic age and percentage of several PBMC subsets. As expected, we identified no
significant relationship between the PBMC epigenetic age acceleration and percentage of CD8* EM
cells (Figure 3E), CD4* CM cells (Figure 3F), class-switched B cells (Figure 3G), CD16* CD564im NK
cells (Figure 3H), or classical monocytes (Figure 3I), relative to their parent populations (Pearson’ s
correlation p-value > .05). Combined with our observations of the IntrinClock’ s high accuracy across
many tissues, these observations indicate that shifts in immune cell composition do not impact
IntrinClock age predictions.

IntrinClock is highly enriched for CpG sites upstream of transcription start sites, and its sites are
enriched for motifs whose TFs are implicated in cancer. One central challenge in understanding
epigenetic clocks comes from a lack of knowledge regarding to what extent epigenetic clocks are
tracking a cell-autonomous or, conversely, a cell-ensemble phenomenon®. Our data provide evidence
that current epigenetic clocks represent a composite of at least two variables, change in DNA
methylation associated with aging in a cell intrinsic manner (IntrinClock), and a change in cell
composition associated with aging. Due to the IntrinClock’s resistance to changes in immune cell
composition, the CpG sites that constitute the clock may have more readily interpretable cell-
autonomous biology as they are less likely to track markers of changing immune cell composition. This
prediction could be particularly helpful in the context of identifying a functional or causal relationship
between epigenetic clock sites and aging. We found that the sites in the IntrinClock that are
hypermethylated with age are enriched within the region 200—1500 bp upstream of gene transcription
start sites, and correspondingly strongly depleted in sites distant from genes (25% vs. 15%) (Figure 4A).
In sites that are hypomethylated with age, there was a significant enrichment within the first exon of
genes (8% vs. 5%) (Figure 4B). DNA methylation changes within 1500 bp of the transcription start site
are most closely linked to alterations in gene expression'%. Similarly, IntrinClock CpGs are enriched for
being located near CpG islands (45% vs. 31%) and are depleted from open sea regions (20% vs. 36%)
(Figure 4C).

Transcription factor activity and DNA methylation are biologically connected both directly, as in
the case of E2F family transcription factors requiring methylated DNA to bind!®!, and indirectly, as in
the case of passive methylation from lack of TF binding'%*!%, We investigated regions within 40 bp of
IntrinClock CpG sites and used HOMER ! to identify enriched motifs associated with transcription
factor-binding sites (Figure 4D). Motifs associated with TFAP2C, ZNF341, ZFP57, RUNX1, E2F3,
HOXAL1, SP4, MYB, GRHL2, MGA, IRF3, and INSM1 binding were significantly enriched, compared
to a 40-bp background of basepairs surrounding CpG sites that are assayed by both Illumina Infinium
HumanMethylation450K and MethylationEPIC chips. Aberrant activity of each corresponding
transcription factor has been associated with cancer development or worsened prognosis’>!%-115 Some
of these, such as E2F3'!'% and IRF3!!”, have been associated with aging-related diseases, whereas a
connection for others has yet to be discovered.

We were interested in exploring general patterns of shifts in IntrinClock CpGs with age. To avoid
uneven distribution of tissue samples across age groups, we focused our analysis on blood samples.
Given that a linear regression model was used to build the IntrinClock, we were not surprised that the
two most prevalent patterns were a linear decrease and increase, respectively, of DNA methylation with
age (Figure S7). However, we also found several CpGs (Clusters 4, 5, and 6) where the CpGs reverse
their age-related direction of DNA methylation around the age of 21-30. This indicates that, for a subset
of CpGs in the IntrinClock, there is a distinction between aging prior to and post sexual maturity.
Interestingly, these CpGs were 2.3-fold (34% vs. 14.9%) enriched for being located 200-1500bp
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upstream of a TSS, and 2-fold (19.4% vs. 10%) enriched for being located on a genomic south shore
region (Figure S8), which are stronger enrichments than identified for IntrinClock sites generally
(Figures 4A —4C).

IntrinClock epigenetic age is accelerated in models of intrinsic hallmarks of aging and in HIV*
individuals. HIV was one of the earliest conditions to be associated with acceleration of epigenetic
age’*. HIV infection is associated with a plethora of clinical manifestations and morbidities consistent
with accelerated aging. However, HIV also causes major changes in immune cell composition''®, which
could skew previous versions of epigenetic clocks. As a result, it is unclear whether early results
showcasing epigenetic age acceleration during HIV infection are due to changes in blood cell
composition or an accelerated intrinsic rate of aging. Using the IntrinClock on previously generated data
from HIV* individuals and controls, we identified an HIV-associated increase in epigenetic age of two
years, supporting the model that HIV leads to accelerated aging independently of shifts in immune cell
composition (Figure SA). We also sought to investigate whether the IntrinClock would be accelerated by
other acute immune-related diseases. Using a dataset primarily generated in 2020, we found that the
IntrinClock age prediction was not affected by COVID-19 (Figure 5B), contrary to findings in other
epigenetic clocks where COVID-19 infection was associated with an increase in epigenetic age'!®. As
the data analyzed in this study were generated early in the COVID-19 pandemic, most individuals would
have been acutely, rather than chronically, ill with COVID-19. It remains to be seen whether the
IntrinClock will predict a higher epigenetic age in those who are infected with COVID-19 for a
prolonged period (i.e., long COVID).

One application of epigenetic clocks is in tracking the effect of rejuvenating or aging
interventions on cells. As the IntrinClock was developed on sites that are not shifting due to immune cell
compositional changes, we reasoned it may be more sensitive to such interventions. Consistent with this
idea, we used an external dataset'?° to find that the IntrinClock is sensitive to Yamanaka factor—
mediated reprogramming in fibroblasts. The study authors sorted cells positive for TRA-1-60*, a marker
for de-differentiation, at six time points after initiation of reprogramming. We investigated IntrinClock
epigenetic age predictions at each time point and found that, from an initial mean predicted epigenetic
age of 31, the age prediction decreased to 20 after 11 days of OSKM-mediated reprogramming. A mean
age of 0 was reached after 20 total days of reprogramming (Figure 5C). Conversely, using publicly
available data using an in vitro fibroblast model of replicative cellular senescence'?!, we found that the
IntrinClock was progressively accelerated with cell divisions as cells become progressively more
senescent. IntrinClock increased from a baseline predicted age of 10 to 15 after 14 population doublings,
and then further increased to 20 after another 14 population doublings (Figure 5SD). This effect was
comparable to that seen using the PhenoAge clock, and stronger relative to the Hannum, Horvath, and
Horvath Skin & Blood clocks (Figure S9).

Discussion

Epigenetic clocks hold great promise for the study of longevity due to their high correlation with age
and (particularly for second-generation clocks) association with aging-related disease state. As
diagnostic tools, they have the potential to serve as important predictive biomarkers for assessing
biological age, determining risk for age-associated diseases, and assessing the efficacy of interventions
that target the aging process'?>"'2%. Recent technical advances, such as the development of principal
component clocks'?” and novel techniques for cost reduction'?®, promise to increase reliability and
usability further. However, their current status as a composite of multiple aging signals makes them
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difficult to interpret and to link to specific biological processes. As an example, a recent study in
patients post-COVID 19 infection demonstrated a significant PhenoAge epigenetic age acceleration in
individuals over the age of 50, but an epigenetic age reversal for those under the age of 50''°. Further,
the manner in which clocks track healthspan is not fully overlapping, as clocks can be independently
predictive of mortality even when analyzed jointly!?. This challenge in interpretation is equally
important for cellular models of the hallmarks of aging. In models of senescence or reprogramming, the
sensitivity or even direction of the perturbation on predicted epigenetic age can dramatically differ,
depending on the epigenetic clock used. For example, in this study, we identified the Hannum clock as
predicting an age reversal in a fibroblast model of cellular replicative senescence (Figure S9).

The immune system changes dramatically with aging, and its decline can exacerbate or lead to
many aging-related pathologies'*’. Clocks built solely on inflammatory markers can be used to predict
age and risk of multimorbidity'*'. However, the presence of CpG sites that track primarily with immune
cell markers makes epigenetic clocks applied to cell-intrinsic effects (e.g., cellular reprogramming in
fibroblast cell culture) difficult to understand. Such sites can introduce background noise to the resulting
measurement.

Here, using sorted CD8" T-cell subsets, we observed that naive T cells consistently showed a
younger epigenetic age than other CD8" subsets (Figure 1C), ranging from a 10-year average age under-
prediction in some clocks to as high as a 60-year underprediction in others. This suggests that epigenetic
clock measurements are significantly affected by CD8" T-cell differentiation. These observations
reinforce the finding that current epigenetic clocks represent the integration of at least two variables: cell
intrinsic aging and changes in immune composition during aging.

To isolate these variables, we developed a novel epigenetic clock that is based on CpG sites that
do not change with CD8* T-cell differentiation (IntrinClock). We further observed that this clock
predicts the same age in each individual across a wide variety of immune cell types. Interestingly, a
filtering step based on naive CD8" T cells can generate a clock that is not affected by differentiation in
cells from different lineages, such as CD4* cells or even B cells. This indicates part of a unique “CD8*
naive” signal may, in fact, be a conserved quiescence program shared by a variety of immune cells. This
observation is supported by our finding that methylation patterns associated with naive CD8* T cells
have a negative correlation with those changing with aging (Figure 2C). A connection between
quiescence and aging is found in a wide variety of cell types, including neural stem cells'2.

The IntrinClock’s higher proportion of sites near transcription start sites and CpG islands and its
expected relationship with reprogramming and senescence suggest that it is tracking an intrinsic cellular
aging program. Enrichment of IntrinClock CpG sites within motifs bound by transcription factors linked
to cancer progression is consistent with a recent review investigating the connection between epigenetic
clocks, global hypomethylation, cancer, and aging!'**. It will be important in the future to test whether
acceleration of the IntrinClock is linked to particular disease states. This application could be a novel
tool used to distinguish age-related diseases caused by aberrant cell-to-cell interactions from those
caused by intrinsic cellular dysfunction.

The approach described here reduces the potential of cellular composition changes to be a
confounder, particularly in blood or saliva samples, and will likely increase our understanding of
biological aging and age-associated diseases. The IntrinClock holds the promise of being more sensitive
to cell-intrinsic rejuvenation approaches, as its constituent CpG sites are not affected by immune cell
composition. It may also be more closely linked to CpG sites with a functional or even causal
relationship with the aging process. Overall, IntrinClock represents a new instrument to add to the aging
biomarker toolkit, with a potential wide variety of applications and uses.
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Methods
Ethics approval. NIH provided approval for use of phs000424/GRU (GTEXx) age data via the dbGaP
database approval system. Ethics approval was not required for other datasets generated.

Immune cell isolation, sorting, and DNA extraction. PBMCs were extracted from leukopheresis
chambers from CMV* donors. Blood was first diluted 1:1 with PBS with 2% FBS. Diluted blood was
slowly layered on top of 12 mL of Ficoll in a 50-mL Falcon conical tube. The tube was then centrifuged
for 30 minutes at 2000 rpm at 21°C without applying a break. The layer containing white blood cells
was removed, diluted with FBS-supplemented PBS, and centrifuged for 3 minutes at 2500 rpm. The cell
pellet was re-suspended in 15 mL of ACK lysis buffer and incubated for 3 minutes. The cells were
topped up with PBS with 2% FBS, centrifuged, and resuspended.

For the initial CD8" epigenetic clock characterization experiment, an EasySep™ Human T Cell
Isolation kit was used to extract T cells from the PBMC fraction. T cells were then washed, stained with
1:500 LIVE/DEAD™ Fixable Near-IR Dead Cell staining kit, washed, stained with an antibody cocktail
(Supplementary Table 2), and washed again. FACS was performed on a BD FACSAria™ II instrument.
DNA was isolated using a Zymo Quick-DNA™ Microprep Plus kit.

For the second comprehensive immune cell-sorting experiment, 2 million PBMCs were frozen
immediately after extraction. The remaining cells were then positively selected for a CD4 fraction using
the EasySep™ Human CD4 Positive Selection Kit II. The CD4 cells were stained with 1:500
LIVE/DEAD™ Fixable Near-IR Dead Cell staining kit, washed, and stained with CD4/CD8 antibody
cocktail (Supplementary Table 2), and the remaining cells were positively selected for a CD8 fraction
using the EasySep™ Human CD8 Positive Selection Kit II. Both CD8* cells and remaining PBMCs
were washed, stained with 1:500 LIVE/DEAD™ Fixable Near-IR Dead Cell staining kit and washed
again. CD8" cells were stained with a CD4/CD8 antibody cocktail (Supplementary Table 2), and the
remaining PBMCs were stained with a B Cell/NK Cell/Monocyte antibody cocktail (Supplementary
Table 3), after blocking with human IgG. All three fractions were then subjected to FACS analysis using
a BD FACSAria™ II instrument. DNA was isolated using a Zymo Quick-DNA/RNA™ Microprep Plus
kit.

For both experiments, DNA was quantified using Qubit™ HS dsDNA quantification reagents.
Bisulfite conversion and DNA methylation assessment were performed by Diagenode. For all
experiments involving FACS, post-sort validations were performed to verify cell sort purity by
analyzing sorted populations via flow cytometry. The Clock Foundation assisted with facilitating DNA
methylation assessment and data transfer for the initial CD8* experiment.

High-dimensional flow cytometry. PBMCs were transferred to a 96-well V-bottom plate. Cells were
re-suspended in a 1:500 dilution of LIVE/DEAD™ Fixable Blue Dead Cell Stain kit in cold PBS and
incubated for 30 minutes in the dark. Cells were then washed and blocked with human IgG for 30
minutes. They were then washed twice and stained with a PBMC phenotyping antibody cocktail
(Supplementary Table 4). Cell phenotyping was performing on a Cytek Aurora™ instrument and
analyzed using FlowJo™.

DNA methylation analysis and pre-processing. .idat files were converted into beta values by using the
minfi R package'*, with a functional normalization pre-processing step'*. For differential methylation
analyses, beta values were converted to M-values through the formula M = log>(B / (1-B)). The R

package umap was used for UMAP dimensionality reduction'3®.
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Dataset collection and pre-processing. All datasets used to build the novel epigenetic clock were either
generated in this study or downloaded from GEO. Exact ages were obtained for GTEx data through
dbGaP'¥, as exact chronological ages of tissues were required. For constructing the clock, the
assembled database of DNA methylation data was first culled of any samples that had more than 10% of
CpGs missing and of any CpGs that had more than 10% samples missing. All samples derived from
cancer tissues were removed. To ensure forward compatibility, we filtered out CpGs that were not on the
Infinium MethylationEPIC v2.0 array. Based on our CD8" DNA methylation data, we tested the
correlation of each CpG methylation with age and with naive CD8" T cells. To assess whether CpGs
were correlated with naive CD8™ cells, we binarized each naive sample as “ 1” and each non-naive
(CM, EM, TEMRA) sample as “ 0” and then used the R cor function to compute a Spearman’s
correlation between methylation and naive T-cell state. All CpGs with an absolute value correlation of .3
or greater with naive T-cell state were removed, and all CpGs with an absolute value correlation of .3 or
less with age were removed.

Once CpGs and samples were filtered, the samples were split 75% for the training set and 25%
for the test set. Imputation of missing was performed separately between training sets and test sets, and
separately between different tissues within training sets and test sets (imputation performed using the
impute R package'3®). Outliers were detected and removed using the outlyx function in the R watermelon
package'*. Untransformed beta values were used for model creation and age prediction. Prior to training
the model, ages were transformed using Horvath’s formula used in his original epigenetic clock®. An
elastic net model using glmnet'*® was used to develop the IntrinClock, with alpha value set at .5. Once
the first model was generated, the training data were a subset of only those CpGs with non-zero
coefficients, which were used for training the final model.

Statistical methods. For comparisons between two measurements from one individual, as in Figures 1B
and 1C, paired t-tests were used for assessment of significant changes. For multiple comparisons
between a group and a background reference, as in Figures 4A, 4B, and 4C, one-sample proportional
tests using the prop.test function from the R stats package were utilized with Bonferroni multiple-
comparisons correction. For samples of multiple measurements, repeated measures ANOVA
implemented via the statix packages'*! was used to test significance. Most graphs and figures were
created with aid of the ggplot R package'**.

Motif enrichment and pattern analyses. For motif enrichment analysis, the HOMER software tool
was utilized'®. To define sequences of interest, we investigated 40-bp windows surrounding the 381
CpG sites that compose the IntrinClock. As a background, we investigated 40-bp windows around CpG
sites in our dataset immediately before removal of CpG sites associated with naive CD8* cells and those
not associated with aging. For investigating patterns of IntrinClock CpG shifts with age, beta values
from blood samples were converted to M values, after which the degPatterns function from the
DEGreport R package'* was utilized. Patterns with fewer than 10 CpG sites were discarded from
analysis. Ages were binned into groups of 10 (0-10, 11-20, 21-30, 31-40, 41-50, 51-60, 61-70, 71-80,
81%). Each bin was confirmed to have at least 100 samples.

Epigenetic age acceleration analysis. To compute DNA methylation age for each epigenetic clock, the
R methylclock package was utilized'**. For experiments containing a limited number of donors or cell
types, epigenetic age acceleration was defined as the difference between epigenetic age prediction and
chronological age. For larger studies, epigenetic age acceleration was defined as the residual after
regressing predicted epigenetic age on chronological age.
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Data availability

DNA methylation profiles generated in this study will be submitted to the GEO public repository prior
to publication. Code used to generate the results in this study will be made public on Github prior to
publication.
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Figure 1. CpG site changes during T-cell differentiation. a, Experimental design for determining
impact of CD8" differentiation on epigenetic clock age prediction. b, UMAP dimensionality reduction
of CD8* DNA methylation profiles. ¢, Differences between predicted epigenetic age as a function of
donor age and CD8* T-cell subset. d, Comparison of shared CpG site changes between age in CD8" T
cells and CDS8™ cell subset. e, Percent of sites in four epigenetic clocks that are altered by CD8* T-cell
differentiation. f-i, Comparison of the (f) Hannum, (g) Horvath, (h) Horvath skin and blood, and (i)
PhenoAge epigenetic age acceleration predictions for four CD8* T-cell subsets. *** ANOVA p-value
less than .001.
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Figure 2. Preparation of tissues. a, Filtering strategy for CpG sites. b, Filtering strategy for samples. c,
Visualization of the filtering process for differentiation-independent age-related CpGs. Blue CpGs
(those correlated with age but not with being a naive cell) were included in the feature set, whereas gray
CpGs were not. Green dashed line indicates linear least-squared regression line of relationship between
CpG age correlation and CpG CD8™ naive cell correlation. d, Correlation between age and IntrinClock
predicted age in a variety of tissues from the test set. e-h, Individual correlation plots for specific tissues
in the test set. i, Epigenetic age vs. chronological age correlation plot for semen samples.
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Figure 3. Epigenetic age accelerations by different clocks. a, Differences in epigenetic age
accelerations in different CD8" subsets generated in this study. Horvath clock predictions overlaid in
light gray. b, Epigenetic ages of CD8" naive cells and effector memory cells, based on data from
GSE66564 and GSE83156. ¢, Epigenetic ages of CD4" naive cells and central memory cells, based on
data from GSE121192 and GSE71825. d, Epigenetic ages of PBMCs, CD8" naive, CD8" central
memory, CD8* combined effector and TEMRA, CD4* naive, CD4" central memory, B-cell naive, B-cell
switched memory, CD16*CD564im NK, and classical monocyte cells. e-i, Association of percentage of e,
effector memory CD8* cells, f, central memory CD4" cells, g, class-switched B cells, h, CD16" CD564im
NK cells, and i, classical monocytes with epigenetic age acceleration.
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Figure 4. Distributions of CpG positions. a, Distributions of CpG positions relative to genes in
IntrinClock sites that are hyper-methylated with age relative to background. b, Distributions of CpG
positions relative to genes in IntrinClock sites that are hypo-methylated with age relative to background.
¢, Genomic distribution of IntrinClock CpG positions. d, HOMER analysis of the top 12 motifs enriched
within 19bp on either side (5" or 3’) of IntrinClock sites (40 bp total). *** one-sample proportion t-test
p-value < .001; * < .05
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Figure 5. IntrinClock in HIV-infected individuals. a, Increase of IntrinClock epigenetic age in HIV*
individuals, DNA methylation data from GSE67751. b, No increase of IntrinClock epigenetic age due to
COVID, DNA methylation data from GSE167202. ¢, Epigenetic reprogramming affects fibroblast
predicted IntrinClock age. DNA methylation data from GSE54848. d, Induced replicative senescence in
fibroblasts leads to an increase in IntrinClock predicted age. DNA methylation data from GSE91069. T-
test p-values # < .10; * <.05; *** <.001.
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