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Abstract 

Cryo-electron microscopy (cryo-EM) is currently the most powerful technique for determining 

the structures of large protein complexes and assemblies. Picking single-protein particles from 

cryo-EM micrographs (images) is a key step in reconstructing protein structures. However, the 

widely used template-based particle picking process is labor-intensive and time-consuming. 

Though the emerging machine learning-based particle picking can potentially automate the 

process, its development is severely hindered by lack of large, high-quality, manually labelled 

training data. Here, we present CryoPPP, a large, diverse, expert-curated cryo-EM image 

dataset for single protein particle picking and analysis to address this bottleneck. It consists of 

manually labelled cryo-EM micrographs of 32 non-redundant, representative protein datasets 

selected from the Electron Microscopy Public Image Archive (EMPIAR). It includes 9,089 

diverse, high-resolution micrographs (~300 cryo-EM images per EMPIAR dataset) in which the 

coordinates of protein particles were labelled by human experts. The protein particle labelling 

process was rigorously validated by both 2D particle class validation and 3D density map 

validation with the gold standard. The dataset is expected to greatly facilitate the development 

of machine learning and artificial intelligence methods for automated cryo-EM protein particle 

picking. The dataset and data processing scripts are available at 

https://github.com/BioinfoMachineLearning/cryoppp 

 

Background & Summary 

Cryo-electron microscopy (cryo-EM) is an experimental technique that captures 2D images of 

biological molecules and assemblies (protein particles, virus, etc.) at cryogenic temperature 

using 8direct9 electron-detection camera technology 1.  With the advent of cryo-EM, there has 

been a boom in structural discoveries relating to biomolecules, particularly large protein 

complexes and assemblies. These 3D structures of proteins 2 are important for understanding 

their biological functions 3 and their interactions with ligands 4,5, which can aid both basic 

biological research and structure-based drug discovery 4,6. A key step of constructing protein 

structures form cryo-EM data is to pick protein particles in cryo-EM images (micrographs). 

Before diving into recent developments in protein particle picking and the bottleneck it faces, 
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it is important to understand the physics and chemistry behind the grid preparation and 

micrograph image acquisition in cryo-EM experiments. 

 

I. Cryo-EM Grid Preparation and Image Acquisition 

The process of acquiring the two-dimensional projections of biomolecular samples (e.g., 

protein particles) can be summarized in four brief steps: (1) sample purification, (2) cryo-EM 

grid preparation, (3) grid screening and evaluation, and (4) image capturing. Once the sample 

is purified according to the standard protocols 7; the next step of the single-particle procedure 

is to prepare the cryo-EM specimen. The grid preparation process, also known as vitrification, 

is straightforward.  An aqueous sample is applied to a grid, which is then made thin. Eventually, 

the grid is plunged frozen at a time scale that inhibits the crystalline ice formation. 

Additionally, the particles must be evenly distributed across the grid in a wide range of 

orientations. It is very difficult to achieve a perfect cryo-EM grid because particles may choose 

to adhere to the carbon layer instead of being partitioned into holes. They may also adopt 

preferred orientations within the vitrified ice layer, which reduces the number of unique views 
8. The grid is ready for analysis once the cryo-EM sample is successfully inserted into the 

electron microscope 9. Images are routinely captured during the screening phase at various 

magnifications to check for ice and particle quality. After the grids are optimized and ready for 

cryo-EM data collection, they are taken to a cryo-EM facility where qualified professionals load 

specimens into the microscope. To enable the best high-quality image capturing, experts 

adjust several parameters such as magnification, defocus range, electron exposure, and hole 

targeting techniques (see Figure 1 (A)-(F) illustrating the process of preparing cryo-EM samples 

and acquiring cryo-EM images). More details regarding cryo-EM sample preparation and 

image acquisition can be found in these studies 7,10. 

 

II. Cryo-EM Micrographs and Single Particle Analysis 

When the electron beam passes through a thin vitrified sample, it creates 2D image 

projections (see Figure 1 for a visual illustration) of the samples (e.g., protein particles). The 

projections of the particles in various orientations are stored in different image formats (MRC, 

TIFF, TBZ, EER, PNG, etc.) which are called micrographs. Once the micrographs are obtained, 

the objective is to locate individual protein particles in each micrograph while avoiding 

crystalline ice contamination, malformed particles and grayscale background regions. In other 

words, the input for the particle picking problem is a micrograph, while the desired output is 

the coordinates of every protein particle in that micrograph (refer to  Figure 1 for the entire 

pipeline). Accurate detection of particles is necessary, as the presence of false positive 

particles can complicate subsequent processing, and eventually cause the 3D reconstruction 

process to fail entirely. The picking task is challenging due to several factors, including high 

noise levels caused by ice and contamination, low contrast of particle images, and 

unpredictability in an individual particle9s appearance caused by variation in orientation. Once 
the particles are extracted from the micrographs, single particle analysis is performed to 

reconstruct the 3D density map and protein structure. 
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Figure 1: Overview of Cryo-EM pipeline, from sample preparation to particle recognition. (A) Aqueous sample 

preparation that contains variably dispersed heterogenous structure. (B) Cryo-EM grid containing holes that are 

filled with dispersed protein particles. (C) Magnified image of square patch illustrating microscopic holes in carbon. 

(D) Zoomed-in view of single hole containing suspended protein particles in thin layer of vitreous ice. (E) Cryo-

Electron microscope used to facilitate high quality image generation. (F) Stack of 2D movie frames generated from 

microscope, called micrographs. (G) Motion corrected 2D micrograph images. (H) Particle picking using manual 

intervention or automatic procedures (green circles represent picked particles). (I) Initial 2D classes that contain 

quality protein particles along with junks and aggregates. (J) Best quality protein particles identified through 

computational analysis and visual inspection for 3D protein structure reconstruction. 
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III. Advances and Challenges in Single Protein Particle Picking  

Several research initiatives were carried out worldwide to improve hardware 11–13 and 

software 14–16 to streamline and automate the data collection and processing steps for the 

cryo-EM determination of 3D structures. The recent technological advances in sample 

preparation, instrumentation, and computation methodologies have enabled the cryo-EM 

technology to solve massive protein structures at better than 3 A resolution. To obtain a high-

resolution protein structure, selecting enough high-quality protein particles in cryo-EM images 

is critical. However, protein particle picking is still largely a labor-intensive and time-consuming 

process. One challenge facing cryo-EM data analysis is to develop automated particle picking 

techniques to circumvent manual intervention. To tackle the problem, numerous automatic 

and semi-automatic particle-picking procedures have been developed.  

A common technique for particle picking, known as template matching, uses user-predefined 

particles as templates for identifying particles in micrographs through image matching. 

However, because of varied ice contamination, carbon areas, overlapping particles, and other 

issues, the template matching often selects invalid particles (e.g., false positives). So 

subsequent manual particle selection is necessary. 

To deal with the issue, artificial intelligence (AI) and machine learning-based approaches have 

been proposed, which can be less sensitive to impurities and more suitable for large-scale data 

processing and therefore hold the potential of fully automating the particle picking process. 

XMIPP 17, APPLE picker 18, DeepPicker 19, DeepEM 20 , FastParticle Picker 21, crYOLO 22 , PIXER 
23, PARSED 24, WARP 25, Topaz 26, AutoCryoPicker 27 , and DeepCryoPicker 28, can be taken as 

good examples of such efforts.  

The datasets used to train and test machine learning particle picking methods were curated 

from EMPIAR 29. It contains almost all the publicly available raw cryo-EM micrographs. It is a 

public repository containing 1,159 entries/datasets (2.39 PB) as of Jan 29, 2023. It includes not 

just cryo-EM images of proteins, but also Soft X-ray Tomography (SXT), cryo-ET and many other 

microscopic projections of other biological samples. Only some cryo-EM images of a small 

number of datasets in EMPIAR contain particles manually labelled by the original authors of 

the data. Therefore, most existing machine learning methods for particle picking were trained 

and tested on only a few manually labeled datasets of a few proteins like Apoferritin and 

Keyhole Limpet Hemocyanin (KLH). The methods trained on the limited amount of particle 

data of one or a few proteins cannot generalize well to pick particles of various shapes in the 

cryo-EM micrographs of many diverse proteins in the real world. Therefore, even though 

machine learning particle picking is a promising direction, no machine learning method has 

been able to replace the labor-intensive template-based particle picking in practice.  

Therefore, the lack of manually labelled particle image data of a diverse list of proteins is a key 

bottleneck hindering the development of machine learning and AI methods to automate 

protein particle picking.  

Creating a high-quality manually labelled single-protein particle dataset of a large, diverse set 

of representative proteins to facilitate machine learning is a challenging task. Single-particle 

cryo-EM images suffer from high background noise and low contrast due to the limited 

electron dose to minimize the radiation damage to the biomolecules of interest during 

imaging, which makes particle picking difficult even for human. Low signal-to-noise ratio (SNR) 

of the micrographs, presence of contaminants, contrast differences owing to varying ice 

thickness, background noise fluctuation, and lack of well-segregated particles further 
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increases the difficulty in particle identification 30. This is one reason there is still a lack of large 

manually curated protein particle datasets in the field.  

A common problem of the particle picking algorithms trained on a small amount of particle 

data of a few proteins is that they cannot distinguish 8good9 and 8bad9 particles well, including 

overlapped particles, local aggregates, ice contamination and carbon-rich areas 31. For 

instance, the methods: DRPnet 32, TransPicker 33, CASSPER 34, and McSweeney et al.9s method 
35 that made significant contributions to the particle selection problem suffered the two similar 

problems. Firstly, there is not a sufficient and diversified dataset to train them. Secondly, there 

is no gold standard to test them.  The similar problems happened to other supervised and 

unsupervised machine learning methods, such as an unsupervised clustering approach 36, 

AutoCryoPicker 27, DeepCryoPicker 28, APPLE picker 18, Mallick et al's method 37,  gEMpicker 38, 

Langlois et al.9s method 31, DeepPicker 19, DeepEM 20, Xiao et al.9s method 21, APPLE picker 18, 

Warp 25, SPHIRE-crYOLO 39, and HydraPicker 40 all encountered similar problems. They usually 

perform well on the small, standard datasets used to train and test them (e.g., Apoferritin and 

KLH), but may not generalize well to non-ideal, realistic datasets containing protein particles 

of irregular and complex shapes, which are generated daily by the cryo-EM facility around the 

world. 

To address this key bottleneck hindering the development of machine learning and AI 

methods for automated cryo-EM protein particle picking, we created a large dataset 

(CryoPPP) of cryo-EM micrographs in which protein particles were manually labelled. 

The micrographs are associated with 32 representative proteins of diverse sequences 

and structures that cover a much larger protein particle space than the existing 

datasets of a few proteins such as Apoferritin and KLH. The quality of the manually 

labeled particles of selected proteins was rigorously validated against some particles 

labelled by the authors who generated the cryo-EM data by both 2D particle class 

validation and 3D cryo-EM density map validation. The quality of our manual 

annotation is in pair with the annotations provided by the experts who created the 

data in the first place, which confirms our manual particle labelling process is effective. 

Therefore, we believe CryoPPP is a valuable resource for training and testing machine 

learning and AI methods for automated protein particle picking.  

Methods 

CryoPPP was created through a series of steps as shown in Figure 2. We first crawled the data 

from the EMPIAR website using API and FTP scripts. We filtered out microscopic images of 

various non-single-protein particles (e.g., bacteria, filaments, RNA, protein fibril, virus-like 

particles) and retained only high-resolution micrographs acquired by cryo-EM technique for 

manual particle labeling.  

After importing the micrographs with all the physiochemical parameters gathered from the 

corresponding published literature, we performed motion correction and Contrast Transfer 

Function (CTF) estimation for them. Once the micrographs were prepared, two human experts 

manually picked the particles after setting up the low pass filter values and proper diameter 

for picking particles.  

The expert-picked particles were cross-validated and then went through 2D particle 

classification. The best particles based on resolution, particle count, and visually appealing and 
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sensible 2D classes were selected and further used for template-based particle picking and 

further human inspection. After iterating the 2D classes from template-based picking and 

human inspection, we ultimately obtained the final set of highly confident protein particles as 

ground truth and exported them in the files in star, csv and mrc formats. The first two files 

(.star and .csv) contain the coordinates of the protein particles and the latter (.mrc) store 

particles stacks. The process of creating CryoPPP in Figure 2 is described in the following 

sections in detail.  

 

 

Figure 2: Graphical illustration of the overall methodology of creating CryoPPP dataset with manual 

EMPannotations of protein particles. (A)-(D) represent the steps for data acquisition and protein metadata 

preparation. (1)-(8) represent subsequent steps for the ground truth annotation and validation of picked protein 
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particles. The iterative approach between step (5) and (6) is carried out to achieve the high-quality picking of 

particles.     

 

I. EMPIAR Metadata Collection and Filtering 

The process of preparing the dataset began with collecting metadata about cryo-EM image 

datasets in EMPIAR. Data collection scripts that use API and FTP protocols were used to 

automatically download the metadata from the EMPIAR web portal 29. The metadata includes 

EMPIAR ID of each cryo-EM dataset of a protein, the corresponding Electron Microscopy Data 

Bank (EMDB) ID, Protein Data Bank (PDB) ID, size of dataset, resolution, total number of 

micrographs, image size/type, pixel spacing, micrograph file extension, gain/motion correction 

file extension, FTP path for micrograph/gain files, Globus path for micrograph/gain files, and 

publication information.  

Following the metadata collection, the individual cryo-EM datasets in the collection were 

filtered as depicted in Figure 3 (Steps 1 - 5). First, we only chose EMPIAR IDs (datasets) that 

have their volume maps deposited in EMDB. From the chosen EMPIAR datasets, we only 

selected ones that had corresponding protein structures in the Protein Data Bank (PDB).  

To ensure high data quality, we then retained only the EMPIAR datasets whose resolution was 

less than 4 Angstrom (Å). We observed that there were some redundant EMPIAR datasets 

(e.g., EMPIAR ID: 10709 & 10707, EMPIAR ID: 10899 & 10897) that correspond to the same 

biomolecule with the same PDB and EMDB IDs. Hence, we eliminated those duplicate entries. 

After removing duplicate records, we selected only EMPIAR datasets that contained 

micrographs of protein particles, excluding other biological samples such as viruses. This 

filtering step required some literature study of individual EMPIAR datasets. The motion 

correction and gain correction files for the selected datasets were extracted from the EMPIAR 

if required. The final list of meta data includes 335 EMPIAR entries, 32 out of which were used 

for manual labelling. Refer to the EMPIAR_metadata_335.xlsx file in CryoPPP for further 

information about the list of 335 datasets of 355 proteins. 

 

  

Figure 3: The step-by-step procedure for collecting and selecting Cryo-EM protein datasets from EMPIAR 

database. 335 unique EMPIAR datasets (IDs) of 335 proteins were selected at the end.  
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II. Manual Particle Labeling 

Manually picking particles in cryo-EM micrographs through the GUI interfaces of cryo-EM 

analysis tools such as CryoSPARC 16 , EMAN2 14 and RELION 15 is very time consuming. 

Additionally, it is highly challenging to import micrographs, carry out motion correction, and 

estimate CTF for large micrographs. Furthermore, it takes a lot of disk space to store the 

labelled particle data together with the corresponding micrographs and particles stack files. 

Therefore, we chose 32 representative EMPIAR datasets out of 335 entries selected in the 

previous section for manual particle labelling to create the CryoPPP dataset, considering 

diverse particle size/shapes, density distribution, noise level, and ice and carbon areas. 

Moreover, proteins from a wide range of categories, such as: metal binding, transport, 

membrane, nuclear, signaling, and viral proteins were selected. See supplementary Tables 1 

and 2 for more details about the 32 proteins (cryo-EM datasets). Most of the pre-processing, 

manual particle labelling, real-time quality assessment, and decision-making workflows were 

performed using CryoSPARC v4.1.1 16 , EMAN2 14, and RELION 4.0 15. 

CryoPPP includes a total of 9,089 micrographs (~300 Cryo-EM images per selected EMPIAR 

dataset). We labelled ~300 micrographs per EMPIAR data because using all the micrographs 

in each dataset would result in 32.993 TB of data, which would be too big for most machine 

learning tasks. Another reason is that many micrographs in the same EMPIAR dataset are 

similar and therefore it is not necessary to include all of them. The particle labelling process is 

described in detail as follows. 

 

1. Importing Movies 

This is the crucial first step of particle labeling. For each EMPIAR dataset, we import two inputs: 

micrographs and gain reference (motion correction files). We analyzed the description of the 

EM data acquisition and grid preparation for each dataset in order to collect the important 

information such as raw pixel size (Å), acceleration voltage (kV), spherical aberration (mm), 

and total exposure dose (e/Å 2) for the micrographs in the dataset. 

Furthermore, we obtained gain reference for micrographs if their motion was not corrected 

before. We used e2proc2d, a generic 2-D image processing program in EMAN2 14, to convert 

different formats of motion correction file (e.g., .dm4, .tiff, .dat, etc.) to .mrc file since 

CryoSPARC accepts only .mrc extension. Then, based on the microscope camera settings and 

how the data was acquired during the imaging process, we applied geometrical 

transformations (flip gain reference and defect file left-to-right/top-to-bottom (in x/y axis) or 

rotate gain reference clockwise/anti-clockwise by certain degrees) relative to the image data. 

Supplementary Table S1 contains the details of input parameters for each EMPIAR ID. After 

importing movies and motion correction files, we proceeded to the job inspection panel of 

CryoSPARC to ensure that all input settings and loaded micrographs were correct.  

2. Patch Motion Correction 

When specimens are exposed to an electron beam, the mobility of sample molecules (protein 

particles) during data acquisition can affect the overall quality of electron micrographs and 

lower the final resolution 41. Hence, it is necessary to correct the movement of particles 

(referred to as 8beam-induced motion9).  
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The causes behind this motion can be categorized into two types: (1) Motion from Microscope: 

It is caused by stage drift and usually occurs in microscope due to little amount of vibration 

left over after the stage has been aligned to a new position 42. It moves the sample relative to 

the beam and optical axis. This motion is quite jagged in time, with sharp accelerations or 

twitches, but is consistent. The entire image will move in the same direction over time. (2) 

Motion from sample deformation: This motion is caused by the energy deposited into the ice 

by the beam, or energy already trapped in it, due to strained forces locked in during freezing. 

It is eventually released during the image capturing process. As the electrons pass through the 

samples, the energy from the beam and the temperature change causes the ice to physically 

deform and bend. That deformation is often smoother over time, but it can be highly 

anisotropic in space. In this case, various parts of the same image can move in different 

directions at the same time. 

Both motions must be estimated and corrected to obtain high-resolution reconstructions from 

the data. In the patch-based motion correction step, we corrected both global motion (stage 

drift) and local motion (beam-induced anisotropic sample deformation) for the micrographs 

(as shown in Figure 4 (A). In the anisotropic deformation plot in Figure 4 (B), each red circle 

indicates the center of a single "patch" of the image, and the curves emerging from each circle 

show the motion of that portion of the sample. We can observe the correlation between the 

motion of adjacent patches. They move somewhat similarly to one another. To prevent the fit 

from being distorted by random noise in the micrograph, the patch motion correction 

algorithm imposes smoothness constraints on the motion. 

Figure 4 (C) are the examples of plots generated by patch motion correction that depict the 

computed trajectories. The set of plots shows overall motion correction (an actual trajectory 

plot, followed by X-motion plot and Y-motion plots over time). In the overall motion trajectory 

over X and Y motion (Figure 4 (C), Left), each dot represents the sample's position from frame 

to frame. Here, the x and y axes represent the units of pixels in the raw data9s pixel size. The 

sample begins at point (X), moves downward, makes a curve and again changes direction 

toward the left-top, and then continues to descend to the left. We apply this trajectory to the 

input data by shifting each image in reverse of what the motion trajectory suggests and finally 

averaging images together. In other words, we track a sample's motion during the exposure 

to undo it. 
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Figure 4: The patch-based local and global motion correction pipeline for EMPIAR ID 10737 (E. coli cytochrome bo3 

in MSP Nanodiscs). (A) Full frames of micrographs as input. (B) Anisotropic deformation. (C) Rigid motion trajectories 

plots. Blue: original trajectory, Radish: trajectory with small smoothing penalty, Green: trajectory with fine 

smoothing. Left: Overall motion trajectory over X and Y motion. Center: X-motion plot over time. Right: Y-motion 

plot over time. (D) Non-dose weighted aligned averaged micrographs with the highest amount of signal and least 

amount of motion blur as output. 

 

3. Patch-based CTF Estimation 

The contrast of images captured in the electron microscope is affected by imaging defocus and 

lens aberrations, which are adjusted by microscope operators to enhance the contrast. The 

relationship between lens aberrations and the contrast in the image is defined by the CTF. It 

explains how information is transferred as a function of spatial frequency. 

It is important to estimate CTF, which is then corrected during 2D particle classification and 

3D reconstruction steps. Otherwise, the feasible reconstruction will have extremely low 

resolution. A full treatment of the effects of the CTF usually proceeds in two stages: CTF 

estimation and CTF correction. In CryoSPARC the CTF model is given by the equation I. 

CTF = - cos(πΔzλe�2 -  
�2 Cs��3�4 + Φ)           (I) 

where Δz is defocus, λe is the wavelength of the incident electrons, Cs is spherical aberration, 

and f is spatial frequency. Φ represents a phase shift factor. 

Most cryo-EM samples are not 8flat9. Before a sample is frozen, particles tend to concentrate 

around the air-water interfaces, and the ice surface itself is usually not flat 43,44. Because 

defocus has an impact on the CTF, distinct particles can have various defoci and hence various 
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CTFs within a single image. To address this problem, CryoSPARC offers a patch-based CTF 

estimator that analyzes numerous regions of a micrograph to calculate a "defocus landscape". 

We performed a 1D search over defocus for every micrograph. Figure 5 (A) depicts the 1D 

search for a particular micrograph of EMPIAR ID 10737 45. This plot helps identify a particular 

defocus value that stands out among a variety of other defocus values (x-axis). Patch CTF 

creates a plot showing how closely the input micrographs' observed power spectrum and the 

calculated CTF match. The CTF fit plot in Figure 5 (B) shows that the computed CTF matches 

the observed power spectrum up to a resolution of 3. 993 Å. The cross correlation between 

the observed spectrum and the calculated CTF is depicted by the cyan line in the plot. The 

vertical green line in the plot represents the frequency at which the fit deviates from 

CryoSPARC's cross-correlation threshold of 0.3 for a successful fit. 

We executed the patch CTF to obtain the output micrographs with data on their average 

defocus and the defocus landscape. When particles were extracted, this data was 

automatically used to assign each particle a local defocus value based on its position in the 

landscape.  

 

 

Figure 5: Diagnostic plots of CTF for EMPAIR 10737 (E. coli cytochrome bo3 in MSP Nanodiscs). (A) 1D search over 

varying defocus values (underfocus). (B) CTF fit plot. X-axis displays frequency, in units in inverse angstroms (Å⁻¹) 
and Y-axis shows correlation metric between power spectrum (PS) and CTF value. Black: observed experimental 

power spectrum. Red: calculated CTF. Cyan: cross-correlation (fit). 

 

4. Manual Particle Picking 

After performing the motion correction and CTF estimation, we manually picked particles 

interactively from aligned/motion-corrected micrographs with the goal of creating particle 
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templates for auto-picking. Depending on the size and shape of the protein particles, we 

adjusted the box size and the particle diameter. Since picking particles on raw micrographs is 

extremely difficult, we tweaked the 8Contrast Intensity Override9 while viewing micrographs in 

order to obtain the best distinctive view for picking particles.  

It is particularly challenging to manually pick particles from micrographs with smaller defocus 

levels, and vice versa. Figure 6 illustrates the visualization of micrographs in the same dataset 

with different defocus levels for EMPAIR 10532 45. Hence, to generate comprehensive 

templates from a wide range of defocus values, we manually picked particles from multiple 

micrographs with diverse defocus and CTF fit values.  

As manual picking was very time intensive, we selected a subset of micrographs (around 20 

micrographs of each EMPIAR dataset) for manually picking initial particles for the subsequent 

template-based particle picking. More details regarding the total number of particles picked 

manually including the total number of micrographs considered for manual pick are provided 

in the Supplementary Table S2. 

 

 

Figure 6: Cryo-EM micrograph images of EMPIAR ID 10532 (Influenza Hemagglutinin) with different defocus values. 

Micrographs with smaller defocus values make particle picking difficult and vice-versa. 

 

5. Forming and Selecting Best 2D Particle Classes 

The manually picked particles went through the 2D classification step. This step helped to 

classify the picked particles into several 2D classes to facilitate stack cleaning and junk particles 

removal. To analyze the distribution of views within the dataset qualitatively, we specified a 

specific number of 2D classes. By doing this, we investigated the particle quality and removed 

junk particle classes, which ultimately facilitated the selection of good particle classes. 

We specified the initial Classification Uncertainty Factor (ICUF) and maximum alignment 

resolution to align particles to the classes with 40 expectation maximization (EM) iterations. 

The diameter of the circular mask that was applied to the 2D classes at each iteration was 

controlled using the circular mask diameter in the case of crowded particles. 

After the 2D classes were formed, we selected the best particle classes interactively to remove 

the junks. Figure 7 shows an example of 2D classification and selection of highly confident 

particles for EMPIAR ID 10017 46. We used three diagnostic measures to select the 2D classes: 

resolution (Å) of a class, the number of particles of a class (higher, better), visual appearance 
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of a class. Considering only the number of particles in a class is not sufficient because some 

classes containing a small number of particles may represent a unique view of the protein. 

 

 

Figure 7: 2D classes for EMPIAR ID 10017 (Beta-galactosidase), ordered ascendingly by the number of particles 

assigned to each class. Green: High quality particle classes selected for further template-based picking. Red: 

Rejected particle classes. 

 

6. Template based Picking and Manual Inspection and Extraction of 

Particles 

After the best particle classes were selected and exported, we used a template generated from 

the 8Forming and Selecting Best 2D 9 step to pick more particles. The process was iterative, 

meaning that the output of a round of 8template-based picking and inspection9 was again 

utilized for 82D class formation9 step to form and select best 2D classes under the human 

inspection. This process was repeated until we acquired high resolution particles that include 

all possible particle projection angles. 

The final templates with green boxes (as shown in Figure 7) were used to execute auto-pick 

particles from micrographs. With CryoSPARC's Template Picker, we used high resolution 

templates to precisely select particles that matched the geometry of the target structure. 

Figure 8 (A) represents manually picked particles for EMPIAR-10017 46 that work as templates 

to facilitate template-based picking that eventually results in template-based picked particles 

ready for human inspection as shown in Figure 8 (B). We specified constraints like particle 

diameter in angstrom (see Supplementary Table S2 for more information) and a minimum 

distance between particles to generate the templates based on the SK97 sampling algorithm 
32 to remove any signals from the corners and prevent crowding. We observed that the blob-

based in picking in RELION required minimum and maximum allowed diameter of the blobs, 

whereas defining a single value for particle9s diameter worked well in CryoSPARC.  
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Finally, the particles obtained by the template picking went through the manual inspection 

step, where we examined and modified picks using various thresholds. We adjusted the 

lowpass filter, normalized cross-correlation (NCC), and power threshold to improve the 

visibility of the picks and removed false positives as shown in Figure 11 (B). The 2D colored 

histogram plots as depicted in Figure 11  were used to scrutinize micrograph median pick 

scores versus defocus for extracting the coordinates of high-quality protein particles. 

 

 

Figure 8: Cryo-EM micrograph image of EMPIAR ID 10017 (defocus value: -3.63 µm) used for template-based particle 

picking. (A) Micrograph with manually picked protein particles (encircled with green circle, particle diameter: 190 

Angstrom, low pass filter value: 25). (B) Picked protein particles with template-based picking ready for manual 

inspection and the adjustment of power value and NCC score. 

 

Data Records 

The CryoPPP dataset consists of manually labelled 9,089 micrographs of 32 diverse, 

representative cryo-EM datasets of 32 protein complexes selected from EMPIAR. Each EMPIAR 

dataset identified by a unique EMPIAR ID has about ~300 cryo-EM images in which the 

coordinates of protein particles were labeled and cross-validated by two experts aided by 

software tools.  

Each data folder (named by its corresponding EMPIAR ID) includes the following information: 

original micrographs (either motion-corrected or not), gain motion correction file, new 

motion-corrected micrographs (if original micrographs are not motion-corrected), ground 

truth labels (manually picked particles), and particles stack. The directory structure of each 

data entry is illustrated in Figure 9. The data in each directory is described as follows. It is 

worth noting that if the original micrographs were not motion-corrected, we applied the 

motion correction to them to create their motion-corrected counterparts.  
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Figure 9: The directory structure of each expert-labelled data entry of CryoPPP. The directory contains micrographs, 

motion correction files, particle stacks, and ground truth labels (manually picked particles). The blocks with numbers 

on the left represent corresponding EMPIAR IDs. 

 

I. Raw Micrographs  

These are the two-dimensional projections of the protein particles in different orientations 

stored in different image formats (MRC, TIFF, EER, TIF, etc.). They can be considered as the 

photos taken by cryo-EM microscope.  Original micrographs are from EMPIAR and can be 

either motion corrected or not. If an entry has a 8gain’ folder, it includes both raw non-motion-

corrected micrographs and their motion-corrected counterparts created by us. Users are 

supposed to use the motion corrected micrographs as input for machine learning tasks.  The 

scripts for the motion correction are available at CryoPPP9s GitHub website.    

II. Motion Correction (gain files) 

It contains motion correction files (if motion in original micrographs not corrected before) 

stored in different formats like dm4 and mrc. It is used to correct both global motion (stage 

drift) and local motion (beam-induced anisotropic sample deformation) that occur when 

specimens (protein particles) are exposed to the electron beam during imaging. Correcting the 

motion enables the high-resolution reconstruction from the data. 

III. Particles Stack  

Particle stack comprises of the mrc files (with names corresponding to individual micrographs9 
filenames) of manually picked protein particles (ground truth labels). These are three-

dimensional grids of voxels with values corresponding to electron density (i.e., a stack of 2D 

images). To browse and examine this file, utilize EMAN2 14, UCSF Chimera 47, or UCSF ChimeraX 
48. 

IV. Ground Truth Labels 

Ground truth data contain the star and CSV files for both all true particles (positives) and some 

typical false positives (e.g., ice contaminations, aggregates, and carbon edges). The positive 

star (and corresponding CSV) files are the ground truth position of the picked particles 

combined in a single file for all ~300 micrographs per EMPIAR ID. While the negative star file 

consists position of the false positive particles. These star files contain information like X-
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coordinate, Y-coordinate, Angle-Psi, Origin X (Ang), Origin Y (Ang), Defocus U, Defocus V, 

Defocus Angle, Phase Shift, CTF B Factor, Optics Group, and Class Number of the particles.  

Besides, there is a subdirectory called particle_coordinates inside ground_truth, which 

contains csv files, with same name as raw micrographs, which contain individual protein 

particle9s X-Coordinate, Y-Coordinate along with their diameter and other relevant 

information.  

 

Technical Validation 

To ensure that the dataset is of high quality, we applied numerous validations and statistical 

analyses throughout the data curation process.  

I. Quality of Data 

As noted in Figure 3, we ensure that the dataset exclusively contains micrographs obtained 

using the Cryo-EM technique. Only the EMPIAR IDs with resolution less than 4 Å are chosen 

for creating refined protein metadata and ground truth labels of protein particles. The detailed 

quality control procedures are described as follows.  

II. Distribution of Data  

a) Diverse Protein Types  

To be inclusive and ensure unbiased data generation, we selected the cryo-EM data of 32 

different, diverse protein types (e.g., membrane, transport, metal binding, signalling, nuclear, 

viral proteins) to manually label protein particles, which can enable machine learning methods 

trained on them to work for many different proteins in the real-world. We selected the 

datasets covering different particle size, distribution density, noise level, ice and carbon areas, 

and particle shape as they are influential in particle picking.   

b) Diverse Micrographs within the Same Protein Type  

The variance in micrographs9 defocus values within a EMPIAR dataset is not accounted for by 

majority of the particle picking methods. This defocus variation causes the same particles to 

appear differently, altering the noise statistics of each micrograph. This makes it challenging 

to create thresholds to select high quality particles.  Figure 6 shows an example how different 

defocus values impact the appearance and quality of Cryo-EM images in the same EMPIAR 

dataset. Therefore, during manually picking the particles, we included a wide variety of 

defocus levels and CTF fit. 

We recorded the correlation between defocus levels and the pick scores / the power scores 

(shown in Figure 10 for EMPIAR-10590 48) to assess the shape and density of a particle 

candidate independently.  After calibration, the scores of each particle are recorded relative 

to the calibration line, and these values are used to define thresholds on the parameters. 
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Figure 10: NCC and Power calibration plots for EMPIAR- 10590 (Endogenous Human BAF Complex). (A) Calibrating 

Median NCC scores vs defocus. (B) Calibrating Power scores vs Defocus. There is a strong trend that higher defocus 

correlates with higher NCC scores and same with Power score. 

 

III. Reliability of Ground Truth Annotations  

a) Legitimacy of Importing Micrographs and Motion Correction Data  

All the input parameters used to prepare for loading micrographs into the CryoSPARC system 

were gathered from the appropriate literature. We adhered to the standards in the 

publications including data acquisition and imaging settings such as the microscope used, 

defocus range, spherical aberration, pixel spacing, acceleration voltage, electron dose and the 

correct usage of motion correction. Based on the microscope settings during the imaging 

process, we applied appropriate geometrical transformations. The defect files and the motion-

correction files were flipped left-to-right or top-to-bottom and also rotated by specific degrees 

in clockwise/anti-clockwise direction as required. All these factors were thoroughly 

investigated and used during the data loading process in CryoSPARC.  

b) Inspection of Picked Protein Particles  

The picked particles were inspected using a 2D colored histogram, as shown in Figure 11. A 

particle of interest would have an intermediate local power score and a high template 

correlation (indicating its shape closely matches its template). Low local power scores indicate 

empty ice patches, even though it might resemble the template. Additionally, very high local 

power scores indicate carbon edges, aggregates, contaminants, and other objects with 

excessive densities that resemble particles. 

As shown in Figure 11 (B, bottom), we interactively specified the upper and lower thresholds 

for both the Power score and NCC score for each dataset improving the accuracy in the manual 

particle picking. 
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Figure 11: Particle inspection and filtration by adjusting normalized cross correlation (NCC) score (X axis) and local 

power (Y axis) for EMPIAR 10017. (A) Initial picked particles (green circles) from template-based picking step. (B) 

Selected high quality protein particles through adjustment of NCC and power score values. 

 

c) Cross-validation by two Human Experts 

The results of the particles picked by the two Cryo-EM experts were compared to each other 

to make sure they are consistent. For example, two EMPIAR IDs: EMPIAR-10028 49 and 

EMPIAR-10081 50 with 300 micrographs (total 600 Cryo-EM micrographs) were used in cross-

validation. The results of the 2D classes were compared based on total number of particles in 

each class, relative resolution of particles in the class, and distinct views of the structure of 

particles. Similar 2D classes, as shown in Figure 12, achieved by two independent Cryo-EM 

specialists validate the accuracy of the manually labelled particles.  
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Figure 12: 2D classification results of the picked particles of EMPIAR ID 10028 and 10081 (A): Results from Cryo-EM 

expert-1, (B): Results from Cryo-EM expert-2 

 

IV. Cross Validation with Gold Standard Particles Picked by the 

Authors 

Gold standard particles are those particles that were picked by the Cryo-EM experts who 

generated the cryo-EM data. There are only a few EMPIAIR IDs deposited in EMPIAR that have 

both the micrographs and the gold standard particles. To validate the accuracy of our picked 

particles, we compared our results with the already-existing gold standard particles that are 

publicly available through the EMPIAR website. We carried out 2D and 3D validation for 

EMPIAR-10345 51 and EMPIAR-10406 52 to validate our particle labelling process as follows.  

a) 2D Particle Class Validation with Gold Standard 

In order to get the gold standard 2D particles of the dataset, we downloaded the particle stack 

image files (.mrc) and .star file with the attributes of picked particles from EMPIAR. We used 

the particle stack and the star files to create the 2D classification results using CryoSPARC. 

Eventually, we compared our 2D class results with the gold standard. We performed the 

comparison based on the total number of classes, total number of picked particles, resolution, 

and visual orientation of the protein particle for each EMPIAR ID. Our results and the gold 

standard results exhibit strong correlations. It is worth noting that a high number of particles 

alone does not necessarily yield high resolution. Selecting a decent number of high-quality 

particles spanning a wide angular distribution is important for generating high 2D and 3D 

resolution. 
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Figure 13: 2D classification comparison for EMPIAR- 10345 and EMPIAR-10406 (A) 2D classification published in 

EMPIAR. (B) 2D classification results of the particles by CryoPPP. 

Figure 13 shows the visual illustration 2D classification results for EMPIAR ID 10345 and 

EMPIAR ID 10406 published by the authors of the cryo-EM data and generated by us.  They 

are consistent.  

Table 1 compares 2D classification results generated by authors and by us. In both cases, 

(Figure 13(A) and Figure 13(B)) the same 300 micrographs were used for comparison. On 

EMPIAR ID 10345, CryoPPP9s results have substantially higher resolution than the authors9 
results for both N=50 and N=10 classes. On EMPIAR-10406, CryoPPP9s results have better 
resolution for N=50 particle classes and slightly lower resolution for N=10 particle classes.   

 

Table 1: 2D classification result comparison for EMPIAR-10345 and EMPIAR-10406 

EMPIAR 10345  

 2D Particle Class Statistics 

(EMPIAR) 

2D Particle Class Statistics 

(CryoPPP) 

Number of Picked Particles 17,838 15,894 
 

Weighted Average Resolution of 2D classes 
(N=50) 

18.63 Å 
 

10.25 Å 
 

Weighted Average Resolution of 2D classes 
(N=10) 

20.52 Å 
 

10.53 Å 
 

 

EMPAIR 10406  

 2D Particle Class Statistics 

(EMPIAR) 

2D Particle Class Statistics 

(CryoPPP) 

Number of Picked Particles 23, 450 24,703 
Weighted Average Resolution of 2D classes 

(N=50) 
8.47 Å 

 
7.98 Å 

Weighted Average Resolution of 2D classes 
(N=10) 

15.53 Å 
 

15.97 Å 
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b) 3D Density Map Validation with Gold Standard 

We performed an ab-initio reconstruction of the 3D density map using CryoPPP9s picked 

particles and compared the results with the gold standard 3D density maps from the EMPIAR 

website.  The comparison of the 3D maps between EMPIAR and CryoPPP for EMPIAR-10345 

and EMPIR-10406 is depicted in Figure 14 and Figure 15. The results of 3D density maps, 

resolution, and direction distribution of protein particles are compared in the two figures.  

 

Figure 14: The comparison of 3D density maps, resolution, and direction distribution on EMPIAR- 10345. (A) results 

published in EMPIAR. (B) results generated from the particles in CryoPPP. 

The detailed comparison results are reported in Table 2.  The 8loose mask9 curve in the Fourier 

Shell Correlation (FSC) plots uses an automatically produced mask with a 15 Å falloff. The 8tight 

mask9 curve employs an auto-generated mask with a falloff of 6 Å for all FSC plots. It is seen 

that CryoPPP outperforms in terms of all resolution (Gold Standard Fourier Shell Correlation 

(GSFSC), No mask, Loose, Tight and Corrected Mask) metrics on EMPIAR-10345 and achieved 

very similar results on EMPIAR-10406. This rigorous validation clearly demonstrates our 
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manual particle picking procedure produced the high-quality picked particles in the CryoPPP 

dataset.  

 

Table 2: 3D density map result comparison statistics for EMPIAR 10345 and EMPIAR 10406 

EMPIAR 10345  
 3D Map Statistics 

(EMPIAR) 

3D Map Statistics 

(CryoPPP) 

Number of Picked Particles 17,838 15,894 
GSFSC Resolution 4.86 Å 3.76 Å 

No Mask Resolution 10 Å 6.6 Å 

Loose Mask Resolution 7.3 Å 4.9 Å 
Tight Mask Resolution 4.9 Å 3.9 Å 

Corrected Mask Resolution 4.9 Å 3.8 Å 

 
EMPAIR 10406  

 3D Map Statistics 

(EMPIAR) 

3D Map Statistics 

(CryoPPP) 

Number of Picked Particles 23, 450 24,703 

GSFSC Resolution 2.85 Å 2.89 Å 
No Mask Resolution 4.3 Å 4.1 Å 

Loose Mask Resolution 3.1 Å 3.1 Å 

Tight Mask Resolution 2.8 Å 2.9 Å 
Corrected Mask Resolution 2.9 Å 2.9 Å 
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Figure 15: The comparison of 3D density maps, resolution, and direction distribution on EMPIAR- 10406. (A) results 

published in EMPIAR. (B) results generated from the particles in CryoPPP.  

 

Code Availability 

The data analysis methods, software and associated parameters used in this study are 

described in the section of Methods. All the scripts associated with each step and the CryoPPP 

dataset are available at GitHub: https://github.com/BioinfoMachineLearning/cryoppp 
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