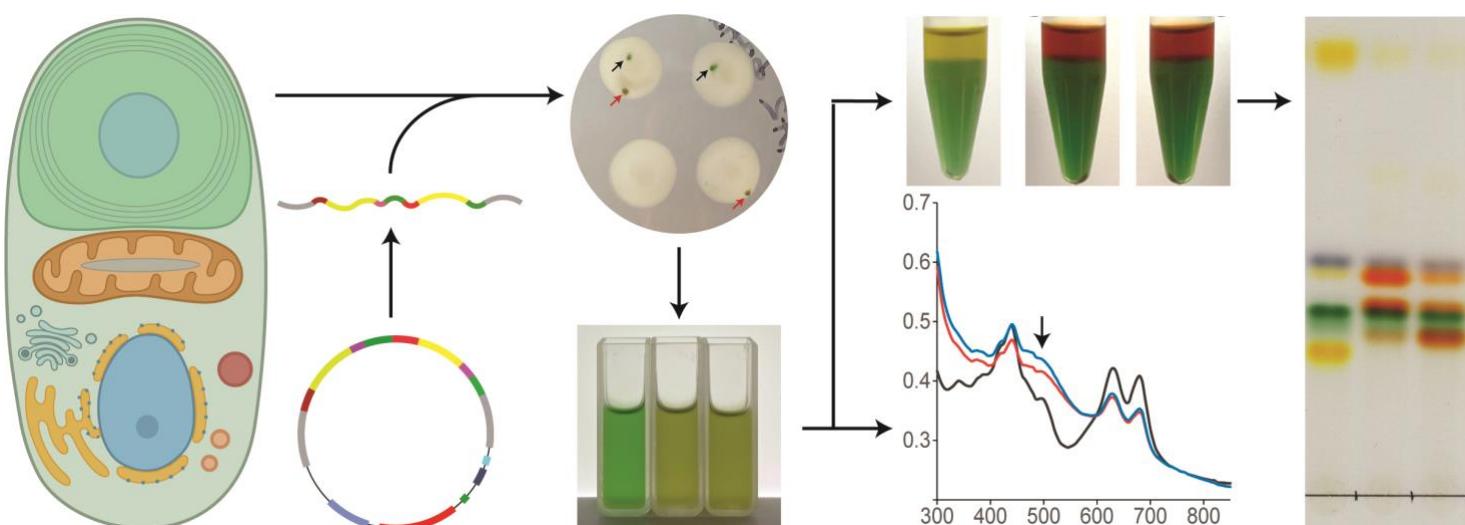


1 **Engineered ketocarotenoid biosynthesis in the polyextremophilic red microalga**
2 ***Cyanidioschyzon merolae* 10D**
3
4 **Subtitle: Turning an extreme red alga from cyan to red with green algal**
5 **ketocarotenoid genes**

6
7 **Author names and affiliations:** Mark Seger¹, Fakhriyya Mammadova¹, Melany Villegas-
8 Valencia², Bárbara Bastos de Freitas², Clarissa Chang¹, Iona Isachsen¹, Haley Hemstreet¹,
9 Fatimah Abualsaud², Malia Boring¹, Peter J. Lammers^{1*}, and Kyle J. Lauersen^{1,2*}

10
11 ¹Arizona Center for Algae Technology and Innovation, Arizona State University, Mesa,
12 United States.

13 ²Bioengineering Program, Biological and Environmental Sciences and Engineering Division,
14 King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900,
15 Kingdom of Saudi Arabia


16
17 ***Co-Corresponding Authors:**
18 peter.lammers@asu.edu
19 kyle.lauersen@kaust.edu.sa

20
21 **Present/Permanent addresses:**
22 ¹Arizona State University, 7418 Innovation Way South, Mesa, AZ 85212, United States
23
24 ²King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900,
25 Kingdom of Saudi Arabia

26
27

28 **Abstract**

29 The polyextremophilic Cyanidiales are eukaryotic red microalgae with promising
30 biotechnological properties arising from their low pH and elevated temperature requirements
31 which can minimize culture contamination at scale. *Cyanidioschyzon merolae* 10D is a cell
32 wall deficient species with a fully sequenced genome that is amenable to nuclear transgene
33 integration by targeted homologous recombination. *C. merolae* maintains a minimal
34 carotenoid profile and here, we sought to determine its capacity for ketocarotenoid
35 accumulation mediated by heterologous expression of a green algal β -carotene ketolase
36 (BKT) and hydroxylase (CHYB). To achieve this, a synthetic transgene expression cassette
37 system was built to integrate and express *Chlamydomonas reinhardtii* (*Cr*) sourced
38 enzymes by fusing native *C. merolae* transcription, translation and chloroplast targeting
39 signals to codon-optimized coding sequences. Chloramphenicol resistance was used to
40 select for the integration of synthetic linear DNAs into a neutral site within the host genome.
41 *CrBKT* expression caused accumulation of canthaxanthin and adonirubin as major
42 carotenoids while co-expression of *CrBKT* with *CrCHYB* generated astaxanthin as the major
43 carotenoid in *C. merolae*. Unlike green algae and plants, ketocarotenoid accumulation in *C.*
44 *merolae* did not reduce total carotenoid contents, but chlorophyll a reduction was observed.
45 Light intensity affected global ratios of all pigments but not individual pigment compositions
46 and phycocyanin contents were not markedly different between parental strain and
47 transformants. Continuous illumination was found to encourage biomass accumulation and
48 all strains could be cultivated in simulated summer conditions from two different extreme
49 desert environments. Our findings present the first example of carotenoid metabolic
50 engineering in a red eukaryotic microalga and open the possibility for use of *C. merolae* 10D
51 for simultaneous production of phycocyanin and ketocarotenoid pigments.

52

53

54 **Keywords:**

55 Microalgae. Red Algae. Ketocarotenoids. Cyanidiales. Polyextremophiles. Astaxanthin.
56 Canthaxanthin.

57

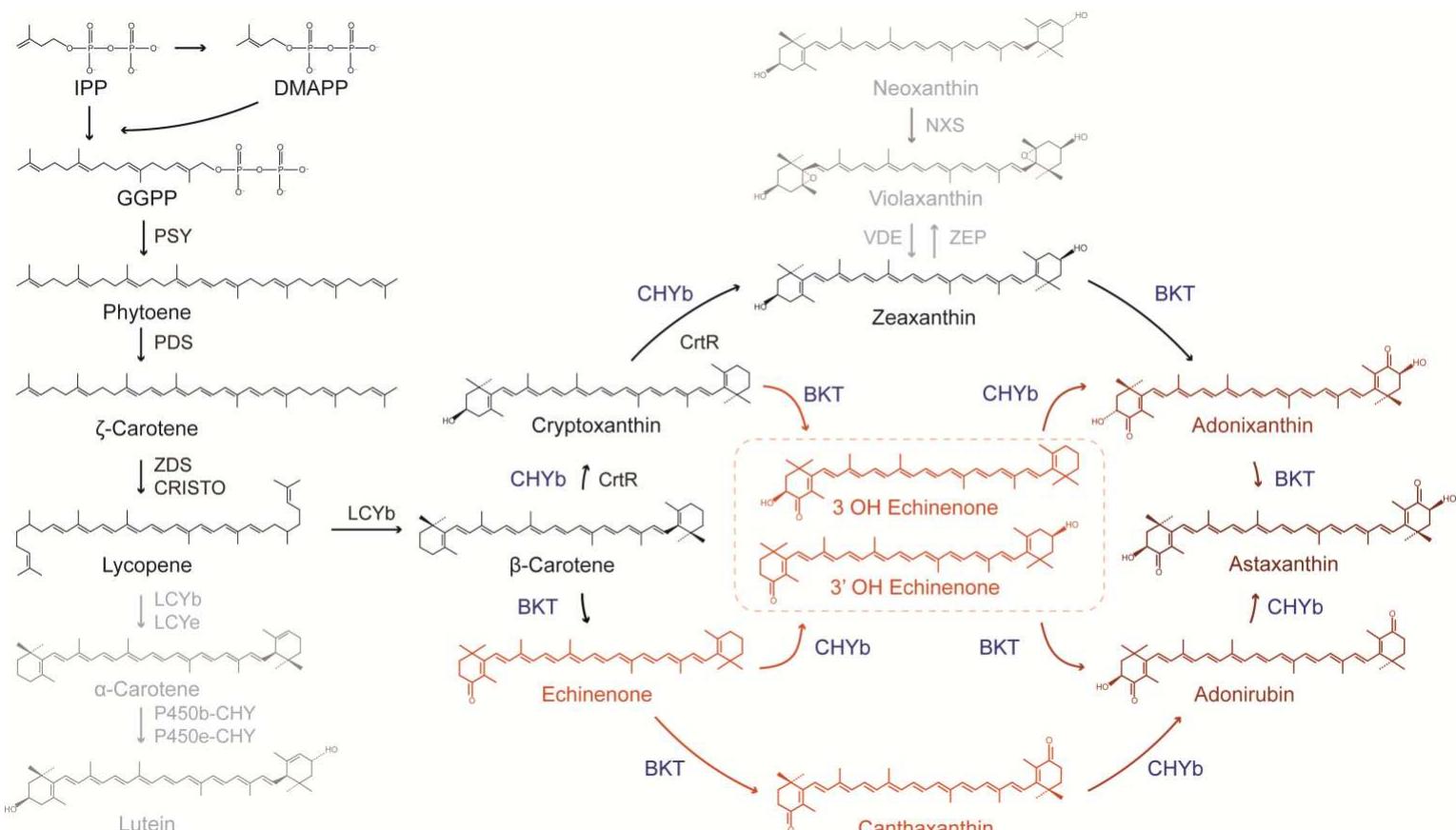
58 **Abbreviations:**

59 CDW – cell dry weight
60 YFP – mVenus yellow fluorescent protein
61 *CrBKT* – *Chlamydomonas reinhardtii* β -carotene ketolase
62 *CrCHYB* – *C. reinhardtii* β -carotene hydroxylase
63 CAT – Chloramphenicol transferase
64 CTP – chloroplast targeting peptide
65 AFDW – ash free dry weight
66 PC – phycocyanin
67 HR – homologous recombination
68 TLC – thin layer chromatography
69 HPLC – high-performance liquid chromatography

70 **1. Introduction**

71 Microalgae are diverse photosynthetic organisms which can be found across the globe in
72 almost every environment, having evolved the capacity for growth on carbon dioxide as a
73 carbon source and the use of (sun)light for energy. Of the many extreme global
74 environments colonized by algae, acidic hot-springs present one of the harshest.
75 Nevertheless, red microalgae from the Class Cyanidiales thrive in water, soil and endolithic
76 environments associated with these hot-springs at temperatures up to 56 °C and pH levels
77 as low as 0.5 (Gross, 2000). The Cyanidiophyceae typically represent the only
78 photosynthetic eukaryotic organisms found tolerating these extreme environments.
79 *Cyanidioscyzon merolae* 10D was isolated from volcanic fields near Naples, Italy (Matsuzaki
80 et al., 2004). It is an obligate photoautotroph with a small genome, one of the first telomere-
81 telomere (~16 Mbp) complete genome sequences of any model species (Nozaki et al.,
82 2007). Robust tools for genetic manipulation have been developed enabling precise
83 homologous recombination (HR) directed by 200-500 bp targeting sequences (Fujiwara et
84 al., 2017; Takemura et al., 2019a, 2019b). As a result, *Cyanidioschyzon merolae* 10D has
85 emerged as the simplest eukaryotic model cell system with a growing number of useful
86 engineered traits (Miyagishima and Tanaka, 2021). These include the introduction of a
87 cyanobacterial acyl-ACP reductase that resulted in increased triacylglycerol accumulation
88 without growth inhibition (Sumiya et al., 2015) and the incorporation of a Galdieria
89 sulphuraria sugar transporter that enabled heterotrophic growth on glucose (Fujiwara et al.,
90 2019).

91 The focus of this study is the modification of native carotenoid pigment biosynthesis in *C.*
92 *merolae* 10D. Ironically, the red microalgae are blue-green in color like cyanobacteria as
93 they share the trait of phycocyanin use as a light-harvesting photopigment and only contain
94 chlorophyl a. *C. merolae* 10D has a minimal carotenoid profile lacking alpha-carotene and
95 lutein, it accumulates β-carotene and zeaxanthin as its terminal carotenoids and completely
96 lacks violaxanthin and neoxanthin (Figure 1) (Cunningham et al., 2007). The capacity for
97 HR transgene integration into its nuclear genome, minimal intron content, and general ease
98 of handling make *C. merolae* 10D an exciting candidate for green (red) synthetic biology
99 and metabolic engineering investigations (Lang et al., 2020; Pancha et al., 2021). Its
100 extreme growth requirements also allow *C. merolae* to be cultivated with minimal risk of
101 contamination and could be a promising host for industrial-scale algal waste-stream
102 conversion processes (Delanka-Pedige et al., 2019; Selvaratnam et al., 2022). In addition,
103 Cyanidiales phycocyanin is more thermostable than that currently sourced from *Arthrosphaira*


104 *platensis* (Spirulina) and is a potentially valuable co-product which can be a co-product from
105 engineered cell biomass (Rahman et al., 2017).

106 Recently, advances in transgene design opened metabolic engineering in the green model
107 microalga *Chlamydomonas reinhardtii*, in which native carotenoid profiles have been
108 modified to produce the ketocarotenoids canthaxanthin and astaxanthin (Amendola et al.,
109 2023; Lauersen, 2019; Perozeni et al., 2020). Both ketocarotenoids have value for their high
110 antioxidant properties, application as food coloring, as well as pharmacological uses (Ambati
111 et al., 2014). Bulk production of ketocarotenoid pigments would help drive the transition to
112 non-toxic, natural textile dyes (Shabbir et al., 2018). Carotenoid modification in the green
113 alga was achieved by overexpression of its native β -carotene ketolase (*CrBKT*) and
114 hydroxylase (*CrCHYB*) in vegetative green cells where they are not naturally expressed
115 (Amendola et al., 2023; Perozeni et al., 2020). Overexpression *CrBKT* resulted in color
116 changes of the green algal cells to brown due to global changes in pigment composition -
117 the accumulation of orange-red ketocarotenoids and both chlorophyll a and b (Cazzaniga et
118 al., 2022; Perozeni et al., 2020). In *C. reinhardtii*, *CrBKT* expression alone generates
119 intermediate ketolated carotenoids from native β -carotene, zeaxanthin substrates, and
120 partially hydroxylated carotenoids to form canthaxanthin, intermediates, and small amounts
121 of astaxanthin. Recently, it was shown that the hydroxylation of these to astaxanthin was
122 enhanced by co-overexpression of *CrCHYB* in *C. reinhardtii* (Amendola et al., 2023).

123 Here, the capacity for carotenoid engineering in the model red microalga *C. merolae* 10D
124 was investigated. As part of this work, a completely synthetic plasmid toolkit was built and
125 tested, with domestication of transcriptional elements, targeting peptides, and protein tags
126 optimized for expression of target transgenes from either one- or two- gene cassette(s) from
127 the nuclear genome of *C. merolae* 10D. The green algal BKT and CHYB were optimized for
128 the red algal nuclear genome context and expressed in fusion protein constructs from these
129 plasmids after genomic integration in the intergenic region found in the 184-185C locus of
130 *C. merolae* 10D chromosome 4. Transformants with confirmed HR integration of transgenes
131 exhibited expression of each target product and colorimetric changes to culture
132 pigmentation caused by ketocarotenoid accumulation which were visible by eye. The effects
133 on cellular pigments were quantified and documented. Unlike in green algae, total
134 carotenoids were not reduced in *C. merolae* 10D when ketocarotenoids were produced and
135 these pigments did not affect cellular phycocyanin titers. Growth behaviors were
136 investigated in optimal and modeled extreme desert environments using programmed
137 bioreactors to show the potential for scaled cultivation concepts with engineered keto-
138 carotenoid producing *C. merolae* 10D. Our results indicate that the polyextremophile is

139 readily amenable to genetic manipulation, its carotenoid profile can be modified to generate
 140 ketocarotenoids, and future bioprocesses could harvest these separately from water-soluble
 141 phycocyanin. Here we started with a red alga which looks cyan and used green algal
 142 carotenoid biosynthetic genes to turn make it red-brown while not impacting its blue pigment
 143 composition. Our findings encourage further investigations of metabolic engineering with
 144 this promising eukaryotic photosynthetic cyan-cell chassis.

145

146 **Figure 1. Carotenoid pathway of *C. merolae* and its extension to ketocarotenoid biosynthesis.** *C.*
 147 *merolae* 10D lacks the α -carotene branch of carotenoid biosynthesis and accumulates only the terminal
 148 xanthophyll zeaxanthin but not violaxanthin or neoxanthin. Pathways not found in *C. merolae* are shown in
 149 light grey. Native carotenoid pathway enzymes are shown in black, heterologous BKT and CHYB are shown
 150 in blue. BKT acts to add ketone groups to the terminal carotenoid rings, while CHYB hydroxylates them,
 151 yielding several intermediates in the production of astaxanthin. Ketocarotenoids and intermediates are shown
 152 in orange and red. Chemical abbreviations: IPP, DMAPP, and GGPP – isopentyl, dimethylallyl, and
 153 geranylgeranyl pyrophosphate. Gene names: PSY – phytoene synthase, PDS – phytoene desaturase,
 154 ZDS/CHRISTO – ζ -carotene desaturase/carotene isomerase, LCYb – lycopene β -cyclase, LCYe – lycopene
 155 ϵ -cyclase, P450b/e-CHY – P450-carotene hydroxylases, CrtR – β -carotene hydroxylase (cyanobacterial), VDE
 156 – violaxanthin de-epoxidase, ZEP zeaxanthin epoxidase, NXS – neoxanthin synthase.

157

158 **Materials and Methods**

159 **2.1 Algae culture**

160 The strain of *C. merolae* 10D (wildtype; NIES-3377) was obtained from the National Institute
161 of Environmental Studies' microbial culture collection in Japan. The culture was immediately
162 plated on corn starch beds (Ohnuma et al., 2008) and single colonies were isolated, scaled,
163 and verified as mono-algal cultures using microscopy and PCR. These cultures along with
164 its transgenic lines were maintained in MA2 medium (Kuroiwa et al., 2017), which consists
165 of 40 mM $(\text{NH}_4)_2\text{SO}_4$, 8 mM KH_2PO_4 , 4 mM MgSO_4 , 1 mM CaCl_2 , 100 μM FeCl_3 , 72 μM
166 EDTA-2Na, 16 μM MnCl_2 , 2.8 μM ZnCl_2 , 7.2 μM NaMoO_4 , 1.3 μM CuCl_2 , and 0.7 μM CoCl_2 .
167 The pH was adjusted to 2.3 with H_2SO_4 . For long term preservation, verified cultures were
168 cryopreserved in 13.5% DMSO using Quick-freezing containers (Mr. FrostysTM, Thermo
169 Sci.) at -80 °C. Working stocks of cultures were maintained on corn starch beds on MA2
170 Gellan gum plates and in TC flasks (CELLTREAT[®]; USA) with constant agitation under
171 continuous illumination (200 $\mu\text{mol m}^{-2} \text{s}^{-1}$) at 40 °C in Percival incubators (Percival Scientific;
172 USA) supplemented with 3% CO_2 mixed in air.

173 **2.2 *In silico* genetic designs**

174 Eight transformation plasmids were designed and constructed as follows to integrate the
175 selectable marker (chloramphenicol acetyltransferase (CAT)) and transgenes (mVenus
176 (YFP), β -carotene ketolase (BKT), and β -carotene hydroxylase (CHYB)) cassettes into the
177 intergenic region between the nuclear glycogen phosphorylase (CDM184C) and TATA-box
178 binding protein-associated factor 13 (CMD185C) genes via homologous recombination. The
179 origin, sequences, primers, and references for the genetic control elements used in our *in*
180 *silico* design process are listed in Supplemental Data S1 and S2. Endogenous sequences
181 (regulatory elements, transit peptides, and homology arms) were extracted from the
182 reference genome of *C. merolae* 10D (Fujiwara et al., 2019, 2017, 2013; Moriyama et al.,
183 2014). The CAT, YFP, NOS terminator, and BKT/CHYB sequences, derived from *S. aureus*,
184 *A. victoria*, *A. tumefaciens*, and *C. reinhardtii* (*Cr*) (respectively), were taken from the
185 literature/NCBI database (Amendola et al., 2023; Hopp et al., n.d.; Kremers et al., 2006;
186 Perozeni et al., 2020; Schmidt et al., 2007; Sumiya et al., 2014; Zienkiewicz et al., 2017).
187 Codon optimization of coding sequences (CDS's), along with removal of unwanted
188 restriction sites, was carried out using Geneious Prime (v. 2023.0.1; Biomatters Lt., New
189 Zealand) and *C. merolae*'s codon usage table found in the Kasusa database
190 (<https://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=280699>). Restriction
191 enzyme recognition sequences for the enzymes listed at the top of Fig. 2A were
192 systematically removed from all sequences used in our one- and two-cassette constructs.

193 Thus, intermediate constructs used to create the eight constructs used here are available to
194 speed future designs. For regulatory elements and homology arms, silent single point
195 mutations (SPMs) were introduced manually in sequences to remove unwanted restriction
196 sites. Modified promoter and terminator sequences were analyzed and compared to original
197 sequences using Softberry Nsite(M)-PL (www.softberry.com) and Geneious DNA-fold (v.
198 2023.0.1; Biomatters Lt., New Zealand) to ensure conserved regulatory motifs and
199 secondary structures, respectively, were not altered. All SPMs were documented and are
200 indicated in sequences as lower-case bases (Supplemental Data S1). *In silico* assembly
201 and *de novo* synthesis of transformation plasmids using pBluescript II KS (+) (Stratagene,
202 USA) as the backbone vector was done in the Snapgene (software v. 6.4;
203 www.snapgene.com) and using GenScript services (GenScript Inc., USA), respectively
204 (Figure 2). All plasmids were transformed into chemically competent *E. coli* JM109 cells and
205 plasmids were extracted using ZymoPURE II midiprep kits (Zymo Research group,
206 California).

207 **2.3 *C. merolae* 10D transformation**

208 To prepare linear DNA fragments for transformation, PCR was performed using primer set
209 1 (detailed in Supplemental Figure S1 and Data S2) and plasmid DNA. The resulting
210 products were then purified by ethanol precipitation. PEG-mediated transformation of *C.*
211 *merolae* 10D was carried out using four micrograms of linear DNA as previously described
212 (Fujiwara et al., 2021, 2013) with some modifications. Transfected cells were transferred
213 into 8.0 mL of MA2 media in 20 mL culture tubes and allowed to recover while rotating (~80
214 rpm) in the outer rim of a tissue culture roller drum (New Brunswick; model TC-7; Eppendorf,
215 USA) housed in an AlgaTron® incubator (Photon Systems Instruments, Czech Republic)
216 supplemented with 3% CO₂ in air with continuous illumination (100 $\mu\text{mol m}^{-2} \text{s}^{-1}$) at 40 °C for
217 two days. Cells were subsequently collected by centrifugation, supernatant discarded, and
218 cells resuspended in MA2 (~400 μL).

219 Cell suspensions were then serial diluted in MA2 and 200 μL of the dilutions were amended
220 to equal volume of 40% corn starch with chloramphenicol ("Cm" 300 $\mu\text{g/mL}$). Approximately
221 20 μL aliquots of cornstarch slurry with cells were spotted on MA2 agar (0.5%) plates (60 x
222 90 mm) with Cm [150 $\mu\text{g/mL}$]. Plates, with approximately 18-20 inoculated cornstarch beds,
223 were incubated in humidified CO₂ chambers under the same conditions described above
224 until colony formation. At which point colonies were isolated, transferred into 400 μL of MA2
225 with Cm [150 $\mu\text{g/mL}$] in 2.0 mL glass vials, and then allowed to grow for ~7-10 days. Isolates
226 were screened using a colony PCR method with primer set 2 (Supplemental Figure S1 and
227 Data S2) to test for integration of our cassettes into the targeted neutral site. Positive

228 transformants were then scaled up as shown in Figure 2C and characterized via PCR, flow
229 cytometry, fluorescent microscopy, UV-vis spectrophotometry, thin layer chromatography
230 (TLC), and high-performance liquid chromatography (HPLC). A subculture from each was
231 cryopreserved in DMSO for long term storage (as described above).

232 **2.4 DNA extractions and PCR assays**

233 Cultures were harvested by centrifugation (5 min at 14,000xg) and total genomic DNA was
234 extracted from algal cell pellets (~50-100 mg) with a Zymo Quick-DNA fungal/bacterial
235 extraction kit (Zymo Research group, USA) according to the manufacturer's protocol. DNA
236 extracts were quantified using a NanoDrop One spectrophotometer (Thermo Fisher
237 Scientific, USA). The high fidelity PrimeSTAR GXL DNA Polymerase (Takara Bio Inc.,
238 Japan) and the Hot start GoTaq polymerase (Promega Corporation, USA) were used for
239 PCR according to the manufacturer's protocols. The former was specifically used with primer
240 set 1 to amplify the insert DNA (HR-L to HR-R) for transfection and to screen transformants
241 for presence of the insert at the target neutral site. All primers used to screen cultures were
242 synthesized by IDT (Integrated DNA Technologies Inc., San Diego) and primer sequences
243 along with PCR conditions and relative primer annealing sites are shown in Supplemental
244 Data S2 and Figure S1, respectively.

245 **2.5 UV-vis spectrophotometry**

246 A HACH DR5000 UV-Vis spectrophotometer was used to monitor culture growth by
247 measuring the optical density at 750 nm and to analyze pigment extracts, unless otherwise
248 stated. *In vitro* spectral profiles of wild type and transformed cells were obtained using a
249 SpectraMax i3 plate reader (Molecular Devices, CA, USA) across a range of wavelengths
250 spanning from 300-850 nm.

251 **2.6 Epifluorescence microscopy**

252 Cells were visualized and imaged with 100X objective lens and immersion oil using an
253 Olympus BX51 fluorescence microscope equipped with a Canon EOS RP DSLR camera.
254 Fluorescence microscopy was performed on transformants specifically expressing the
255 mVenus (YFP) transgene to verify localization of YFP in the chloroplast and evaluate
256 cassettes with YFP fusions. Two different excitation filters were used for detecting pigment
257 and YFP fluorescence: U-MWG2 and FITC-3540B-OMF, respectively.

258 **2.7 Flow cytometry**

259 Flow cytometric analyses of wild type and YFP transformant cells was performed using a
260 Guava® easyCyte™ HT BGV flow cytometer (Luminex Corporation, Austin, TX, USA)
261 equipped with a blue (488 nm) laser; which was used to measure size (forward scatter),
262 granularity (side scatter), chlorophyll fluorescence (692/40 nm) and YFP fluorescence

263 (575/25 nm). All samples were normalized to 0.01 OD₇₅₀ (~350-450 cells μL^{-1}) and a total
264 of 10,000 events were recorded per sample. Data acquisition and analysis was done using
265 GuavaSoft v. 3.4 software (InCyte; Luminex Corporation).

266 For the Algern photobioreactor growth experiment, the cell densities were measured using
267 an Invitrogen Attune NxT flow cytometer (Thermo Fisher Scientific, UK) equipped with a
268 Cytkick microtiter plate autosampler unit as recently described (de Freitas et al., 2023). Each
269 sample was diluted 1:100 with 0.9% NaCl solution and loaded into a 96-well microtiter plate
270 in technical triplicates, the cell density was measured from this plate using the autosampler.
271 Samples were mixed three times immediately before analysis, and the first 25 μL of the
272 sample was discarded to ensure a stable cell flow rate during measurement. For the data
273 acquisition, 50 μL from each well was analyzed.

274 **2.8 Biomass determination**

275 For 20 mL culture tube growth experiment, Ash-free dry weights were determined using
276 OD₇₅₀ values and an OD₇₅₀ to AFDW correlation coefficient, which was determined for each
277 transformant prior to the experiment and found to be the same for all strains: AFDW (g/L)
278 = 0.27 * (OD₇₅₀ nm). This correlation coefficient was determined as previously described
279 (Dandamudi et al., 2021). For Algern photobioreactor growth experiments, biomass was
280 measured by vacuum filtration of 4 mL of each test on pre-weighted filters (0.45 μm). The
281 algal cells were dried at 60 °C for 24h in petri dishes, then allowed to cool before weighing
282 the filter with the biomass. All measurements consisted of technical and biological triplicates.

283 **2.9 Pigment extraction and analysis**

284 All extractions and analyses of pigments were carried out in dark or dim light to avoid
285 photodegradation. For phycocyanin extraction, 4.5 mg of freeze-dried biomass was added
286 into 1.5 mL 0.1M phosphate buffer (pH 7.0) and subjected to bead beating (Bullet Blender®
287 STORM 24, Next Advance, USA) using a mix of 0.15 mm and 0.5 mm zirconium oxide beads
288 at the highest speed for 5 min. The supernatant was recovered by centrifugation at 12,000xg
289 for 5 min, and the pellet was re-extracted under the same conditions. Both supernatants
290 were combined and analysed spectrophotometrically.

291 The extraction of carotenoids and chlorophyll *a* was performed using 10 mg of freeze-dried
292 biomass added to 800 μL of acetone containing 0.1% (w/v) butylated hydroxytoluene to
293 prevent carotenoid oxidation. The mixture was homogenized via bead beating as described
294 above. The supernatant was collected after centrifugation at 12,000xg for 3 min, and the
295 remaining pellet was subjected to three additional extractions using 600 μL of acetone until
296 the supernatant became colorless. All the supernatants were pooled and evaporated to
297 dryness under a stream of nitrogen.

298 For carotenoid saponification, dried extracts were resuspended in 300 μ L ethyl acetate and
299 treated with 300 μ L 5% (w/v) methanolic KOH under constant shaking at room temperature
300 for 2 hr. To stop the reaction 100 μ L of 10% (w/v) NaCl, and 200 μ L of deionized water were
301 added to the reaction mixture, and carotenoids were extracted four times with hexane:MTBE
302 (1:1, v/v, 300 μ L per extraction) using centrifugation (12,000xg, 1 min) to separate the layers.
303 The organic layers were collected and combined, then evaporated to dryness under a
304 stream of nitrogen. Dried extracts, whether saponified or non-saponified, were dissolved in
305 1 mL of acetone, filtered using a 0.45 μ m nylon filter in preparation for pigment analysis by
306 TLC, UV-Vis spectrophotometry and HPLC.

307 TLC was used to separate and identify carotenoids. 20 μ L aliquots of the pigment extracts
308 and carotenoid standards were spotted on pre-coated silica gel 20 \times 20 cm TLC plates
309 (company info) and eluted with a mobile phase of hexane:acetone (7:3, v/v). The
310 concentrations of phycocyanin, chlorophyll *a* and total carotenoids were determined
311 spectrophotometrically. The absorbance of phycocyanin extracts was measured at 620 and
312 652 nm, and the concentration of phycocyanin was calculated using previously published
313 equations (Bennett and Bogorad, 1973). For the assessment of chlorophyll *a* and total
314 carotenoid contents, absorbance of extracts was recorded at 662 and 470 nm, respectively,
315 and the concentrations of chlorophyll *a* and total carotenoids were calculated according to
316 previously published equations. Separation of carotenoids and their quantification were
317 conducted by reverse-phase HPLC (Waters Alliance 2695 Separations Module coupled with
318 a 2996 photodiode array detector) as described in (Amendola et al., 2023; Perozeni et al.,
319 2020). The HPLC system was equipped with a C18 column (Waters Spherisorb ODS2
320 Column 5 μ m, 4.6 mm \times 250 mm, Supelco, Inc., Belfonte, PA, USA) and a 15 min gradient
321 of ethyl acetate (0%–100%) in acetonitrile–water–triethylamine (9:1:0.01, v/v/v) was
322 employed at a flow rate of 1 mL/min. Carotenoid peaks were identified by comparing
323 retention times and spectra to carotenoid standards, which were also used to quantify
324 carotenoids using standard curves (Supplemental Data S3).

325 **2.10 Growth experiments:**

326 **2.10.1 Culture tube experiment under different light conditions**

327 Wild type and transformant (ii and viii) inoculates were preadapted at 750 μ mol $m^{-2} s^{-1}$ in
328 Algatron® incubators (Photon Systems Instruments, Czech Republic) under the same
329 conditions as described above (with the exception of the light conditions) for 5 days.
330 Biomass was collected by centrifugation and pellets resuspended in fresh MA2 medium (pH
331 2.3) with a starting density of 0.8 OD₇₅₀. Triplicate sets of 20 mL culture tubes were prepared
332 (8.0 mL working volume) for each test strain for each light condition (750 and 1172 μ mol m^{-2}

333 $\text{m}^2 \text{s}^{-1}$). A total of 3 sets were prepared: one for daily growth metrics and the other two for
334 pigment analysis. The culture tubes were arranged in the outer rim of a tissue culture roller
335 drum that was housed in an Algatron® incubator as above, according to their respective light
336 conditions. Water acidified to medium pH was added as need to account for evaporative
337 losses. When sampling daily for growth metrics ($\leq 100 \mu\text{L}$), the same volume that was
338 removed for sampling was replaced with medium. Culture density was monitored
339 spectrophotometrically (as described above). The two sacrificial sets of tubes for pigment
340 analysis were collected at different growth phases: one at log phase and the other at
341 stationary phase. Biomass was collected from each culture tube by centrifugation (4,200xg
342 for 10 min) and pellets freeze dried for pigment analysis. Growth metrics and pigments
343 analysis ($N = 3$ biological and technical replicates) was done as described in the previous
344 sections.

345 **2.10.2 Algem photobioreactor performance benchmarking in modelled environments**
346 *C. merolae* 10D WT and transformant lines ii and viii were first precultured in MA2 liquid
347 medium (pH 2.3) in 125 mL Erlenmeyer flasks with a working volume of 10 mL for 4 d under
348 continuous agitation (100 rpm) and illumination ($90 \mu\text{mol photons m}^{-2} \text{s}^{-1}$) in a CO_2 (4%)
349 incubator at 42 °C. These cultures were then used to inoculate 1 L Algem photobioreactor
350 flasks (working volume 400 mL) with a target density of $3 \times 10^6 \text{ cells mL}^{-1}$. To simulate
351 outdoor light and temperature conditions of Thuwal, Saudi Arabia (22.3046N, 39.1022E)
352 and Mesa, Arizona, United States (33.305130N, -111.67300W), environmental conditions
353 were developed based on data sets reported by (de Freitas et al., 2023) and obtained from
354 the AzCATI facility, respectively. Four different growth conditions were used to evaluate the
355 growth performance of each strain: (1) constant light ($1500 \mu\text{mol m}^{-2} \text{s}^{-1}$) and temperature
356 (42 °C), (2) 12:12 h light:dark with these same light and temperature conditions, and
357 simulated seasonal environmental conditions of (3) Thuwal and (4) Mesa, with the months
358 of February, May, August, and November representing winter, spring, summer, and autumn
359 (respectively). Samples of 15 mL were collected daily for cell concentration, biomass
360 quantification, and carotenoid analysis as described above. The same volume that was
361 removed for sampling was replaced with sterilized water acidified to medium pH.

362

363 **3. Results and Discussion**

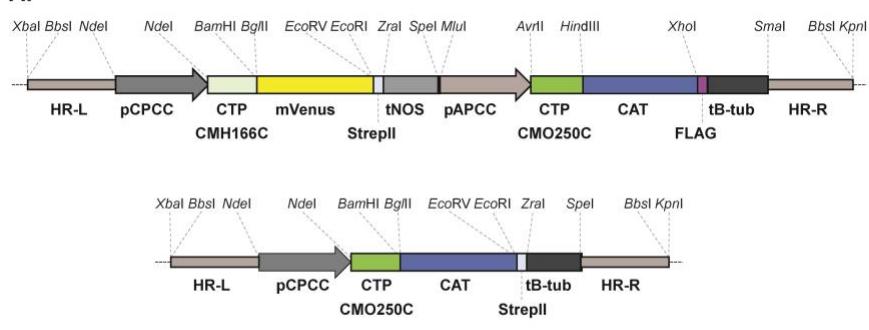
364 The polyextremophile *C. merolae* 10D is restricted to low pH (0.5-5) and temperatures from
365 35-56 °C (Miyagishima and Tanaka, 2021). It has a simplified natural carotenoid profile
366 which lacks the alpha-branch of carotenoid biosynthesis and has only β-carotene and
367 zeaxanthin as terminal carotenoids (Figure 1, (Cunningham et al., 2007)). In higher plants
368 and green algae, alpha-carotene is converted into lutein, and zeaxanthin is used to create
369 violaxanthin and neoxanthin as part of the photoprotective/photoresponsive xanthophyll
370 cycle (Goss and Jakob, 2010; Latowski et al., 2004). As these pigments are absent in *C.*
371 *merolae*, it is an interesting species with a simplified carotenoid substrate and biosynthesis
372 enzymatic landscape in which to attempt carotenoid metabolic engineering. *C. merolae* also
373 uses phycocyanin as a light harvesting pigment (Lang et al., 2020; Parys et al., 2021), a
374 different photosystem structure than in green algae and higher plants, opening the question
375 what effects carotenoid modifications would have in this system.

376 Ketocarotenoids are orange-red pigments that are formed through the ketolation of the
377 terminal rings of β-carotene and zeaxanthin to form a range of intermediates towards
378 canthaxanthin (dual-ketolated β-carotene) and astaxanthin (dual-ketolated and
379 hydroxylated β-carotene) (Figure 1) (Perozeni et al., 2020). Canthaxanthin and astaxanthin
380 are formed in a range of organisms including algae, plants, bacteria and fungi (Seybold and
381 Goodwin, 1959; Wan et al., 2021; Zhang et al., 2020). These pigments have various
382 applications from food colorants, aquaculture feed enhancements, medicinal treatment of
383 skin diseases, as specialty chemical conjugants, and are considered powerful antioxidants
384 (Ambati et al., 2014). Recent reports have shown that it is possible to leverage gene
385 redesign and synthetic overexpression of the native β-carotene ketolase (*CrBKT*) and
386 hydroxylase (*CrCHYB*) of the green microalga *C. reinhardtii* to produce canthaxanthin,
387 intermediate ketocarotenoids, and astaxanthin in this photosynthetic microbe (Amendola et
388 al., 2023; Cazzaniga et al., 2022; Perozeni et al., 2020). The BKT adds ketone groups to
389 the terminal rings of both zeaxanthin and β-carotene, while CHYB adds hydroxyl-groups to
390 β-carotene (Figure 1) (Amendola et al., 2023). As both β-carotene and zeaxanthin are the
391 terminal carotenoids within *C. merolae* and its growth conditions minimize risk of
392 contaminating organisms, we reasoned it could be an efficient cell chassis for metabolic
393 engineering and biotechnological ketocarotenoid production.

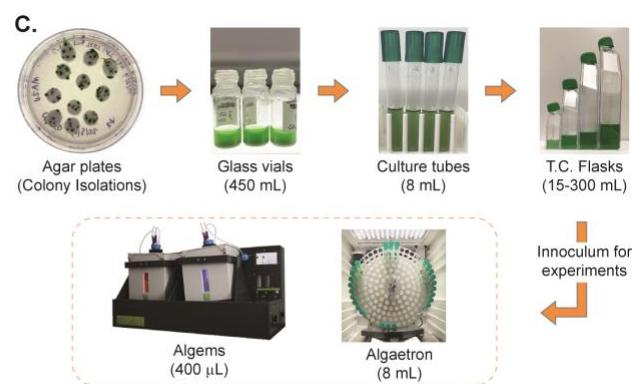
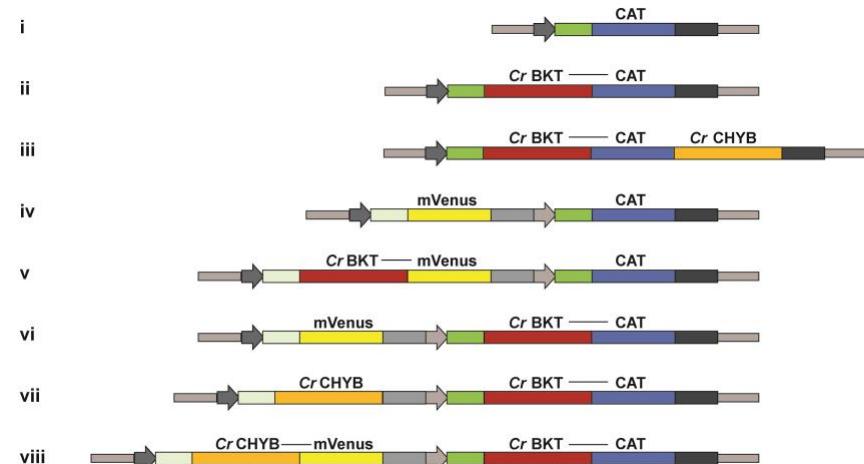
394

395 **Synthetic transgene expression cassette design and transformation**

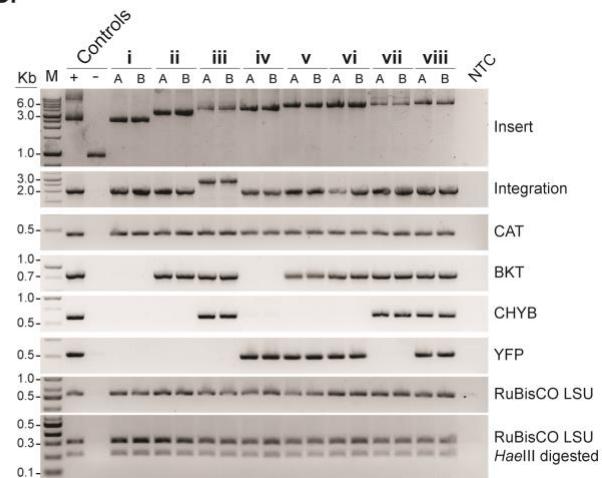
396 Recent reports indicated the possibility of nuclear transformation and efficient transgene
397 integration by homologous recombination (HR) in *C. merolae* (Fujiwara et al., 2021, 2019,


398 2017, 2013; Minoda et al., 2004; Takemura et al., 2019a, 2018). Here, it was investigated
399 whether a synthetic-biology strategy could be used to enable heterologous expression of
400 the green algal ketocarotenoid-biosynthesis enzymes in *C. merolae*. Promoter, terminator
401 and plastid targeting signals (Miyagishima and Tanaka, 2021) were used to drive expression
402 of *C. merolae* codon optimized sequences coding for *CrBKT* and *CrCHYB* *in silico* (Figure
403 2A) and the expression cassettes commercially synthesized *de novo*. The expression
404 cassettes were designed to be modular, with each element separated by unique restriction
405 endonuclease sites and a previously demonstrated target for HR was chosen, the 184-185C
406 locus found on *C. merolae* 10D chromosome 4 (Fujiwara et al., 2017). Coding sequences
407 for each target transgene were optimized for the *C. merolae* codon usage bias before
408 synthesis and selection was achieved with a codon optimized chloramphenicol resistance
409 (CAT) marker. Plasmids were built to express *CrBKT* and *CrCHYB* in various fusion
410 constructs to either the CAT resistance marker or yellow fluorescent protein (mVenus, YFP)
411 in different combinations of gene cassettes (Figure 2B). Full, annotated sequences of all
412 plasmids are provided in Supplemental Data S4.

413 To enable expression of the *CrBKT* and *CrCHYB*, different genetic fusion constructs were
414 used to allow selection for expression with either antibiotic resistance or visually through
415 fluorescence screening (Figure 2B). Plasmid i was designed to express the chloramphenicol
416 resistance marker (CAT) and localize it to the algal plastid with a targeting peptide of a native
417 protein. Transformants generated with this act as controls for other constructs. Similarly,
418 construct iv serves as a control for the fluorescent reporter mVenus (YFP), which was also
419 targeted to the algal plastid through a separate targeting peptide than the CAT resistance
420 marker (Supplemental Figure S2). *CrBKT* has been shown to be a highly active enzyme in
421 the production of ketocarotenoids and is effective in direct fusion to the spectinomycin
422 resistance marker in *C. reinhardtii* (Amendola et al., 2023; Cazzaniga et al., 2022). We
423 emulated this strategy of selection marker fusion to the *CrBKT* here (constructs ii, iii, vi, vii,
424 viii) with CAT as this selection marker functions to yield resistance colonies in *C. merolae*
425 10D and also functions when localized in the algal plastid where carotenoid biosynthesis
426 occurs (Minoda et al., 2004). Fusion to a reporter protein can also increase the half-life of
427 target recombinant proteins in cells and improve overall to target product yields in metabolic
428 engineering efforts (Cheah et al., 2022). This strategy has been effective in overcoming
429 nuclear transgene expression limitations in green algae, and was shown to be the most
430 effective strategy for *CrBKT* fusion in its original report (Lauersen, 2019; Perozeni et al.,
431 2020). Therefore, construct v was designed to express *CrBKT* in fusion with YFP to
432 determine if it was more effective than CAT fusion. *CrCHYB* was shown to express well in



433 *C. reinhardtii* where it catalyzes hydroxylation of ketocarotenoids to astaxanthin (Amendola
 434 et al., 2023). Here, we chose to attempt its expression alone (vii), in fusion with YFP (viii),
 435 or in longer fusion to the C-terminus of CrBKT-CAT (iii). Each was investigated to determine
 436 whether binary cassettes of larger sizes could be integrated into the genome by HR, and
 437 whether different efficacy in astaxanthin biosynthesis could be achieved with different fusion
 438 orientations (Figure 2B).

439


A.

B.

D.

440 **Figure 2. Plasmid design, culturing systems and transgene integration.** A – Synthetic plasmids were
 441 designed *in silico* and constructed *de novo* for integration of transgenes into the 184C-185C locus (HR-L and
 442 -R) on *C. merolae* chromosome 4. Two template plasmids were synthesized: a two-cassette (upper) and a
 443 single cassette (lower), both with chloramphenicol (CAT) resistance marker as a selection/fusion partner.
 444 Expression elements and gene fragments are separated by non-redundant restriction endonuclease sites as
 445 illustrated. pCPCC – phycocyanin-associated rod linker protein promoter, CTP CMH166C – DNA Gyrase B
 446 chloroplast targeting peptide, mVenus – yellow fluorescent protein reporter, StrepII – C-terminal peptide tag
 447 with stop codon, tNOS – nopaline synthase terminator, pAPCC – allophycocyanin-associated rod linker protein
 448 promoter, CTP CMO250C – allophycocyanin-associated rod linker protein chloroplast targeting peptide, FLAG
 449 – peptide tag with stop codon, tB-tub – *C. merolae* β-tubulin terminator CMN263C. B – *C. reinhardtii* β-carotene
 450 ketolase (CrBKT) and β-carotene hydroxylase (CrCHYB) transgenes were codon optimized for *C. merolae*
 451 nuclear genome expression based on amino acid sequences and native targeting peptide removal and
 452 subcloned into either of the above two plasmids as illustrated for expression as either target-mVenus or -CAT
 453 fusion proteins. C – transformation of *C. merolae*, recovery of colonies in starch spots on chloramphenicol
 454 selection, and seed train for experiments. D – polymerase chain reaction confirmation of plasmid integration
 455 at the 184-185C neutral locus, presence of transgenes, and unicellular status (RuBisCO HaeIII digestion).
 456 Information on primers and PCR assays found in Supplemental Figure S1 and Data S2.

457

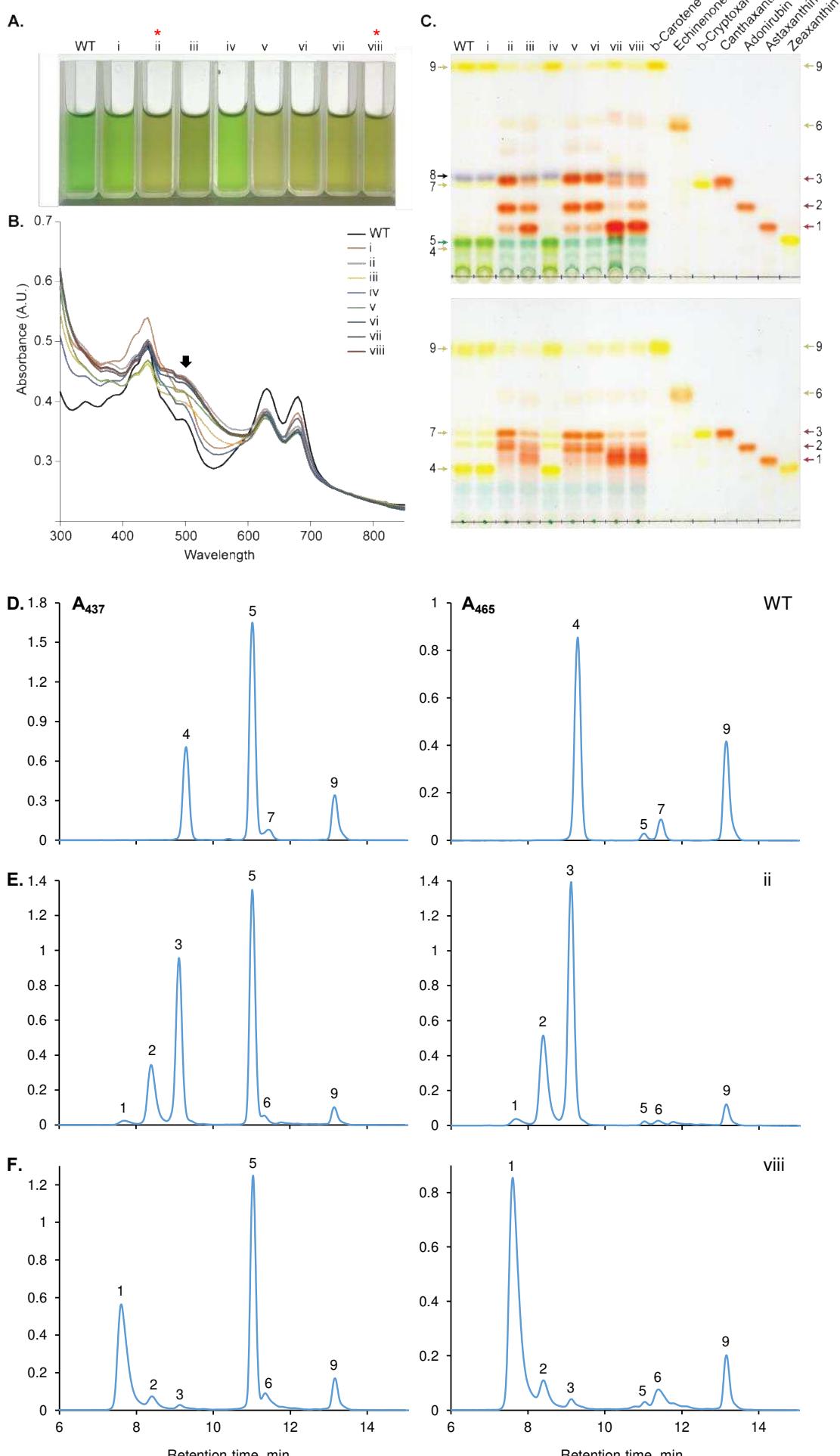
458 Synthetically designed plasmids were used as templates for PCR to generate linear DNA
459 fragments used in PEG-mediated transformation of *C. merolae*. Colonies of *C. merolae* 10D
460 resistant to chloramphenicol could be readily achieved in starch beds following reported
461 protocols (Minoda et al., 2004) for every construct designed in this work (Figure 2C).
462 Colonies were isolated by picking and grown in 400 μ L MA2 liquid medium in standing glass
463 vials prior to further analysis. For each plasmid construct, several dozen colonies were
464 selected and checked for integration by PCR using primers listed in Supplemental Data S2.
465 Representative clones were used to show profiles of PCR products indicating genomic
466 integration markers (Figure 2D) and representatives from each transformant pool used in
467 carotenoid analysis. Expression success is described in the following section in relation to
468 effects on carotenoid biosynthesis.

469 **β -carotene ketolase and hydroxylase generate ketocarotenoids in *C. merolae* 10D**

470 All carotenoid modifying enzymes were successfully expressed from our synthetic
471 transgene constructs in *C. merolae* 10D and caused changes to the native carotenoid
472 profiles in each strain (Figure 3). This effect was visible already in cultures to the naked eye
473 (Figure 3A) and was confirmed by spectrophotometric scans (Figure 3B) similar to those
474 previously reported for *CrBKT* and *CrCHYB* expression in Chlamydomonas (Amendola et
475 al., 2023; Perozeni et al., 2020). It was observed here that all *C. merolae* 10D transformants
476 with *CrBKT* or *CrBKT+CrCHYB* expression exhibited a visible color change relative to the
477 parental strain (Figure 3A). Absorbance measurements revealed a shoulder at \sim 500 nm, a
478 phenotype previously reported in organisms accumulating ketocarotenoids (Figure 3B).
479 TLC of acetone extracts then indicated the presence of orange-red pigments in
480 transformants of each construct, which were absent from the parental or control strains
481 expressing the CAT resistance alone or CAT and YFP alone (Figure 3C, plasmids i and iv).
482 Transformants expressing variations of *CrBKT* (plasmids ii, v, vi) were observed to
483 accumulate canthaxanthin and adonirubin as major ketocarotenoids, with minor bands of
484 astaxanthin (Figure 3C). The native carotenoid pathway contains hydroxylation activity to
485 convert β -carotene into zeaxanthin (Figure 1). However, the accumulation of mostly
486 canthaxanthin and adonirubin in *CrBKT* expressing transformants indicates that the native
487 *CrtR* activity does not outcompete the *CrBKT* activity on β -carotene substrate and is not so
488 highly active as to further hydroxylate these ketolated products. This is similar to the native
489 *CHYB* activity in Chlamydomonas, which only creates significant titers of astaxanthin when
490 overexpressed in the green alga as well (Amendola et al., 2023). Those transformants with
491 co-expression of *CrCHYB* with different fusion partners as well as *CrBKT* (ii, vii, viii)
492 exhibited minor bands of these two ketocarotenoids and astaxanthin as the major band in

493 TLC (Figure 3C). Transformants of plasmid iii where *CrBKT* and *CrCHYB* are in a single
494 fusion with each other, exhibited an intermediate phenotype, where astaxanthin was the
495 major product, however, not as strong as with the two separate cassette expression in
496 plasmids vii or viii. Patterns could be observed in non-saponified and saponified samples
497 (Figure 3C, upper and lower panels, respectively). These patterns were true across
498 individual transformants analyzed in a larger TLC with two representative transformants per
499 plasmid construct is shown in Supplemental Figure S3.

500 Transformants were also subjected to flow cytometry analysis to determine the expression
501 level of fusion reporter proteins, which confirmed the strength of expression for some
502 constructs (Supplemental Figure S2). Plasmids iv and vi were shown to have fluorescence
503 patterns distinct to those transformed with constructs harboring YFP fusions and those not
504 harboring the YFP reporter (Supplemental Figure S2). Microscopy also confirmed
505 localization in the chloroplast via YFP fluorescence (Supplemental Figure S2).

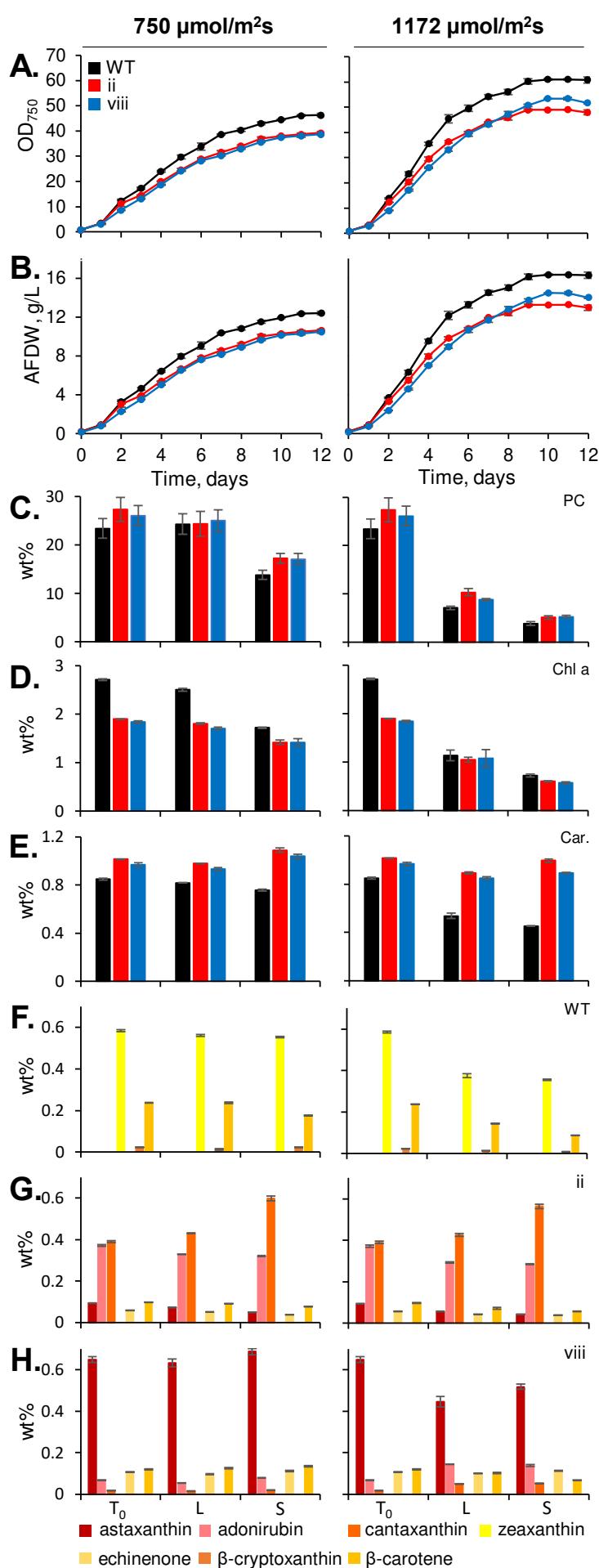

506 To determine the exact amounts of each carotenoid in the biomass, the parental strain and
507 one transformant from plasmid ii (*CrBKT*) and viii (*CrBKT+CrCHYB*) were subjected to
508 pigment quantification by HPLC at 437 and 465 nm (Figure 3D-F; Table 1). Drastic
509 differences in carotenoid profiles can be observed in the *CrBKT* and *CrBKT+CrCHYB*
510 expressing transformants. The *CrBKT* expressing transformant exhibited a 33-61%
511 reduction in β -carotene content accompanied by the disappearance of peaks #4 and 7
512 (zeaxanthin and β -cryptoxanthin, respectively) with the emergence of two predominant
513 peaks #2 and 3 corresponding to adonirubin and canthaxanthin, respectively, small amounts
514 of astaxanthin (peak #1). The *CrBKT+CrCHYB* expressing transformant consequently
515 exhibited reductions in peaks #2 and 3 and significant increase in astaxanthin content
516 (Figure 3D-F; Peak #1).

517

518

519 **Figure 3 (next page). *C. merolae* 10D culture phenotypic changes and carotenoid profiles of**
520 **transformants expressing different combinations of *CrBKT* and *CrCHYB*. A** – Cuvettes
521 containing 1 mL of *C. merolae* transformant culture for one representative of each confirmed plasmid
522 transformation. **B** – absorbance spectra of cultures pictured above, shoulder of ketocarotenoid
523 absorbance indicated with a black arrow. **C** – Acetone extract TLC of one confirmed representative
524 *C. merolae* transformant for each indicated plasmid with carotenoid standards. Above – raw acetone
525 extracts, below – saponified extracts. Arrows indicate 1 – astaxanthin, 2 – adonirubin, 3 –
526 canthaxanthin, 4 – zeaxanthin, 5 – chlorophyll a, 6 – echinenone, 7 – β -cryptoxanthin, 8 – pheophytin
527 a, 9 – β -carotene. HPLC profiles of carotenoids from parental *C. merolae* 10D (D), and transformants
528 expressing *CrBKT*– ii (E) or *CrBKT+CrCHYB* – viii (F).

529



531 **Presence of ketocarotenoids improved total carotenoid content but slightly reduces**
532 **growth rates of *C. merolae* 10D**

533 Previous reports of ketocarotenoid biosynthesis in a green microalga indicated a global
534 reduction of carotenoids and chlorophylls in transformants expressing *CrBKT* but increased
535 resistance to reactive oxygen species and high-light conditions (Amendola et al., 2023;
536 Cazzaniga et al., 2022). It was unclear how ketocarotenoid presence would affect the
537 photosystems of *C. merolae* here because these photosystems also contain phycocyanin
538 as a light harvesting pigment and exhibit a natively minimal carotenoid profile lacking alpha
539 carotenoids and terminal xanthophylls (Cunningham et al., 2007). The transformants and
540 parental strain were subjected to a 12-day growth experiment in 20 mL culture tube (1.6 cm
541 diameter) with 8 mL working volume that enable high-light penetration into the culture.
542 Cultures were subjected to either 750 or 1172 $\mu\text{mol m}^{-2} \text{s}^{-1}$ light intensity in a CO_2 rich (3%)
543 environment and sampled daily for growth metrics in addition to pigment quantification at
544 the beginning, mid (L – log), and end of cultivation (S – stationary) (Figure 4A-H;
545 Supplemental Data S5).

546 In these optimized conditions, where light penetration into the thin culture tubes and CO_2
547 are not limited, all cultures accumulated high rates of biomass over the 12-day period. *C.*
548 *merolae* 10D achieved $\sim 12 \text{ g L}^{-1}$ and $\sim 16 \text{ g L}^{-1}$ in 750 and 1172 $\mu\text{mol m}^{-2} \text{s}^{-1}$, respectively
549 (Figure 4B). Growth behavior of both *CrBKT* and *CrBKT+CrCHYB* transformants were ~ 10
550 and $13\text{-}14 \text{ g L}^{-1}$, respectively, in the two light conditions (Figure 4A and B). Phycocyanin
551 content per cell was not significantly different between transformants and the parental strain
552 in either illumination condition (Figure 4C). Total phycocyanin content was reduced in higher
553 light conditions across all strains. Chlorophyll was overall lower in the higher light condition
554 (Figure 4D), while total carotenoids were lower in the parental strain, but not in transformants
555 (Figure 4E). Both types of pigments showed variation among the cell lines, with both
556 ketocarotenoid accumulating strains exhibiting approximately 0.6-1.9 weight % chlorophyll
557 a and approximately 0.9-1.1 weight % total carotenoid content (Figure 4 D and E).

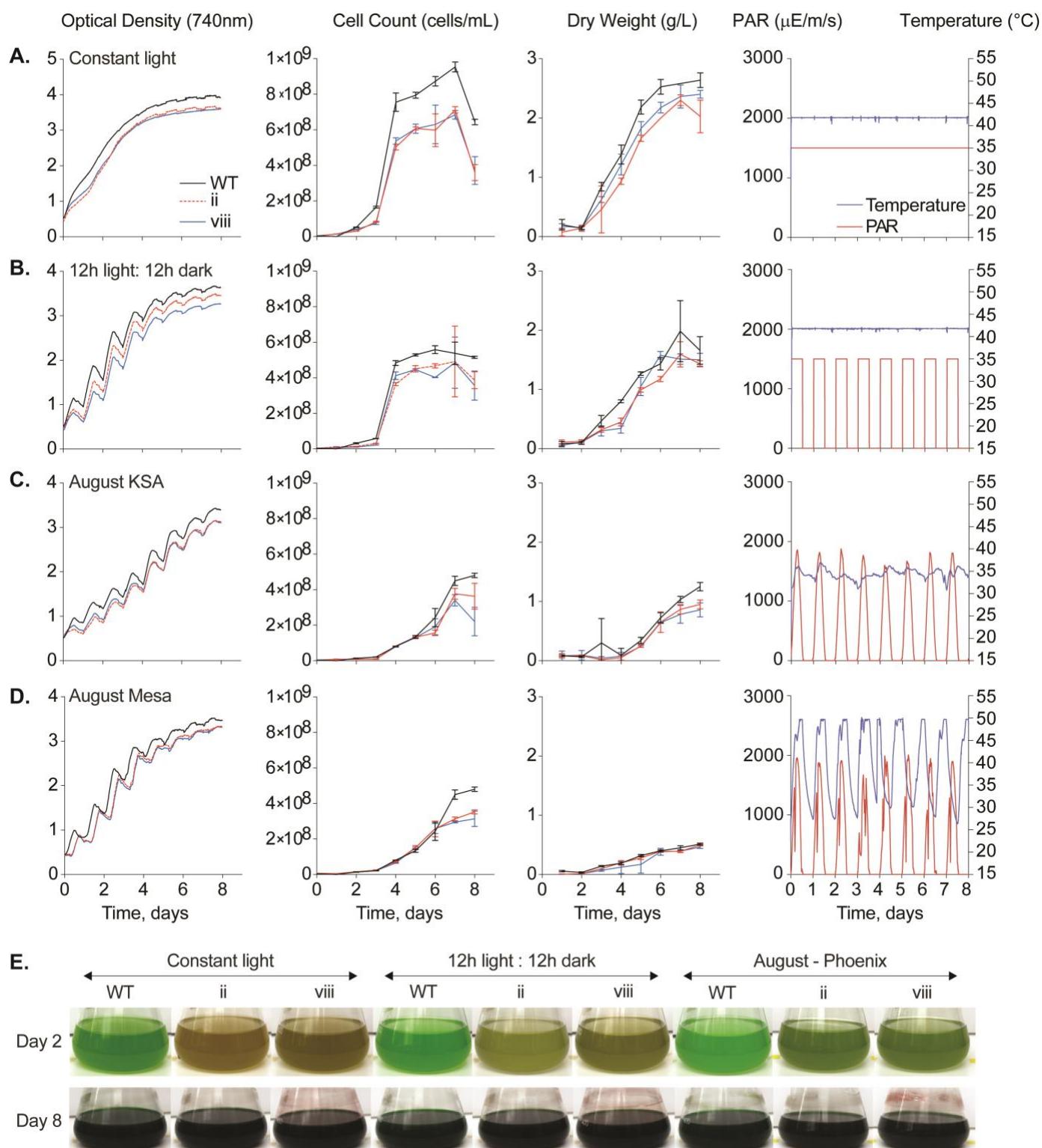
558 The carotenoid profiles of each strain were unique, as shown in Figure 3 and Figure 4F-H,
559 and trends observed in carotenoid species during the log phase were largely maintained in
560 stationary phase for all cultures (Figure 4F-H). For the wild-type 10D, zeaxanthin was the
561 most abundant carotenoid (0.35-0.58 weight %) with β -carotene as the second most
562 abundant (0.09-0.24 weight %, Figure 4F). In the *CrBKT* expressing strain, canthaxanthin
563 was the most abundant carotenoid (0.39-0.60 weight %, with adonirubin (keto group on both
564 terminal rings and single ring with hydroxyl group) the second most abundant (0.29-0.37
565 weight %, Figure 4G). In the *CrBKT+CrCHYB* expressing transformant, astaxanthin was the

major carotenoid species at 0.45-0.69 weight %, with adonirubin, canthaxanthin, echinenone, and β -carotene present but much less abundant (Figure 4H).

Figure 4. Growth behavior test and culture pigment profiles of parental (WT), CrBKT, and CrBKT+CrCHYB transformants grown in 20 mL culture tubes under two light intensities. (A) Optical density (750 nm) and (B) ash-free cell dry weights (AFDW) were recorded throughout the 12-day cultivation. (A) phycocyanin, (B) Chlorophyll a and (C) total carotenoids were quantified at the start of cultivation, mid-log phase (d5), and stationary phase (d12), values are of the weight % of biomass. At each timepoint, the relative profiles of carotenoid species in each of the three cell lines ((F) WT, (G) CrBKT – vii and (H) CrBKT+CrCHYB – viii) were also determined by HPLC and presented as weight % of the biomass.

The results suggest that the total carotenoid per biomass in variable light conditions seems to be relatively constant despite reductions in overall other photosystem pigments in the ketocarotenoid producing transformants. Higher-light intensities reduced overall cellular phycocyanin contents, as expected based on previous reports of the behavior of this pigment in other organisms, where it is accumulated to assist photon capture in lower-light conditions (Chen et al., 2010). Similarly total chlorophyll reduction is also observed in higher light intensities, however, the red alga is unusual to what is observed in plants and green algae in that it does not have reduced overall carotenoids when ketocarotenoids are produced and in higher light (Cazzaniga et al., 2022; Perozeni et al., 2020). This could suggest

608 that *C. merolae* is a promising chassis for tailored carotenoid production, especially
609 considering it lacks a cell wall which enables simple carotenoid extraction. Concepts which
610 aim to concomitantly acquire phycocyanin pigment and carotenoids from the same culture
611 could use higher-light intensities to accumulate biomass as shown here and a period of
612 lower light intensity before harvest to increase cellular phycocyanin yields, however, such
613 tests were beyond the scope of this work.


614 **Modeling *C. merolae* growth in extreme environments**

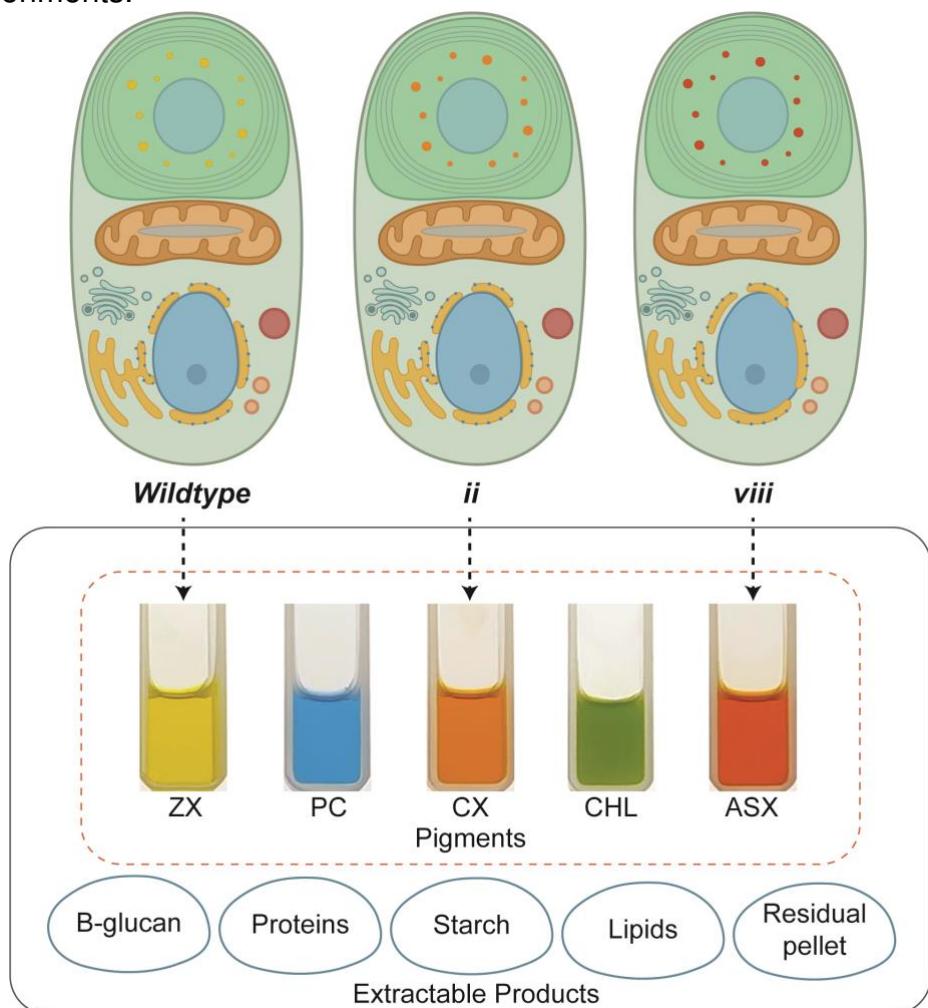
615 As a polyextremophile, *C. merolae* 10D can be grown in temperatures above cultivation
616 norms for other algal species and in a very low pH to largely prevent contamination
617 (Miyagishima and Tanaka, 2021). As the growth test performed in Figure 4 was performed
618 in small culture tubes to ensure high-light penetration, we were curious how the parental
619 and transformant strains would perform in larger culture volumes, where light penetration
620 would become limiting. We grew the wild-type *C. merolae* 10D, CrBKT (ii), and
621 CrBKT+CrCHYB (vIII) strain in 400 mL cultures using a suite of photobioreactors to tightly
622 control environmental parameters while tracking growth (Figure 5). Cell lines were grown at
623 42 °C with constant 1500 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$ illumination or 12:12 day:night light cycling
624 to represent controlled bioreactor cultivations in optimal conditions. In addition, we used
625 collected weather data generated on the mid-Red Sea coast (Supplemental Data S6) and
626 in Mesa Arizona (Supplemental Data S7) to generate 8-day cultivation programs
627 representing one month of each season in these locales. The summer months in both
628 geographies exhibit high temperatures, with Mesa having higher midday temperatures and
629 greater fluctuations between day and night (Figure 5A-D, right panels).

630 In all bioreactor conditions, the ketocarotenoid producing transformants exhibited slightly
631 lower optical and cell densities, as well as biomass compared to their parental strain (Figure
632 5A-D). Both transformants performed similarly, suggesting that the presence of
633 ketocarotenoids at all, rather than a specific type, caused this growth behavior difference. In
634 continuous illumination, the 400 mL cultures achieved $\sim 2.5 \text{ g L}^{-1}$ biomass in 6 d, while the
635 ketocarotenoid transformants accumulated $\sim 2.2 \text{ g L}^{-1}$ (Figure 5A-D). Overall cell densities
636 exhibited similar amounts in both geographies, with mid-Red Sea coast having slightly
637 higher biomass accumulated than in Mesa (Figure 5A-D). The higher temperatures
638 observed in Arizona summer exceeded the capacity of the bioreactor (+50 °C), temperatures
639 which would likely be detrimental to many algal species in culture (Figure 5). Nevertheless,
640 it was still possible to grow both transformed and parental *C. merolae* in this condition where
641 they accumulated the ketocarotenoid products (Figure 5E, pictures). All data for

642 phycocyanin, chlorophyll, and carotenoid accumulation can be found in Supplemental
 643 Figure S4.

644

645 **Figure 5.** Comparative bioreactor growth tests of parental *C. merolae* 10D, CrBKT, and CrBKT+CrCHYB
 646 transforms in various conditions. The three cell lines were cultivated in (A.) constant 1500 μE illumination
 647 and with (B.) 12:12 hour day:night cycling at 42 °C as well as simulated environmental conditions from recorded
 648 weather data for the month of August in the (C.) mid-Red Sea coast (KSA) and (D.) Mesa Arizona. Optical
 649 density (OD 740 nm), cell density (cells/mL), and dry biomass (g L^{-1} culture) are indicated beside the light and
 650 temperature profiles used in each bioreactor. One cultivation of three biological replicates is shown. Below
 651 (E.), culture flask pictures at day 2 and 8 of the cultivation showing phenotypic differences in ketocarotenoid
 652 accumulating transformants.


653 **The value of *C. merolae* 10D as a host for engineered carotenoid biosynthesis**

654 The Cyanidiales are polyextremophilic red algae which have emerged in recent years as
655 interesting alternatives to other algal systems (Lang et al., 2020). Within this class are
656 several species that are found in acidic hot springs and thrive between pH 0.5-5 and
657 temperatures from 35-56 °C. These growth conditions set the Cyanidiales apart from other
658 algae in that few organisms can grow in such conditions and contamination at scale can be
659 largely prevented. *Galdieria sulphuriana* is another species within this Class that has been
660 shown to be capable of rapidly becoming the dominant organism when grown directly in
661 acidified municipal effluent (Henkanatte-Gedera et al., 2017, 2015). *C. merolae* 10D is a
662 obligate phototroph and can only consume CO₂ as a carbon source (Miyagishima and
663 Tanaka, 2021). It is also tolerant to very high levels of CO₂ gas, ammonium concentration
664 in its medium, and high temperatures (Minoda et al., 2004; Miyagishima and Tanaka, 2021).
665 These features potentially mean *C. merolae* 10D could be coupled to post-treatment high-
666 strength wastewater polishing and industrial CO₂ emissions sources in extreme conditions
667 such as those in desert environments modelled here.

668 *C. merolae* 10D is also interesting for biotechnological applications owing to its lack of cell
669 wall and range of native natural products which can be rapidly separated in various phases
670 of extraction. The cell itself contains a small lipid fraction, starch, and β-glucan in addition to
671 ~50% protein content (Miyagishima and Tanaka, 2021). *C. merolae* accumulates the
672 photopigment phycocyanin which is water-soluble and more thermal stable than that
673 currently used in industry produced by *Arthospira platensis* (Rahman et al., 2017). The
674 parental strain also accumulates large fractions of zeaxanthin and β- carotene which are
675 both valuable hydrophobic pigments (Figures 3 & 4). The cell, therefore, is a natural
676 candidate for biorefinery concepts, as PC and soluble proteins can be readily extracted from
677 cell-wall-less biomass and carotenoid pigments isolated from the residual insoluble fraction.
678 Separate fractionation of starch and β-glucans may also be possible with appropriate
679 bioprocess designs. This concept is illustrated in Figure 6.

680 The capacity for engineering ketocarotenoid biosynthesis expands the product range which
681 can be achieved from this easy-to-handle organism, with *CrBKT* expression producing
682 canthaxanthin and the combination of *CrBKT+CrCHYB* astaxanthin. Our results indicate that
683 despite a subtle reduction in overall growth rates when cells produce ketocarotenoids
684 (Figure 4 and 5), they are still amenable to cultivation in extreme conditions and do not
685 reduce their overall carotenoid contents, even in high light conditions. Future optimization of
686 cultivation parameters can tease-apart the best light and temperature regimes to promote
687 biomass accumulation and increase cellular classes of photopigments in the engineered

688 cells. Our work indicates that *C. merolae* 10D could be cultivated outdoors, even in some of
689 the hottest urban environments in the world during summer months, but life-cycle analysis
690 would be required to determine whether the CAPEX required to build a controlled bioreactor
691 with constant illumination would be more beneficial than simply using outdoor environmental
692 conditions *in situ*. This is also encouraged by our recent finding that *C. merolae* can be
693 adapted to be grown in acidified sea water salinities, further expanding its possible range of
694 geographical application (Hirooka et al., 2020; Villegas et al., 2023). Indeed, each
695 implementation of such a cultivation would require individual case-considerations. The
696 thermal extreme tolerance of *C. merolae* 10D and its engineered derivatives at least
697 suggests that cooling will not be needed if bioreactors are placed outdoors. Waste-heat may
698 be used to optimize culture conditions, especially during colder seasons, as this is
699 energetically less challenging to engineer into a cultivation apparatus than cooling in these
700 extreme environments.

701 **Figure 6.** Extractable products from wild-type and engineered *C. merolae* 10D. The schematic displays the
702 extractable products that can be obtained from *C. merolae* 10D cells through various extraction phases. The
703 dotted arrows indicate the carotenoid fractions that can be extracted from the corresponding cell lines: WT, ii
704 (*CrBKT*), and viii (*CrBKT+CrCHYB*). The pigment fractions are named based on the predominant carotenoid
705 present in the extract: ZX (zeaxanthin), CX (canthaxanthin), and ASX (astaxanthin). Additionally, phycocyanin
706 (PC) and chlorophyll a (CHL) are present in all lines. Pigments were extracted as described in M&M and ~1
707 mL of each was photographed in 3 mL cuvettes.
708

709 **4. Conclusions and Outlook**

710 Here, we show the power of *in silico* design and *de novo* construction of transgene
711 expression constructs in an emerging host microalga. We used these molecular tools to
712 rapidly demonstrate the production of non-native ketocarotenoids in the polyextremophilic red
713 microalga which has emerged in recent years as a promising alternative to other green algal
714 hosts. This work represents the first demonstration of carotenoid metabolic engineering by
715 recombinant technologies in any red alga. The lack of impact alternative carotenoid
716 production had on soluble phycocyanin contents adds interesting value to an already
717 specialized algal biomass as these products can be separately extracted as soluble and
718 insoluble fractions from the biomass. The wild-type strain is already a source of zeaxanthin,
719 and our findings indicate it is possible to tailor this host into a production vehicle for either
720 canthaxanthin or astaxanthin without contaminating alpha carotenoids. Given each of these
721 carotenoids has a value of their own, parallel cell lines could be used to generate multiple
722 products from the same algal cultivation infrastructure. Adaptability to saline conditions, high
723 temperature tolerance, and the capacity for growth on high strength waste-waters also
724 encourage the potential value economics of *C. merolae* bio-production processes. Given
725 the relative ease of transgene integration into the nuclear genome of this algae and high
726 expression rates, it will likely rapidly become a host cell for a range of photosynthetic
727 engineering concepts.

728

729 **Acknowledgements**

730 KJL acknowledges baseline research funding provided by King Abdullah University of Science &
731 Technology. KAUST team is grateful to Paulo C. Aurelio of KAUST Core Labs Lab Equipment
732 Maintenance (LEM) team for install and maintenance of the Algem photobioreactors and flow
733 cytometer. PJL acknowledges financial support from Xylem, Inc. and ASU Lightworks; and would also
734 like to acknowledge Keirsten Allen for her technical support. The authors wish to express their
735 gratitude to Dr. Martha Stark for her invaluable assistance with the transformation protocol. The
736 authors thank Dr. Sebastian Overmans for creating Algem bioreactor profiles from provided data.
737 The authors thank Dr. Thomas Baier for invaluable discussions around the use of CHYB in *C.*
738 *reinhardtii* and sharing these insights with us.

739

740 **Conflict of Interest**

741 The authors declare that they have no conflict of interest.

742 **References**

743 Ambati, R., Phang, S.-M., Ravi, S., Aswathanarayana, R., 2014. Astaxanthin: Sources,
744 Extraction, Stability, Biological Activities and Its Commercial Applications—A Review.
745 Mar. Drugs 12, 128–152. <https://doi.org/10.3390/md12010128>

746 Amendola, S., Kneip, J.S., Meyer, F., Perozeni, F., Cazzaniga, S., Lauersen, K.J., Ballottari,
747 M., Baier, T., 2023. Metabolic Engineering for Efficient Ketocarotenoid Accumulation
748 in 2 the Green Microalga *Chlamydomonas reinhardtii*. ACS Synth. Biol.
749 <https://doi.org/10.1021/acssynbio.2c00616>

750 Bennett, A., Bogorad, L., 1973. Complementary chromatic adaptation in a filamentous blue-
751 green alga. J. Cell Biol. 58, 419–435. <https://doi.org/10.1083/jcb.58.2.419>

752 Cazzaniga, S., Perozeni, F., Baier, T., Ballottari, M., 2022. Engineering astaxanthin
753 accumulation reduces photoinhibition and increases biomass productivity under high
754 light in *Chlamydomonas reinhardtii*. Biotechnol. Biofuels Bioprod. 15, 77.
755 <https://doi.org/10.1186/s13068-022-02173-3>

756 Cheah, L.C., Liu, L., Stark, T., Plan, M.R., Peng, B., Lu, Z., Schenk, G., Sainsbury, F.,
757 Vickers, C.E., 2022. Translational fusion of terpene synthases enhances metabolic
758 flux by increasing protein stability (preprint). Synthetic Biology.
759 <https://doi.org/10.1101/2022.11.08.515726>

760 Chen, H.B., Wu, J.Y., Wang, C.F., Fu, C.C., Shieh, C.J., Chen, C.I., Wang, C.Y., Liu, Y.C.,
761 2010. Modeling on chlorophyll a and phycocyanin production by *Spirulina platensis*
762 under various light-emitting diodes. Biochem. Eng. J. 53, 52–56.
763 <https://doi.org/10.1016/j.bej.2010.09.004>

764 Cunningham, F.X., Lee, H., Gantt, E., 2007. Carotenoid biosynthesis in the primitive red
765 alga *Cyanidioschyzon merolae*. Eukaryot. Cell 6, 533–545.
766 <https://doi.org/10.1128/EC.00265-06>

767 Dandamudi, K.P.R., Mathew, M., Selvaratnam, T., Muppaneni, T., Seger, M., Lammers, P.,
768 Deng, S., 2021. Recycle of nitrogen and phosphorus in hydrothermal liquefaction
769 biochar from *Galdieria sulphuraria* to cultivate microalgae. Resour. Conserv. Recycl.
770 171, 105644. <https://doi.org/10.1016/j.resconrec.2021.105644>

771 de Freitas, B.B., Overmans, S., Medina, J.S., Hong, P.-Y., Lauersen, K.J., 2023. Biomass
772 generation and heterologous isoprenoid milking from engineered microalgae grown
773 in anaerobic membrane bioreactor effluent. Water Res. 229, 119486.
774 <https://doi.org/10.1016/j.watres.2022.119486>

775 Delanka-Pedige, H.M.K., Munasinghe-Arachchige, S.P., Cornelius, J., Henkanatte-Gedera,
776 S.M., Tchinda, D., Zhang, Y., Nirmalakhandan, N., 2019. Pathogen reduction in an
777 algal-based wastewater treatment system employing *Galdieria sulphuraria*. Algal
778 Res. 39, 101423. <https://doi.org/10.1016/j.algal.2019.101423>

779 Fujiwara, T., Hirooka, S., Miyagishima, S., 2021. A cotransformation system of the
780 unicellular red alga *Cyanidioschyzon merolae* with blasticidin S deaminase and
781 chloramphenicol acetyltransferase selectable markers. BMC Plant Biol. 21, 1–10.
782 <https://doi.org/10.1186/s12870-021-03365-z>

783 Fujiwara, T., Hirooka, S., Mukai, M., Ohbayashi, R., Kaneko, Y., Watanabe, S.,
784 Miyagishima, S. ya, 2019. Integration of a *Galdieria* plasma membrane sugar
785 transporter enables heterotrophic growth of the obligate photoautotrophic red alga
786 *Cyanidioschyzon merolae*. Plant Direct 3, 1–13. <https://doi.org/10.1002/pld3.134>

787 Fujiwara, T., Ohnuma, M., Kuroiwa, T., Ohbayashi, R., Hirooka, S., Miyagishima, S.Y., 2017.
788 Development of a double nuclear gene-targeting method by two-step transformation
789 based on a newly established chloramphenicol- selection system in the red alga
790 *Cyanidioschyzon merolae*. Front. Plant Sci. 8, 1–10.
791 <https://doi.org/10.3389/fpls.2017.00343>

792 Fujiwara, T., Ohnuma, M., Yoshida, M., Kuroiwa, T., Hirano, T., 2013. Gene Targeting in the
793 Red Alga *Cyanidioschyzon merolae*: Single- and Multi-Copy Insertion Using

Authentic and Chimeric Selection Markers. PLoS ONE 8, 2–9. <https://doi.org/10.1371/journal.pone.0073608>

Goss, R., Jakob, T., 2010. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynth. Res. 106, 103–122. <https://doi.org/10.1007/s11120-010-9536-x>

Gross, W., 2000. Ecophysiology of algae living in highly acidic environments. Hydrobiologia 433, 31–37. <https://doi.org/10.1023/A:1004054317446>

Henkanatte-Gedera, S.M., Selvaratnam, T., Caskan, N., Nirmalakhandan, N., Van Voorhies, W., Lammers, P.J., 2015. Algal-based, single-step treatment of urban wastewaters. Bioresour. Technol. 189, 273–278. <https://doi.org/10.1016/j.biortech.2015.03.120>

Henkanatte-Gedera, S.M., Selvaratnam, T., Karbakhshavar, M., Myint, M., Nirmalakhandan, N., Van Voorhies, W., Lammers, P.J., 2017. Removal of dissolved organic carbon and nutrients from urban wastewaters by *Galdieria sulphuraria*: Laboratory to field scale demonstration. Algal Res. 24, 450–456. <https://doi.org/10.1016/j.algal.2016.08.001>

Hirooka, S., Tomita, R., Fujiwara, T., Ohnuma, M., Kuroiwa, H., Kuroiwa, T., Miyagishima, S., 2020. Efficient open cultivation of cyanidiallean red algae in acidified seawater. Sci. Rep. 10, 13794. <https://doi.org/10.1038/s41598-020-70398-z>

Hopp, T.P., Prickett, K.S., Libby, R.T., Cerretti, D.P., n.d. IDENTIFICATION AND PURIFICATION.

Kremers, G.-J., Goedhart, J., van Munster, E.B., Gadella, T.W.J., 2006. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET Förster radius. Biochemistry 45, 6570–6580.

Kuroiwa, T., Miyagishima, S., Matsunaga, S., Sato, N., Nozaki, H., Tanaka, K., Misumi, O., 2017. *Cyanidioschyzon merolae*, *Cyanidioschyzon merolae*: A New Model Eukaryote for Cell and Organelle Biology. Springer Singapore, Singapore. <https://doi.org/10.1007/978-981-10-6101-1>

Lang, I., Bashir, S., Lorenz, M., Rader, S., Weber, G., 2020. Exploiting the potential of Cyanidiales as a valuable resource for biotechnological applications. Appl. Phycol. 00, 1–12. <https://doi.org/10.1080/26388081.2020.1765702>

Latowski, D., Grzyb, J., Strzałka, K., 2004. The xanthophyll cycle - molecular mechanism and physiological significance. Acta Physiol. Plant. 26, 197–212. <https://doi.org/10.1007/s11738-004-0009-8>

Lauersen, K.J., 2019. Eukaryotic microalgae as hosts for light-driven heterologous isoprenoid production. Planta 249, 155–180. <https://doi.org/10.1007/s00425-018-3048-x>

Matsuzaki, M., Misumi, O., Shin-i, T., Maruyama, S., Takahara, M., Miyagishima, S., Mori, T., Nishida, Keiji, Yagisawa, F., Nishida, Keishin, Yoshida, Y., Nishimura, Y., Nakao, S., Kobayashi, T., Momoyama, Y., Higashiyama, T., Minoda, A., Sano, M., Nomoto, H., Oishi, K., Hayashi, H., Ohta, F., Nishizaka, S., Haga, S., Miura, S., Morishita, T., Kabeya, Y., Terasawa, K., Suzuki, Y., Ishii, Y., Asakawa, S., Takano, H., Ohta, N., Kuroiwa, H., Tanaka, K., Shimizu, N., Sugano, S., Sato, N., Nozaki, H., Ogasawara, N., Kohara, Y., Kuroiwa, T., 2004. Genome sequence of the ultrasmall unicellular red alga *Cyanidioschyzon merolae* 10D. Nature 428, 653–657. <https://doi.org/10.1038/nature02398>

Minoda, A., Sakagami, R., Yagisawa, F., Kuroiwa, T., Tanaka, K., 2004. Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, *Cyanidioschyzon merolae* 10D. Plant Cell Physiol. 45, 667–671. <https://doi.org/10.1093/pcp/pch087>

Miyagishima, S.Y., Tanaka, K., 2021. The Unicellular Red Alga *Cyanidioschyzon merolae* - The Simplest Model of a Photosynthetic Eukaryote. Plant Cell Physiol. 62, 926–941. <https://doi.org/10.1093/pcp/pcab052>

846 Moriyama, T., Tajima, N., Sekine, K., Sato, N., 2014. Localization and phylogenetic analysis
847 of enzymes related to organellar genome replication in the unicellular rhodophyte
848 cyanidioschyzon merolae. *Genome Biol. Evol.* 6, 228–237.
849 <https://doi.org/10.1093/gbe/evu009>

850 Nozaki, H., Takano, H., Misumi, O., Terasawa, K., Matsuzaki, M., Maruyama, S., Nishida,
851 K., Yagisawa, F., Yoshida, Y., Fujiwara, T., Takio, S., Tamura, K., Chung, S.J.,
852 Nakamura, S., Kuroiwa, H., Tanaka, K., Sato, N., Kuroiwa, T., 2007. A 100%-
853 complete sequence reveals unusually simple genomic features in the hot-spring red
854 alga *Cyanidioschyzon merolae*. *BMC Biol.* 5, 28. <https://doi.org/10.1186/1741-7007-5-28>

855 Ohnuma, M., Yokoyama, T., Inouye, T., Sekine, Y., Tanaka, K., 2008. Polyethylene Glycol
856 (PEG)-Mediated Transient Gene Expression in a Red Alga, *Cyanidioschyzon*
857 *merolae* 10D. *Plant Cell Physiol.* 49, 117–120. <https://doi.org/10.1093/pcp/pcm157>

858 Pancha, I., Takaya, K., Tanaka, K., Imamura, S., 2021. The Unicellular Red Alga
859 *Cyanidioschyzon merolae*, an Excellent Model Organism for Elucidating
860 Fundamental Molecular Mechanisms and Their Applications in Biofuel Production.
861 *Plants* 10, 1218. <https://doi.org/10.3390/plants10061218>

862 Parys, E., Krupnik, T., Kułak, I., Kania, K., Romanowska, E., 2021. Photosynthesis of the
863 *Cyanidioschyzon merolae* cells in blue, red, and white light. *Photosynth. Res.* 147,
864 61–73. <https://doi.org/10.1007/s11120-020-00796-x>

865 Perozeni, F., Cazzaniga, S., Baier, T., Zanoni, F., Zoccatelli, G., Lauersen, K.J., Wobbe, L.,
866 Ballottari, M., 2020. Turning a green alga red: engineering astaxanthin biosynthesis
867 by intragenic pseudogene revival in *Chlamydomonas reinhardtii*. *Plant Biotechnol. J.*
868 18, 2053–2067. <https://doi.org/10.1111/pbi.13364>

869 Rahman, D.Y., Sarian, F.D., van Wijk, A., Martinez-Garcia, M., van der Maarel, M.J.E.C.,
870 2017. Thermostable phycocyanin from the red microalga *Cyanidioschyzon merolae*,
871 a new natural blue food colorant. *J. Appl. Phycol.* 29, 1233–1239.
872 <https://doi.org/10.1007/s10811-016-1007-0>

873 Schmidt, R.L., Park, C.H., Ahmed, A.U., Gundelach, J.H., Reed, N.R., Cheng, S., Knudsen,
874 B.E., Tang, A.H., 2007. Inhibition of RAS-Mediated Transformation and
875 Tumorigenesis by Targeting the Downstream E3 Ubiquitin Ligase Seven in Absentia
876 Homologue. *Cancer Res.* 67, 11798–11810. <https://doi.org/10.1158/0008-5472.CAN-06-4471>

877 Selvaratnam, T., Kharel, H.L., Tan, M., 2022. Nutrient and Energy Recovery from anaerobic
878 digester (AD) centrate using an algal system. Presented at the International
879 Conference on Engineering - 2022.

880 Seybold, A., Goodwin, T.W., 1959. Occurrence of Astaxanthin in the Flower Petals of *Adonis*
881 *annua* L. *Nature* 184, 1714–1715. <https://doi.org/10.1038/1841714a0>

882 Shabbir, M., Rather, L.J., Mohammad, F., 2018. Economically viable UV-protective and
883 antioxidant finishing of wool fabric dyed with *Tagetes erecta* flower extract: Valorization
884 of marigold. *Ind. Crops Prod.* 119, 277–282.
885 <https://doi.org/10.1016/j.indcrop.2018.04.016>

886 Sumiya, N., Fujiwara, T., Kobayashi, Y., Misumi, O., Miyagishima, S.Y., 2014. Development
887 of a heat-shock inducible gene expression system in the red alga *Cyanidioschyzon*
888 *merolae*. *PLoS ONE* 9, 1–11. <https://doi.org/10.1371/journal.pone.0111261>

889 Sumiya, N., Kawase, Y., Hayakawa, J., Matsuda, M., Nakamura, M., Era, A., Tanaka, K.,
890 Kondo, A., Hasunuma, T., Imamura, S., Miyagishima, S.Y., 2015. Expression of
891 cyanobacterial Acyl-ACP reductase elevates the triacylglycerol level in the red alga
892 *cyanidioschyzon merolae*. *Plant Cell Physiol.* 56, 1962–1980.
893 <https://doi.org/10.1093/pcp/pcv120>

894 Takemura, T., Imamura, S., Kobayashi, Y., Tanaka, K., 2019a. Multiple Modification of
895 Chromosomal Loci Using URA5.3 Selection Marker in the Unicellular Red Alga

898 Cyanidioschyzon merolae. BIO-Protoc. 9, 1–14.
899 <https://doi.org/10.21769/BioProtoc.3204>

900 Takemura, T., Imamura, S., Kobayashi, Y., Tanaka, K., 2018. Construction of a Selectable
901 Marker Recycling System and the Use in Epitope Tagging of Multiple Nuclear Genes
902 in the Unicellular Red Alga *Cyanidioschyzon merolae*. *Plant Cell Physiol.* 59, 2308–
903 2316. <https://doi.org/10.1093/pcp/pcy156>

904 Takemura, T., Imamura, S., Tanaka, K., 2019b. Identification of a chloroplast fatty acid
905 exporter protein, CmFAX1, and triacylglycerol accumulation by its overexpression in
906 the unicellular red alga *Cyanidioschyzon merolae*. *Algal Res.* 38, 101396.
907 <https://doi.org/10.1016/j.algal.2018.101396>

908 Villegas, M.V., González-Portela, R.E., de Freitas, B.B., Al, A., Romero-Villegas, G.I.,
909 Malibari, R., Kapoor, R.V., Fuentes, C., Lauersen, K.J., 2023. Cultivation of the
910 polyextremophile *Cyanidioschyzon merolae* 10D during summer conditions on the
911 coast of the Red Sea and its adaptation to hypersaline sea water.
912 <https://doi.org/10.1101/2023.02.02.526792>

913 Wan, X., Zhou, X.-R., Moncalian, G., Su, L., Chen, W.-C., Zhu, H.-Z., Chen, D., Gong, Y.-
914 M., Huang, F.-H., Deng, Q.-C., 2021. Reprogramming microorganisms for the
915 biosynthesis of astaxanthin via metabolic engineering. *Prog. Lipid Res.* 81, 101083.
916 <https://doi.org/10.1016/j.plipres.2020.101083>

917 Zhang, C., Chen, X., Too, H.-P., 2020. Microbial astaxanthin biosynthesis: recent
918 achievements, challenges, and commercialization outlook. *Appl. Microbiol.*
919 *Biotechnol.* 104, 5725–5737. <https://doi.org/10.1007/s00253-020-10648-2>

920 Zienkiewicz, M., Krupnik, T., Drożak, A., Golke, A., Romanowska, E., 2017. Transformation
921 of the *Cyanidioschyzon merolae* chloroplast genome: prospects for understanding
922 chloroplast function in extreme environments. *Plant Mol. Biol.* 93, 171–183.
923 <https://doi.org/10.1007/s11103-016-0554-8>

924

925

926 **Figures**

927 **Figure 1. Carotenoid pathway of *C. merolae* and its extension to ketocarotenoid**
928 **biosynthesis.** *C. merolae* 10D lacks the α -carotene branch of carotenoid biosynthesis and
929 accumulates only the terminal xanthophyll zeaxanthin but not violaxanthin or neoxanthin.
930 Pathways not found in *C. merolae* are shown in light grey. Native carotenoid pathway
931 enzymes are shown in black, heterologous BKT and CHYB are shown in blue. BKT acts to
932 add ketone groups to the terminal carotenoid rings, while CHYB hydroxylates them, yielding
933 several intermediates in the production of astaxanthin. Ketocarotenoids and intermediates
934 are shown in orange and red. Chemical abbreviations: IPP, DMAPP, and GGPP – isopentyl,
935 dimethylallyl, and geranylgeranyl pyrophosphate. Gene names: PSY – phytoene synthase,
936 PDS – phytoene desaturase, ZDS/CHRISTO – ζ -carotene desaturase/carotene isomerase,
937 LCYb – lycopene β -cyclase, LCYe – lycopene ϵ -cyclase, P450b/e-CHY – P450-carotene
938 hydroxylases, CrtR – β -carotene hydroxylase (cyanobacterial), VDE – violaxanthin de-
939 epoxidase, ZEP zeaxanthin epoxidase, NXS – neoxanthin synthase.

940

941 **Figure 2. Plasmid design, culturing systems and transgene integration.** A – Synthetic
942 plasmids were designed *in silico* and constructed *de novo* for integration of transgenes into
943 the 184C-185C locus (HR-L and -R) on *C. merolae* chromosome 4. Two template plasmids
944 were synthesized: a two-cassette (upper) and a single cassette (lower), both with
945 chloramphenicol (CAT) resistance marker as a selection/fusion partner. Expression
946 elements and gene fragments are separated by non-redundant restriction endonuclease
947 sites as illustrated. pCPCC – phycocyanin-associated rod linker protein promoter, CTP
948 CMH166C – DNA Gyrase B chloroplast targeting peptide, mVenus – yellow fluorescent
949 protein reporter, StrepII – C-terminal peptide tag with stop codon, tNOS – nopaline synthase
950 terminator, pAPCC – allophycocyanin-associated rod linker protein promoter, CTP
951 CMO250C – allophycocyanin-associated rod linker protein chloroplast targeting peptide,
952 FLAG – peptide tag with stop codon, tB-tub – *C. merolae* β -tubulin terminator CMN263C. B
953 – *C. reinhardtii* β -carotene ketolase (CrBKT) and β -carotene hydroxylase (CrCHYB)
954 transgenes were codon optimized for *C. merolae* nuclear genome expression based on
955 amino acid sequences and native targeting peptide removal and subcloned into either of the
956 above two plasmids as illustrated for expression as either target-mVenus or -CAT fusion
957 proteins. C – transformation of *C. merolae*, recovery of colonies in starch spots on
958 chloramphenicol selection, and seed train for experiments. D – polymerase chain reaction
959 confirmation of plasmid integration at the 184-185C neutral locus, presence of transgenes,

960 and unicellular status (RuBisCO *Haell* digestion). Information on primers and PCR assays
961 found in Supplemental Figure S1 and Data S2.

962

963 **Figure 3. *C. merolae* culture phenotypic changes and carotenoid profiles of**
964 **transformants expressing different combinations of CrBKT and CrCHYB. A** – Cuvettes
965 containing 1 mL of *C. merolae* transformant culture for one representative of each confirmed
966 plasmid transformation. **B** – absorbance spectra of cultures pictured above, shoulder of
967 ketocarotenoid absorbance indicated with a black arrow. **C** – Acetone extract TLC of one
968 confirmed representative *C. merolae* transformant for each indicated plasmid with
969 carotenoid standards. Above – raw acetone extracts, below – saponified extracts. Arrows
970 indicate 1 – astaxanthin, 2 – adinorubin, 3 – canthaxanthin, 4 – zeaxanthin, 5 – chlorophyll
971 a, 6 – echinenone, 7 – β -cryptoxanthin, 8 – pheophytin a, 9 – β -carotene. HPLC profiles of
972 carotenoids from parental *C. merolae* 10D (D), and transformants expressing CrBKT- ii (E)
973 or CrBKT+CrCHYB – viii (F).

974

975 **Figure 4. Growth behavior test and culture pigment profiles of parental (WT), CrBKT,**
976 **and CrBKT+CrCHYB transformants grown in 20 mL culture tubes under two light**
977 **intensities. (A)** Optical density (750 nm) and (B) ash-free cell dry weights (AFDW) were
978 recorded throughout the 12-day cultivation. (A) phycocyanin, (B) Chlorophyll a and (C) total
979 carotenoids were quantified at the start of cultivation, mid-log phase (d5), and stationary
980 phase (d12), values are of the weight % of biomass. At each timepoint, the relative profiles
981 of carotenoid species in each of the three cell lines ((F) WT, (G) CrBKT – vii and (H)
982 CrBKT+CrCHYB – viii) were also determined by HPLC and presented as weight % of the
983 biomass.

984

985 **Figure 5.** Comparative bioreactor growth tests of parental *C. merolae* 10D, CrBKT, and
986 CrBKT+CrCHYB transformants in various conditions. The three cell lines were cultivated in
987 (A.) constant 1500 μ E illumination and with (B.) 12:12 hour day:night cycling at 42 °C as
988 well as simulated environmental conditions from recorded weather data for the month of
989 August in the (C.) mid-Red Sea coast (KSA) and (D.) Mesa Arizona. Optical density (OD
990 740 nm), cell density (cells/mL), and dry biomass (g L⁻¹ culture) are indicated beside the
991 light and temperature profiles used in each bioreactor. One cultivation of three biological
992 replicates is shown. Below (E.), culture flask pictures at day 2 and 8 of the cultivation
993 showing phenotypic differences in ketocarotenoid accumulating transformants.

994

995

996 **Figure 6.** Extractable products from wild-type and engineered *C. merolae* 10D. The
997 schematic displays the extractable products that can be obtained from *C. merolae* 10D cells
998 through various extraction phases. The dotted arrows indicate the carotenoid fractions that
999 can be extracted from the corresponding cell lines: WT, ii (CrBKT), and viii
1000 (CrBKT+CrCHYB). The pigment fractions are named based on the predominant carotenoid
1001 present in the extract: ZX (zeaxanthin), CX (canthaxanthin), and ASX (astaxanthin).
1002 Additionally, phycocyanin (PC) and chlorophyll a (CHL) are present in all lines. Pigments
1003 were extracted as described in M&M and ~1 mL of each was photographed in 3 mL cuvettes.

1004

1005

1006

1007

1008 **Supplemental Figures**

1009 **Figure S1: Schematic map of primer annealing sites for the targeted integration site**
1010 **at the 184C-185C locus, on the transformation plasmids, and the RuBisCO large**
1011 **subunit locus.** Additional information on the primers used can be found in supplemental
1012 Table S2, including the PCR assay conditions. The primer sets were utilized for the following
1013 purposes: (1) to determine the presence or absence of each transgene (*CrCHYB*, YFP,
1014 *CrBKT*, and CAT), (2) to confirm the integration of DNA insert (using 209F/2776R for arms
1015 and M2F/D184R for integration, anchored outside of insert), (3) to check for the presence
1016 or absence of plasmid DNA (using EpiF/R for episomal), and (4) to verify the unicellular status
1017 of the cultures (using universal *RbcL* R/F for RuBisCO LSU followed by *HaellII* R.E.
1018 digestion). Red and blue triangles indicate the forward and reverse primers, respectively,
1019 and lines (dotted or solid) connect the primer sets.

1020

1021 **Figure S2: Evaluation of YFP transformants via flow cytometer and epifluorescence**
1022 **microscopy.** (A.) Histograms of the forward scatter (FSC), side scatter (SSC), chlorophyll
1023 fluorescence (Chl; 692/40 nm), and YFP fluorescence (YFP; 575/25 nm) of wild type and
1024 YFP transformant cells. (B.) Brightfield and epifluorescent images of transformant cells
1025 expressing YFP to verify chloroplast localization. Representative image shown using
1026 transgenic line iv. Brightfield image in left top corner, pigment and YFP fluorescence shown
1027 in top right and bottom left corner, respectively. Overlay of all three shown in bottom right
1028 corner.

1029

1030 **Figure S3: Carotenoid profiles of WT and transformants expressing different**
1031 **combinations of *CrBKT* and *CrCHYB*.** Acetone extract TLC of two *C. merolae* WT and
1032 confirmed representative transformants for each indicated plasmid. The raw acetone
1033 extracts are displayed above, and the saponified extracts are shown below. Arrows indicate
1034 the following carotenoids: 1 - astaxanthin, 2 - adinorubin, 3 - canthaxanthin, 4 - zeaxanthin,
1035 5 - chlorophyll a, 6 - echinenone, 7 - β -cryptoxanthin, 8 - pheophytin, 9 - β -carotene.

1036

1037 **Figure S4: Pigment analysis results of an Algernon growth experiment conducted under**
1038 **Mesa and Thuwal simulated environmental conditions.** Chlorophyll (A), total carotenoids
1039 (B), and Phycocyanin (C) were extracted from the WT, ii (*CrBKT*), and viii (*CrBKT+CrCHYB*)
1040 lines on day 4 and day 8 of cultivation in Algernon® photobioreactors. The experiment was
1041 carried out under four different growth conditions: Constant (24h) and diurnal (12h:12h) light
1042 conditions at 1500 $\mu\text{mol m}^{-2} \text{s}^{-1}$ and 42 °C; and two simulated environmental conditions for

1043 the month of August in Thuwal (Saudi Arabia) and Mesa (Arizona). The averages of
1044 biological triplicates are displayed.

1045

1046 **Supplemental data captions**

1047 **Supplemental Data S1 Sequences and sources used to construct transformation**
1048 **plasmids.** Table includes abbreviated names, function, gene name and ID, sequence with
1049 indicated modifications and size, along with source (organism and references).

1050

1051 **Supplemental Data S2 – Primer and PCR assay information.** Table includes
1052 comprehensive information on the primers used for this study to screen and monitor
1053 transformants. Target templates/genes, primer abbreviations, sequences along with Tm's,
1054 product sizes, and PCR assay conditions are provided.

1055

1056 **Supplemental Data S3 – HPLC standard quantifications** Calculations for carotenoid
1057 standard curves. Standard curves like the ones shown here were used to quantify
1058 carotenoids during experimentation. Standards were also used to confirm bands in TLC
1059 (Figure 3) and peaks (retention times and absorption spectra) in HPLC chromatograms.

1060

1061 **Supplemental Data S4 – Annotated sequences of all plasmids used in this work.** This
1062 file can be opened with any plasmid editor software to see plasmid sequences and
1063 annotation maps.

1064

1065 **Supplemental Data S5 – Indoor culture tube experiments.** Consolidated data set for the
1066 indoor 20 mL culture tube experiment. Data was used to produce Figure 4.

1067

1068 **Supplemental Data S6 – Thuwal conditions growth tests and data.** Consolidated data
1069 set for the Algem photobioreactor simulating environmental conditions for Thuwal, Saudi
1070 Arabia. Data was used to produce Figure 5C.

1071

1072 **Supplemental Data S7 – Mesa conditions growth tests and data.** Consolidated data set
1073 for the Algem photobioreactor simulating environmental conditions for Mesa, Arizona. Data
1074 was used to produce Figure 5D.

1075

1076

1077

1078 **Tables:**

1079 **Table 1 Identification of chlorophyll and carotenoid pigments in *C. merolae* WT and**

1080 **transformant lines:** List of pigments detected and corresponding values of R_f , R_t and

1081 absorption maxima are shown.

No.	R_f	R_t (min)	Absorption Maxima ^a	Identification
1	0.35	7.67	478	Astaxanthin
2	0.42	8.38	477	Adonirubin
3	0.51	9.12	476	Canthaxanthin
4	0.29	9.4	(430), 455, 481	Zeaxanthin
5	0.34	11.15	430, 663	Chlorophyll a
6	0.74	11.38	462	Echinenone
7	0.5	11.58	(430), 455, 482	β -Cryptoxanthin
8	0.54	n.d. ^b	n.d. ^b	Pheophytin a
9	0.99	13.31	(430), 455, 482	β -Carotene

1082 ^a In HPLC mobile phase. Peaks in parentheses are “shoulders”.

1083 ^b n.d., Not Detected

1084 R_f : Retention factor - TLC; R_t : Retention Time – HPLC; and Absorption

1085 Maxima - HPLC

1086

1087