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Abstract

Cryo-electron microscopy (cryo-EM) is currently the most powerful technique for determining
the structures of large protein complexes and assembilies. Picking single-protein particles from
cryo-EM micrographs (images) is a key step in reconstructing protein structures. However, the
widely used template-based particle picking process is labor-intensive and time-consuming.
Though the emerging machine learning-based particle picking can potentially automate the
process, its development is severely hindered by lack of large, high-quality, manually labelled
training data. Here, we present CryoPPP, a large, diverse, expert-curated cryo-EM image
dataset for single protein particle picking and analysis to address this bottleneck. It consists of
manually labelled cryo-EM micrographs of 32 non-redundant, representative protein datasets
selected from the Electron Microscopy Public Image Archive (EMPIAR). It includes 9,089
diverse, high-resolution micrographs (~300 cryo-EM images per EMPIAR dataset) in which the
coordinates of protein particles were labelled by human experts. The protein particle labelling
process was rigorously validated by both 2D particle class validation and 3D density map
validation with the gold standard. The dataset is expected to greatly facilitate the development
of machine learning and artificial intelligence methods for automated cryo-EM protein particle
picking. The dataset and data  processing scripts are available at
https://github.com/BioinfoMachineLearning/cryoppp

Background & Summary

Cryo-electron microscopy (cryo-EM) is an experimental technique that captures 2D images of
biological molecules and assemblies (protein particles, virus, etc.) at cryogenic temperature
using ‘direct’ electron-detection camera technology 1. With the advent of cryo-EM, there has
been a boom in structural discoveries relating to biomolecules, particularly large protein
complexes and assemblies. These 3D structures of proteins 2 are important for understanding
their biological functions 2 and their interactions with ligands *°, which can aid both basic
biological research and structure-based drug discovery “6. A key step of constructing protein
structures form cryo-EM data is to pick protein particles in cryo-EM images (micrographs).
Before diving into recent developments in protein particle picking and the bottleneck it faces,
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it is important to understand the physics and chemistry behind the grid preparation and
micrograph image acquisition in cryo-EM experiments.

l. Cryo-EM Grid Preparation and Image Acquisition

The process of acquiring the two-dimensional projections of biomolecular samples (e.g.,
protein particles) can be summarized in four brief steps: (1) sample purification, (2) cryo-EM
grid preparation, (3) grid screening and evaluation, and (4) image capturing. Once the sample
is purified according to the standard protocols 7; the next step of the single-particle procedure
is to prepare the cryo-EM specimen. The grid preparation process, also known as vitrification,
is straightforward. An aqueous sample is applied to a grid, which is then made thin. Eventually,
the grid is plunged frozen at a time scale that inhibits the crystalline ice formation.
Additionally, the particles must be evenly distributed across the grid in a wide range of
orientations. It is very difficult to achieve a perfect cryo-EM grid because particles may choose
to adhere to the carbon layer instead of being partitioned into holes. They may also adopt
preferred orientations within the vitrified ice layer, which reduces the number of unique views
8, The grid is ready for analysis once the cryo-EM sample is successfully inserted into the
electron microscope °. Images are routinely captured during the screening phase at various
maghnifications to check for ice and particle quality. After the grids are optimized and ready for
cryo-EM data collection, they are taken to a cryo-EM facility where qualified professionals load
specimens into the microscope. To enable the best high-quality image capturing, experts
adjust several parameters such as magnification, defocus range, electron exposure, and hole
targeting techniques (see Figure 1 (A)-(F) illustrating the process of preparing cryo-EM samples
and acquiring cryo-EM images). More details regarding cryo-EM sample preparation and
image acquisition can be found in these studies "°.

Il. Cryo-EM Micrographs and Single Particle Analysis

When the electron beam passes through a thin vitrified sample, it creates 2D image
projections (see Figure 1 for a visual illustration) of the samples (e.g., protein particles). The
projections of the particles in various orientations are stored in different image formats (MRC,
TIFF, TBZ, EER, PNG, etc.) which are called micrographs. Once the micrographs are obtained,
the objective is to locate individual protein particles in each micrograph while avoiding
crystalline ice contamination, malformed particles and grayscale background regions. In other
words, the input for the particle picking problem is a micrograph, while the desired output is
the coordinates of every protein particle in that micrograph (refer to Figure 1 for the entire
pipeline). Accurate detection of particles is necessary, as the presence of false positive
particles can complicate subsequent processing, and eventually cause the 3D reconstruction
process to fail entirely. The picking task is challenging due to several factors, including high
noise levels caused by ice and contamination, low contrast of particle images, and
unpredictability in an individual particle’s appearance caused by variation in orientation. Once
the particles are extracted from the micrographs, single particle analysis is performed to
reconstruct the 3D density map and protein structure.
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Figure 1: Overview of Cryo-EM pipeline, from sample preparation to particle recognition. (A) Aqueous sample
preparation that contains variably dispersed heterogenous structure. (B) Cryo-EM grid containing holes that are
filled with dispersed protein particles. (C) Magnified image of square patch illustrating microscopic holes in carbon.
(D) Zoomed-in view of single hole containing suspended protein particles in thin layer of vitreous ice. (E) Cryo-
Electron microscope used to facilitate high quality image generation. (F) Stack of 2D movie frames generated from
microscope, called micrographs. (G) Motion corrected 2D micrograph images. (H) Particle picking using manual
intervention or automatic procedures (green circles represent picked particles). (1) Initial 2D classes that contain
quality protein particles along with junks and aggregates. (J) Best quality protein particles identified through
computational analysis and visual inspection for 3D protein structure reconstruction.
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lll. Advances and Challenges in Single Protein Particle Picking

Several research initiatives were carried out worldwide to improve hardware 3 and

software 1*7'¢ to streamline and automate the data collection and processing steps for the
cryo-EM determination of 3D structures. The recent technological advances in sample
preparation, instrumentation, and computation methodologies have enabled the cryo-EM
technology to solve massive protein structures at better than 3 A resolution. To obtain a high-
resolution protein structure, selecting enough high-quality protein particles in cryo-EM images
is critical. However, protein particle picking is still largely a labor-intensive and time-consuming
process. One challenge facing cryo-EM data analysis is to develop automated particle picking
techniques to circumvent manual intervention. To tackle the problem, numerous automatic
and semi-automatic particle-picking procedures have been developed.

A common technique for particle picking, known as template matching, uses user-predefined
particles as templates for identifying particles in micrographs through image matching.
However, because of varied ice contamination, carbon areas, overlapping particles, and other
issues, the template matching often selects invalid particles (e.g., false positives). So
subsequent manual particle selection is necessary.

To deal with the issue, artificial intelligence (Al) and machine learning-based approaches have
been proposed, which can be less sensitive to impurities and more suitable for large-scale data
processing and therefore hold the potential of fully automating the particle picking process.
XMIPP Y7, APPLE picker '8, DeepPicker *°, DeepEM ?°, FastParticle Picker 2%, crYOLO 2%, PIXER
23 PARSED **, WARP %, Topaz %%, AutoCryoPicker 2’ , and DeepCryoPicker %, can be taken as
good examples of such efforts.

The datasets used to train and test machine learning particle picking methods were curated
from EMPIAR %. It contains almost all the publicly available raw cryo-EM micrographs. It is a
public repository containing 1,159 entries/datasets (2.39 PB) as of Jan 29, 2023. It includes not
just cryo-EM images of proteins, but also Soft X-ray Tomography (SXT), cryo-ET and many other
microscopic projections of other biological samples. Only some cryo-EM images of a small
number of datasets in EMPIAR contain particles manually labelled by the original authors of
the data. Therefore, most existing machine learning methods for particle picking were trained
and tested on only a few manually labeled datasets of a few proteins like Apoferritin and
Keyhole Limpet Hemocyanin (KLH). The methods trained on the limited amount of particle
data of one or a few proteins cannot generalize well to pick particles of various shapes in the
cryo-EM micrographs of many diverse proteins in the real world. Therefore, even though
machine learning particle picking is a promising direction, no machine learning method has
been able to replace the labor-intensive template-based particle picking in practice.
Therefore, the lack of manually labelled particle image data of a diverse list of proteins is a key
bottleneck hindering the development of machine learning and Al methods to automate
protein particle picking.

Creating a high-quality manually labelled single-protein particle dataset of a large, diverse set
of representative proteins to facilitate machine learning is a challenging task. Single-particle
cryo-EM images suffer from high background noise and low contrast due to the limited
electron dose to minimize the radiation damage to the biomolecules of interest during
imaging, which makes particle picking difficult even for human. Low signal-to-noise ratio (SNR)
of the micrographs, presence of contaminants, contrast differences owing to varying ice
thickness, background noise fluctuation, and lack of well-segregated particles further
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increases the difficulty in particle identification . This is one reason there is still a lack of large
manually curated protein particle datasets in the field.

A common problem of the particle picking algorithms trained on a small amount of particle
data of a few proteins is that they cannot distinguish ‘good’ and ‘bad’ particles well, including
overlapped particles, local aggregates, ice contamination and carbon-rich areas 3!. For
instance, the methods: DRPnet 32, TransPicker 33, CASSPER 34, and McSweeney et al.’s method
% that made significant contributions to the particle selection problem suffered the two similar
problems. Firstly, there is not a sufficient and diversified dataset to train them. Secondly, there
is no gold standard to test them. The similar problems happened to other supervised and
unsupervised machine learning methods, such as an unsupervised clustering approach 3,
AutoCryoPicker ¥/, DeepCryoPicker 28, APPLE picker 8, Mallick et al's method *’, gEMpicker 3,
Langlois et al.”s method 3!, DeepPicker *°, DeepEM 2°, Xiao et al.’s method 2!, APPLE picker 8,
Warp 2%, SPHIRE-crYOLO 3%, and HydraPicker “° all encountered similar problems. They usually
perform well on the small, standard datasets used to train and test them (e.g., Apoferritin and
KLH), but may not generalize well to non-ideal, realistic datasets containing protein particles
of irregular and complex shapes, which are generated daily by the cryo-EM facility around the
world.

To address this key bottleneck hindering the development of machine learning and Al
methods for automated cryo-EM protein particle picking, we created a large dataset
(CryoPPP) of cryo-EM micrographs in which protein particles were manually labelled.
The micrographs are associated with 32 representative proteins of diverse sequences
and structures that cover a much larger protein particle space than the existing
datasets of a few proteins such as Apoferritin and KLH. The quality of the manually
labeled particles of selected proteins was rigorously validated against some particles
labelled by the authors who generated the cryo-EM data by both 2D particle class
validation and 3D cryo-EM density map validation. The quality of our manual
annotation is in pair with the annotations provided by the experts who created the
datain the first place, which confirms our manual particle labelling process is effective.
Therefore, we believe CryoPPP is a valuable resource for training and testing machine
learning and Al methods for automated protein particle picking.

Methods

CryoPPP was created through a series of steps as shown in Figure 2. We first crawled the data
from the EMPIAR website using API and FTP scripts. We filtered out microscopic images of
various non-single-protein particles (e.g., bacteria, filaments, RNA, protein fibril, virus-like
particles) and retained only high-resolution micrographs acquired by cryo-EM technique for
manual particle labeling.

After importing the micrographs with all the physiochemical parameters gathered from the
corresponding published literature, we performed motion correction and Contrast Transfer
Function (CTF) estimation for them. Once the micrographs were prepared, two human experts
manually picked the particles after setting up the low pass filter values and proper diameter
for picking particles.

The expert-picked particles were cross-validated and then went through 2D particle
classification. The best particles based on resolution, particle count, and visually appealing and
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sensible 2D classes were selected and further used for template-based particle picking and
further human inspection. After iterating the 2D classes from template-based picking and
human inspection, we ultimately obtained the final set of highly confident protein particles as
ground truth and exported them in the files in star, csv and mrc formats. The first two files
(.star and .csv) contain the coordinates of the protein particles and the latter (.mrc) store
particles stacks. The process of creating CryoPPP in Figure 2 is described in the following
sections in detail.
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Figure 2: Graphical illustration of the overall methodology of creating CryoPPP dataset with manual
EMPannotations of protein particles. (A)-(D) represent the steps for data acquisition and protein metadata
preparation. (1)-(8) represent subsequent steps for the ground truth annotation and validation of picked protein
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particles. The iterative approach between step (5) and (6) is carried out to achieve the high-quality picking of
particles.

I. EMPIAR Metadata Collection and Filtering

The process of preparing the dataset began with collecting metadata about cryo-EM image
datasets in EMPIAR. Data collection scripts that use APl and FTP protocols were used to
automatically download the metadata from the EMPIAR web portal ?°. The metadata includes
EMPIAR ID of each cryo-EM dataset of a protein, the corresponding Electron Microscopy Data
Bank (EMDB) ID, Protein Data Bank (PDB) ID, size of dataset, resolution, total number of
micrographs, image size/type, pixel spacing, micrograph file extension, gain/motion correction
file extension, FTP path for micrograph/gain files, Globus path for micrograph/gain files, and
publication information.

Following the metadata collection, the individual cryo-EM datasets in the collection were
filtered as depicted in Figure 3 (Steps 1 - 5). First, we only chose EMPIAR IDs (datasets) that
have their volume maps deposited in EMDB. From the chosen EMPIAR datasets, we only
selected ones that had corresponding protein structures in the Protein Data Bank (PDB).

To ensure high data quality, we then retained only the EMPIAR datasets whose resolution was
less than 4 Angstrom (A). We observed that there were some redundant EMPIAR datasets
(e.g., EMPIAR ID: 10709 & 10707, EMPIAR ID: 10899 & 10897) that correspond to the same
biomolecule with the same PDB and EMDB IDs. Hence, we eliminated those duplicate entries.
After removing duplicate records, we selected only EMPIAR datasets that contained
micrographs of protein particles, excluding other biological samples such as viruses. This
filtering step required some literature study of individual EMPIAR datasets. The motion
correction and gain correction files for the selected datasets were extracted from the EMPIAR
if required. The final list of meta data includes 335 EMPIAR entries, 32 out of which were used
for manual labelling. Refer to the EMPIAR _metadata_335.xIsx file in CryoPPP for further
information about the list of 335 datasets of 355 proteins.

Generate catalog fetching EMPIAR deposited dataset through API

Select EMPIAR IDs having corresponding volume maps deposited in EMDB
Select EMPIAR IDs having corresponding 3D structures deposited in PDB

Select EMPIAR IDs having high resolution (Resolution <4 A)

Delete Redundant EMPIAR IDs that has duplicate EMDB and PDB deposition

Virus, Filaments, Virus like particles, etc.)

u Select EMPIAR IDs having micrographs of protein particles (Exclude: Fibril,

Figure 3: The step-by-step procedure for collecting and selecting Cryo-EM protein datasets from EMPIAR
database. 335 unique EMPIAR datasets (IDs) of 335 proteins were selected at the end.
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Il. Manual Particle Labeling

Manually picking particles in cryo-EM micrographs through the GUI interfaces of cryo-EM
analysis tools such as CryoSPARC ¢ , EMAN2 * and RELION *° is very time consuming.
Additionally, it is highly challenging to import micrographs, carry out motion correction, and
estimate CTF for large micrographs. Furthermore, it takes a lot of disk space to store the
labelled particle data together with the corresponding micrographs and particles stack files.
Therefore, we chose 32 representative EMPIAR datasets out of 335 entries selected in the
previous section for manual particle labelling to create the CryoPPP dataset, considering
diverse particle size/shapes, density distribution, noise level, and ice and carbon areas.
Moreover, proteins from a wide range of categories, such as: metal binding, transport,
membrane, nuclear, signaling, and viral proteins were selected. See supplementary Tables 1
and 2 for more details about the 32 proteins (cryo-EM datasets). Most of the pre-processing,
manual particle labelling, real-time quality assessment, and decision-making workflows were
performed using CryoSPARC v4.1.1 ** , EMAN2 **, and RELION 4.0 .

CryoPPP includes a total of 9,089 micrographs (~300 Cryo-EM images per selected EMPIAR
dataset). We labelled ~300 micrographs per EMPIAR data because using all the micrographs
in each dataset would result in 32.993 TB of data, which would be too big for most machine
learning tasks. Another reason is that many micrographs in the same EMPIAR dataset are
similar and therefore it is not necessary to include all of them. The particle labelling process is
described in detail as follows.

1. Importing Movies

This is the crucial first step of particle labeling. For each EMPIAR dataset, we import two inputs:
micrographs and gain reference (motion correction files). We analyzed the description of the
EM data acquisition and grid preparation for each dataset in order to collect the important
information such as raw pixel size (A), acceleration voltage (kV), spherical aberration (mm),
and total exposure dose (e/A?) for the micrographs in the dataset.

Furthermore, we obtained gain reference for micrographs if their motion was not corrected
before. We used e2proc2d, a generic 2-D image processing program in EMAN2 4, to convert
different formats of motion correction file (e.g., .dm4, .tiff, .dat, etc.) to .mrc file since
CryoSPARC accepts only .mrc extension. Then, based on the microscope camera settings and
how the data was acquired during the imaging process, we applied geometrical
transformations (flip gain reference and defect file left-to-right/top-to-bottom (in x/y axis) or
rotate gain reference clockwise/anti-clockwise by certain degrees) relative to the image data.
Supplementary Table S1 contains the details of input parameters for each EMPIAR ID. After
importing movies and motion correction files, we proceeded to the job inspection panel of
CryoSPARC to ensure that all input settings and loaded micrographs were correct.

2. Patch Motion Correction

When specimens are exposed to an electron beam, the mobility of sample molecules (protein
particles) during data acquisition can affect the overall quality of electron micrographs and
lower the final resolution *. Hence, it is necessary to correct the movement of particles
(referred to as ‘beam-induced motion’).
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The causes behind this motion can be categorized into two types: (1) Motion from Microscope:
It is caused by stage drift and usually occurs in microscope due to little amount of vibration
left over after the stage has been aligned to a new position *2. It moves the sample relative to
the beam and optical axis. This motion is quite jagged in time, with sharp accelerations or
twitches, but is consistent. The entire image will move in the same direction over time. (2)
Motion from sample deformation: This motion is caused by the energy deposited into the ice
by the beam, or energy already trapped in it, due to strained forces locked in during freezing.
It is eventually released during the image capturing process. As the electrons pass through the
samples, the energy from the beam and the temperature change causes the ice to physically
deform and bend. That deformation is often smoother over time, but it can be highly
anisotropic in space. In this case, various parts of the same image can move in different
directions at the same time.

Both motions must be estimated and corrected to obtain high-resolution reconstructions from
the data. In the patch-based motion correction step, we corrected both global motion (stage
drift) and local motion (beam-induced anisotropic sample deformation) for the micrographs
(as shown in Figure 4 (A). In the anisotropic deformation plot in Figure 4 (B), each red circle
indicates the center of a single "patch" of the image, and the curves emerging from each circle
show the motion of that portion of the sample. We can observe the correlation between the
motion of adjacent patches. They move somewhat similarly to one another. To prevent the fit
from being distorted by random noise in the micrograph, the patch motion correction
algorithm imposes smoothness constraints on the motion.

Figure 4 (C) are the examples of plots generated by patch motion correction that depict the
computed trajectories. The set of plots shows overall motion correction (an actual trajectory
plot, followed by X-motion plot and Y-motion plots over time). In the overall motion trajectory
over X and Y motion (Figure 4 (C), Left), each dot represents the sample's position from frame
to frame. Here, the x and y axes represent the units of pixels in the raw data’s pixel size. The
sample begins at point (X), moves downward, makes a curve and again changes direction
toward the left-top, and then continues to descend to the left. We apply this trajectory to the
input data by shifting each image in reverse of what the motion trajectory suggests and finally
averaging images together. In other words, we track a sample's motion during the exposure
to undo it.
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Figure 4: The patch-based local and global motion correction pipeline for EMPIAR ID 10737 (E. coli cytochrome bo3
in MISP Nanodiscs). (A) Full frames of micrographs as input. (B) Anisotropic deformation. (C) Rigid motion trajectories
plots. Blue: original trajectory, Radish: trajectory with small smoothing penalty, Green: trajectory with fine
smoothing. Left: Overall motion trajectory over X and Y motion. Center: X-motion plot over time. Right: Y-motion
plot over time. (D) Non-dose weighted aligned averaged micrographs with the highest amount of signal and least
amount of motion blur as output.

3. Patch-based CTF Estimation

The contrast of images captured in the electron microscope is affected by imaging defocus and
lens aberrations, which are adjusted by microscope operators to enhance the contrast. The
relationship between lens aberrations and the contrast in the image is defined by the CTF. It
explains how information is transferred as a function of spatial frequency.

It is important to estimate CTF, which is then corrected during 2D particle classification and
3D reconstruction steps. Otherwise, the feasible reconstruction will have extremely low
resolution. A full treatment of the effects of the CTF usually proceeds in two stages: CTF
estimation and CTF correction. In CryoSPARC the CTF model is given by the equation I.

CTF = - cos(mAzAf? - % CAf* + @) M

where 4zis defocus, A.is the wavelength of the incident electrons, C; is spherical aberration,
and fis spatial frequency. @represents a phase shift factor.

Most cryo-EM samples are not ‘flat’. Before a sample is frozen, particles tend to concentrate
around the air-water interfaces, and the ice surface itself is usually not flat ***. Because
defocus has an impact on the CTF, distinct particles can have various defoci and hence various
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CTFs within a single image. To address this problem, CryoSPARC offers a patch-based CTF
estimator that analyzes numerous regions of a micrograph to calculate a "defocus landscape".

We performed a 1D search over defocus for every micrograph. Figure 5 (A) depicts the 1D
search for a particular micrograph of EMPIAR ID 10737 “°. This plot helps identify a particular
defocus value that stands out among a variety of other defocus values (x-axis). Patch CTF
creates a plot showing how closely the input micrographs' observed power spectrum and the
calculated CTF match. The CTF fit plot in Figure 5 (B) shows that the computed CTF matches
the observed power spectrum up to a resolution of 3. 993 A. The cross correlation between
the observed spectrum and the calculated CTF is depicted by the cyan line in the plot. The
vertical green line in the plot represents the frequency at which the fit deviates from
CryoSPARC's cross-correlation threshold of 0.3 for a successful fit.

We executed the patch CTF to obtain the output micrographs with data on their average
defocus and the defocus landscape. When particles were extracted, this data was
automatically used to assign each particle a local defocus value based on its position in the
landscape.

1D Search Across Varying Defocus Value

0.6
0.4
0.2

0.0

0 5000 10000 15000 20000 25000 30000 35000 40000

Defocus Values (A)

Contrast Transfer Function Fit Plot

DF1 30733.9 DF2 30583.7 ANGAST 3.982 PHASE 0.000 FIT 3.993 A

Frequency (A1)

Figure 5: Diagnostic plots of CTF for EMPAIR 10737 (E. coli cytochrome bo3 in MSP Nanodiscs). (A) 1D search over
varying defocus values (underfocus). (B) CTF fit plot. X-axis displays frequency, in units in inverse angstroms (A™)
and Y-axis shows correlation metric between power spectrum (PS) and CTF value. Black: observed experimental
power spectrum. Red: calculated CTF. Cyan: cross-correlation (fit).

4. Manual Particle Picking

After performing the motion correction and CTF estimation, we manually picked particles
interactively from aligned/motion-corrected micrographs with the goal of creating particle
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templates for auto-picking. Depending on the size and shape of the protein particles, we
adjusted the box size and the particle diameter. Since picking particles on raw micrographs is
extremely difficult, we tweaked the ‘Contrast Intensity Override’ while viewing micrographs in
order to obtain the best distinctive view for picking particles.

It is particularly challenging to manually pick particles from micrographs with smaller defocus
levels, and vice versa. Figure 6 illustrates the visualization of micrographs in the same dataset
with different defocus levels for EMPAIR 10532 “. Hence, to generate comprehensive
templates from a wide range of defocus values, we manually picked particles from multiple
micrographs with diverse defocus and CTF fit values.

As manual picking was very time intensive, we selected a subset of micrographs (around 20
micrographs of each EMPIAR dataset) for manually picking initial particles for the subsequent
template-based particle picking. More details regarding the total number of particles picked
manually including the total number of micrographs considered for manual pick are provided
in the Supplementary Table S2.

DEFOCUS VALUE: -1.11 pm DEFOCUS VALUE: -1.74 pm DEFOCUS VALUE: -3.33 ym

Figure 6: Cryo-EM micrograph images of EMPIAR ID 10532 (Influenza Hemagglutinin) with different defocus values.
Micrographs with smaller defocus values make particle picking difficult and vice-versa.

5. Forming and Selecting Best 2D Particle Classes

The manually picked particles went through the 2D classification step. This step helped to
classify the picked particles into several 2D classes to facilitate stack cleaning and junk particles
removal. To analyze the distribution of views within the dataset qualitatively, we specified a
specific number of 2D classes. By doing this, we investigated the particle quality and removed
junk particle classes, which ultimately facilitated the selection of good particle classes.

We specified the initial Classification Uncertainty Factor (ICUF) and maximum alignment
resolution to align particles to the classes with 40 expectation maximization (EM) iterations.
The diameter of the circular mask that was applied to the 2D classes at each iteration was
controlled using the circular mask diameter in the case of crowded particles.

After the 2D classes were formed, we selected the best particle classes interactively to remove
the junks. Figure 7 shows an example of 2D classification and selection of highly confident
particles for EMPIAR ID 10017 “6. We used three diagnostic measures to select the 2D classes:
resolution (A) of a class, the number of particles of a class (higher, better), visual appearance
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of a class. Considering only the number of particles in a class is not sufficient because some
classes containing a small number of particles may represent a unique view of the protein.

() SELECTED CLASSES
() EXCLUDED CLASSES

G” particles 4443 particles 4185 particles 3751 particles 3090 particles 2747 particles 2641 particles 2598 particles 2565 particles 2305 particles \
9A 11ECA 9A 11ECA 9A 11ECA 10A 1.1ECA 10A 12ECA 14A 11ECA 9A 11ECA 1A 12ECA 12A 1.2ECA 10A 1.2ECA

Class 35 Class 18

(/273 particles 2271 particles 2162 particies 7102 particies 2016 particies T75 particles T714 particies 7554 particies 495 particles 1396 partices "\
1A 12ECA 12A 11ECA 12A 11ECA 12A 12ECA 12A 12ECA 12A 12ECA 17A 13ECA 13A 13ECA§ 22A 16ECA 23A 19ECA

Class 30

ﬂ'sw particles 1360 particles 10 particles 1307 particles 4 particles 1273 particles 1245 particles 1015 particles 938 particles 585 particles
87A 11ECA 29A 20€ecA Jf15A 13ECA  16A 1.4€CA [f30A 1SECA 27A 19ECA 23A 22ECA 19A 24ECA  29A 22ECA 37A 2.6 ECA

Class 19 lass 37

(;6-7 particles 536 particles 461 particles 409 particles 333 particles 329 particles 291 particles 290 particles 287 particles 140 particles
20A 27ECA 37A 19ECA 42A 26ECA 45A 30ECA 35A 30ECA 33A 26ECA 33A 26ECA 36A 3.2ECA 38A 3.0ECA

32A 27ECA

Class 12 Class 6

Figure 7: 2D classes for EMPIAR ID 10017 (Beta-galactosidase), ordered ascendingly by the number of particles
assigned to each class. Green: High quality particle classes selected for further template-based picking. Red:
Rejected particle classes.

6. Template based Picking and Manual Inspection and Extraction of
Particles

After the best particle classes were selected and exported, we used a template generated from
the ‘Forming and Selecting Best 2D ’ step to pick more particles. The process was iterative,
meaning that the output of a round of ‘template-based picking and inspection’ was again
utilized for ‘2D class formation’ step to form and select best 2D classes under the human
inspection. This process was repeated until we acquired high resolution particles that include
all possible particle projection angles.

The final templates with green boxes (as shown in Figure 7) were used to execute auto-pick
particles from micrographs. With CryoSPARC's Template Picker, we used high resolution
templates to precisely select particles that matched the geometry of the target structure.
Figure 8 (A) represents manually picked particles for EMPIAR-10017 *® that work as templates
to facilitate template-based picking that eventually results in template-based picked particles
ready for human inspection as shown in Figure 8 (B). We specified constraints like particle
diameter in angstrom (see Supplementary Table S2 for more information) and a minimum
distance between particles to generate the templates based on the SK97 sampling algorithm
32 t0 remove any signals from the corners and prevent crowding. We observed that the blob-
based in picking in RELION required minimum and maximum allowed diameter of the blobs,
whereas defining a single value for particle’s diameter worked well in CryoSPARC.
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Finally, the particles obtained by the template picking went through the manual inspection
step, where we examined and modified picks using various thresholds. We adjusted the
lowpass filter, normalized cross-correlation (NCC), and power threshold to improve the
visibility of the picks and removed false positives as shown in Figure 11 (B). The 2D colored
histogram plots as depicted in Figure 11 were used to scrutinize micrograph median pick
scores versus defocus for extracting the coordinates of high-quality protein particles.

O SELECTED PARTICLES

o~ | Templated Based Picked Particles
D g Ready for Inspection

@1 Manually Picked particle using |
: Human Expertise !

Figure 8: Cryo-EM micrograph image of EMPIAR ID 10017 (defocus value: -3.63 um) used for template-based particle
picking. (A) Micrograph with manually picked protein particles (encircled with green circle, particle diameter: 190
Angstrom, low pass filter value: 25). (B) Picked protein particles with template-based picking ready for manual
inspection and the adjustment of power value and NCC score.

Data Records

The CryoPPP dataset consists of manually labelled 9,089 micrographs of 32 diverse,
representative cryo-EM datasets of 32 protein complexes selected from EMPIAR. Each EMPIAR
dataset identified by a unique EMPIAR ID has about ~300 cryo-EM images in which the
coordinates of protein particles were labeled and cross-validated by two experts aided by
software tools.

Each data folder (named by its corresponding EMPIAR ID) includes the following information:
original micrographs (either motion-corrected or not), gain motion correction file, new
motion-corrected micrographs (if original micrographs are not motion-corrected), ground
truth labels (manually picked particles), and particles stack. The directory structure of each
data entry is illustrated in Figure 9. The data in each directory is described as follows. It is
worth noting that if the original micrographs were not motion-corrected, we applied the
motion correction to them to create their motion-corrected counterparts.
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EMPIAR IDs

[ 10005 }—)[ micrographs }-—-—)[ *.mrc, *.tiff, *.tif ]
I 10017 l [ gain }__)[ *.mrc, *.dm4 ]
[ 10028 ] [ particles_stack }——)[ *.mrc ]
C ) () o )
: particle_coordinates }——)[ *.csv ]

‘{ false_positives }—-—)[ *.csv ]

Figure 9: The directory structure of each expert-labelled data entry of CryoPPP. The directory contains micrographs,
motion correction files, particle stacks, and ground truth labels (manually picked particles). The blocks with numbers
on the left represent corresponding EMPIAR IDs.

. Raw Micrographs

These are the two-dimensional projections of the protein particles in different orientations
stored in different image formats (MRC, TIFF, EER, TIF, etc.). They can be considered as the
photos taken by cryo-EM microscope. Original micrographs are from EMPIAR and can be
either motion corrected or not. If an entry has a ‘gain’ folder, it includes both raw non-motion-
corrected micrographs and their motion-corrected counterparts created by us. Users are
supposed to use the motion corrected micrographs as input for machine learning tasks. The
scripts for the motion correction are available at CryoPPP’s GitHub website.

Il. Motion Correction (gain files)

It contains motion correction files (if motion in original micrographs not corrected before)
stored in different formats like dm4 and mrc. It is used to correct both global motion (stage
drift) and local motion (beam-induced anisotropic sample deformation) that occur when
specimens (protein particles) are exposed to the electron beam during imaging. Correcting the
motion enables the high-resolution reconstruction from the data.

Ill. Particles Stack

Particle stack comprises of the mrc files (with names corresponding to individual micrographs’
filenames) of manually picked protein particles (ground truth labels). These are three-
dimensional grids of voxels with values corresponding to electron density (i.e., a stack of 2D

images). To browse and examine this file, utilize EMAN2 *, UCSF Chimera #’, or UCSF ChimeraX
48

IV. Ground Truth Labels

Ground truth data contain the star and CSV files for both all true particles (positives) and some
typical false positives (e.g., ice contaminations, aggregates, and carbon edges). The positive
star (and corresponding CSV) files are the ground truth position of the picked particles
combined in a single file for all ~300 micrographs per EMPIAR ID. While the negative star file
consists position of the false positive particles. These star files contain information like X-
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coordinate, Y-coordinate, Angle-Psi, Origin X (Ang), Origin Y (Ang), Defocus U, Defocus V,
Defocus Angle, Phase Shift, CTF B Factor, Optics Group, and Class Number of the particles.

Besides, there is a subdirectory called particle_coordinates inside ground_truth, which
contains csv files, with same name as raw micrographs, which contain individual protein
particle’s X-Coordinate, Y-Coordinate along with their diameter and other relevant
information.

Technical Validation

To ensure that the dataset is of high quality, we applied numerous validations and statistical
analyses throughout the data curation process.

I. Quality of Data

As noted in Figure 3, we ensure that the dataset exclusively contains micrographs obtained
using the Cryo-EM technique. Only the EMPIAR IDs with resolution less than 4 A are chosen
for creating refined protein metadata and ground truth labels of protein particles. The detailed
quality control procedures are described as follows.

Il. Distribution of Data

a) Diverse Protein Types

To be inclusive and ensure unbiased data generation, we selected the cryo-EM data of 32
different, diverse protein types (e.g., membrane, transport, metal binding, signalling, nuclear,
viral proteins) to manually label protein particles, which can enable machine learning methods
trained on them to work for many different proteins in the real-world. We selected the
datasets covering different particle size, distribution density, noise level, ice and carbon areas,
and particle shape as they are influential in particle picking.

b) Diverse Micrographs within the Same Protein Type

The variance in micrographs’ defocus values within a EMPIAR dataset is not accounted for by
majority of the particle picking methods. This defocus variation causes the same particles to
appear differently, altering the noise statistics of each micrograph. This makes it challenging
to create thresholds to select high quality particles. Figure 6 shows an example how different
defocus values impact the appearance and quality of Cryo-EM images in the same EMPIAR
dataset. Therefore, during manually picking the particles, we included a wide variety of
defocus levels and CTF fit.

We recorded the correlation between defocus levels and the pick scores / the power scores
(shown in Figure 10 for EMPIAR-10590 %) to assess the shape and density of a particle
candidate independently. After calibration, the scores of each particle are recorded relative
to the calibration line, and these values are used to define thresholds on the parameters.


https://doi.org/10.1101/2023.02.21.529443
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.21.529443; this version posted February 22, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

NCC score median
<)
w
o

20000 25000 30000 35000 40000
Defocus (4)

10000 -1

8000 4

6000 1

Power”2 median

4000 -

2000 4

20000 25000 30000 35000 40000
Defocus (4)

Figure 10: NCC and Power calibration plots for EMPIAR- 10590 (Endogenous Human BAF Complex). (A) Calibrating
Median NCC scores vs defocus. (B) Calibrating Power scores vs Defocus. There is a strong trend that higher defocus
correlates with higher NCC scores and same with Power score.

lll. Reliability of Ground Truth Annotations

a) Legitimacy of Importing Micrographs and Motion Correction Data

All the input parameters used to prepare for loading micrographs into the CryoSPARC system
were gathered from the appropriate literature. We adhered to the standards in the
publications including data acquisition and imaging settings such as the microscope used,
defocus range, spherical aberration, pixel spacing, acceleration voltage, electron dose and the
correct usage of motion correction. Based on the microscope settings during the imaging
process, we applied appropriate geometrical transformations. The defect files and the motion-
correction files were flipped left-to-right or top-to-bottom and also rotated by specific degrees
in clockwise/anti-clockwise direction as required. All these factors were thoroughly
investigated and used during the data loading process in CryoSPARC.

b) Inspection of Picked Protein Particles

The picked particles were inspected using a 2D colored histogram, as shown in Figure 11. A
particle of interest would have an intermediate local power score and a high template
correlation (indicating its shape closely matches its template). Low local power scores indicate
empty ice patches, even though it might resemble the template. Additionally, very high local
power scores indicate carbon edges, aggregates, contaminants, and other objects with
excessive densities that resemble particles.

As shown in Figure 11 (B, bottom), we interactively specified the upper and lower thresholds
for both the Power score and NCC score for each dataset improving the accuracy in the manual
particle picking.
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Figure 11: Particle inspection and filtration by adjusting normalized cross correlation (NCC) score (X axis) and local
power (Y axis) for EMPIAR 10017. (A) Initial picked particles (green circles) from template-based picking step. (B)
Selected high quality protein particles through adjustment of NCC and power score values.

c) Cross-validation by two Human Experts

The results of the particles picked by the two Cryo-EM experts were compared to each other
to make sure they are consistent. For example, two EMPIAR IDs: EMPIAR-10028 *° and
EMPIAR-10081 *° with 300 micrographs (total 600 Cryo-EM micrographs) were used in cross-
validation. The results of the 2D classes were compared based on total number of particles in
each class, relative resolution of particles in the class, and distinct views of the structure of
particles. Similar 2D classes, as shown in Figure 12, achieved by two independent Cryo-EM
specialists validate the accuracy of the manually labelled particles.
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Figure 12: 2D classification results of the picked particles of EMPIAR ID 10028 and 10081 (A): Results from Cryo-EM
expert-1, (B): Results from Cryo-EM expert-2

IV. Cross Validation with Gold Standard Particles Picked by the
Authors

Gold standard particles are those particles that were picked by the Cryo-EM experts who
generated the cryo-EM data. There are only a few EMPIAIR IDs deposited in EMPIAR that have
both the micrographs and the gold standard particles. To validate the accuracy of our picked
particles, we compared our results with the already-existing gold standard particles that are
publicly available through the EMPIAR website. We carried out 2D and 3D validation for
EMPIAR-10345 > and EMPIAR-10406 >? to validate our particle labelling process as follows.

a) 2D Particle Class Validation with Gold Standard

In order to get the gold standard 2D particles of the dataset, we downloaded the particle stack
image files (.mrc) and .star file with the attributes of picked particles from EMPIAR. We used
the particle stack and the star files to create the 2D classification results using CryoSPARC.
Eventually, we compared our 2D class results with the gold standard. We performed the
comparison based on the total number of classes, total number of picked particles, resolution,
and visual orientation of the protein particle for each EMPIAR ID. Our results and the gold
standard results exhibit strong correlations. It is worth noting that a high number of particles
alone does not necessarily yield high resolution. Selecting a decent number of high-quality
particles spanning a wide angular distribution is important for generating high 2D and 3D
resolution.
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Figure 13: 2D classification comparison for EMPIAR- 10345 and EMPIAR-10406 (A) 2D classification published in
EMPIAR. (B) 2D classification results of the particles by CryoPPP.

Figure 13 shows the visual illustration 2D classification results for EMPIAR ID 10345 and
EMPIAR ID 10406 published by the authors of the cryo-EM data and generated by us. They
are consistent.

Table 1 compares 2D classification results generated by authors and by us. In both cases,
(Figure 13(A) and Figure 13(B)) the same 300 micrographs were used for comparison. On
EMPIAR ID 10345, CryoPPP’s results have substantially higher resolution than the authors’
results for both N=50 and N=10 classes. On EMPIAR-10406, CryoPPP’s results have better
resolution for N=50 particle classes and slightly lower resolution for N=10 particle classes.

Table 1: 2D classification result comparison for EMPIAR-10345 and EMPIAR-10406

EMPIAR 10345
2D Particle Class Statistics 2D Particle Class Statistics
(EMPIAR) (CryoPPP)

Number of Picked Particles 17,838 15,894

Weighted Average Resolution of 2D classes 18.63 A 10.25 A
(N=50)

Weighted Average Resolution of 2D classes 20.52 A 10.53 A
(N=10)

EMPAIR 10406

2D Particle Class Statistics

2D Particle Class Statistics

(N=10)

(EMPIAR) (CryoPPP)
Number of Picked Particles 23,450 24,703
Weighted Average Resolution of 2D classes 8.47 A 7.98 A
(N=50)
Weighted Average Resolution of 2D classes 15.53 A 15.97 A
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b) 3D Density Map Validation with Gold Standard

We performed an ab-initio reconstruction of the 3D density map using CryoPPP’s picked
particles and compared the results with the gold standard 3D density maps from the EMPIAR
website. The comparison of the 3D maps between EMPIAR and CryoPPP for EMPIAR-10345
and EMPIR-10406 is depicted in Figure 14 and Figure 15. The results of 3D density maps,
resolution, and direction distribution of protein particles are compared in the two figures.
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Figure 14: The comparison of 3D density maps, resolution, and direction distribution on EMPIAR- 10345. (A) results
published in EMPIAR. (B) results generated from the particles in CryoPPP.

The detailed comparison results are reported in Table 2. The ‘loose mask’ curve in the Fourier
Shell Correlation (FSC) plots uses an automatically produced mask with a 15 A falloff. The “tight
mask’ curve employs an auto-generated mask with a falloff of 6 A for all FSC plots. It is seen
that CryoPPP outperforms in terms of all resolution (Gold Standard Fourier Shell Correlation
(GSFSC), No mask, Loose, Tight and Corrected Mask) metrics on EMPIAR-10345 and achieved
very similar results on EMPIAR-10406. This rigorous validation clearly demonstrates our
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manual particle picking procedure produced the high-quality picked particles in the CryoPPP
dataset.

Table 2: 3D density map result comparison statistics for EMPIAR 10345 and EMPIAR 10406

EMPIAR 10345
3D Map Statistics 3D Map Statistics
(EMPIAR) (CryoPPP)
Number of Picked Particles 17,838 15,894
GSFSC Resolution 4.86 A 3.76 A
No Mask Resolution 10A 6.6 A
Loose Mask Resolution 7.3A 49 A
Tight Mask Resolution 49 A 3.9A
Corrected Mask Resolution 49 A 3.8A
EMPAIR 10406
3D Map Statistics 3D Map Statistics
(EMPIAR) (CryoPPP)
Number of Picked Particles 23,450 24,703
GSFSC Resolution 2.85A 2.89 A
No Mask Resolution 43A 41A
Loose Mask Resolution 3.1A 3.1A
Tight Mask Resolution 2.8A 29A
Corrected Mask Resolution 29A 29A
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Figure 15: The comparison of 3D density maps, resolution, and direction distribution on EMPIAR- 10406. (A) results
published in EMPIAR. (B) results generated from the particles in CryoPPP.

Code Availability

The data analysis methods, software and associated parameters used in this study are
described in the section of Methods. All the scripts associated with each step and the CryoPPP
dataset are available at GitHub: https://github.com/BioinfoMachinelLearning/cryoppp
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