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Abstract 

Generating large omics datasets has become routine practice to gain insights into cellular processes, 

yet deciphering such massive datasets and determining intracellular metabolic states remains 
challenging. Kinetic models of metabolism play a critical role in integrating omics data, as they provide 

explicit connections between metabolite concentrations, metabolic fluxes, and enzyme levels. 

However, the difficulties in determining kinetic parameters that govern cellular physiology hinder the 

broader adoption of these models by the research community. Here we present RENAISSANCE 

(REconstruction of dyNAmIc models through Stratified Sampling using Artificial Neural networks and 

Concepts of Evolution strategies), a generative machine learning framework for efficiently 

parameterizing large-scale kinetic models with dynamic properties matching experimental 

observations. Through seamless integration and consolidation of diverse omics data and other 
relevant information, like extracellular medium composition, physicochemical data, and expertise of 

domain specialists, we show that the proposed framework accurately characterizes unknown 

intracellular metabolic states, including metabolic fluxes and metabolite concentrations, in E. coli's 

metabolic network. Moreover, we show that RENAISSANCE successfully estimates missing kinetic 

parameters and reconciles them with sparse and noisy experimental data, resulting in a substantial 

reduction in parameter uncertainty and a notable improvement in the accuracy and reliability of the 

parameter estimates. The proposed framework will be invaluable for researchers who seek to analyze 

metabolic variations involving changes in metabolite and enzyme levels and enzyme activity in health 
and biotechnological studies. 
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Advancement in biotechnology and health sciences hinges heavily on our capability to integrate 

different varieties of data produced by high-throughput techniques and obtain coherent insights into 

cellular processes1–3. Considerable effort has been invested in using genome-scale models, 

mathematical representations of metabolic information about living organisms, to reconcile and make 
sense of such constantly growing disparate datasets4,5. Genome-scale models integrate omics data 

by considering constraints imposed by genetics and physicochemical laws6–10. For instance, 

researchers use inequality constraints stemming from the second law of thermodynamics to relate 

metabolic fluxes (fluxome) to metabolite profiles (metabolome)11–14. However, data integration using 

such inequality constraints results in significant uncertainty about intracellular metabolic states15. 

Consequently, despite the availability of large omics datasets, determining the exact intracellular 

levels of metabolite profiles and metabolic reaction rates with these constraint-based models remains 

elusive. 

Kinetic models of metabolism can address these issues by consolidating several types of omics data, 

such as metabolomics, fluxomics, transcriptomics, and proteomics, within a common and coherent 

mathematical framework16. Indeed, these models contain information about enzyme kinetics and 

metabolic regulation, allowing them to explicitly couple metabolite concentrations, metabolic reaction 
rates, and enzyme levels through mechanistic relations. Additionally, unlike constraint-based models, 

kinetic models capture time-dependent responses of cellular metabolism. Taken altogether, these 

models show great promise for addressing complex phenomena in biomedical sciences and 

biotechnology, such as metabolic reprogramming in the tumor microenvironment and disease17–19, 

relationships between cancer, metabolism, and circadian rhythms20, dynamics of drug absorption and 

drug metabolism21, and engineering and modulating cell phenotypes22–24. 

Despite the capacity of kinetic models to reconcile data and identify metabolic features associated 

with phenotype, the application of these models is somewhat limited16,25–30. The major challenge in 

developing kinetic models is the lack of knowledge about the characteristic kinetic parameter values 

that govern the cellular physiology of the studied organism in vivo. Overcoming this requires 

employing intricate computational procedures and the extensive expertise of researchers. It is often 
impractical to build and use these models for studying multiple physiological conditions and large 

cohorts31. Therefore, there is a need for accelerated approaches for parameterizing kinetic models 

that would allow the broader research community access to these models. 

Recent efforts employing new tailor-made parametrization27 and machine learning32–34 improved the 
efficiency of constructing near-genome-scale kinetic models. Nevertheless, challenges remain 

regarding extensive computational time27 and the need for training data from traditional kinetic 

modeling approaches32–34. Here, we present RENAISSANCE (REconstruction of dyNAmIc models 

through Stratified Sampling using Artificial Neural networks and Concepts of Evolution strategies), a 

machine learning framework that efficiently parameterizes biologically relevant kinetic models of 

metabolism without requiring training data. RENAISSANCE uses Natural Evolution Strategies 

(NES)35,36 to optimize a feed-forward neural network for parameterizing kinetic models with desired 

properties (Figure 1a). This dramatically reduces the extensive computation time required by 
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traditional kinetic modeling methods, thus allowing its broad utilization for high-throughput dynamical 

studies of metabolism. We showcase this framework through three studies: (i) generating a population 

of large-scale dynamic models of E. coli metabolism, (ii) characterizing intracellular metabolic states in 

the E. coli metabolic network accurately, and (iii) integrating and reconciling available experimental 
kinetic data.  

 

RENAISSANCE for parameterization of biologically relevant kinetic models 

In its conception, RENAISSANCE can parameterize kinetic models to satisfy a broad range of 

biochemical properties or physiological conditions. For example, it can parameterize models 

reproducing experimentally observed fermentation curves or drug adsorption patterns. Herein, we use 

RENAISSANCE to parameterize kinetic models to be consistent with an experimentally observed 
steady state. This approach to model construction was introduced within the ORACLE conceptual 

framework15,28,34,37–40, which parameterizes kinetic models by unbiased sampling. In contrast, in 

RENAISSANCE, we leverage machine learning to perform stratified sampling biased toward kinetic 

models producing metabolic responses over time with timescales41 matching experimental 

observations in studied organisms. Due to its capability to bias parameter sampling toward desired 

model properties, the proposed framework substantially improves model construction efficiency, 

enabling comprehensive studies of multiple physiological conditions.  

In this context, prior to using RENAISSANCE, we compute a steady-state profile of metabolite 
concentrations and metabolic fluxes that will be used for parameterization (Methods). To accomplish 

this, we integrate information about the structural properties of the metabolic network (stoichiometry, 

regulatory structure, rate laws) as well as available data (metabolomics, fluxomics, thermodynamics, 

proteomics, and transcriptomics) into the model (Figure 1b, c, Methods). A parameterized kinetic 

model exhibits highly nonlinear but deterministic responses that depend on the intracellular state 

determined by the network topology and the integrated data. We require function approximators with 

similar complexity, such as neural networks32, to capture this nonlinear behavior and determine kinetic 
parameters. In RENAISSANCE, we iteratively optimize the weights of feed-forward neural networks 

(generators) using NES (Figure 1a) to obtain kinetic parameters leading to biologically relevant kinetic 

models, meaning that the metabolic responses obtained from these models have experimentally 

observed dynamics (Methods).  

The NES algorithm produces a population of candidate solutions to an optimization problem and 

assigns a fitness score to each candidate solution (Figure 1a). The algorithm uses the fitness scores 

of the current solutions to generate the next generation of candidate solutions, which are likely to 

have better fitness scores than the current generation. The iterative procedure stops as soon as the 
obtained solutions are satisfactory. Unlike traditional gradient-based deep learning methods that 

require data to train a neural network, NES requires only a scoring function. 

The iterative process in RENAISSANCE consists of four steps (Figure 1d). We start by initializing a 

population of generators with random weights (step I). We select one generator at a time and  
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Figure 1 | Overview and applications of the RENAISSANCE framework. a, A Natural Evolutionary Strategy 

(NES) algorithm iteratively generates candidate solutions for an optimization problem based on their assigned 
fitness scores until satisfactory solutions are obtained. b, Context-specific structural properties of the metabolic 

networks are established and incorporated into the model. c, Once the model structure is fixed, available omics 

data are integrated into the model. d, Generators for parameterizing biologically relevant (valid) kinetic models 
are optimized iteratively in four steps to meet the design objective: a population of generators is randomly 

initialized (step I); generators produce parameters needed to parameterize kinetic models (step II); the fitness of 
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the kinetic models (circles and bars in shades of red) is assessed based on the largest eigenvalues of the 

Jacobian (red and grey crosses) corresponding to the dominant time constants of the model responses 
(Methods); the generator is assigned a score based on this performance (step III); the rewards for each generator 

are fed back to NES to find the best-performing generator (step IV); the best-performing generator is then 

perturbed to obtain the next generation of generators (step I). e, A few applications of RENAISSANCE-generated 
models presented in this paper. 

generate a batch of kinetic parameters consistent with the network structure and integrated data using 

multivariate Gaussian noise as input. We then parameterize the kinetic structure of the metabolic 

network (step II) with the generated parameter set. Next, we evaluate the dynamics of each 

parameterized model by computing the eigenvalues of its Jacobian and the corresponding dominant 

time constants (Methods). These quantities allow us to assess if the generated kinetic models have 
dynamic responses corresponding to experimental observations (valid models) or not (invalid 

models). Based on this evaluation, we assign a reward to the generator (step III). NES repeats steps 

II and III for every generator in the population and uses the rewards of the entire population to 

estimate the local gradient landscape and find the weights of the generator that improve the design 

objective (step IV). Then, we mutate the obtained generator by injecting random noise in its weights 

and recreate the new population of generators (step I). We iterate steps I-IV until we obtain a 

generator that meets the design objective, i.e., it can generate biologically relevant kinetic models 

(Methods). 

The generated kinetic models are applicable to a broad range of metabolism studies. Here, we 

present a few of these (Figure 1e).  

 

Results	

Generating large-scale kinetic models of E. coli metabolism  
To test and validate RENAISSANCE, we generated biologically relevant kinetic parameter sets for 

central carbon pathways of E. coli metabolism (Methods, Supplementary Note 2). The objective was 

to find kinetic parameters resulting in dynamic models consistent with an experimentally observed 

doubling time of 134 minutes for the studied E. coli strain42. A valid kinetic model satisfying this 

requirement should produce metabolic responses with the dominant time constant of 24 mins, which 

corresponds to having the largest eigenvalue 𝜆!"# < −2.5 (Methods). The model structure consisted 

of 113 nonlinear ordinary differential equations (ODEs) parameterized by 502 kinetic parameters, 

including 384 Michaelis constants, 𝐾!𝑠 (Methods, Supplementary Figure 4). To integrate the 

experimental data42 and compute a steady-state profile of metabolite concentrations and fluxes, we 

used Thermodynamics-based flux balance analysis13 (Methods). 

We ran RENAISSANCE for 50 evolution generations. We repeated the optimization process 10 times 

with a randomly initialized generator population to obtain statistical replicates. At every generation, we 

generated 100 kinetic parameter sets for every generator in the population and computed the 

maximum eigenvalue, 𝜆!"#, for each parameter set. To evaluate the generators, we used the  
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Fig. 2 | Generation, validation, and application of RENAISSANCE-parameterized kinetic models. a, The 
incidence of models exhibiting the desired dynamic properties increases with the number of generations, as 

indicated by the mean incidence (black line) and the maximum and minimum incidence (green-shaded region) 

observed over 10 statistical repeats for every generation. The dashed line indicates the incidence of a repeat with 
fast convergence. The black diamonds indicate the generators selected for subsequent analysis from that repeat. 

b, The distribution of the maximum eigenvalues (𝜆!"#) for the generated models over generations. The vertical 

dashed lines indicate 𝜆!"# = −2.5 (left) and 𝜆!"# = 0 (right). Robustness analysis: c, The time evolution of the 

normalized perturbed biomass, 𝑣(𝑡)/𝑣$%&, (upper left) and concentrations, (𝑋(𝑡) − 𝑋$%&)/𝑋$%&, Nicotinamide 
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adenine dinucleotide reduced, NADH (upper right), Adenosine triphosphate, ATP (lower left), and Nicotinamide 

adenine dinucleotide phosphate reduced, NADPH (lower right), respectively: the mean response (dashed black 
line), the 25th-75th percentile (dark orange region), and the 5th-95th percentile (light orange region) of the 

ensemble of responses. The vertical dashed line corresponds to 𝑡 = 24	𝑚𝑖𝑛𝑠. Bioreactor simulations: d, The time 

evolution of the biomass (left), glucose concentration (middle), and anthranilate concentration (right) in the 

bioreactor runs: the mean response (dashed black line), the 25th-75th percentile (dark cyan region), and the 5th-
95th percentile (light cyan region) of the ensemble of responses.  

incidence of valid models, defined as the proportion of the generated models that are valid (with 

𝜆!"# < −2.5, Methods). We observed that the incidence of valid models steadily increases with the 

number of generations, with the mean incidence converging around 92% after 50 generations (Figure 

2a, thick black line). For some repeats, we could achieve incidence up to 100% (Figure 2a, green-

shaded region).  

For further analysis of the generated models, we selected a statistical repeat with fast convergence 

(Figure 2a, dashed line) and chose 10 generators from that repeat with monotonically increasing 

incidence over generations (Figure 2a, black diamonds). For each of the 10 chosen generators, we 
generated 500 kinetic parameter sets and examined the distribution of the resulting maximum 

eigenvalues (Figure 2b). Remarkably, the generated models gradually shifted over the optimization 

process from having slow dynamics (𝜆!"# > −2.5) to having fast dynamics, with the metabolic 

processes settling before the subsequent cell division, indicating that RENAISSANCE-generated 

models could capture the experimentally observed dynamics.   

Since cellular organisms maintain phenotypic stability when faced with perturbations43, the generated 

models that describe cellular metabolism should possess the same property. To test the robustness 

of the models, we perturbed the steady-state metabolite concentrations up to ±50% and verified if the 

perturbed system returned to the steady state. For this purpose, we generated 1000 relevant kinetic 

models using the last of 10 selected generators (Figure 2a, generation 45). Inspection of the time 
evolution of the normalized biomass showed that the biomass returned to the reference steady state 

(𝑣(𝑡)/𝑣$%& = 1) within 24 minutes for 100% of the perturbed models (Figure 2c). Similarly, the 

perturbed time responses of a few critical metabolites, namely, NADH, ATP, and NADPH, returned to 
their steady-state values within 24 minutes for 99.9%, 99.9%, and 100% of the 1000 generated kinetic 

models, respectively (Figure 2c). Examining every cytosolic metabolite collectively revealed that 

75.4% of the models returned to the steady state within 24 minutes and 93.1% returned within 34 

mins, demonstrating that the generated kinetic models are robust and obey imposed context-specific 

observable biophysical timescale constraints. 

Next, we tested the generated models in nonlinear dynamic bioreactor simulations closely mimicking 

real-world experimental conditions42,44. The temporal evolution of biomass production showed similar 
trends as typical experimental observations with clear exponential and stationary phases of E. coli 

growth (Figure 2d, Supplementary Figure 5). Similarly, glucose uptake and anthranilate production 

also reproduce trends observed in experiments with glucose being completely consumed and 

anthranilate production saturating around 20 hours29,30. This study indicates that the RENAISSANCE 
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models can accurately reproduce the physiologically observable and emergent properties of cellular 

metabolism, even without implicit training to reproduce fermentation experiments. 

Characterizing the intracellular states of E. coli metabolism 

Accurately determining the intracellular levels of metabolite profiles and metabolic reaction rates is 
crucial for associating metabolic signatures with phenotype. Yet, our capabilities to establish the 

intracellular metabolic state are limited. Even with the ever-increasing availability of physiological and 

omics data, a significant amount of uncertainty in the intracellular states remains. We propose using 

kinetic models to reduce this uncertainty because of their explicit coupling of enzyme levels, 

metabolite concentrations, and metabolic fluxes. Moreover, kinetic models allow us to consider 

dynamic constraints in addition to steady-state data, thus allowing us further uncertainty reduction.  

After integrating available physiology and omics data42,45–47 using the constraint-based 

thermodynamics-based flux balance analysis13, significant uncertainty was present in the intracellular 

metabolic state as indicated by the wide ranges of metabolite concentrations and metabolic fluxes. 
We sampled 5000 steady-state profiles of metabolite concentrations and metabolic fluxes from this 

uncertain space and deployed RENAISSANCE to find the fastest possible dynamics (maximum 

negative eigenvalues, 𝜆!"#) for each steady state (Methods, Supplementary figure 6). We visualized 

the steady-state profiles by performing dimension reduction with Principal Component Analysis 

(PCA)48 and t-Distributed Stochastic Neighbor Embedding (t-SNE)49 (Methods) and colored each 

steady-state profile according to the obtained 𝜆!"# (Figure 3a). We observed a high variation in the 

dynamics (𝜆!"#) of the studied steady-state profiles (Figure 3c, blue distribution). Of 5000 steady-

state profiles, 918 (18.4%) had 𝜆!"# larger than -2.5, meaning these intracellular metabolic states 

could not correspond to the experimental observations. Indeed, the dynamic responses 

corresponding to these states have a time constant superior to 24 mins, i.e., slower than the 

experimental observations.   

Inspection of the intracellular steady-state space suggested that the steady-state profiles 

corresponding to slow (Figure 3a, yellow dots) and fast (Figure 3a, blue dots) dynamics are locally 
clustered. From this observation, we hypothesized that distinct subregions corresponding to the 

experimental observations exist and that steady-state profiles sampled near the chosen local cluster 

would likely satisfy dynamic requirements.  

To test this hypothesis, we selected one of these local clusters (Figure 3b), which contained 22 

steady states with fast dynamics with −3.8 ≤ 𝜆!"# ≤ −8.5 (Figure 3c, green distribution), and 

analyzed its neighborhood (Figure 3d, left). We sampled 90 additional steady states within this 

neighborhood from the Gaussian distribution with a mean and standard deviation estimated on the 

initial 22 steady states. The sampled steady states allowed us to improve the resolution of the initial 

dynamic landscape (Figure 3d, right, circles). Crucially, the sampled steady states had linearized 

dynamics in the same range as the initial 22 states (Figure 3d, e), confirming our hypothesis. Indeed, 
RENAISSANCE allows us to select subsets of intracellular states consistent with experimentally  

	

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2023. ; https://doi.org/10.1101/2023.02.21.529387doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.21.529387
http://creativecommons.org/licenses/by/4.0/


	
Fig. 3 | Dynamic characterization reduces uncertainty in intracellular metabolic states. a, The two-
dimensional representation of the fastest linearized dynamic modes (corresponding to the maximum eigenvalue 

𝜆!"#) of 5000 intracellular steady states (reaction fluxes and metabolite concentrations) obtained with Principal 

Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE)49 (Methods). Each point 

represents a steady state, with its color indicating the corresponding 𝜆!"# value computed by RENAISSANCE. b, 

Magnified view of 22 neighboring steady states with fast dynamics (−3.8 ≤ 𝜆!"# ≤ −8.5). The color scheme is 
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the same as in 3a. c, Distributions of the fastest linearized dynamic (𝜆!"#) for all 5000 steady states (blue) and 

the 22 steady states shown in 3b (green). d, Left: the linearized dynamics landscape of the 22 fast steady states 

in the reduced space (Methods). The triangles represent the location of the steady states in the landscape. Right: 
The landscape on the left is enhanced by sampling 90 additional steady states in the neighborhood of the initial 

22 steady states. The circles represent the location of the newly sampled steady states in the same landscape as 

on the left. e, Distributions of the fastest linearized dynamic (𝜆!"#) for all steady states (blue) and 90 steady 

states sampled in 3d (pink). f, Left: concentration of 3-Phosphoglyceric acid (mM) vs. the fastest linearized 
dynamic in every steady state. The color scheme is the same as that in 3a. The horizontal black line indicates the 

cutoff for valid models (𝜆!"# = −2.5). The peach-shaded region shows the range of 3-Phosphoglyceric acid 

concentration that does not allow fast dynamics. Right: the dynamic landscape of 40 steady states sampled by 

constraining the metabolite concentrations of 30 metabolites to ranges that do not support fast dynamics. The 

diamonds represent the location of the steady states. g, Distributions of the fastest linearized dynamic (𝜆!"#) for 

the 40 steady states sampled in 3f (peach), compared to all steady states (blue) and those sampled in 3d (pink).  

observed dynamics and generate additional ones with the same characteristics. Moreover, it allows 

us to discard subregions with experimentally inconsistent states, thus reducing uncertainty.  

We next examined individual metabolite concentrations of the 5000 steady-state profiles to identify 

patterns corresponding to the experimentally observed phenotype. We observed a clear bias in the 

dynamics depending on the concentrations for some of the metabolites (Figure 3f, Supplementary 

Figure 7). For example, in the case of 3-Phosphoglyceric acid (3pg), we obtain models with relevant 

dynamics only when the concentration of this metabolite is less than ∼ 0.002	𝑚𝑀. In contrast, steady-

state profiles with 3pg concentrations between 0.002 − 0.003	𝑚𝑀	do not have relevant dynamics 

(Figure 3f). To investigate this further, we identified 30 cytosolic metabolites that showed such 

concentration biases by visual inspection (Supplementary Figure 7) and sampled 40 new steady 

states from the same Gaussian distribution as before (Figure 3d, left) but constrained the selected 30 

metabolites to concentration ranges that do not support relevant dynamics (e.g., peach shaded region 

in Figure 3f). As expected, almost all of these new intracellular states did not yield models with 

relevant dynamics (Figure 3f, right and 3g). This result demonstrates that information stemming from 
the dynamic responses can be used to constrain values of intracellular metabolites to specific ranges.  

Overall, dynamic characterization of a broad range of intracellular states allows us to reduce 

uncertainty at the level of steady-state profiles and individual metabolite concentrations and metabolic 

fluxes. 

  

Integration and reconciliation of experimental information 

Experimentally measured Michaelis constants, 𝐾's, are curated in comprehensive databases like 

BRENDA50. However, as we transition to large genome-scale kinetic models, a vast majority of the 

associated kinetic parameters remain unknown. Integrating experimental results from in vivo and in 

vitro studies, despite the disparities in their parameter values, can help further constrain uncertainty 

and lead to a more accurate description of intracellular metabolic states. To this end, we retrieved 

experimentally measured values for 108 out of 384 𝐾's in our model from BRENDA (Methods).  
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Fig. 4 | Integrated experimental 𝑲𝑴 values for aconitase affect parameters of neighboring reactions. a, 
RENAISSANCE allows direct integration of 𝐾( values from literature and reconciling them with unknown 

parameters that collectively lead to valid kinetic models. b, Propagation of the integrated 𝐾( experimental data 

around aconitase (ACONTa, b) through the metabolic network. Comparison of RENAISSANCE generated values 

for:  𝐾(,"*+,-.	0.123" vs 𝑣!"#0.123" (upper left), 𝑣!"#	
4.567$vs 𝑣!"#0.123" (upper right), 𝑣!"#	

4.567$ vs 𝐾(,"89	
4.567$(lower right), and 

𝐾(,:;**+"	0<=56  vs 𝐾(,"89	
4.567$ (lower left) when (i) no kinetic parameters (grey circles) (ii) 4 parameters are integrated 

(orange circles, Methods). Abbreviations: ACONTa, b: Aconitase, ICDHyr: Isocitrate dehydrogenase, AKGDH: 2-

Oxoglutarate dehydrogenase, acon-C: Cis-Aconitate, akg: 2-Oxoglutarate, succoa: Succinyl Coenzyme-A.  

To investigate how the integrated kinetic data constrain unknown kinetic parameters, we started by 

integrating 4 𝐾' values of aconitase (ACONTa, b) from the citric acid cycle (Figure 4a, Methods),  

obtained generators with a high incidence of valid models (>99%), and generated 500 valid kinetic 

models (Supplementary Figure 8). To quantify the effect of integrating one experimental 𝐾' value on 

the generated values of the other kinetic parameters, we compared the estimates of the other 𝐾's 

and maximum velocities, 𝑣!"#, with ones obtained when no kinetic parameters were integrated. 

Integration of 𝐾' values of aconitase at a reaction level restricted the estimates of 𝑣!"#()*+," (Figure 4b, 

upper left). Due to the correlation in the 𝑣!"# values throughout the network, restricting 𝑣!"#()*+," 
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estimates through 𝐾' integration constrained the estimated ranges of other maximal velocities, such 

as 𝑣!"#
-)./0$ (Figure 4b, upper right). This restriction further affected downstream 𝐾' values in the 

network, such as 𝐾!,"23
-)./0$ and 𝐾',45667"(89./  (Figure 4b, bottom left and right). These results suggest that 

integrating only a small amount of experimental data, localized to one enzyme (ACONTa, b), 

propagates throughout the metabolic network and alters the rest of the kinetic parameters.  

We next enquired if RENAISSANCE improves its 𝐾' estimates as the number of integrated 

experimental 𝐾' values increases. We also examined how the localization of integrated 𝐾' values, 

such as the integration of 𝐾' values from the citric acid cycle, affects the estimation of 𝐾' values in 

other subsystems of the metabolic network. Specifically, we integrated 10 random combinations of 

half (9) of the 17 available experimentally measured 𝐾' values associated with the citric acid cycle 

(TCA) of E. coli, one combination at a time. For each of the 10 combinations, we obtained generators 

with a high incidence of valid models (> 90%) and generated 2000 of these models. In total, we 

generated 20000 models containing 10 distinct combinations of the remaining 8 Michaelis constants 

to be estimated. This process ensured that each of the 17 Michaelis constants was integrated at least 

once and estimated at least once within the 10 combinations. 

The comparison between the experimentally observed and the RENAISSANCE estimated range of 

TCA 𝐾' values, quantified through the overlap (OS) between these two ranges (Fig 5d), showed that 

integrating 𝐾's improves the estimates of the non-integrated individual 𝐾's within the same 

subsystem (Fig 5a left, red bars, Supplementary Figure 9), compared to when no 𝐾' values are 

integrated (black diamonds). Indeed, significant improvement was observed in the predictions of 16 

out of the 17 𝐾' values in TCA when experimental values of 𝐾' were integrated. The average 

prediction accuracy for the entire subsystem also increased (Fig 5a right, red bars) compared to the 

case with no integration of experimental 𝐾's (blue bars). A similar analysis was conducted for other 

subsystems, Pentose Phosphate Pathway (PPP), Glycolysis (gly), Anaplerotic reactions (anpl), 

Shikimate pathway (shkk), and Pyruvate metabolism (pyr), and consistently, estimates of 𝐾' values 

within the same subsystem improved upon the integration of experimental information for all the 

cases (Fig 5a, right, Supplementary Figure 9). These findings indicate that the integration of 

experimental information may improve prediction accuracy beyond the subsystem level. 

Inspecting the distributions of the generated 𝐾's that were not part of the TCA subsystem revealed 

that the predictions for a vast majority of these 𝐾's (85 out 91) improved upon the integration of TCA 

𝐾's (Fig 5b, upper left, colored bars) compared to the case where no 𝐾's were integrated (black 

diamonds). Similarly, the mean overlap score (OS) of the entire set increased (Fig 5b, upper right). 

We then examined the top 15 𝐾's that exhibited the most significant improvement in their estimates 

and determined the metabolic subsystem in which they are located. The integration of experimental 

𝐾' values from TCA yielded the most significant improvement in the estimates of the shikimate 

pathway (6 in the top 15), followed by glycolysis (3 out of 15) and anaplerotic reactions (2 out of 15) 

(Fig 5b, leftmost donut plot). Interestingly, a similar analysis conducted by integrating 𝐾's from other 

subsystems showed that the estimates from these three subsystems (shkk, gly, and anpl) consistently 
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yielded the most significant improvement (Fig 5b, Supplementary Figure 10). These results provide 

evidence that RENAISSANCE effectively incorporates experimental kinetic data from a specific 

subsystem of the metabolic network, resulting in improved parameter estimates across the entire 

network. 

 

Fig. 5 | Integrating experimental kinetic information improves other parameter estimates: a, Left: The 

overlap scores (OS, defined in d) of RENAISSANCE estimates for 17 experimentally available Michaelis 
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constants, 𝐾(s, from the citric acid cycle (red). The estimation process involved integrating experimental values 

for 9 out of the 17 parameters and estimating other model parameters including the remaining 8 parameters from 

TCA using RENAISSANCE. This procedure was repeated 10 times with a different random combination of 9 
parameters. The black diamonds represent the OS of the estimates without integrating experimental data The 

error bars indicate the standard error in the OS over 10 combinations of integrated parameters. Right: The mean 

OS for the estimated 𝐾(s within metabolic subsystems before integration (blue) and after integration (red) of 

experimentally measured 𝐾(s. The estimation process for each subsystem was conducted in a similar manner as 

in a. b, Upper Left: The overlap scores (OS) of RENAISSANCE estimates for 91 experimentally available 𝐾(s not 

belonging to TCA when 10 different combinations of 9 (out of 17) 𝐾(s from TCA were integrated. The black 
diamonds represent the OS without integration. The error bars represent the standard error in OS. Upper Right: 
The mean OS of the estimated 𝐾(s from all metabolic subsystems except for the subsystem labeled on the x-

axis before integration (blue) and after integration (red) of 𝐾(s from the labeled subsystem. Bottom: The 

metabolic subsystems of the top 15 𝐾(s with the highest increase in OS when Michaelis constants from the 

labeled subsystem were integrated. The numbers within the donut plots indicate the number of integrated 

experimental 𝐾( values from the labeled subsystem. c, The 2-component PCA48 representation of the 276 (out of 

384) experimentally unverified kinetic parameters with and without integrating experimentally measured Michaelis 

constants. d, The Overlap Score (OS) of an estimated 𝐾( is calculated as the ratio between (x), the overlap of 

the RENAISSANCE predicted (teal) and the experimentally observed range (violet), and (y), the total range of the 

RENAISSANCE prediction. Abbreviations: anpl – Anaplerotic reactions, TCA – Citric Acid Cycle, glu – Glutamate 

Metabolism, gly – Glycolysis/Gluconeogenesis, glse – Glycine & Serine metabolism, hist – Histidine Metabolism, 
nsp – Nucleotide Salvage Pathway, oxp – Oxidative Phosphorylation, PPP – Pentose Phosphate Pathway, pyr – 

Pyruvate metabolism, shkk – Shikimate pathway, oth – Other reactions. 

We further examined the impact of integrating experimental kinetic data on parameters that lack 

verifiable experimental measurements, which accounted for 276 out of 384 𝐾's. To obtain a 

qualitative assessment of the effects of integration, we employed PCA48 to visualize the 

RENAISSANCE predictions for these unknown 𝐾's (Figure 5c). The analysis revealed notable shifts 

in the estimates of these 𝐾's when experimental data was integrated compared to the case where no 

data was integrated (Fig 5c, blue cluster). Additionally, the estimates for the cases with integrated 

experimental data exhibited greater similarity than those without integration. 
These results suggest that integrating experimental kinetic information reduces quantitative 

uncertainties in the intracellular metabolic state of the cell, allowing RENAISSANCE to make more 

informed predictions on the dynamic properties of the entire metabolic network. We anticipate that the 

inclusion of new experimental data and its subsequent integration will enhance the predictive 

capabilities of RENAISSANCE even further. 

 

Discussion  

Metabolism plays a defining role in shaping the overall health of living organisms. A reprogrammed or 

altered metabolism is not only associated with the most common causes of death in humans – 

cancer, stroke, diabetes, heart disease, and others – but is also related to many congenital 

diseases51. Thus, a better understanding of metabolic processes is crucial to accelerate the 
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development of new drugs, personalized therapies, and nutrition. Biotechnological advances like the 

bioproduction of industrially essential compounds and environmental bioremediation also hinge on our 

ability to describe cellular metabolism accurately.  

Kinetic models provide the most thorough mathematical representation of metabolism. The efficient 

construction of these models will open new possibilities for various biomedical and biotechnological 

applications. However, acquiring the parameters of these models with traditional kinetic modeling 

approaches is computationally expensive and arduous15,32. Several machine learning methods were 

recently proposed for more efficient kinetic model generation, including iSCHRUNK33,52	and 

REKINDLE32. REKINDLE, in particular, has demonstrated remarkable gains in model generation 

efficiency by using generative adversarial networks (GANs)53. Nevertheless, it required existing kinetic 

modeling approaches to create the data needed for the GAN training. Herein proposed 
RENAISSANCE retains the model generation efficiency of REKINDLE without needing training data.	

RENAISSANCE can achieve more than 90% incidence of valid models within 10 to 20 minutes of 

computational time on a standard workstation. Once trained, the generators generate valid models 

with a rate of ~1 million valid models in 18 seconds, making it 150-200 times faster than traditional 

sampling based kinetic frameworks. RENAISSANCE also does not require specialized hardware to 
execute. The proof-of-concept applications shown here demonstrate RENAISSANCE’s applicability to 

a broad range of studies. In this work, we deployed RENAISSANCE to parameterize valid models of 

metabolism consistent with an experimentally observed steady-state, with validity being characterized 

by the biological relevance of their timescales. However, conceptually, any other requirement can be 

imposed or data used, such as consistency with knockout studies or time series from drug absorption 

trials.  

As RENAISSANCE is agnostic to the nature, range, and number of the parameters it needs to 

generate, it is straightforward to make adjustments in the framework to meet the specific demands the 

models need to satisfy. The parameters this framework can handle are not restricted to Michaelis 

constants only and can include other kinetic parameters, such as enzyme saturations37 and enzyme 

states54, and other unknown quantities in the studied system, such as metabolite concentrations. 

Crucially, given proteomic data, RENAISSANCE can predict unknown enzyme turnover number, 𝑘6":, 

values and consolidate them with the experimentally measured  𝑘6": values from databases such as 

BRENDA and SABIO-RK55. As such, it represents a valuable complement to current machine learning 

methods that estimate 𝑘6": values directly56–58. 

In summary, we provide a fast and efficient framework that leverages machine learning to generate 

biologically relevant kinetic models. The open-access code of RENAISSANCE will facilitate 

experimentalists and modelers to apply this framework to their metabolic system of choice and 

integrate a broad range of available data.  
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Methods 

E. coli model structure and data integration 

The studied metabolic network included central carbon pathways of E. coli such as glycolysis, pentose phosphate 
pathway (PPP), tricarboxylic cycle (TCA), anaplerotic reactions, the shikimate pathway, glutamine synthesis, and 
had a lumped reaction for growth generated using lumpGEM59. The resulting model structure had 113 mass 
balances, including one for biomass accumulation, involving 123 reactions. The kinetic mechanism for each 
reaction was assigned based on the reaction stoichiometry. The overall model was characterized by 507 kinetic 
parameters consisting of 384 𝐾(𝑠 and 123 𝑣!"#𝑠	(Supplementary Figure 4).  

We integrated different data types into the model to create a context-specific model. We integrated exo-fluxomics 
and exo-metabolomics data, such as the growth rate, uptake rates, and extracellular concentrations of different 
medium components, from an earlier experimental study42. We used data from other experimental works to 
impose constraints on the ranges of intracellular concentrations for different metabolites in E. coli47. Additionally, 
we imposed constraints on thermodynamic variables calculated using the Group Contribution Method45,46 to 
ensure that any sampled flux directionalities and metabolite concentrations were consistent with the second law 
of thermodynamics. 

After defining the model structure and integrating the available data, we sampled 5000 sets of steady-state 
profiles consistent with the integrated data using thermodynamics-based flux balance analysis implemented in 
the pyTFA tool60. Each steady-state profile comprises metabolite concentrations, metabolic fluxes, and 
thermodynamic variables. Once these profiles are available, we can generate kinetic models around these 
steady-states15,28,34,37–40 using the RENAISSANCE framework.  

Determining the validity of kinetic models 
Herein, we consider a kinetic model valid (biologically relevant) if all time constants of the model response are 
consistent with the experimental observations of the studied organism. The time constant defines the time 
required for the system response to decay to >

%
≈ 36.8% of its initial value. To test the model’s time constants, we 

compute the Jacobian of the dynamic system formed by the model37. The dominant time constant of the 
linearized system is defined as the inverse of the real part of the largest eigenvalue of the Jacobian. The 
dominant time constants allow us to characterize the model dynamics - small time constants characterize fast 
metabolic processes such as glycolysis and electron transport chain. In contrast, polymerization processes 
involving the synthesis of DNA, RNA, and proteins typically occur at slower time scales. Additionally, the sign of 
the Jacobian eigenvalues provides information on the local stability of the generated models, where a model is 
locally stable if the real parts of all eigenvalues are negative. 
To ensure that a perturbation of the metabolic processes settles within 1% of the steady state before cell division, 
the dominant time constants of the model response should be five times faster than the cell's doubling time44. 
The biochemical response should also have a characteristic time slower than the timescale of proton diffusion 
within the cell32. With these properties, models can reliably describe the experimentally measured metabolic 
responses.  
The doubling time of the E. coli strain used in this study is 𝑡?+;@AB,9 = 134	𝑚𝑖𝑛𝑠, which corresponds to a growth 
rate of 𝑙𝑛2 ∙ CD

E!"#$%&'(
= 0.31 >

F
. Therefore, the dominant time constant of the model’s responses should be smaller 

than one-fifth of the doubling time (26.8	𝑚𝑖𝑛𝑠). Here, we imposed a stricter dominant time constant of 24 minutes, 
corresponding to an upper limit of 𝑅𝑒(𝜆B) < −2.5	(or −60/24), on the real parts of the eigenvalues, 𝜆B, of the 
Jacobian. All kinetic parameter sets resulting in the model obeying this constraint are labeled valid and the rest 
invalid. 

Assigning rewards to determine fitness in RENAISSANCE 

RENAISSANCE uses Natural Evolution Strategy, NES (Supplementary Note 1), to optimize the weights of the 
generator network. However, to calculate the local gradient estimate, NES also requires an objective function, 𝐹, 
to evaluate the fitness of each generator network, 𝐺. In our study, we use the incidence of the generator,	𝐼(𝐺), as 
the objective function, which is defined as the fraction of the generated models that are relevant (0 ≤ 𝐼(𝐺) ≤ 1). 
Thus, generator networks with a higher incidence of relevant models are ‘fitter’ than those with low incidence and 
have a higher weight in determining the parameters of the seed generator network for the next generation. In 
many cases, we observed that initially the generator neural networks do not generate any relevant models, and 
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thus the optimization does not proceed as the fitness is always 0. To mitigate this, we added a sigmoidal term 
defined as follows,   

𝑟 =
0.01

1 +	𝑒(H)*+,-+,-H.*/,&,&"')
 

where, 𝜆&":E%:E corresponds to the smallest maximal eigenvalue of the generated models and 𝜆J"$EBEB+, is the 
maximal eigenvalue partition that determines the relevancy of the kinetic model. In this study, 𝜆J"$EBEB+, = −2.5 
(see previous section). This term rewards generators that generate models with dynamics closer to the relevant 
range more than those which generate models with slower, irrelevant, or unstable dynamics. This effectively 
pushes the optimization process toward finding generators that generate relevant models. So, the overall reward, 
𝑅, for a generator, 𝐺, can be summarized as 

𝑅(𝐺) = G
𝑟, 𝐼(𝐺) = 0

𝐼(𝐺), 𝐼(𝐺) > 0 

For the large-scale analysis of intracellular states (Fig. 3), the fitness for NES was no longer the incidence of the 
generators but the fastest possible dynamic for the models generated by a given generator. Thus, the reward 
was changed suitably as follows, 

𝑟 = 0.5𝑒-D.>
H0-*'
L  

where 𝜆!%", is the mean of the 10 fastest maximum eigenvalues (Supplementary figure 6) generated by a 
generator (out of 100 for this case study). This reward function ensured that the generators which generated 
models with more negative maximum eigenvalues (faster linearized dynamics, λ"#$) were rewarded more than 
the others. 

Hyperparameter tuning of RENAISSANCE 

RENAISSANCE has several hyperparameters that can be tuned to achieve the desired objective (Supplementary 
Notes 3 and 4). In this study, the hyperparameters used are as follows: the population size of the generator 
networks, 𝑛 = 20, the noise level in generating the agent population from the mean optimal weights in each 
generation, 𝜎 = 10-L, learning rate of the gradient step, 𝛼 = 10-M, and the decay rate of learning, 𝑑 = 5%. In 
addition, the generated 𝐾!s were constrained strictly between {1.3 × 10->>, 20} to accurately represent 
experimentally measured 𝐾! values as curated in the BRENDA database50. The hyperparameters of the neural 
networks are listed below.  

Neural network implementation 

All software programs were implemented in Python (v3.8.3). Neural networks were implemented using 
TensorFlow library61 (v2.3.0). The generator neural networks were composed of three layers that have a total of 
1,076,352 parameters: layer 1, Dense with 256 units, Dropout (0.5); layer 2, Dense with 512 units, Dropout (0.5); 
layer 3, Dense with 1024 units, Dropout (0.5). 

Dimension reduction and visualization of steady states 

For generating Fig. 3 a, d, f (left), the following steps were followed: I) the steady state matrix (consisting of 1127 
features) was subjected to principal component analysis (PCA)48. II) The components of PCA that contributed to 
over 99% of the total expected variance were reduced to 2 dimensions using t-SNE49. III) The t-SNE components 
{𝑥N , 𝑥J} were then subjected to polar coordinate transformation as follows, 

𝑥> =	Q𝑥JL + 𝑥NL 

𝑥L = 𝑎𝑟𝑐𝑡𝑎𝑛2T𝑥N , 𝑥JU. 

{𝑥>, 𝑥L} were then plotted to generate the figures.  
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Integrating known kinetic parameters in BRENDA 

If there were multiple experimentally measured values for a single 𝐾( in BRENDA, we took the geometric mean 
(𝐾(,%#J) of the different values and added an experimental error rate of ± 20% to 𝐾(,%#J. The same error rate was 
applied if there was only one recorded experimental value, 𝐾(,%#J. Then the value of an integrated 𝐾(  was 
sampled uniformly from the range 𝐾(,%#J± 20% when integrated into RENAISSANCE for the training process and 
generation.  

 

Data availability 

The data supporting this study's findings are publicly available in the Zenodo repository 
(https://doi.org/10.5281/zenodo.7628650 and the links therein).  

 

Code availability 

A Python implementation of the RENAISSANCE workflow is publicly available at 

https://github.com/EPFL-LCSB/renaissance and https://gitlab.com/EPFL-LCSB/renaissance. The 

ORACLE framework is implemented in the SKimPy (Symbolic Kinetic models in Python)62 toolbox, 

available at https://github.com/EPFL-LCSB/skimpy.	
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