

1 Piscichuviral encephalitis in marine and freshwater chelonians: first evidence of
2 jingchuviral disease

3

4 Weerapong Laovechprasit¹, Kelsey T. Young¹, Brian A. Stacy², Steven B. Tillis³, Robert J.
5 Ossiboff³, Jordan A. Vann^{4,5}, Kuttichantran Subramaniam^{4,5}, Dalen Agnew⁶, Jian Zhang¹,
6 Shayna Whitaker⁷, Alicia Walker⁷, Andrew M. Orgill⁷, Lyndsey N. Howell², Donna J. Shaver⁸,
7 James B. Stanton¹

8

9 ¹Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA

10 ²Office of Protected Resources, National Marine Fisheries Service, National Oceanic and
11 Atmospheric Administration, University of Florida, Gainesville, FL and Pascagoula, MS

12 ³Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary
13 Medicine, University of Florida, Gainesville, FL

14 ⁴Department of Infectious Diseases and Immunology, College of Veterinary Medicine,
15 University of Florida, Gainesville, FL

16 ⁵Emerging Pathogens Institute, University of Florida, Gainesville, FL

17 ⁶Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine,
18 Michigan State University, Lansing, MI

19 ⁷Amos Rehabilitation Keep at University of Texas Marine Science Institute, Port Aransas, TX

20 ⁸National Park Service, Padre Island National Seashore, Corpus Christi, TX

21

22 Keywords: chuvirus, alligator snapping turtle, kemp's ridley turtle, chuviridae, *Lepidochelys*,

23 *Macrochelys*, chelonian, MinION, deep sequencing

24

25 **Abstract**

26 Chuviruses (family *Chuviridae*), which are in the recently discovered order *Jingchuvirales*, were
27 first identified in arthropods in 2015 and have been detected through metagenomics in numerous
28 invertebrates, but only a few vertebrates. With only few metagenomically based detections in
29 vertebrates, their replication competency in vertebrates remained questioned, let alone their
30 pathological significance. This study identified three novel chuviruses as the etiology of
31 lymphocytic meningoencephalomyelitis in three wild aquatic turtles: an alligator snapping turtle
32 (*Macrochelys* sp.), a Kemp's ridley turtle (*Lepidochelys kempii*), and a loggerhead turtle (*Caretta*
33 *caretta*). The application of random, deep sequencing successfully assembled the complete
34 snapping turtle chuvirus-1 [STCV-1], Kemp's ridley turtle chuvirus-1 [KTCV-1] genome, and
35 loggerhead turtle chuvirus-1 [LTCV-1] genome. The STCV-1 and KTCV-1 sequences were
36 used to create custom RNAscope™ probes for *in situ* hybridization, which confirmed STCV-1,
37 KTCV-1, and LTCV-1 (cross reactivity to the KTCV-1 probe) RNA within the inflamed region
38 of the brain and spinal cord. STCV-1 and KTCV-1 were isolated on several turtle-origin cell
39 lines. Phylogenetic analysis illustrated that all three viruses clustered with other vertebrate
40 chuviruses, all within the genus *Piscichuvirus*. With more than 91% pairwise amino acid identity
41 of the polymerase proteins, STCV-1, KTCV-1, and LTCV-1 belong to the same novel species,
42 putatively named *Piscichuvirus testudinae*. This study demonstrates the first *in situ* evidence of
43 chuviral pathogenicity in animals and only the second instance of jingchuviral isolation. The
44 association of these chuviruses in three different chelonians with neurologic disease suggests the
45 possibility that chuviruses are a significant, previously unrecognized cause of lymphocytic
46 meningoencephalomyelitis in freshwater and marine turtles. Additional studies of these viruses

47 are needed to elucidate their role in chelonians and the possibility of related viruses in other
48 related hosts.

49

50 **Importance**

51 Chuviruses have been identified in multiple animal species, including humans. However, most
52 were identified metagenomically, and detection was not strongly associated with disease. This
53 study provides the first evidence of chuviral disease in animals in diseased tissue: mononuclear
54 meningoencephalomyelitis in three chelonians from three different genera, two distinct families.

55 These pathogenic turtle chuviruses belong to the genus *Piscichivirus* containing other non-
56 mammalian vertebrate chuviruses and were classified together within a novel chuviral species.

57 This study supports the need for further investigations into chuviruses to understand their
58 biology, pathogenic potential, and their association with central nervous system inflammation in
59 chelonians, other reptiles, and other vertebrates.

60

61 **Introduction**

62 Mononuclear meningoencephalomyelitis (inflammation of the meninges, brain, and spinal cord)
63 characterized by perivascular cuffing often warrants a differential diagnosis of viral infection.

64 Determining the etiology of such diseases can be challenging in any species, but is particularly
65 so in non-domesticated animals due to limited diagnostic assays and knowledge gaps regarding
66 infectious agents of understudied taxa (1–3). In mammals, a number of viruses are associated
67 with this histopathologic presentation, including herpesviruses (4), alphavirus (5), flaviviruses
68 (6), morbilliviruses (7), etc. In reptiles, infection with herpesviruses (8), adenoviruses (9, 10),
69 picornaviruses (11), arenaviruses (12), and paramyxoviruses (13) are potential causes of

70 mononuclear meningoencephalomyelitis. While spirorchiids (14) and mycobacteria (15) can
71 infect the central nervous system of sea turtles, the inflammation is more lymphohistiocytic to
72 granulomatous. However, a large proportion of suspected viral encephalitis cases remain
73 idiopathic, which prevents understanding the true impact on animal populations and collections
74 (4, 16). Random sequencing has provided an unbiased mechanism to detect viruses, resulting in
75 the identification of arenavirus encephalitis in human (17), astrovirus encephalitis in cattle (18),
76 and the recently discovered turtle frasservirus-1 encephalitis in freshwater turtles (19).

77

78 Metagenomic surveillance of RNA viruses in various invertebrate species recently led to the
79 discovery of chuviruses (20), which are negative-sense, single-stranded RNA viruses in the
80 family *Chuviridae*, order *Jingchuvirales* (21). To date, 48 chuviral species have been
81 characterized and taxonomically reclassified by the International Committee on Taxonomy of
82 Viruses (ICTV) (21). Chuviruses have since been detected in other phyla, e.g., platyhelminths,
83 cnidaria, nematodes, mollusks, arthropods, echinoderms, and a few vertebrates (20, 22–28).
84 Moreover, chuviral coding sequences have also been observed within BEL-Pao retrotransposons
85 of several host species, such as insects and vertebrates (20). Therefore, chuviruses are also
86 recognized as endogenous viral elements (EVEs) (29). This suggests that even though chuviruses
87 are recently identified, they have circulated and co-evolved with animals along with other
88 commonly recognized viruses. In fact, the varying genome organization of chuviruses (circular
89 vs. linear and segmented vs. unsegmented) and the phylogenetic analysis of the RNA-dependent
90 RNA polymerase suggest that these viruses have a unique history among the viruses in the class
91 *Monjiviricetes*(20, 21).

92

93 In vertebrates, only five chuviruses have been identified: 1) hardyhead chuvirus (host:
94 unspecked hardyhead [*Craterocephalus fulvus*]) (28), 2) Wēnlǐng fish chu-like virus (host: long-
95 spine snipefish [*Macroramphosus scolopax*]) (25), 3) Guǎngdōng red-banded snake chuvirus-
96 like virus (host: red-banded snake [*Lycodon rufozonatus*]) (25), 4) Herr Frank virus 1 (host: boa
97 constrictor [*Boa constrictor*]) (22), and 5) Nuomin virus (host: human) (30), all of which were
98 detected through metagenomic sequencing. However, only two of these viruses have been
99 identified in clinically ill patients. Herr Frank virus-1 was identified from three different snakes
100 that were individually diagnosed with varying combinations of ulcerative stomatitis,
101 osteomyelitis, and fibrino-necrotizing cloacitis, but these animals also had coinfections with
102 other potentially pathogenic viruses (reptarenavirus and hartmanivirus) and no *in situ*
103 localization of chuviruses was attempted (22), preventing attribution of the clinical signs and
104 lesions to the chuvirus. Nuomin virus was identified from the serum of febrile human patients in
105 China; however, no tissue-based studies were performed to support it as the cause of the fever
106 (30) or to determine the pathology associated with infection. While these studies demonstrate the
107 potential of chuviruses to infect vertebrates, no studies have demonstrated chuviruses in lesions
108 in clinically ill animals.

109

110 The goal of this study was to determine the cause of idiopathic mononuclear
111 meningoencephalomyelitis in three free-ranging aquatic turtles (alligator snapping turtle
112 [*Macrochelys* sp.], Kemp's ridley turtle [*Lepidochelys kempii*], and loggerhead turtle [*Caretta*
113 *caretta*]). Based on histological findings from all animals, it was hypothesized that unknown
114 viruses were causing the mononuclear inflammation in the central nervous system, these viruses

115 could be identified by random sequencing, and that viral RNA could be localized to diseased
116 tissue supporting the causality of the viruses.

117

118 **Results**

119 Animal history and pathology

120 An adult male alligator snapping turtle (56.5 cm straight carapace length [SCL] from nuchal
121 notch to caudal tip) was found minimally responsive on the shore of Lake Wauburg
122 (29.524879°N; -82.300594°W) in Alachua County, Florida, USA and was brought to the
123 University of Florida, College of Veterinary Medicine (UF-CVM) for care on June 10, 2009. As
124 the location of discovery is outside of the species range, it was strongly suspected that this turtle
125 was captured elsewhere and released. The animal was weak and lethargic upon evaluation and 5
126 days later was euthanized due to declining condition. The turtle was in good nutritional condition
127 as evidenced by abundant body fat. Necropsy findings included a locally extensive ulcerated
128 wound on the ventral tail base, infestation by small numbers of leeches, a single pentastome
129 within the left lung, small numbers of unidentified nematodes within the large intestine, a
130 chronic fracture of the left fibula with callus formation, and chronic arthritis of the left
131 mandibular joint with erosion of the articular cartilages and remodeling of bone. The brain was
132 grossly normal. Histopathological examination of the nervous system revealed mononuclear
133 inflammation of the meninges, brain, and spinal cord (meningoencephalomyelitis). Moderate
134 numbers of lymphocytes and plasma cells diffusely infiltrated the leptomeninx, extending into
135 the adjacent brain and cranial nerves. All regions of the brain (including the olfactory bulbs,
136 cerebrum, optic tectum, midbrain, cerebellum, and brainstem) (Fig. 1a) contained frequent
137 lymphoplasmacytic cuffs. The associated neuroparenchyma was vacuolated and some neurons

138 exhibited central chromatolysis (Fig. 1c). Similar inflammation disrupted the cervical spinal cord
139 with lesions most concentrated within the gray matter. A viral etiology was considered most
140 likely; brain tissue was negative for herpesvirus through conventional PCR (31).

141

142 The second case was a subadult female Kemp's ridley turtle (60.3 cm SCL) that was found
143 stranded on Mustang Island Gulf Beach (27.67338°N; -97.16880°W) in Nueces County, Texas,
144 USA and admitted to Amos Rehabilitation Keep (ARK) in Port Aransas, Texas. The animal was
145 underweight, had accumulated epibiotia (*Lepas* sp.) compatible with prolonged floating, and
146 exhibited persistent neurological signs: circling to the left and right-sided asymmetric buoyancy.
147 Euthanasia was elected due to quality of life concerns after 4.5 months of attempted treatment
148 using antimicrobial, antiparasitic, and corticosteroid medications without clinical improvement.

149 No gross abnormalities were observed in the nervous system or inner ears. Cytological
150 evaluation of a postmortem cerebrospinal fluid (CSF) sample revealed marked histiocytic
151 pleocytosis with a mild lymphocytic component. However, by histopathology the inflammation
152 was predominantly lymphocytic and distributed as a severe, diffuse meningoencephalomyelitis
153 with prominent perivascular cuffs and infiltration of cranial nerves (Fig. 2a). Neurons frequently
154 contained eosinophilic, intranuclear inclusions and there was patchy vacuolation of the
155 neuroparenchyma (Fig. 2a and 2c). There were no acid-fast organisms in sections of brain and a
156 CSF slide stained using the Ziehl-Neelsen method. A viral etiology was suspected to be the cause
157 of the lesion.

158

159 The third case was a stranded adult male loggerhead turtle (94.0 cm SCL) that was found
160 unresponsive on a Gulf of Mexico beach (30.230591°N; -87.910237°W) in Baldwin County,

161 Alabama, USA. The animal died soon after discovery. Nutritional condition was within normal
162 limits based on the condition of skeletal muscle and abundance of body fat. Small (0.1–1.0 cm
163 diameter) acorn barnacles suggestive of reduced activity were accumulated on the head,
164 appendages, and shell. The central nervous system was grossly normal; however, significant
165 inflammation was detected by histopathology. Moderate numbers of lymphocytes infiltrated the
166 leptomeninx, neuroparenchyma, and cranial nerves, forming prominent perivascular cuffs (Fig.
167 3a and 3c). The inflammation was diffuse, but variable in intensity with relative severity in areas
168 of the cerebrum, optic tectum, and cerebellum (Fig. 3a and 3c). There were no acid-fast
169 organisms in sections of brain. A viral etiology was suspected to be the cause of the lesion.
170

171 Identification and characterization of viral genomes

172 Snapping turtle chuvirus (STCV-1)

173 Chuviral reads from MinION sequencing were initially detected through reference-based
174 alignment using BLASTn. Out of 126,221 total reads, only 5 reads best aligned to a chuvirus
175 (Wēnlǐng fish chu-like virus and *Lampyris noctiluca* chuvirus-like virus 1). Suspecting that the
176 paucity of known chuviral sequences and the large sequence diversity of known chuviruses could
177 lead to poor alignments, the reads were further interrogated through a custom index using a long-
178 read aligner (i.e., Centrifuge, see Methods), resulting in thirty-one reads that best aligned to a
179 chuvirus, including Wēnlǐng fish chu-like virus, *Lampyris noctiluca* chuvirus-like virus 1, and
180 Herr Frank virus 1.

181

182 To assemble the genome, all reads from the sample that did not align via Centrifuge to the green
183 turtle genome or to bacteria, and were larger than 50 nt run were mapped to Wēnlǐng fish chu-

184 like virus in Geneious. This mapping resulted in the detection of 1,491 reads that built a
185 complete genome for snapping turtle chuvirus-1 (STCV-1) with at least 10 \times coverage. The
186 complete genome (10,781 nt) contains the complete CDS for the 5'-polymerase (*L*), glycoprotein
187 (*G*), nucleoprotein (*N*), and viral protein-4 (*VP4*)-3' genes of the STCV-1. The *L*, *G*, *N*, and *VP4*
188 genes were 6,438 nt, 2,052 nt, 1,446 nt, and 318 nt, respectively. The genomic structure of this
189 novel chuvirus was linear and non-segmented, similar to other piscichuviruses. The 5'
190 untranslated region (UTR) was 91 nt and the 3' UTR was 89 nt. In addition, 16 terminal
191 nucleotides of each UTR were inverted repeats, with 3 nucleotide mismatches.

192

193 Kemp's ridley turtle chuvirus (KTCV-1)

194 Raw reads were generated through random, deep Illumina sequencing. The BLASTX search of
195 the assembly identified four contigs with significant identity to Herr Frank virus 1 (GenBank
196 accession number MN567051) and Guangdong red-banded snake chuvirus-like virus (GenBank
197 accession number MG600009), which were then used as a reference to create a draft genome of
198 Kemp's ridley turtle chuvirus-1 (KTCV-1). The complete genome contained 10,839 bases with
199 four predicted coding regions: 5'-polymerase (*L*)-glycoprotein (*G*)-nucleoprotein (*N*)-viral
200 protein-4 (*VP4*) -3' of 6,438 nt, 2,052 nt, 1,500 nt, and 318 nt respectively. The genomic
201 structure of this novel chuvirus was also linear and non-segmented. The 5' UTR was 91 nt, and
202 the 3' UTR was 93 nt. In addition, 16 terminal nucleotides of each UTR were inverted repeats
203 with 2 nucleotide mismatches.

204

205 Loggerhead turtle chuvirus (LTCV-1)

206 All 1,839,435 reads from the random and targeted MinION sequencing that did not align via
207 Centrifuge to the green turtle genome or to bacteria, and were larger than 50 nt run were mapped
208 to Kemp's ridley turtle chuviral consensus sequence in Geneious. This resulted in the detection
209 of 258 reads that built a complete genome for loggerhead turtle chuvirus-1 (LTCV-1) with at
210 least 10× coverage except the first 9 bases of 5' terminus, which had 6–9× coverage. The
211 complete genome contained 10,839 bases with four predicted coding regions: 5'-polymerase (L)-
212 glycoprotein (G)-nucleoprotein (N)-viral protein-4 (VP4) -3' of 6,438 nt, 2,052 nt, 1,500 nt, and
213 318 nt respectively. The genomic structure of this novel chuvirus was also linear and non-
214 segmented. The 5' UTR was 91 nt, and the 3' UTR was 93 nt. In addition, 16 terminal
215 nucleotides of each UTR were inverted repeats with 2 nucleotide mismatches. The termini were
216 100% identical to the termini of KTCV-1.

217

218 Genome comparison of piscichuviruses

219 According to the recent taxonomical framework for the order *Jingchuvirales* (21), L amino acid
220 identity is required for the characterization of the jingchuviral taxonomy. The percent pairwise
221 amino acid identities <90%, <31%, and <21% support differentiation of jingchuviruses as a
222 novel species, genus, and family, respectively (21). Percent pairwise amino acid identity analysis
223 of the STCV-1, KTCV-1, and LTCV-1 revealed that the pairwise identity of the L protein
224 between two marine chelonian chuviruses (e.g., KTCV-1 and LTCV-1) and the freshwater
225 chelonian chuvirus was approximately 91.6%; whereas the pairwise identity between KTCV-1
226 and LTCV-1 was 99.8%. This percent identity is markedly different from the percent amino acid
227 identities for the L protein when comparing these chelonian chuviruses to non-chelonian
228 chuviruses (46.9–47.3% to Herr Frank virus 1; Table 1 and supplemental data). Based on these

229 pairwise amino acid identities, all three chelonian chuviruses belong to the genus *Piscichuvirus*,
230 and are grouped together within the same novel species, putatively named *Piscichuvirus*
231 *testudinae*.

232

233 The amino acid pairwise identities of the G and N proteins between two marine chelonian
234 chuviruses and the freshwater chelonian chuvirus was 85.9 and 83.4%, respectively; whereas the
235 pairwise identity between marine chelonian chuviruses was 99.6 and 100%, respectively. The L
236 and G proteins are the same length between freshwater chelonian chuvirus (STCV-1) and marine
237 chelonian chuviruses (KTCV-1 and LTCV-1), whereas the SCTV-1 N protein is 2 amino acids
238 smaller than the marine chelonian chuviruses. The highest percent amino acid identity for the G
239 protein of chelonian chuviruses to other piscichuviruses was 35.7–36.7% to Guǎngdōng red-
240 banded snake chuvirus-like virus (GenBank accession numbers: MG600009) (Table 1 and
241 supplemental data). The highest percent amino acid identity for the chelonian chuvirus N protein
242 to other piscichuviruses was 37.7–38.4% to Guǎngdōng red-banded snake chuvirus-like virus
243 (GenBank accession numbers: MG600009) (Table 1 and supplemental data).

244

245 Phylogenetic analysis of *Chuviridae*

246 To understand the relationship of these chelonian chuviruses, putatively classified as
247 *Piscichuvirus testudinae*, to other chuviruses; phylogenetic analyses using the amino acid
248 sequences of each predicted protein were performed. Phylogenetic analysis of the predicted L
249 protein amino acid sequences from 58 chuviruses using Maximum-Likelihood analysis
250 demonstrated that STCV-1 KTCV-1, and LTCV-1, clustered with other piscichuviruses, and this
251 genus had a branch length of 0.7037 from other chuviruses. All three turtle chuviruses clustered

252 together in the putative *Piscichuvirus testudinae* species, with a branch length of 0.6286 and
253 bootstrap value of 100%. The *P. testudinae* species shared a most recent common ancestor with
254 *Piscichuvirus franki* (branch length of 0.7283) with a 24% bootstrap value. (Fig. 4).

255

256 Of note, when running multiple sequence alignments for the phylogenetic analysis, it was noted
257 that after the N coding region there is a fourth possible open reading frame (ORF) in
258 piscichuviruses via NCBI ORF finder. This fourth ORF is consistent with what is annotated as
259 VP4 or hypothetical protein in other chuviruses that have circular genomes, such as Wuhan tick
260 virus 2 (GenBank accession No. MZ965027), Suffolk virus (GenBank accession No.
261 NC028403), and lonestar tick chuvirus (GenBank accession No. NC030204). Within the genus
262 *Piscichuvirus* that was previously deposited on GenBank, this coding region is 225–276 bases
263 (74–91 amino acids) long.

264

265 *In situ* identification of a novel chuvirus using RNAscopeTM assay

266 To determine if the turtle chuviruses colocalized within the inflamed central nervous system
267 (CNS) tissue, RNAscopeTM *in situ* hybridization (ISH) was performed. In the alligator snapping
268 turtle, the ISH demonstrated disseminated, strong, punctate reactivity for STCV-1 RNA in areas
269 of inflammation throughout various areas of the central nervous system, predominantly the grey
270 matter (Fig. 1). In the cerebellum, small neurons of the internal granular layer had strong
271 intracytoplasmic reactivity (Fig. 1b). In the brainstem, there was strong to moderate
272 intracytoplasmic reactivity in neurons with central chromatolysis. Strong reactivity was
273 disseminated throughout all layers of the olfactory bulb, predominantly in the granular cell layer
274 (data not shown). The cerebrum had strong, but less distributed probe signal, as compared to

275 other brain sections. The optic tectum had disseminated, strong, intracytoplasmic ISH reactivity
276 throughout the grey matter (Fig. 1d). The spinal cord had multifocal, strong reactivity in
277 neuronal cytoplasm and around nuclei of glial cells. Other tissues were also tested for STCV-1
278 nucleic acid; however, non-CNS tissues from this alligator snapping turtle, and the brain tissue
279 from an alligator snapping turtle without encephalitis lacked STCV-1 nucleic acid signal.

280

281 For KTCV-1, the viral RNA specific probe showed disseminated, strong reactivity in areas of
282 inflammation and degeneration throughout various areas of the Kemp's ridley turtle central
283 nervous system. Similar to the STCV ISH, signal predominantly located within the grey matter
284 (Fig 2). In the brainstem, there was strong to moderate intracytoplasmic reactivity in large and
285 small neurons, and ependymal cells (Fig 2b). In the midbrain, strong reactivity was within the
286 neuronal cytoplasm and around nuclei of glial cells (data not shown). The cerebrum had strong
287 reactivity that was disseminated throughout the tissue section, predominantly within the gray
288 matter and ependyma (data not shown). There was no ISH reactivity against viral RNA within
289 the olfactory bulb (data not shown). However, there was mild ISH reactivity throughout the
290 leptomeninx. The spinal cord had a few multifocal, strong ISH-positive puncta in the cytoplasm
291 of neurons (Fig. 2d). Similar to STCV-1, other tissues were tested for KTCV-1 nucleic acid,
292 including non-CNS tissues from this Kemp's ridley turtle, brain tissue from a non-encephalitic
293 Kemp's ridley turtle, and brain tissue from a Kemp's ridley turtle with bacterial meningitis. All
294 of these tissues lacked reactivity for KTCV-1 nucleic acid.

295

296 Additionally, the STCV-1 probe and the KTCV-1 probe were also tested for cross-reactivity
297 (e.g., STCV-1 tested on KTCV-1 infected Kemps ridley turtle). Both probes failed to detect the
298 other virus (e.g., STCV-1 probe failed to detect KTCV-1).

299

300 Due to the high percent nucleotide (99%) identity between KTCV-1 and LTCV-1 probe regions,
301 it was predicted that the KTCV-1-based probe would detect LTCV-1 RNA within the tissues of
302 the loggerhead turtle. The KTCV-1 probe showed multifocal ISH reactivity in various areas of
303 inflammation and vacuolation of central nervous system, e.g., optic tectum, cranial nerve,
304 cerebrum, and cerebellum (Fig. 3). In the optic tectum, there was strong, disseminated
305 intracytoplasmic reactivity within neurons, small neurons, and glial cells in all tissue layers (data
306 not shown). The cranial nerve had fine puncta of the ISH signal widely disseminated throughout
307 tissue section with rare aggregation (data not shown). In the cerebellum, there was disseminated,
308 strong, intracytoplasmic ISH signal in small neurons and glial cells throughout the grey matter
309 (Fig. 3b). The cerebrum had multifocal, strong ISH reactivity in the cytoplasm of ependymal
310 cells, neurons, and glial cells disseminated throughout white, grey matter, and adjacent
311 leptomeninges; where there were associated lymphocytic infiltrates (Fig. 3d). No ISH reactivity
312 was observed in the olfactory bulbs.

313

314 Viral isolation

315 Samples from the alligator snapping turtle and Kemp's ridley turtle were inoculated onto
316 chelonian cell lines and were tested for replication of STCV-1 and KTCV-1 via reverse
317 transcription PCR (RT-PCR). Nucleic acid of STCV-1 was detected in P1 inocula of YBSLHt
318 and SSTLu. Lysate from the spinal cord and CSF of the Kemp's ridley turtle were both tested via

319 RT-PCR. Only P1 inocula from the spinal cord origin of DBTLu, GTSp, and SSTLu were RT-
320 PCR positive.

321

322 **Discussion**

323 *Chuviridae* is the only family of single-stranded RNA viruses in which the genomic structures
324 can be linear or circular, and can be non-segmented or segmented within the same family. The
325 unique genomic feature of this viral family is believed to be transitional evidence of viral
326 evolution between monopartite (*Mononegavirales*) and polypartite (*Bunyavirales* and
327 *Orthomyxoviridae*) viral families (21). Currently, there are 14 genera of chuviruses such as
328 *Mivirus* spp. (most common hosts: chelicerate), *Chuvivirus* spp. (hosts: crustacean), and
329 *Piscichuvirus* spp. (most common hosts: vertebrate). Similar to other piscichuviruses, these turtle
330 piscichuviruses were single-stranded RNA with linear genomic structure.

331

332 Based on the recent classification criteria of order *Jingchuvirales* (21), percent pairwise amino
333 acid identity and phylogenetic tree of L amino acid sequences indicated that STCV-1, KTCV-1,
334 and LTCV-1 all belong to a novel species and share a common ancestor with other
335 piscichuviruses. However, as with most viral families, and especially for a newly discovered
336 family such as *Chuviridae*, such classification criteria are likely subject to change. For example,
337 the viruses were detected from animals with shared ecosystems (marine KTCV-1 and LTCV-1)
338 have a relatively high polymerase percent identity (99.4%) as compared to alignments between
339 viruses from non-overlapping ecosystems (e.g., KTCV-1 vs. STCV-1 = 91.6% and LTCV-1 vs
340 STCV-1 = 91.2%). While sea turtles and alligator snapping turtles are found in different
341 ecosystems, there is connectivity between their habitats through river systems. Sea turtles are

342 known to forage within tidal areas of rivers (32) and sea turtle stranding networks occasionally
343 document carcasses of freshwater chelonians, including alligator snapping turtles, in estuarine
344 and marine areas that presumably originated from river outflows (Stacy, pers observation). In
345 addition, all host species examined in this study share the most recent common ancestor and are
346 classified under *Americhelydia* clade, which is comprised of chelydroids (snapping turtles) and
347 cheloniods (sea turtles, mud turtles, and hickatee) (33). As more information is gained about the
348 diversity of chuviruses and their host restrictions through future studies, it is foreseeable that the
349 currently proposed Piscichuvirus testudinae ultimately may be divided into two or more species
350 (e.g., freshwater [chelydoid] and marine [cheloniod]).

351
352 Furthermore, the phylogenetic analysis included previously deposited sequences and it was noted
353 that some previously characterized viruses have percent amino acid identities that are only
354 slightly above the genera cutoff, e.g., Lishi spider virus 1 (38.5% amino acid identity to
355 Wuchang cockroach virus 3), Sanxia atyid shrimp virus 4 (37.3% amino acid identity to Herr
356 Frank virus-1), Wēnlǐng crustacean virus 14 (33.3% amino acid identity to Wenzhou crab virus
357 2) (see Table 1 and supplemental data). Notably, Sanxia Atyid shrimp virus 4, is the only
358 piscivirus whose host is not a vertebrate. Given the host difference and how close it is to the
359 numerical percent identity cutoff (31%) (21), other criteria, such as genetic distances and
360 biological properties (e.g., vertebrate vs. invertebrate host), might be considered as additional
361 criteria for future re-classification of the order *Jingchuvirales* after more of these viruses have
362 been characterized.

363

364 For the genetic comparison of all chelonian chuviruses, the open reading frames of the predicted
365 *L* and *G* genes of turtle chuviruses were slightly larger than other vertebrate chuviruses.
366 However, the open reading frame of *N* gene was smaller than other vertebrate chuviruses, except
367 Wēnlǐng fish chu-like virus. The open reading frames of predicted viral protein 4 (VP4), that are
368 not commonly annotated in other chuviruses, were annotated in all chelonian chuviruses. The
369 size of these VP4 regions were 318 bases long in all chelonian chuviruses with 100% amino acid
370 pairwise identity between marine turtle chuviruses and 77.4% between freshwater and marine
371 turtle chuviruses. Interestingly, both termini of all chelonian chuviral genomes were
372 complimentary (with 2–3 mismatches). Additionally, intergenic regions were TA-rich (64.7%).
373 Both of these features can lead to the formation of the inverted repeat and secondary structure,
374 i.e., hairpin loop and Internal Ribosome Entry Sites (IRES)(34). The formation of these
375 secondary structures benefits of host-virus interaction, i.e., viral RNA synthesis, splicing (34,
376 35), and host genome integration (36).

377
378 Even though the *Chuviridae* family was recently discovered through metagenomic sequencing in
379 2015, the timescale phylogenetics and EVEs suggest that chuviruses have co-evolved with a
380 broad host species and have circulated in mosquitoes for approximately 190 million years (20,
381 25, 29). The number of known chuviruses has gradually increased within the past 5 years,
382 reflecting the abundance of undiscovered chuviruses in various animals, but primarily within
383 arthropods. ICTV, therefore, formed a chuvirus taxonomic working group for the future
384 expansion of this family (21). However, the in-depth evolution and clade classification of
385 chuviruses have not been well established due to the limited availability of variable genomic
386 regions. Similar to other viruses, species identification of chuviruses mostly relies on the large

387 gene, which encodes for the highly conserved viral polymerase (21). Finer classification of
388 viruses, i.e., genotyping and evaluating temporospatial relationships, utilizes more variable
389 genomic regions, such as the hemagglutinin for morbillivirus and influenza virus genotyping (37,
390 38). Currently, 144 sequences of chuviral G gene are available on GenBank (assessed on August
391 3, 2022). However, only 50 chuviral G gene sequences are from different ecological events.
392 Therefore, the G gene or complete genome of chuviruses are needed to inform evolution
393 timescale and the nucleic acid/amino acid substitution rate in future studies.

394
395 To date, chuviruses have not been definitively associated with disease in animals. The first
396 potential association was the identification of Herr Frank virus 1 in snakes that were individually
397 diagnosed with ulcerative stomatitis, osteomyelitis, or cloacitis (22). However, these snakes were
398 also co-infected with reptarenavirus and hartmanivirus and no tissue localization studies were
399 performed, so it is not possible to attribute disease to the chuvirus infection. Subsequently
400 Nuomin virus was isolated from the serum of febrile human patients (30), but again, *in situ*
401 studies were lacking and a clinically silent infection could not be ruled out. This current study
402 identified the first *in situ* evidence of chuviral disease, in three different chelonians from two
403 different ecosystems. In this study, all cases had severe predominantly lymphocytic
404 meningoencephalomyelitis manifesting as severe clinical deficits that precipitated death or
405 humane euthanasia.

406
407 The colocalization of RNAscope™ signal chuviral RNA and areas of inflammation and necrosis
408 support the pathogenicity of these novel chuviruses. Thus, for the first time, the pathogenic
409 impact of chuviruses has been demonstrated in vertebrates. Chuviruses should be considered in

410 cases of idiopathic encephalitis, especially in chelonids. The identification of closely related
411 chuviruses in other reptiles and fishes suggests that chuviruses should be considered in those
412 species as well. Further surveillance is required to better determine the impact of chuviruses on
413 these, and other animals. Because of the poor sequence similarity between known vertebrate
414 chuviruses, random sequencing will likely be required in any vertebrate host other than those
415 from which chuviruses have already been detected.

416

417 All of the chelonian host species in which chuvirus was found are considered imperiled as
418 reflected in their classification as threatened or critically endangered by the International Union
419 for Conservation of Nature and current (sea turtles) or proposed (alligator snapping turtle) listing
420 under the US Endangered Species Act of 1973. Affected turtles included mature adults, which
421 are especially vital to chelonian population stability and recovery (39). Notably, both the
422 alligator snapping turtle and the loggerhead turtle were in relatively good nutritional condition at
423 the time of death and did not have any apparent underlying condition suspected to have
424 predisposed to viral infection. The potential to infect and cause disease in relatively healthy
425 individuals represents a significant wildlife health concern. In addition, the alligator snapping
426 turtle was believed to have been transported and released outside of its range, which raises the
427 possibility of human-mediated pathogen pollution. Future studies are needed to understand the
428 diversity and prevalence of chuvirus among chelonians, pathogenesis of infections, transmission
429 pathway(s), and host-virus interaction.

430

431 **Material and methods**

432 Gross necropsy and sample collection

433 All animals died spontaneously or ultimately were euthanized (using pentobarbital solutions) due
434 to advanced morbidity or persistent neurological abnormalities that were unresponsive to
435 treatment. Gross necropsy included systematic evaluation of all organ systems. Sexual maturity
436 was determined by evaluation of the reproductive system. Fresh tissue samples, including the
437 brain, spinal cord, and CSF (Kemp's ridley only) were aseptically collected and stored at -80°C
438 until thawed for nucleic acid extraction. Fixed samples were preserved in neutral-buffered 10%
439 formalin for histopathology.

440

441 Histopathology

442 After 24 to 48 hours of formalin fixation, formalin-fixed tissues were serially dehydrated and
443 embedded in paraffin. Formalin-fixed paraffin embedded (FFPE) tissue blocks of samples were
444 sectioned at 5 µm onto glass slides and stained with hematoxylin & eosin (H&E). Selected
445 tissues also were stained using the Ziehl-Neelsen acid fast method.

446

447 Alligator snapping turtle and loggerhead turtle: RNA extraction and viral enrichment

448 Preserved cerebrum of an alligator snapping turtle was removed from RNAlater™ (Thermo
449 Fisher Scientific) and tapped on Kimwipes™ (Kimberly-Clark) to remove excessive RNAlater™
450 solution before proceeding with RNA extraction. Cerebrum from the alligator snapping turtle
451 and brainstem from the loggerhead turtle were homogenized in 450 µL 1× phosphate-buffered
452 saline (PBS) by using a TissueLyser LT (Qiagen) at 35 Hz for 2 minutes with a sterile stainless
453 steel 0.5 mm metal bead (Qiagen). Homogenized samples underwent depletion of host and
454 bacterial ribosomal RNA using a modified previously published protocol (40). Briefly,
455 homogenates were centrifuged at 17,000 × g, at room temperature for 3 minutes to remove large

456 cellular debris and bacteria. Supernatants were collected and passed through an 0.8 μ m PES filter
457 (Sartorius) for the removal of smaller debris and bacteria. Filtrates were treated with a cocktail of
458 2.0 μ L of micrococcal nuclease and 1.0 μ L benzonase (2,000,000 gel units/mL Micrococcal
459 nuclease, NEB Inc, and >250 units/ μ L BenzonaseTM nuclease, Millipore Sigma) in 7.0 μ L of
460 resolving enzyme buffer to remove any free nucleic acids before performing the nucleic acid
461 extraction (41). TrizolTM LS Reagent (Thermo Fisher Scientific) was used for RNA extraction
462 following the manufacturer's protocol.

463

464 Alligator snapping turtle and loggerhead turtle: Random MinION sequencing

465 The MinION sequencing library was prepared using a random strand-switching protocol as
466 previously published (42). In short, the purified RNA concentration of the brain and spinal cord
467 of the alligator snapping turtle and loggerhead turtle was quantified by using Qubit RNA HS
468 assay kit (Qubit 3.0 fluorometer; Thermo Fisher Scientific) and reverse transcribed by using the
469 SuperScript IV reverse transcriptase kit (Thermo Fisher Scientific) with 1 μ M PCR-RH-RT
470 primer (5' -ACTTGCCTGTCGCTCTATCTTCNNNNNN-3') as a reverse primer and 10 μ M
471 strand-switching oligo (5' -TTTCTGTTGGTGCTGATATTGCTGCCATTACGGCCmGmGmG-
472 3'; both synthesized by Integrated DNA Technologies [IDT]) for a strand switching reaction. The
473 reaction mixture was incubated at 50°C for 30 minutes, 42°C for 10 minutes, and 80°C for 10
474 minutes before being bead purified at a 0.7 \times beads:solution ratio (KAPA Biosystem). cDNA
475 then was used as a template for barcoding PCR following ONT's protocol (SQK-LSK110 with
476 EXP-PBC096) and LongAmp *Taq* 2 \times Master Mix (NEB, Ipswich, MA). The barcoded
477 amplicons were bead purified at a 0.8 \times beads:solution ratio before being pooled by equal volume
478 with libraries from unrelated samples and a library generated from HeLa RNA (ThermoFisher)

479 (negative control library). The library pool was used for end repair and ligation of the sequencing
480 adapter using suggested kits for ligation sequencing amplicons (SQK-LSK110) library
481 preparation. Bead purification was done after end repair and adapter ligation at 1.0× and 0.4×
482 beads:solution ratios, respectively. The library was washed with long fragment buffer (LFB), and
483 eluted in elution buffer (EB) before mixing with sequencing buffer (SBII) and loading beads II
484 (LBII), following ONT's protocol. The final library was then loaded onto a FLO-MIN106 R9.4.1
485 flow cell in a MinION Mk1B sequencing device (ONT).

486

487 Sequencing was controlled using MinKNOW v.21.06.0 (ONT) for 29 hours with default settings
488 and hourly MUX scans. Post-sequencing analysis workflow followed the randomly primed,
489 MinION-based sequencing as previously described (42, 43). In brief, raw reads were basecalled,
490 with the GPU version of Guppy v.6.1.3 (ONT) using the following command: guppybasecaller -i
491 <input path> -s <save path> --flowcell <FLO-MIN106> --kit <SQK-LSK110> --device auto --
492 calib_detect. Porechop (<http://github.com/rrwick/Porechop>) was used for trimming and
493 demultiplexing using the following command: porechop -i <input reads> -b <output directory> --
494 require_two_barcodes --adapter_threshold 99 --extra_end_trim 0 --check_reads 1000000 >
495 output_file.txt. Potential viral reads were screened using all reads by pairwise aligning to non-
496 redundant Basic Local Alignment Search Tool (BLAST+) using BLASTn database (updated on
497 June 04, 2022) through the Georgia Advanced Computing Research Center (GACRC) using
498 default settings.

499

500 Reference-based mapping was also used to identify chuviral reads within the sample. Hence,
501 reads were first filtered by alignment using a custom Centrifuge index. Centrifuge v.1.0.4. was

502 used following the previously described protocol using a viral database (42, 44), with the
503 addition of chuviral sequences and the green sea turtle genome
504 (GCF_015237465.1_rCheMyd.pri.v2, accessed in July 2021; closest, most complete genome to
505 alligator snapping turtle). Reads that failed to align within this Centrifuge analysis were then
506 filtered for bacterial reads using a publicly available Centrifuge index for bacteria and archaea
507 (p_compressed_2018_4_15.tar.gz) (<https://ccb.jhu.edu/software/centrifuge/manual.shtml>) (44).
508 Reads that were greater than 50 nt and aligned to chuvirus in the first Centrifuge analysis or
509 reads that failed to align to the host, other viruses, or bacteria were mapped to Wēnlǐng fish
510 chuvirus-like virus (GenBank accession No. MG600011) in Geneious Prime 2019.1.3
511 (<https://www.geneious.com>) (map to reference setting with 15 iterations and medium
512 sensitivity). The coding regions of both STCV-1 and LTCV-1 were annotated by using the NCBI
513 ORF finder (<https://www.ncbi.nlm.nih.gov/orffinder/>) and by comparing to the annotations of
514 other piscichuviruses on Geneious Prime 2019.1.3. Gaps of consensus sequence were filled
515 using targeted MinION sequencing
516

517 Kemp's ridley turtle: RNA extraction and random Illumina sequencing
518 RNA was extracted from the brainstem tissue sample using an RNeasy Mini Kit (Qiagen)
519 according to the manufacturer's instructions. cDNA library was generated using a NEBNext
520 Ultra RNA Library Prep Kit (Illumina) and sequenced on the iSeq 100 Sequencing System.
521 Raw data (10,782,756 paired-end reads) were processed to remove host reads by first running
522 Kraken v2 (45) (<https://ccb.jhu.edu/software/kraken2/>) against a custom database created using
523 the green sea turtle genome (GenBank assembly accession: GCA_000344595, accessed in March
524 2020). *De novo* assembly of the remaining paired-end reads (742,979) was performed using

525 SPAdes v3.15.3 with default parameters. The assembled contigs were then subjected to
526 BLASTX searches in OmicsBox v2.0 (BioBam Bioinformatics) against the National Center for
527 Biotechnology Information (NCBI) nonredundant protein database. The coding regions of both
528 KTCV-1 were annotated by using the NCBI ORF finder and by comparing to the annotations of
529 other piscichuviruses. Gaps of consensus sequence were filled using additional PCR reactions for
530 Sanger sequencing.

531

532 Probe design and RNAscope™ *in situ* hybridization (ISH) assay

533 FFPE blocks from the encephalitic alligator snapping turtle, encephalitic Kemp's ridley turtle,
534 and encephalitic loggerhead turtle were sectioned at 5 µm on ColorFrost Plus™ glass slides (Erie
535 Scientific) using new microtome blades between samples to avoid cross contamination. FFPE
536 blocks of cerebrum and cerebellum from an unrelated alligator snapping turtle that lacked
537 encephalitis, unrelated Kemp's ridley turtles (e.g., a Kemp's ridley turtle without encephalitis
538 and a Kemp's ridley turtle with bacterial meningitis), and unrelated loggerhead turtles (a
539 loggerhead turtle without encephalitis and loggerhead turtles with lymphohistiocytic
540 meningoencephalitis) were included in this study as a negative tissue control. RNAscope™ 2.5
541 HD double z-probes (Catalog No. 1138851-C1, Advanced Cell Diagnostics, Inc.) were designed
542 using the L gene of the STCV-1 genomic consensus sequence from random, deep MinION
543 sequencing at bases 1375-2368, and the L gene of KTCV-1 genomic consensus sequence from
544 random, deep Illumina sequencing at bases 1535-2585. Due to the limited availability of
545 reference genes in alligator snapping turtles and Kemp's ridley turtle, the genome of the common
546 snapping turtle (*Chelydra serpentina*) (GenBank accession No. ML689093) was used in the
547 probe design to minimize non-specific probe binding to host tissues during hybridization. A

548 probe targeting *Bacillus subtilis* dihydrolipicollate reductase (DapB) gene was used as a
549 negative probe control. A uniquely conserved area of ribosomal RNA of chelonian species
550 (green turtle, loggerhead turtle, and common snapping turtle) was selected to design the probe
551 and was used as a positive control to validate the RNA integrity of the samples (Catalog No.
552 1231491-C1, Advanced Cell Diagnostics, Inc). RNAscope™ ISH was performed by following
553 manufacturer's protocol for RNAscope™ 2.5 HD detection reagent – RED (document number
554 322360-USM and 322452-USM). Briefly, all tissue sections were incubated at 60°C and
555 deparaffinized using freshly prepared xylene and ethanol. Antigen retrieval was performed with
556 hydrogen peroxide (10 minutes at room temperature), heat (15 minutes at 100°C), and protease
557 enzyme (30 minutes at 40°C) using the provided kit reagents. Subsequently, probes were
558 hybridized under following condition: probe hybridization at 40°C for 2 hours, AMP1
559 hybridization at 40°C for 30 minutes, AMP2 hybridization at 40°C for 15 minutes, AMP3
560 hybridization at 40°C for 30 minutes, AMP4 hybridization at 40°C for 15 minutes, AMP5
561 hybridization at room temperature for 30 minutes, and AMP6 hybridization at room temperature
562 for 15 minutes. Slides were washed with 1× wash buffer (ACD Bio) at room temperature for 2
563 minutes after each hybridization. Ultimately, slides were counterstained with hematoxylin, cover
564 slipped, and dried overnight prior to evaluation with light microscopy.

565

566 Phylogenetic Analysis

567 The *L*, *G*, and *N* open reading frames from the alligator snapper turtle and Kemp's ridley
568 chuviruses, with 55 other complete viral nucleotide sequences under order *Jingchuvirales* from
569 GenBank (Fig. 4), were translated using Geneious. All alignments and phylogenetic analyses
570 were conducted in MEGA X. Multiple sequence alignments of each coding region were done

571 separately with ClustalW and MUSCLE's default setting. Best substitution models of aligned
572 amino acid sequences for *L*, *G* and *N* were selected based on the lowest Bayesian information
573 criterion (BIC) and Akaike scores using the best substitution model analysis for maximum-
574 likelihood analysis in MEGA X. Based on the best substitution model analysis, phylogenetic
575 analysis for *L* amino acid coding sequences was constructed using the Maximum-Likelihood
576 (ML) method and Le Gascuel matrix (LG) + observed amino acid frequencies (F) + 5 discrete
577 gamma categories distribution (G) + invariant sites (I) substitution model with 500 bootstrap
578 replicates. Subtree-Pruning-Rerooting level 3 was used for ML tree inference. Phylogenetic
579 analysis for *G* amino acid coding sequence was constructed using Maximum-Likelihood method
580 and Whelan and Goldman (WAG) + amino acid frequencies model (F) model + 5 discrete
581 gamma categories distribution (G) with 500 bootstrap replicates. Subtree-Pruning-Rerooting
582 level 3 was used for ML tree inference. Phylogenetic tree for *N* amino acid coding sequences
583 was constructed using Maximum-Likelihood method and General Reverse Transcriptase (rtREV)
584 + amino acid frequencies model (F) + 5 discrete gamma categories (G) substitution model at 500
585 bootstrap replicates. Subtree-Pruning-Rerooting level 3 was used for ML tree inference. All
586 gaps and missing data were used to construct all phylogenetic trees in this study.

587

588 Viral isolation

589 To isolate novel chuviruses, alligator snapping turtle brain, and Kemp's ridley turtle spinal cord
590 and CSF were inoculated onto 4 chelonian cell lines. These cell lines included gopher tortoise
591 spleen (GTSp), yellow belly slider heart (YBSHt), diamondback terrapin lung (DBTLu), and
592 softshell turtle lung (SSTLu) established from *Gopherus polyphemus*, *Trachemys scripta*,
593 *Malaclemys terrapin*, and *Apalone ferox*, respectively. All cell lines were maintained in 32° C

594 incubators in a humidified, 5% CO₂ atmosphere. Cells were grown in T25 flasks using Minimum
595 Essential Medium with Earle's Balanced Salts, L-Glutamine (MEM/EBSS; GenClone), 10% heat
596 inactivated fetal bovine serum (FBS; GenClone), nonessential amino acids (Caisson), penicillin-
597 streptomycin solution (GenClone), amphotericin B (HyClone), and gentamicin (GenClone). Cell
598 monolayers of GTSp, YBSHt, and DBTLu were grown until a confluence of 70-95% was
599 reached. Cells of SSTLu did not reach full confluence, and were considered ready when clusters
600 of cells covered approximately 10% of the flask. For all cell lines immediately prior to
601 inoculation, media was removed and the flask was washed twice using sterile phosphate buffered
602 saline (PBS).

603

604 To prepare tissues for P0 inoculation, brain and spinal cord were washed with PBS and finely
605 minced using sterile scalpel blades. The minced tissue was mixed with 200 µl of completed
606 medium, and further ground using a Pellet Pestles™ (Fisher) and a microcentrifuge tube. Finally,
607 ground tissue was mixed with 1800 µl of completed medium. For inoculations of spinal fluid,
608 500 µl of spinal fluid was mixed with 1500 µl of completed medium and mixed via pipet 5 times.
609 A flask of each cell line was inoculated with 500 µl of each inoculum and incubated for 60
610 minutes at room temperature with gentle rocking every 10 minutes. For mock inoculations,
611 flasks were given 500 µl untreated completed media. Complete culture medium (4 mL) was
612 added to each flask after the initial adsorption period, and returned to a 32° C, humidified 5%
613 CO₂ atmosphere.

614

615 To inoculate P1 flasks, 500 µl of P0 cell lysate was inoculated onto flasks of the same cell line
616 using the protocol above. If P0 flasks showed cloudy media indicative of bacterial growth, prior

617 to inoculation the P0 lysate was first centrifuged at $800 \times g$ for 30 seconds and the resulting
618 supernatant was passed through a $0.22 \mu\text{m}$ inline syringe filter prior to inoculation.

619
620 Confirmation of viral growth in P1 lysate was performed by using a reverse transcription PCR
621 (RT-PCR). Viral primers were designed to STCV-1 and KTCV-1 using Geneious. Mitochondrial
622 cytochrome oxidase subunit 1 long was used as a reference gene control (46). All passages of
623 CPE positive and negative lysates, and mock-infected lysates were tested for viral propagation.
624 TRIzolTM LS was used to extract the RNA following the manufacturer's suggested protocol.
625 Reverse transcription was performed on extracted RNA, along with no-template controls and no-
626 enzyme controls, using SuperScriptTM IV first-strand synthesis system for RT-PCR (Invitrogen)
627 with random hexamers (50 ng/ μL). Subsequently, cDNA was amplified for STCV-1 (DreamTaq
628 Green PCR master mix, 2X; Thermo Fisher) with the following thermocycling conditions:
629 10 μM of each primer set (STCV-1 FWD: AATTCAAGGTGGTGCAGGAG-3, and STCV-1
630 REV: 5' GCCACTCTCCTCGTTCACA-3), 95°C for 1 min; 35 cycles of 95°C for 30 s, 53°C
631 for 30 s, 72°C for 1min; 72°C for 5 min. For KTCV-1, similar thermocycling conditions were
632 used KTCV-1 FWD: 5'GTTCTCAGACCGCGTTACCA-3 and KTCV-1 REV: 5'
633 CTCATTGGCGCATCAAGTCG-3) with 54°C annealing temperature. Bands were visualized
634 with electrophoresis in a 1.5% agarose gel. Amplicons were purified (QIAquick[®] PCR
635 purification kit; Qiagen) following the manufacturer's protocol and eluted in 30 μL of nuclease-
636 free water (Qiagen). Final concentration and purity were measured (Qubit dsDNA HS assay kit,
637 Qubit 3.0 fluorometer; Thermo Fisher Scientific). The purified PCR products and 5 μM of each
638 primer were submitted to Eurofins Genomics (Eurofin Genomics LLC, KY) for bidirectional
639 Sanger sequencing.

640

641 **Acknowledgement**

642 We thank Dr. Paula Baker and staff and volunteers of the ARK and the UF-CVM Zoological
643 Medicine service for their contributions to veterinary care and husbandry. Funding for cell line
644 generation was provided by Morris Animal Foundation grant D18ZO-319. We are grateful to the
645 participants in the Sea Turtle Stranding and Salvage Network (STSSN) for response to and
646 documentation of stranded sea turtles. We also thank Nicole Stacy at the University of Florida
647 for the cytological analysis and interpretation of cerebrospinal fluid. We declare no conflicts of
648 interest with respect to the research, authorship, and/or publication of this article.

649

650 **References**

- 651 1. Griffin DE. 2010. Emergence and re-emergence of viral diseases of the central nervous
652 system. *Prog Neurobiol* 91:95–101.
- 653 2. Wilson MR, Sample HA, Zorn KC, Arevalo S, Yu G, Neuhaus J, Federman S, Stryke D,
654 Briggs B, Langelier C, Berger A, Douglas V, Josephson SA, Chow FC, Fulton BD,
655 DeRisi JL, Gelfand JM, Naccache SN, Bender J, Dien Bard J, Murkey J, Carlson M,
656 Vespa PM, Vijayan T, Allyn PR, Campeau S, Humphries RM, Klausner JD, Ganzon CD,
657 Memar F, Ocampo NA, Zimmermann LL, Cohen SH, Polage CR, DeBiasi RL, Haller B,
658 Dallas R, Maron G, Hayden R, Messacar K, Dominguez SR, Miller S, Chiu CY. 2019.
659 Clinical Metagenomic Sequencing for Diagnosis of Meningitis and Encephalitis. *New
660 England Journal of Medicine* 380:2327–2340.
- 661 3. Glaser CA, Gilliam S, Schnurr D, Forghani B, Honarmand S, Khetsuriani N, Fischer M,
662 Cossen CK, Anderson LJ. 2003. In search of encephalitis etiologies: Diagnostic
663 challenges in the California Encephalitis Project, 1998-2000. *Clinical Infectious Diseases*
664 36:731–742.
- 665 4. Koyuncu OO, Hogue IB, Enquist LW. 2013. Virus infections in the nervous system. *Cell
666 Host Microbe* 13:379–393.

667 5. David M. Morens, M.D., Gregory K. Folkers, M.S., M.P.H., and Anthony S. Fauci MD.
668 2019. Eastern Equine Encephalitis Virus — Another Emergent Arbovirus in the United
669 States. *New England Journal of Medicine* 381:1985–1989.

670 6. Chambers TJ, Å MSD. 2020. PATHOGENESIS OF FLAVIVIRUS ENCEPHALITIS.

671 7. Stokholm I, Härkönen T, Harding KC, Siebert U, Lehnert K, Dietz R, Teilmann J,
672 Galatius A, Havmøller LW, Carroll EL, Hall A, Olsen MT. 2019. Phylogenomic insights
673 to the origin and spread of phocine distemper virus in European harbour seals in 1988 and
674 2002. *Dis Aquat Organ* 133:47–56.

675 8. Okoh GR, Horwood PF, Whitmore D, Ariel E. 2021. Herpesviruses in Reptiles. *Front Vet
676 Sci* 8.

677 9. Schumacher VL, Innis CJ, Garner MM, Risatti GR, Nordhausen RW, Gilbert-Marcheterre
678 K, Wellehan JFX, Childress AL, Frasca S. 2012. Sulawesi tortoise adenovirus-1 in two
679 impressed tortoises (*Manouria impressa*) and a burmese star tortoise (*Geochelone
680 platynota*). *Journal of Zoo and Wildlife Medicine* 43:501–510.

681 10. Leigh Perkins LE, Campagnoli RP, Harmon BG, Gregory CR, Steffens WL, Latimer K,
682 Clubb S, Crane M. 2001. Detection and confirmation of reptilian adenovirus infection by
683 in situ hybridization. *Journal of Veterinary Diagnostic Investigation* 13:365–368.

684 11. Marschang RE. 2019. Emerging Reptile Viruses. *Fowler's Zoo and Wild Animal
685 Medicine Current Therapy*, Volume 9 267–273.

686 12. Chang LW, Jacobson ER. 2010. Inclusion body disease, a worldwide infectious disease of
687 boid snakes: A review. *J Exot Pet Med* 19:216–225.

688 13. Hyndman TH, Marschang RE, Wellehan JFX, Nicholls PK. 2012. Isolation and molecular
689 identification of Sunshine virus, a novel paramyxovirus found in Australian snakes.
690 *Infection, Genetics and Evolution* 12:1436–1446.

691 14. Chapman PA, Owen H, Flint M, Soares Magalhães RJ, Traub RJ, Cribb TH, Kyaw-
692 Tanner MT, Mills PC. 2017. Molecular epidemiology and pathology of spirorchiid
693 infection in green sea turtles (*Chelonia mydas*). *Int J Parasitol Parasites Wildl* 6:39–47.

694 15. Donnelly K, Waltzek TB, Wellehan JFX, Stacy NI, Chadam M, Stacy BA. 2016.
695 *Mycobacterium haemophilum* infection in a juvenile leatherback sea turtle (*Dermochelys
696 coriacea*). *Journal of Veterinary Diagnostic Investigation* 28:718–721.

697 16. Carbo EC, Buddingh EP, Kareliti E, Sidorov IA, Feltkamp MCW, Borne PA von dem,
698 Verschuuren JJGM, Kroes ACM, Claas ECJ, de Vries JJC. 2020. Improved diagnosis of
699 viral encephalitis in adult and pediatric hematological patients using viral metagenomics.
700 *Journal of Clinical Virology* 130:104566.

701 17. Brown JR, Bharucha T, Breuer J. 2018. Encephalitis diagnosis using metagenomics:
702 application of next generation sequencing for undiagnosed cases. *Journal of Infection*
703 76:225–240.

704 18. Bouzalas IG, Wüthrich D, Walland J, Drögemüller C, Zurbriggen A, Vandevalde M,
705 Oevermann A, Bruggmann R, Seuberlich T. 2014. Neurotropic astrovirus in cattle with
706 nonsuppurative encephalitis in Europe. *J Clin Microbiol* 52:3318–3324.

707 19. Waltzek TB, Stacy BA, Ossiboff RJ, Stacy NI, Fraser WA, Yan A, Mohan S, Koonin E v.,
708 I. Wolf Y, Rodrigues TCS, Viadanna PHO, Subramaniam K, Popov VL, Guzman-Vargas
709 V, Shender LA. 2022. A novel group of negative-sense RNA viruses associated with
710 epizootics in managed and free-ranging freshwater turtles in Florida, USA. *PLoS Pathog*
711 18:1–28.

712 20. Li CX, Shi M, Tian JH, Lin XD, Kang YJ, Chen LJ, Qin XC, Xu J, Holmes EC, Zhang
713 YZ. 2015. Unprecedented genomic diversity of RNA viruses in arthropods reveals the
714 ancestry of negative-sense RNA viruses. *Elife* 2015:1–26.

715 21. di Paola N, Dheilly NM, Junglen S, Paraskevopoulou S, Postler TS, Shi M, Kuhn JH.
716 2022. Jingchuvirales: a New Taxonomical Framework for a Rapidly Expanding Order of
717 Unusual Monjiviricete Viruses Broadly Distributed among Arthropod Subphyla. *Appl*
718 *Environ Microbiol* 88.

719 22. Argenta FF, Hepojoki J, Smura T, Szirovicza L, Hammerschmitt ME, Driemeier D, Kipar
720 A, Hetzel U. 2020. Identification of reptarenaviruses, hartmaniviruses and a novel
721 chuvirus in captive brazilian native boa constrictors with boid inclusion body disease.
722 *Virology* 1–19.

723 23. Han X, Wang H, Wu N, Liu W, Cao M, Wang X. 2020. Leafhopper *Psammotettix alienus*
724 hosts chuviruses with different genomic structures. *Virus Res* 285:197992.

725 24. Waldron FM, Stone GN, Obbard DJ. 2018. Metagenomic sequencing suggests a diversity
726 of RNA interference-like responses to viruses across multicellular eukaryotes *PLoS*
727 *Genetics*.

728 25. Shi M, Lin XD, Chen X, Tian JH, Chen LJ, Li K, Wang W, Eden JS, Shen JJ, Liu L,
729 Holmes EC, Zhang YZ. 2018. The evolutionary history of vertebrate RNA viruses. *Nature*
730 556:197–202.

731 26. Hahn MA, Rosario K, Lucas P, Dheilly NM. 2020. Characterization of viruses in a
732 tapeworm: phylogenetic position, vertical transmission, and transmission to the parasitized
733 host. *ISME Journal* 14:1755–1767.

734 27. Shi M, Lin XD, Tian JH, Chen LJ, Chen X, Li CX, Qin XC, Li J, Cao JP, Eden JS,
735 Buchmann J, Wang W, Xu J, Holmes EC, Zhang YZ. 2016. Redefining the invertebrate
736 RNA virosphere. *Nature* 540:539–543.

737 28. Costa VA, Mifsud JCO, Gilligan D, Williamson JE, Holmes EC, Geoghegan JL. 2021.
738 Metagenomic sequencing reveals a lack of virus exchange between native and invasive
739 freshwater fish across the Murray-Darling Basin, Australia. *Virus Evol* 7:1–15.

740 29. Dezordi FZ, Vasconcelos CR dos S, Rezende AM, Wallau GL. 2020. In and Outs of
741 Chuviridae Endogenous Viral Elements: Origin of a Potentially New Retrovirus and
742 Signature of Ancient and Ongoing Arms Race in Mosquito Genomes. *Front Genet* 11.

743 30. Wang Z, Wang W. 2020. Identification of a new chuvirus associated with febrile illness in
744 China 1–13.

745 31. Vandevanter DR, Warrener P, Bennett L, Schultz ER, Coulter S, Garber RL, Rose TM.
746 1996. Detection and analysis of diverse herpesviral species by consensus primer PCR. *J
747 Clin Microbiol* 34:1666–1671.

748 32. Byles RA. Behavior and ecology of sea turtles from Chesapeake Bay, Behavior and
749 ecology of sea turtles from Chesapeake Bay, Virginia Virginia
750 <https://doi.org/10.25773/v5-h9nv-c205>.

751 33. Thomson RC, Spinks PQ, Bradley Shaffer H. 2021. A global phylogeny of turtles reveals
752 a burst of climate-associated diversification on continental margins. *Proc Natl Acad Sci U
753 S A* 118:1–10.

754 34. Fernández-Miragall O, Martínez-Salas E. 2003. Structural organization of a viral IRES
755 depends on the integrity of the GNRA motif. *RNA* 9:1333–1344.

756 35. Georgakopoulos-Soares I, Parada GE, Hemberg M. 2022. Secondary structures in RNA
757 synthesis, splicing and translation. *Comput Struct Biotechnol J*. Elsevier B.V.
758 <https://doi.org/10.1016/j.csbj.2022.05.041>.

759 36. Craigie R, Bushman FD. 2012. HIV DNA integration. *Cold Spring Harb Perspect Med* 2.

760 37. Gyarmati P, Conze T, Zohari S, LeBlanc N, Nilsson M, Landegren U, Banér J, Belák S.

761 2008. Simultaneous genotyping of all hemagglutinin and neuraminidase subtypes of avian

762 influenza viruses by use of padlock probes. *J Clin Microbiol* 46:1747–1751.

763 38. Piewbang C, Radtanakatikanon A, Puenpa J, Poovorawan Y, Techangamsuwan S. 2019.

764 Genetic and evolutionary analysis of a new Asia-4 lineage and naturally recombinant

765 canine distemper virus strains from Thailand. *Sci Rep* 9:1–8.

766 39. Heppell SS. 1998. Application of Life-History Theory and Population Model Analysis to

767 Turtle Conservation. *Copeia*.

768 40. Vibin J, Chamings A, Collier F, Klaassen M, Nelson TM, Alexandersen S. 2018.

769 Metagenomics detection and characterisation of viruses in faecal samples from Australian

770 wild birds. *Sci Rep* 8:1–23.

771 41. Conceição-Neto N, Yinda KC, van Ranst M, Matthijnssens J. 2018. NetoVIR: Modular

772 approach to customize sample preparation procedures for viral metagenomics, p. 85–95.

773 *In Methods in Molecular Biology*. Humana Press Inc.

774 42. Young KT, Lahmers KK, Sellers HS, Stallknecht DE, Poulson RL, Saliki JT, Tompkins

775 SM, Padykula I, Siepker C, Howerth EW, Todd M, Stanton JB. 2021. Randomly primed,

776 strand-switching, MinION-based sequencing for the detection and characterization of

777 cultured RNA viruses. *Journal of Veterinary Diagnostic Investigation* 33:202–215.

778 43. Kelsey T, Young, Jazz Q, Stephens a RLP, David E, Stallknecht, Kiril M, Dimitrov,

779 Salman L, Butt JBS. 2022. Putative Novel Avian Paramyxovirus (AMPV) and

780 Reidentification of APMV-2 and APMV-6 to the Species Level Based on Wild Bird

781 Surveillance (United States, 2016-2018). *Appl Environ Microbiol* 2016–2018.

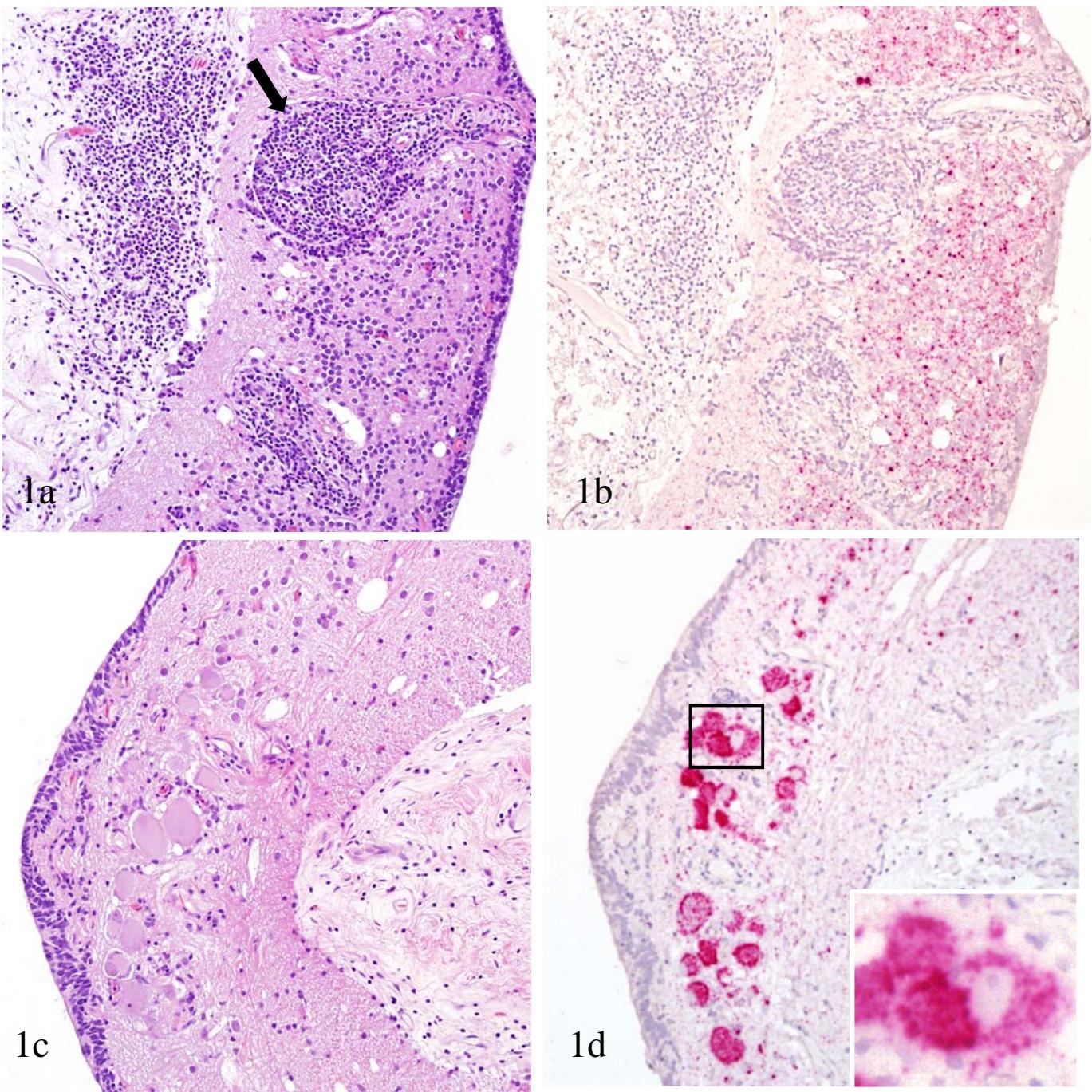
782 44. Kim D, Song L, Breitwieser FP, Salzberg SL. 2016. Centrifuge: rapid and accurate

783 classificaton of metagenomic sequences, version 1.0.4_beta. *bioRxiv* 26:054965.

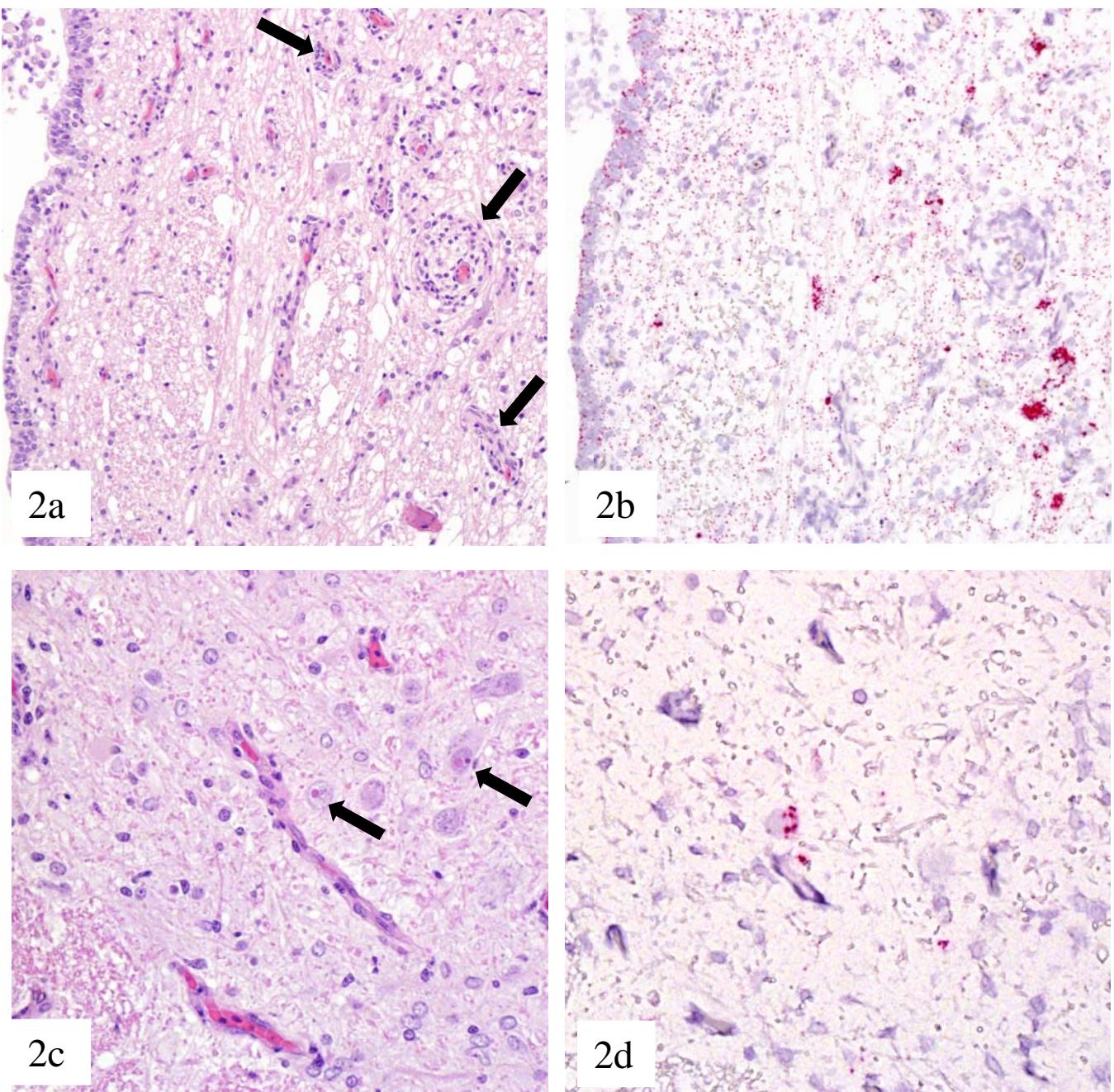
784 45. Wood DE, Lu J, Langmead B. 2019. Improved metagenomic analysis with Kraken 2.

785 *Genome Biol* 20.

786 46. Townzen JS, Brower AVZ, Judd DD. 2008. Identification of mosquito bloodmeals using


787 mitochondrial cytochrome oxidase subunit I and cytochrome b gene sequences. *Med Vet*

788 *Entomol* 22:386–393.


789

790 **Indices**

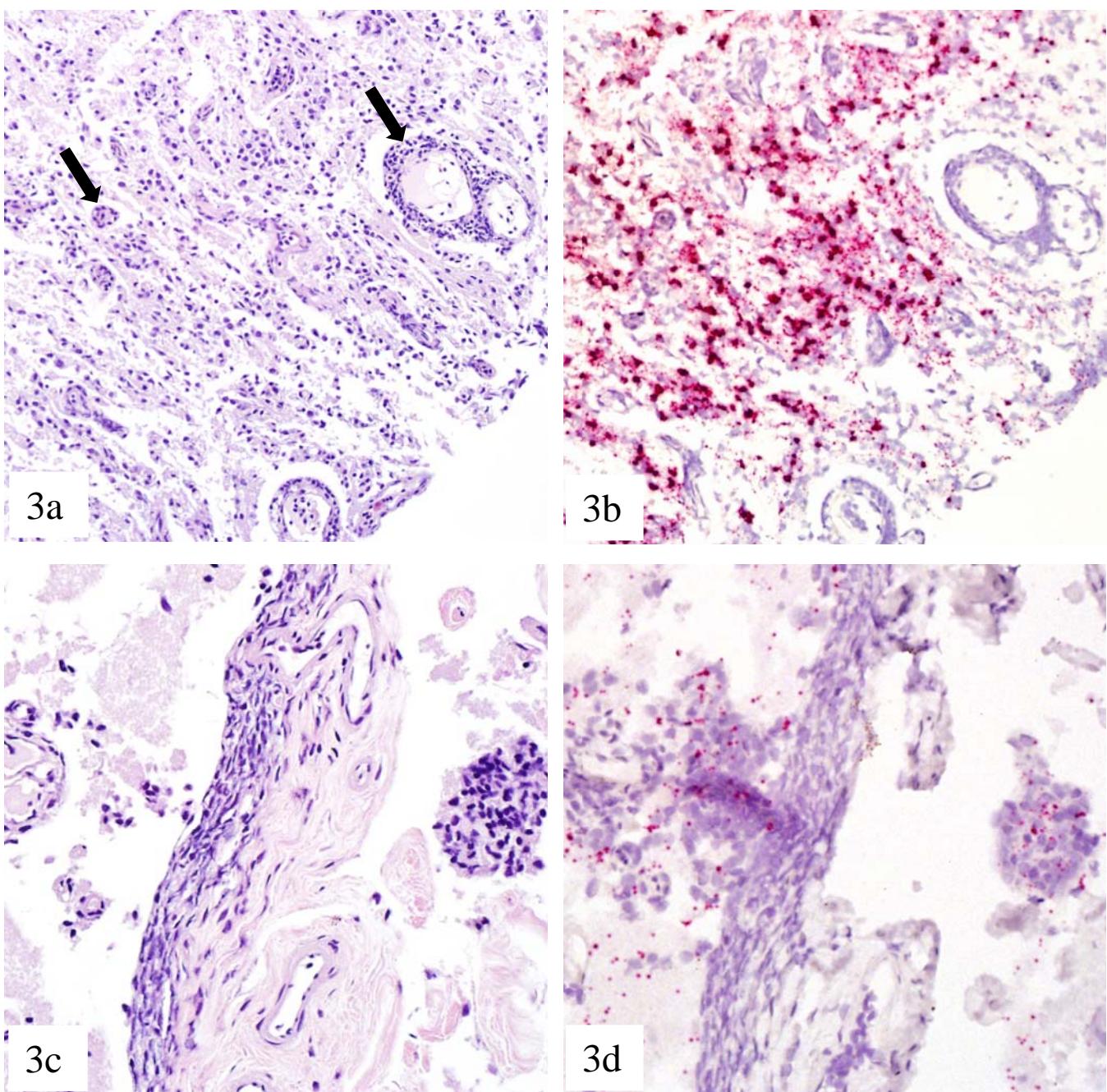

791 Please see the attached files

Figure 1

Figure 2

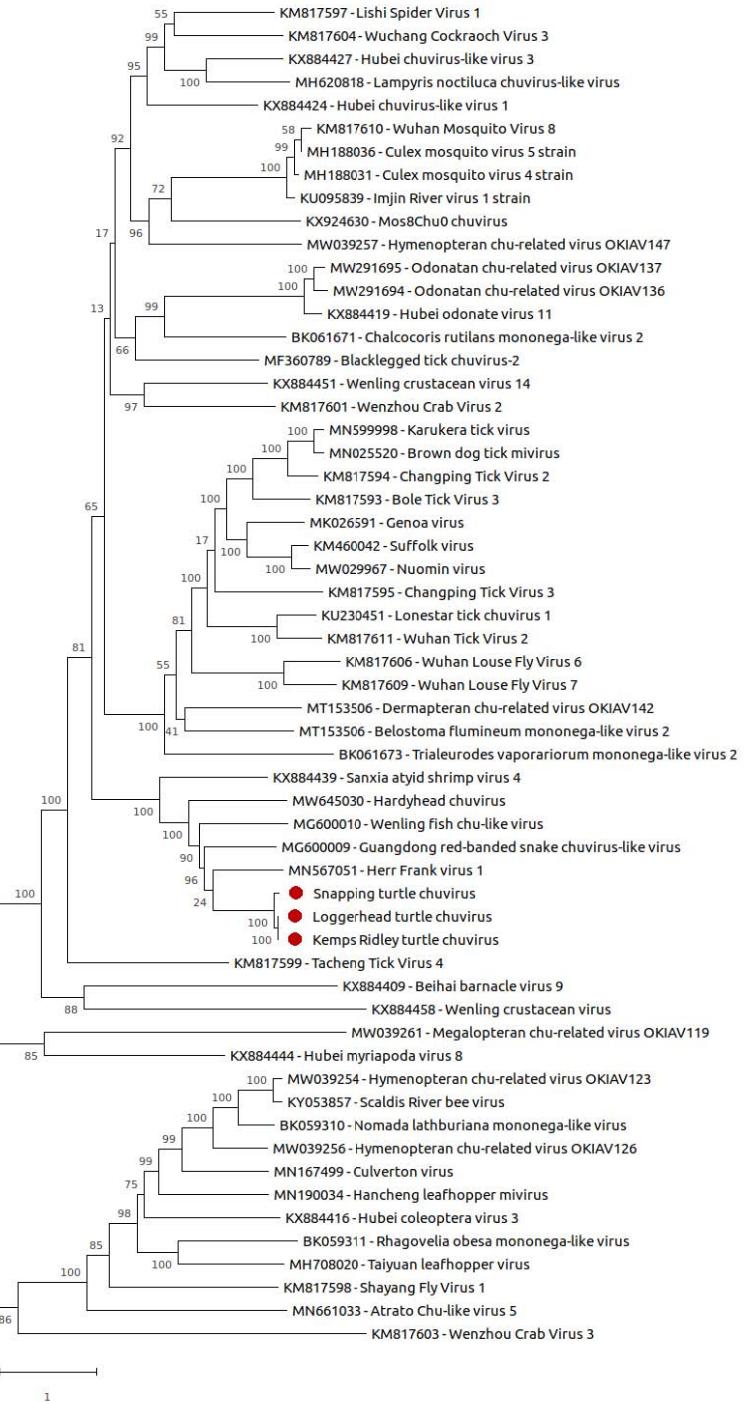


Figure 3

	LTCV-1*	KTCV-1	STCV-1	MN567051	MG600009	MG600010	MW645030	KX884439
Loggerhead turtle chuvirus								
Kemp's Ridley turtle chuvirus	99.442							
Snapping turtle chuvirus	91.566	91.209						
Herr Frank virus 1	47.14	47.279	46.863					
Red-banded snake chuvirus	45.921	45.967	45.738	46.688				
Wenling-fish chuvirus	42.166	42.127	41.935	43.299	42.824			
Hardyhead chuvirus	41.98	42.117	41.705	40.552	42.088	38.302		
Sanxia atyid shrimp virus 4	37.816	37.861	37.173	37.42	36.476	33.731	33.805	

Table 1: Percent pairwise identities of predicted L amino acid sequences of viruses in *Piscichuvirus* genus

Figure 4

