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Abstract

Background: Many computational methods have been developed to detect
non-reference transposable element (TE) insertions using short-read whole
genome sequencing data. The diversity and complexity of such methods often
present challenges to new users seeking to reproducibly install, execute or
evaluate multiple TE insertion detectors.

Results: We previously developed the McClintock meta-pipeline to facilitate the
installation, execution, and evaluation of six first-generation short-read TE
detectors. Here, we report a completely re-implemented version of McClintock
written in Python using Snakemake and Conda that improves its installation,
error handling, speed, stability, and extensibility. McClintock 2 now includes 12
short-read TE detectors, auxiliary pre-processing and analysis modules,
interactive HTML reports, and a simulation framework to reproducibly evaluate
the accuracy of component TE detectors. When applied to the model microbial
eukaryote Saccharomyces cerevisiae, we find substantial variation in the ability of
McClintock 2 components to identify the precise locations of non-reference TE
insertions, with RelocaTE2 showing the highest recall and precision in simulated
data. We find that RelocaTE2, TEMP, TEMP2 and TEBreak provide a
consistent and biologically meaningful view of non-reference TE insertions in a
species-wide panel of ∼1000 yeast genomes, as evaluated by coverage-based
abundance estimates and expected patterns of tRNA promoter targeting. Finally,
we show that best-in-class predictors for yeast have sufficient resolution to reveal
a dyad pattern of integration in nucleosome-bound regions upstream of yeast
tRNA genes for Ty1, Ty2, and Ty4, allowing us to extend knowledge about
fine-scale target preferences first revealed experimentally for Ty1 to natural
insertions and related copia-superfamily retrotransposons in yeast.

Conclusion: McClintock (https://github.com/bergmanlab/mcclintock/)
provides a user-friendly pipeline for the identification of TEs in short-read WGS
data using multiple TE detectors, which should benefit researchers studying TE
insertion variation in a wide range of different organisms. Application of the
improved McClintock system to simulated and empirical yeast genome data
reveals best-in-class methods and novel biological insights for one of the most
widely-studied model eukaryotes and provides a paradigm for evaluating and
selecting non-reference TE detectors for other species.

Keywords: bioinformatics; high-throughput sequencing; Saccharomyces
cerevisiae; transposable elements; variant calling
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Background
Transposable elements (TEs) are mobile, repetitive DNA sequences that occupy

large fractions of most eukaryotic genomes and can cause mutations of large effect

[1]. Since their discovery, a variety of cytological, molecular and genomic techniques

have been developed to identify TE insertions in genomes at varying levels of reso-

lution [2, 3, 4, 5, 6, 7, 8]. In principle, the most comprehensive method for detecting

new TE insertions in a genome is whole genome sequencing (WGS) followed by de

novo genome assembly and systematic genome-wide annotation of TEs. However,

the difficulty of accurately assembling repetitive DNA sequences using short reads

[9, 10] and the challenges of generating high-quality long-read genome sequencing

data hinder using assembly-based methods for genome-wide detection of TE inser-

tions, especially for large population samples [11].

Currently, the most widely-used approach for detection of new TE insertions

involves mapping unassembled short-read WGS data to a reference genome and

inferring the location and family using split-read or read-pair information [8].

Over the last decade, many bioinformatic methods have been developed for the

reference-based detection of TE insertions using short-read WGS data (https:

//tehub.org/en/resources/repeat_tools) [12]. Most of these methods were ini-

tially developed for a specific organism with its unique TE composition, and thus

have different design goals and features. The general performance of short-read TE

detectors is typically unknown because of the “self-assessment trap” and limited

number of methods compared in primary studies [13]. A few independent perfor-

mance evaluation studies have been conducted comparing subsets of short-read TE

detectors, but these studies differ in their evaluation frameworks, selection of tools,

and focal organisms [14, 15, 16]. Crucially, no study to date has provided a repro-

ducible evaluation of multiple TE detectors, making it difficult to validate published

results or extend findings beyond the context of the initial evaluation study. Despite

these issues, one emerging theme from current evaluation studies is that consider-

able variation in performance exists among different short-read TE detectors, across

organisms and evaluation frameworks [8, 14, 15, 16]. As such, there is not yet any

clear basis to select the best short-read TE detector for a new organism, and thus

researchers must base tool choice by extrapolation from performance on other taxa

or employ multiple methods to ensure robust biological conclusions [17, 18, 19].

Previously, we developed a meta-pipeline called McClintock [15] to facilitate

the installation and execution of six first-generation short-read TE detectors

(ngs te mapper [20], PoPoolationTE [21], RelocaTE [22], RetroSeq [23], TE-

locate [24], and TEMP [25]). The original McClintock system automated instal-

lation of these six “component” TE detection methods, provided a common in-

terface to run all components, reduced the number of shared input files, and

generated a standard set of output files [15]. Since its initial development, the

McClintock system has been used to support detection of TE insertions and

enable biological discoveries in a variety of organisms and biological contexts

[15, 16, 17, 18, 19, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]

and to facilitate comparative evaluation of multiple TE detectors [15, 16, 45].

A long-term aim of the McClintock project was to develop a flexible framework to

incorporate additional TE detectors as they were published, allowing researchers to
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run the most relevant set of methods and compare performance on their genomes

of interest. While the original pipeline made it easier to install and run multiple

TE detectors and compare their output, its initial design had several limitations

that made it difficult to achieve this long-term aim. Most importantly, the original

McClintock pipeline was implemented in Bash with minimal use of functions or

classes to encapsulate, abstract, or modularize the code, and most variables were

defined in the global scope. These shortcomings made it difficult to modify and

expand the original codebase without compromising existing functionality, and thus

hindered the addition of new TE detectors to the original framework.

The original McClintock system also had several limitations related to its installa-

tion. Component TE detectors were installed automatically by McClintock, however

the software dependencies for each component had to be installed manually, which

required substantial effort on the part of the user. Moreover, all components in the

original McClintock system ran in a single computing environment, which neces-

sitated a mutually-compatible set of software dependencies to be installed. This

fragile configuration also caused compromises in the versions of software dependen-

cies that were used and, in some cases, locked the original system to increasingly

out-of-date versions of software dependencies.

Even after successful installation, the original McClintock system had a number of

limitations regarding its usability. Notably, error handling was largely absent from

the original codebase. Thus, when failures occurred during the execution of com-

ponent TE detectors or their software dependencies, McClintock would continue to

run, often producing a cascade of error messages from downstream processes that

made it difficult for users to know how and why the pipeline failed. Similarly, the

original pipeline had strict input file formatting requirements (e.g., requiring un-

zipped fastq files), but which would provide no warnings or messages if the input files

did not comply to required specifications. Moreover, the original McClintock system

hard-coded some input and post-processing parameters that were not easily mod-

ified by users but impacted the performance of component methods. The original

McClintock pipeline also output TE insertion predictions only in Browser Extensi-

ble Data (BED) format (https://samtools.github.io/hts-specs/BEDv1.pdf),

rather than the Variant Call Format (VCF) [46] that is standard for reporting ge-

netic variation relative to a reference genome. Finally, the original pipeline also did

not produce plots or tables to facilitate comparison of predictions across component

methods.

To address these limitations, we completely re-implemented McClintock in Python

leveraging Conda (https://github.com/conda/conda) and Snakemake [47] to im-

prove the installation, error handling, speed, stability, and extensibility of the

pipeline. We also incorporated six new TE detectors (ngs te mapper2 [35], PoPoola-

tionTE2 [48], RelocaTE2 [49], TEBreak [50], TEFLoN [51], and TEMP2 [52]), dou-

bling the total number of components available in the new McClintock system. In

addition, the updated McClintock system now includes new modules to automate

read trimming, provide estimates of TE family abundance from depth of coverage,

and produce an integrated HTML report summarizing predictions made by all com-

ponents. Importantly, McClintock now also provides a new reproducible simulation

framework that allows users to evaluate the performance of component TE detec-

tors in a flexible manner across different organismal contexts. In this report, we
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describe the structure and function of the updated McClintock system, highlight

its improvements and new features, evaluate component TE detector performance

using simulated and empirical yeast genome data, and use the updated McClintock

system to provide new biological insights into the pattern of TE insertion in S.

cerevisiae.

Implementation
Re-implementation of McClintock in Python using Conda and Snakemake

Here we describe the major features distinguishing the re-implemented McClin-

tock 2 system from the original version reported in Nelson et al. [15] (Table 1).

We initially sought to further develop the original Bash-based McClintock system

reported in Nelson et al. [15] by improving its installation using the Conda pack-

age and environment management system (https://github.com/conda/conda).

The use of Conda allows the creation of distinct environments (both for McClin-

tock itself and for the component methods wrapped in McClintock) that can be

reproducibly generated on different computing systems without the need for root

privileges. This modification to the original McClintock system permitted external

software dependencies to be automatically installed separately for each component,

and each component to be executed in its own isolated environment. While solving

some of the problems with the installation and versioning of external dependencies

in the original system, this development work led to an endpoint because it did not

solve most of the software engineering and usability limitations described above.

Therefore, the final version of the Bash-based McClintock system extended to use

Conda (referred to in this report as McClintock 1) was retired.

Table 1 Major features that distinguish the original McClintock version reported in Nelson et al.
[15] and the McClintock 2 system reported in the current study.

Nelson et al. [15] McClintock 2

McClintock implementation Bash Python

Workflow management N.A. Snakemake

Dependency installation Manual Conda (automated)

# Component methods 6 12 (with extensibility)

Read trimming and QC N.A. trimgalore module

TE copy number estimation N.A. coverage module

Output format .BED .VCF and .BED

Summary report .CSV .HTML (interactive)

Reproducible simulation system N.A. Built-in (with documentation)

N.A. indicates that the feature is not available.

We next completely rewrote the McClintock system in Python 3 using Conda and

Snakemake [47], with the initial aim of recapitulating the general functionality in

McClintock 1. The new McClintock 2 codebase is heavily modularized and leverages

the native error handling functions in Python. The Snakemake workflow manager

was chosen to underpin the McClintock 2 system for multiple reasons. First, we

could use the Snakemake system to simplify and fully automate installation of

all components and their software dependencies (either from Conda channels like

Bioconda [53] or directly from project repositories), and to automatically create

independent Conda environments for each component. Second, the “meta-pipeline”
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architecture of McClintock is naturally suited to a rule-based workflow, with each

component being encapsulated as an individual rule that is executed by Snakemake

inside a specific Conda environment whose dependencies do not conflict with any

other component/rule. Third, since the Snakemake engine determines the rules that

are run to create the requested outputs, no additional coding logic is required in

McClintock itself to manage the complexities of which components were run and

in which order, or how files shared by multiple components are created and used

(e.g., reference genomes, trimmed read files, BAM files, etc.). Importantly, this

virtue of Snakemake applies regardless of how many components are executed at

run time or incorporated into McClintock 2, permitting flexible execution of various

components by users and easy addition of new components by developers. Finally,

the Snakemake engine can run multiple independent rules simultaneously if enough

central processing unit (CPU) cores are available, potentially allowing for multiple

rules to be run in parallel on multi-core systems. In the re-implemented system,

if n>1 cores are requested, McClintock 2 by default now allocates a maximum of

n/2 (for an even number of cores) or (n−1)/2 (for an odd number of cores) to each

rule which allows multiple rules to be executed in parallel. Optionally, users can

specify the “–serial” flag which prevents multiple rules from being run in parallel

and allows rules that use multiple cores to have access to maximal number of cores

requested.

After integrating the original six components (ngs te mapper [20], PoPoolationTE

[21], RelocaTE [22], RetroSeq [23], TE-locate [24], and TEMP [25]) into the Mc-

Clintock 2 system, we cross-validated its accuracy versus the original McClintock 1

system using simulated genomes generated by our new reproducible simulation plat-

form (see below and Supplemental Text). We then incorporated six more recently-

developed TE detectors that fulfilled our original inclusion criteria [15] into the

re-engineered McClintock system: ngs te mapper2 [35], PoPoolationTE2 [48], Relo-

caTE2 [49], TEBreak [50], TEFLoN [51], and TEMP2 [52].

In addition to providing a full re-implementation and additional TE detectors,

McClintock 2 has new functionality not present in the original system (Table 1).

First, McClintock 2 now has a preprocessing module to perform read trimming

and quality control (QC) using TrimGalore (https://github.com/FelixKrueger/

TrimGalore) and produce a read QC report using MultiQC [54]. If the read trim-

ming option is set (either optionally in conjunction with user-specified components,

or in a default run that executes all 12 components), then trimmed reads are used

as input for other components in McClintock 2. Second, McClintock 2 has a new

analysis module that can generate estimates of TE copy number using a “coverage

module” that computes relative depth-of-coverage for each query TE sequence nor-

malized by depth-of-coverage in non-repetitive regions of the genome. The coverage

module also produces plots for each query that allow users to inspect variation in

read depth across TE sequences, which may be caused by the existence of multiple

TE sub-families that differ by structural variants (e.g., [17, 55]). Third, McClintock

2 reports non-reference TE insertion variants predicted by each component in VCF

format [46] in addition to BED files containing standardized information about ref-

erence and non-reference TE insertions. Fourth, McClintock 2 is able to generate

an interactive HTML report for each run that allows users to view, sort, and fil-

ter results for each component and TE family (Fig. 1). Finally, the McClintock 2
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A

B RelocaTE2

Summary Report

Figure 1 Sample screenshots from the new interactive HTML report in McClintock 2. The
HTML report generates summary information for the McClintock run including interactive bar
plots for: (A) the number of reference, non-reference, and total number of predictions made across
all TE families by all 12 component methods; and (B) the number of reference, non-reference,
and total number of predictions made for a specific component method (e.g., RelocaTE2).
Barplots from the report shown were generated by a complete McClintock run (revision
d2b819a18b2a549be483fdcc948e1346e589a4cb) applied to Illumina 101-bp paired-end sequences
for S. cerevisiae strain YJM1460 (SRA: SRR800842), down-sampled to 50× fold-coverage.

repository also provides code to automatically simulate TE insertions in any user-

supplied genome and generate synthetic WGS datasets that can be used as input

to evaluate component TE detector performance (detailed in the following section).

A reproducible simulation system for evaluating McClintock component performance

We previously developed a “single synthetic insertion” framework for evaluating the

performance of McClintock components to detect non-reference TE insertions and

used this framework to evaluate the performance of the six TE detectors in McClin-

tock 1 [15]. This evaluation framework created a synthetic genome comprised of a

single non-reference TE and its corresponding target site duplication (TSD) inserted

into in an otherwise-unmodified reference genome, then simulated a corresponding

paired-end WGS dataset that could be used as input for McClintock. The Bash code

for this simulation framework was not released as part of the original McClintock

1 system, did not run inside a controlled environment, was hard-coded to simulate

TE insertion preferences for only one species (S. cerevisiae), only evaluated only
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one WGS fold-coverage (100×), and did not generate standard performance metrics

like precision and recall.

To overcome these limitations, we re-implemented a flexible and fully reproducible

version of this single synthetic insertion simulation framework in Python 3 using

Conda and Snakemake. The new simulation framework in McClintock 2 consists

of three major parts that run under controlled Conda environments and allows

customization for different organisms:

(i) A python script that creates a configuration file with information about the

simulation experiment to be run in JavaScript Object Notation (JSON) for-

mat. Required inputs to the configuration script include user-supplied files

containing the reference genome, TE library, and permissible locations for

TE insertions. The configuration script also allows users to modify the num-

ber of replicates in the experiment, properties of the synthetic genomes (e.g.,

TSD length and strand of the TE insertion), properties of the simulated WGS

datasets (e.g., read length, single or paired end reads, insertion sizes for paired-

end reads, read error rates, fold-coverage), which read simulator will be used

to generate WGS datasets (ART [56] or wgsim [57]), and computing resources

for each cluster job (e.g., number of threads, amount of memory).

(ii) A primary Snakemake workflow that reads input parameters from the JSON

file created by the configuration script, then submits and manages jobs on a

high-performance computing (HPC) cluster. Currently our simulation frame-

work is designed for use with cluster systems running the SLURM workload

manager, but it can be adapted to other HPC systems using alternative Snake-

make cluster profiles (https://github.com/Snakemake-Profiles/). Each

submitted job runs a Python script that creates a new synthetic genome with

one additional insertion, simulates a corresponding WGS dataset from this

synthetic genome, then runs the McClintock pipeline on the simulated WGS

dataset. Replicates for each combination of parameters are submitted as indi-

vidual cluster jobs to maximize available cluster resources, and any potential

failed jobs are automatically re-submitted by the workflow to minimize effort

needed to monitor the simulation experiment.

(iii) A secondary Snakemake workflow that is automatically executed after all

cluster jobs submitted by the primary workflow are completed, which summa-

rizes results and generates preliminary plots from all replicates of the overall

simulation experiment. This workflow runs several scripts to calculate perfor-

mance metrics (e.g., mean numbers of non-reference TE predictions, precision,

recall) across replicates, generate precision/recall curves as a function of fold-

coverage, and generate positional accuracy and predicted TSD length plots for

each fold-coverage level. Performance metrics are calculated as follows. Non-

reference TE predictions with the identical family, chromosome, and strand,

with start and end locations falling within an N bp window from the synthetic

insertion (N=0, 5, 100, 300, or 500) were labeled as “within-N” predictions.

Within-0 bp predictions have the identical start and end coordinates as the

synthetic insertion in that simulated sample and are considered “exact” pre-

dictions. The mean number of reference and non-reference TE predictions

(overall, and at various window sizes) per synthetic genome were then calcu-

lated across all replicates. To calculate precision and recall, non-reference TE
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predictions within-N bp from the insertion site that match the TE family and

strand of the synthetic insertion were regarded as true positives (TP), while all

other predictions were regarded as false positives (FP). If more than one non-

reference prediction for the correct TE family and strand was made within-N

bp from the synthetic insertion, only one was considered a TP and all oth-

ers were considered FPs. If a replicate had zero non-reference TE predictions

within-N bp from the synthetic insertion, it was regarded as a false-negative

(FN). For each N bp window size, recall was calculated as TP/(TP+FN) and

precision was calculated as TP/(TP+FP).

Materials and Methods
Evaluation of McClintock component performance on simulated data

We conducted a series of simulation experiments to validate aspects of the McClin-

tock re-implementation, demonstrate the utility of our new reproducible simulation

framework, and evaluate the ability of McClintock components to predict non-

reference TE insertions in S. cerevisiae. The different simulation experiments varied

in the version of McClintock used, which component methods were run, their place-

ment of synthetic insertions, the read simulator used to generate WGS datasets, and

performance metrics used (See Supplemental Text for details). In all cases, synthetic

genomes were created with the new reproducible simulation framework available in

McClintock 2 (see Implementation above), the UCSC sacCer2 version of the S. cere-

visiae S288c reference genome (to allow cross-validation with results in Nelson et al.

[15]), canonical sequences for S. cerevisiae Ty elements from [58] (https://github.

com/bergmanlab/mcclintock/blob/master/test/sac_cer_TE_seqs.fasta), and

5-bp TSDs for all Ty families [15, 59, 60, 61, 62]. Likewise, all McClintock

jobs that were run on simulated data used the UCSC sacCer2 version of the

S. cerevisiae S288c reference genome with reference TE annotations, taxonomy

files, and canonical sequences for S. cerevisiae Ty sequences from [58] (provided

in https://github.com/bergmanlab/mcclintock/blob/master/test/) as input.

Quantitative results from all simulations can be found in Additional File 2 (average

numbers of TEs) and Additional File 3 (recall and precision).

Evaluation of McClintock run times on empirical data

To test whether Snakemake’s ability to run multiple rules simultaneously could

improve run-time performance in the new McClintock system, we applied the

original McClintock 1 (revision 714fe6d6aa04a7ccdb0d26718e08960783a6229a) and

the new McClintock 2 (revision f766e73a8d04efdbd57664bc5195abc022806674) sys-

tems to a 101-bp paired-end Illumina HiSeq 2000 dataset for S. cerevisiae strain

YJM1460 [63] that was down-sampled to 50× and 100× coverage using seqtk

(v1.3) [64]. To compare run times for McClintock 1 and McClintock 2, we in-

voked both versions of the system only with the original six components present in

McClintock 1 (“-m ngs te mapper,relocate,temp,retroseq,popoolationte,te-locate”).

To evaluate the impact on run time caused by addition of the six new compo-

nents in McClintock 2, we also invoked McClintock 2 using all 12 components (“-m

ngs te mapper,ngs te mapper2,relocate, relocate2,temp,temp2,retroseq,popoolationte,

popoolationte2,te-locate,teflon,tebreak”). In both cases, we varied the number of
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cores requested (1, 5, 10, 15, 20, 25, 30) but kept the amount of RAM constant (20

Gb). For all runs, we used unzipped, untrimmed fastq reads as input (as required

by McClintock 1), the UCSC sacCer2 version of the S. cerevisiae S288c reference

genome, reference TE annotations, taxonomy files, and canonical TE sequences of

each S. cerevisiae Ty family from [58]. Trials were run serially on the same cluster

node (an AMD EPYC processor with a total of 32 cores and 256GB RAM, operat-

ing system Linux 3.10.0-1160.36.2.el7.x86 64). The average and standard deviation

of CPU efficiency and run times was calculated from five replicates of each setting

(defined as the combination of number of cores and McClintock run options). All

possible settings were run as a batch for each replicate to control for differences in

cluster node performance over the duration of the experiment.

Analysis of TE insertions in a diverse panel of wild and domesticated yeast strains

To demonstrate the utility of the McClintock 2 system for large-scale mining of em-

pirical short-readWGS data, we applied our pipeline to Illumina paired-end datasets

for 1,011 S. cerevisiae isolates [63, 65] sequenced to variable depths (from 50× to

900× fold-coverage). Illumina WGS data were downloaded from NCBI Sequence

Read Archive and converted to fastq format using SRA toolkit (v2.10.8) [66]. To

reduce the influence of variable coverage and computing resources, if the coverage of

the original dataset was greater than 50×, we down-sampled it to 50× fold-coverage

using seqtk (v1.3) [64]. The full McClintock 2 pipeline using all 12 components plus

the coverage and trimgalore module (“-m ngs te mapper,ngs te mapper2,relocate,

relocate2,temp,temp2,retroseq,popoolationte,popoolationte2,te-locate,teflon,tebreak,

coverage,trimgalore”) (revision 7aa529881e72299af928a1a38cf809fdbd8e8bb3) was

applied to this yeast resequencing dataset using the UCSC sacCer2 version of the

S. cerevisiae S288c reference genome, reference TE annotations, taxonomy files,

canonical sequences of each S. cerevisiae Ty family from [58].

We identified non-reference TE insertions in the vicinity of tRNA genes using

BEDtools window (v2.30.0,“-u -sw -l 1000 -r 500”) [67]. BEDtools closest (“-D

b”) was used to calculate the genomic distance between each non-reference TE

insertion and its closest tRNA transcription start site (TSS). To analyze the rela-

tionship between the distribution of non-reference TE insertions and nucleosome

occupancy upstream of tRNA genes, we mapped micrococcal nuclease digestion

with deep sequencing (MNase-seq) data from [68] to the sacCer2 version of the S.

cerevisiae S288c reference genome using Bowtie (v1.2.3 [69]) and generated genome-

wide nucleosome occupancy profiles using NUCwave [70]. Whole genome nucleosome

occupancy profiles in .wig format were converted to .bw format using UCSC wig-

ToBigWig (v377), and then Bwtool (v20170428, “bwtool aggregate 2000:500”) [71]

was used to calculate nucleosome occupancy in the region 2 kb upstream to 500 bp

downstream of all tRNA TSSs.

Data analysis and visualization

Data were analyzed and visualized in R (v3.6.3) using the ggplot2 (v3.3.3) [72]

and GGally (v2.1.1, https://ggobi.github.io/ggally/) packages. Kernel density plots

showing distributions of non-redundant Ty insertion sites around tRNA genes were

created with the ggplot2 function “geom density” with Gaussian kernel and 0.4×
default bandwidth.
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Results and Discussion
Validation of McClintock 2 implementation and simulation system

Here we present a Python-based re-implemention and extension of the McClintock

TE detection meta-pipeline, as well as a reproducible simulation system to test the

performance of component TE detectors integrated into McClintock. The major

features that distinguish the new McClintock 2 system from the original version

reported in Nelson et al. [15] are described in the Implementation section above

and are summarized in Table 1. To validate the McClintock 2 implementation and

simulation system, we conducted a series of in silico experiments testing the ability

of the six original components to detect a single synthetic non-reference TE inser-

tion introduced into an otherwise unmodified S. cerevisiae reference genome (see

Supplemental Text for details). Contrasts between different simulations allowed us

to test whether various improvements in the new McClintock 2 system could yield

results that replicate those previously published in Nelson et al. [15] including: (i)

the Python-based implementation of the simulation system, (ii) the Python-based

implementation of the meta-pipeline, and (iii) the random insertion model in the

single insertion simulation framework. Results from these simulations (Fig. S1) al-

lowed us to validate that the McClintock 2 re-implementation yields results that

broadly replicate those previously published in Nelson et al. [15].

Parallelization by Snakemake in McClintock 2 improves multi-core job run times

McClintock 2 uses Snakemake as a workflow manager, which allows parallelization

of multiple rules when enough CPU cores are available. To investigate potential

improvements in computational efficiency due to Snakemake job management in

McClintock 2, we executed McClintock 1 and McClintock 2 (using either the six

original or all 12 components) with a variable number of cores under controlled

computing environments. For this analysis, we used a 101-bp paired-end Illumina

dataset from the S. cerevisiae domesticated palm-wine strain Y12 (YJM1460; SRA:

SRR800842) downsampled to either 50× or 100× (see Materials and Methods for

details). In general, we observe a decreasing trend in CPU efficiency for all McClin-

tock run configurations as the number of CPU cores increases (Fig. 2A). However,

when more than one core is used, we found that McClintock 2 has better CPU

efficiency than McClintock 1 for the six original components, and that CPU effi-

ciency is highest for all numbers of cores used when executing all 12 McClintock

2 components. Improved CPU efficiency for McClintock 2 is observed at both 50×
and 100× coverage.

When comparing run times for the six original components (Fig. 2B), we found

that McClintock 2 was slightly slower (∼10%) than McClintock 1 when using only

a single core, however McClintock 2 finished increasingly faster when five or more

cores were available. Longer run times were observed for McClintock 2 when execut-

ing all 12 components relative to only the six original components, regardless of the

number of cores used. When running either the original six or all 12 components,

McClintock 2 run times continued to decrease up to 15 allocated cores. Interestingly,

when 15 or more cores are allocated, executing McClintock 2 with all 12 components

is faster than running McClintock 1 using only six components, demonstrating clear

speed improvements in the re-engineered version of the McClintock system relative
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Figure 2 McClintock 2 re-implementation improves CPU efficiency and run time on multi-core
architectures. Shown are average (A) CPU efficiency and (B) run times across 5 replicates of
McClintock 1 (six component methods, orange line) or McClintock 2 (same six component
methods as for McClintock 1, light blue line; all 12 component methods in McClintock 2, dark
blue line) applied to 50× and 100× Illumina 101-bp paired-end sample for S. cerevisiae strain
YJM1460 (SRA: SRR800842). Error bars indicate standard deviations across replicates. To allow
compatibility with McClintock 1, all runs were performed on unzipped, untrimmed fastq files and
thus run times do not include these processes.

to the original. Together, these results indicate that parallelization afforded by us-

ing Snakemake in McClintock 2 results in better utilization of computing resources

in multi-core computing systems relative to McClintock 1.

Evaluation of McClintock 2 component TE detectors on simulated yeast data

McClintock 2 now includes six additional component methods for detecting non-

reference TE insertions using short-read WGS data that are not available in McClin-

tock 1: ngs te mapper2 [35], PoPoolationTE2 [48], RelocaTE2 [49], TEBreak [50],

TEFLoN [51], and TEMP2 [52]). Four of the new components (ngs te mapper2,

PoPoolationTE2, RelocaTE2, TEMP2) are “second-generation” versions of tools

previously incorporated in McClintock 1, and the other two (TEBreak and

TEFLoN) represent new TE detection strategies not represented in McClintock

1.

To evaluate the relative performance of these 12 TE detection strategies, we used

the new reproducible single insertion simulation approach available in McClintock
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2. The evaluation of McClintock 2 component methods performed here differs from

the approach originally used in Nelson et al. [15] in several ways (see Supplemental

Text for details). First, we used a more biologically realistic model to randomly

select the family and location of simulated non-reference TE insertions over a range

of genomic positions. Second, we investigated the effects of component performance

over a range of fold-coverages (3×, 6×, 12×, 25×, 50×, 100×), which provides prac-

tical guidance for users to optimize data generation. Third, the summary statistics

used in Nelson et al. [15] are not standard evaluation metrics, and therefore difficult

to compare with other evaluation studies (e.g., [14, 16]). Thus, here we used the

standard evaluation metrics of recall and precision derived from the number of true-

positive, false-positive, and false-negative predictions at various window sizes (see

Implementation for details). Finally, here we evaluated performance using simula-

tions that model yeast TE target preferences (Simulation 3) as in Nelson et al. [15],

as well as random insertion into non-repetitive DNA (Simulation 4). Simulation 4

helps us interpret how insertion into repetitive DNA in the reference genome influ-

ences component performance in yeast and gives insight into potential component

performance in other organisms that don’t have strong TE targeting preferences.

As shown previously for the original six components in McClintock 1 [15], differ-

ent methods in McClintock 2 vary in their ability to accurately predict the position

of synthetic TE insertions in simulated data (Figs. S2, S3, S4, S5). Several compo-

nents (i.e., ngs te mapper, ngs te mapper2, RelocaTE, RelocaTE2, TEFLoN and

TEBreak) make most predictions very close the expected location of the synthetic

insertion, whereas other components (i.e., PoPoolationTE, PoPoolationTE2, and

TE-locate) predict insertions over a wider distance around the synthetic insertion

(∼500bp). Even for components that attempt to identify insertion breakpoints at

nucleotide resolution using split-read information, only ngs te mapper and Relo-

caTE2 have predictions with the expected 5-bp TSD length for all Ty families

(Figs. S6, S7). This method-dependent variation in positional accuracy makes it

difficult to fairly compare performance of different components at a single window

size. Therefore, we calculated performance metrics over a range of window sizes

for overlaps between predicted and simulated insertions (exact, within-5, within-

100, within-300, and within-500 bp). Inspection of the complete set of results for

all window sizes (Figs. S8, S9, S10, S11) revealed that two window sizes (exact

and within-100 bp) could illustrate the majority of key features in McClintock 2

component performance across the insertion models and range of fold-coverages

investigated here.

To guide selection of TE detectors in the model species S. cerevisiae, we first

analyzed the performance of McClintock 2 components using data from Simulation

3 where TEs were inserted in their biologically realistic locations in yeast upstream

of tRNA genes [73, 74, 75, 76, 77] (Fig. 3; purple lines). Three general trends can be

observed in the recall and precision curves for McClintock 2 components for non-

reference TEs in tRNA promoter regions. First, component performance is higher

when allowing a more relaxed window size (within-100 bp) to classify TP predic-

tions (dashed lines) than when requiring TP predictions to be exact (solid lines),

consistent with most methods making many predictions that are not precise to ex-

act nucleotide coordinates. Only ngs te mapper makes all its predictions exactly,
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Figure 3 Performance of McClintock 2 component methods in simulated yeast WGS data.
Shown are the (A) recall and (B) precision across different fold-coverage for individual compnent
methods to detect single synthetic insertions in an otherwise unmodified S. cerevisiae reference
genome. Purple lines (Simulation 3) model the biologically realistic insertion preferences of yeast
TEs, with synthetic Ty insertions created upstream of tRNA genes in regions that often have
fragments of prior TE insertions in the reference genome. Orange lines (Simulation 4) model
random insertions in non-repetitive regions, which allows insight into the effects of insertion
within repetitive DNA and component’s performance for organisms without strong TE targeting
preferences. Points indicate tested fold-coverage configurations, i.e, 3×, 6×, 12×, 25×, 50× and
100×. Solid lines represent performance estimates for non-reference TE predictions made at the
exact site of the synthetic insertion. Dashed lines represent performance estimates for
non-reference TE predictions made within 100 bp surrounding the synthetic insertion site. The six
original component methods in McClintock 1 are on the top row of each panel, and the six new
methods in McClintock 2 are on the second row of each panel.

and thus performance curves are overlayed for both window sizes shown for this

method. Second, component performance typically increases with sequencing depth

and then plateaus at a method-specific coverage. Some exceptions to this trend are

observed for PoPoolationTE recall and RelocaTE and TEFLoN precision, which

show decreasing performance with increasing coverage. Performance curves for most

components suggest that 25× is the most cost-effective depth of sequencing cover-

age, and 50× is sufficient to optimize performance for most component methods.

Third, second generation versions of TE detectors – apart from PoPoolationTE2

– typically show improved performance relative to their first generation counter-

parts, suggesting that gains in TE detector performance can be made by continued
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method development. Overall, results from Simulation 3 suggest that RelocaTE2

has remarkably high recall (∼92%) and precision (∼98%) to predict non-reference

TE insertions in tRNA promoter regions of the yeast genome (at 50× coverage and

≥5 bp window size). The recall and precision of TEMP, TEMP2, RetroSeq and

TEBreak to detect TE insertions in yeast promoter regions are all both greater

than 75% when allowing non-exact predictions in WGS datasets with greater than

50× coverage.

While biologically relevant for S. cerevisiae, the tRNA promoter insertion model

used in Simulation 3 potentially underestimates component performance since syn-

thetic insertions are often placed into fragments of TE sequences that occur up-

stream of tRNA genes in the reference genome [58, 62]. To gain insight into other

organismal contexts and understand how insertion into reference TE sequences may

impact McClintock 2 component performance in yeast, we also investigated a model

of random insertion into unique regions of the S. cerevisiae genome (Simulation 4).

Recall and precision curves for the random insertion model (Fig. 3; orange lines)

show the same general trends but have consistently higher performance relative to

results for the same component in the tRNA promoter insertion model (Fig. 3; pur-

ple lines). General performance improvements in Simulation 4 relative to Simulation

3 indicate that prediction of non-reference TE insertions into locally TE-rich regions

(like tRNA promoters in yeast) is more challenging for most component methods

than for those in non-repetitive DNA. Consistent with results from the tRNA pro-

moter model, RelocaTE2 has the highest recall and precision of any component in

McClintock 2, with essentially perfect performance in non-repetitive regions of the

S. cerevisiae genome (∼100%) even at exact base-pair resolution. At the within-100

bp window size, TEMP, TEMP2, RetroSeq and TEBreak also perform very well

at identifying non-reference insertions in unique regions. We note that two addi-

tional methods – ngs te mapper2 and TEFLoN– show dramatically better recall

for non-exact predictions in non-repetitive regions relative to tRNA promoter re-

gions, putting these methods in a similar performance class to TEMP, TEMP2,

RetroSeq and TEBreak for insertions in non-repetitive DNA.

In summary, results from our reproducible simulation experiments show that Re-

locaTE2 is the best-performing component method currently in the McClintock

2 meta-pipeline to detect non-reference TE insertions in S. cerevisiae under both

the biologically relevant tRNA promoter and non-repetitive insertion models. If ex-

act base-pair positional accuracy is not required, TEMP, TEMP2, RetroSeq and

TEBreak also exhibit high performance to detect TE insertions in S. cerevisiae

tRNA promoter regions at 50× coverage. Furthermore, our results suggest that at

50× coverage TEMP, TEMP2, RetroSeq, TEBreak, ngs te mapper2, and TEFLoN

may have high performance to detect TE insertions in non-repetitive regions of

other genomes. Finally, our results indicate that users should provide McClintock 2

with WGS datasets of at least 25× fold-coverage to generate the best performance

from most component methods, but that coverage higher than 50× may not lead

to further performance benefits.
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Best-in-class component methods reveal consistent insights into patterns of TE

insertion in yeast.

Our reproducible simulation system allowed us to validate the McClintock 2 re-

implementation and evaluate component methods under ideal conditions, where

only one TE insertion per strain is to be detected and all sequencing data is gen-

erated in an identical way. However, analysis of large-scale empirical re-sequencing

data is expected to present additional challenges to TE detectors, such as more com-

plex insertion patterns in a given strain (e.g., multiple insertions, tandem elements)

and variability in WGS dataset composition across strains (e.g., fold-coverage or

median insert size). To assess component method performance under a more real-

istic population genomic scenario, we applied the complete McClintock 2 system

(all 12 components plus the coverage module) to empirical WGS datasets from a

world-wide sample of 1,011 S. cerevisiae strains isolated from diverse environments

and geographical locations [63, 65]. Since these WGS datasets varied significantly in

their fold-coverage (50× to 900×), we down-sampled all WGS datasets to 50× prior

to running McClintock 2 based on simulation results above that indicated 50× cov-

erage is sufficient to maximize component method performance (Fig. 3). Our goals

for this analysis were to evaluate whether McClintock 2 component methods: (i)

predict consistent numbers of non-reference TE insertions per strain (overall and by

Ty family), and (ii) have sufficient positional accuracy to identify expected patterns

of targeting in yeast tRNA promoter regions. This analysis also allowed us to gener-

ate the first species-wide Ty insertion variant call sets for S. cerevisiae (Additional

File 4).

To evaluate consistency among component methods on empirical WGS data,

we first quantified the distribution of non-reference TE predictions made by each

method across 1,011 yeast strains (Fig. 4A). We observe substantial variation in

median values of non-reference Ty insertions across all 12 methods, as well as in

the correlation among methods in the number of predicted non-reference Ty inser-

tions (Fig. S12). Interestingly, median values of ∼50 non-reference Ty insertions

per strain are consistently predicted by the five component methods (RelocaTE2,

TEMP, TEMP2, RetroSeq and TEBreak) (Fig. 4A; bold outlines) that showed the

best performance (when considering non-exact predictions) in simulated data un-

der the biologically relevant tRNA promoter model (Fig. 3A; purple dotted lines).

These five components also have the highest pairwise correlation of non-reference

Ty counts per strain across methods (Fig. S12). We note that the original six com-

ponents do not show the general pattern of ∼50 non-reference Ty insertions per

strain (Fig 4A; top row) and have some of the lowest correlation of non-reference

Ty counts across methods (Fig. S12), underscoring the value of incorporating addi-

tional recently-developed methods into McClintock 2 to reveal consistent biological

patterns that could not be revealed by the McClintock 1 system. Since McClintock

2 component methods do not distinguish full-length elements from solo LTRs, the

emergent estimate of ∼50 non-reference Ty insertions per yeast strain is likely to

represent a combination of both structural types. Indeed, applying the McClintock

2 coverage module to internal coding regions of all Ty families, we estimate that

the number of full-length elements per strain is ∼20 (Fig. S13), suggesting that

many non-reference Ty insertions detected by McClintock 2 components in this

population sample are polymorphic solo LTRs [58, 78].
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Figure 4 Numbers of Ty elements predicted by McClintock 2 components in a world-wide
sample of yeast strains. (A) Numbers of non-reference TE predictions per strain (summed over
all Ty families) and (B) numbers of non-reference TE predictions across Ty families (summed over
all strains) in 1,011 S. cerevisiae WGS samples [63, 65], down-sampled to 50× fold-coverage. In
panel (A), lines inside boxes indicate median values, colored boxes show interquartile ranges
(IQR), whiskers show values 1.5×IQR of the upper or lower quartiles, and the dots indicate
outliers that beyond 1.5×IQR. Components with bold outlines in panel (A) have have median
values of ∼50 non-reference Ty insertions per strain (dashed lines), as well as recall and precision
both >75% in tRNA promoter insertion simulations when allowing non-exact predictions in WGS
datasets with >50× coverage (see Fig. 3). We note that the y-axis is on a log10 scale, and that
16 zero-count data points and one extreme TE-locate data point (count=749) is removed to aid
with visualization. In panel (B) total numbers of non-reference TE predictions are partitioned as
“tRNA” (dark red) if they are located between 1000 bp upstream and 500 bp downstream of
tRNA genes, or “non-tRNA” (orange) if outside these windows. Note that the y-scale varies for
each component method. The percentage of near tRNA gene predictions is annotated at the top
of each bar. “N.A.” means no such Ty family was found using that component. Components with
bold outlines in panel (B) predict consistent relative TE family abundance and also have
properties of components with bold outlines in panel (A), and thus we designate them as
“best-in-class” methods for predicting non-reference TE insertions in S. cerevisiae.

Next, we assessed the consistency among component methods to classify the TE

family of non-reference predictions across all 1,011 isolates (Fig. 4B). As for esti-

mates of non-reference Ty abundance per strain, we observe variable patterns in

relative Ty family abundance across component methods, with most methods be-
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ing able to differentiate Ty families that are known to be active (Ty1, Ty2, Ty3

and Ty4) from those that are inactive or low-abundance (Ty3 1p, TSU4, Ty5). As

observed for numbers of non-reference TEs per strain above, we note that no clear

pattern of Ty family abundance can be discerned across the original six components

(Fig. 4B; top row). However, a consistent pattern of relative Ty family abundance

is observed for four of the five component methods (RelocaTE2, TEMP, TEMP2

and TEBreak) that show both consistent non-reference TE abundance per strain

and high performance in simulated data. These four methods all indicate that Ty2

has the highest overall number of non-reference Ty insertions in this sample of S.

cerevisiae strains. While Ty1 is often cited as the most abundant Ty family in S.

cerevisiae because of its high copy number in the reference strain S288c [62, 58],

the finding that Ty2 has the highest number of non-reference insertions in this

diverse worldwide sample of S. cerevisiae strains is supported by orthogonal copy-

number estimates from the McClintock 2 coverage module (Fig. S14) and a similar

depth-based approach used in recent independent study [79]. In contrast, the fifth

component method that shows consistent Ty abundance per strain and high per-

formance in simulated data – RetroSeq – predicts more Ty1 and Ty2 insertions in

empirical yeast data, which we infer to be misidentification because of the similarity

in LTR sequences for these two Ty families [80, 62].

Previously [15], we used the well-established pattern that Ty1, Ty2, Ty3 and Ty4

non-randomly target promoters of genes transcribe by RNA polymerase III such

as tRNAs (reviewed in [81]) to validate non-reference TE predictions made by Mc-

Clintock 1 component methods in small sample of 93 S. cerevisiae genomes [15, 63].

Here, we confirm that the majority of non-reference predictions made by all compo-

nent methods in McClintock 2 for these four Ty families are in the expected vicinity

of tRNA genes in the species-wide S. cerevisiae resequencing dataset analyzed here

(Fig. 4B) [63, 65]. Moreover, the four methods (RelocaTE2, TEMP, TEMP2 and

TEBreak) that consistently predict similar numbers and families of non-reference

Ty insertions in empirical yeast genome data, also predict similar proportions of in-

sertions in tRNA genes. Combined with their high performance in simulated data,

we conclude that RelocaTE2, TEMP, TEMP2 and TEBreak are the “best-in-class”

methods for predicting Ty insertions in S. cerevisiae WGS resequencing data.

Finally, we sought to test whether predictions in species-wide S. cerevisiae WGS

data made by the best-in-class components in McClintock 2 have sufficient posi-

tional accuracy to recapitulate the association between Ty1 insertion profiles and

nucleosome occupancy in tRNA promoters observed for experimentally induced

insertions [74, 76, 82]. Recent work by Hays et al. [40] using WGS data from

experimentally-evolved genomes has shown that Ty insertions predicted by Re-

locaTE2, aggregated across all Ty families, exhibit periodicity upstream of tRNA

genes in S. cerevisiae [40]. However, their analysis does not partition insertions to

individual Ty families, show a direct correlation with nucleosome profiles, or demon-

strate that this signal is not an artifact of a single TE detection system. As shown

in Fig. 5, naturally-occurring Ty1 insertions predicted in species-wide S. cerevisiae

WGS data by the four “best-in-class” component methods show a clear profile of

dyad peaks on the first nucleosome-bound regions upstream of tRNA TSS, with

weaker dyad signals on the second and third upstream nucleosome-bound regions.
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Figure 5 copia-superfamily retrotransposons show a dyad pattern of insertion in
nucleosome-bound regions upstream of yeast tRNA genes. The top four rows show density
profiles of non-redundant insertion sites for non-reference Ty predictions made by best-in-class
McClintock 2 components (RelocaTE2, TEMP, TEMP2 and TEBreak) in tRNA promoter regions
in a panel of 1,011 S. cerevisiae WGS samples [63, 65], down-sampled to 50× fold-coverage. Only
the four Ty familes (Ty1, Ty2, Ty3 and Ty4) that are know to non-randomly target tRNA genes
are included in this analysis. The bottom row shows nucleosome occupancy inferred using
MNase-seq data from [68]. Light blue shaded areas indicate 100-bp regions surrounding peaks of
nucleosome occupancy.

Intriguingly, Ty2 and Ty4 insertions predicted by all four best-in-class methods

(and by RetroSeq, ngs te mapper2 and TEFLoN; Figs. S15 and S16) also have

dyad peaks on the first nucleosome-bound region upstream of S. cerevisiae tRNA

genes. Additionally, our results are support the observation that the domain of Ty1

integrase shown to be responsible for tRNA targeting is conserved in Ty2 and Ty4

[83]. In contrast, naturally-occurring Ty3 insertions show no correlation with nu-

cleosomal profiles and are restricted to ∼15 bp upstream of tRNA TSSs as seen for

experimentally-induced insertions [77]. TEMP and TEMP2 predict another peak of

insertions for Ty1, Ty2, and Ty4 at a similar position to the Ty3 peak, which is not

observed in the insertion profiles for RelocaTE2 and TEBreak or in experimental

data for Ty1 [74, 76, 82]. We interpret this additional peak at ∼15 bp upstream

of tRNA TSSs in the TEMP and TEMP2 methods as an artifact that is possibly

caused by misassignment of some Ty3 insertions to other tRNA-targeting Ty fam-

ilies. Nevertheless, these results from natural genomes confirm that the insertion

profiles for Ty1 and Ty3 upstream of tRNA genes are not artifacts of experimental
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induction, and suggest that the molecular mechanisms responsible for the targeting

of Ty1 to nucleosomes are conserved in the related copia-superfamily retrotrans-

posons Ty2 and Ty4.

Conclusions
In this report we present a re-implemented version of the McClintock TE detection

system with improved installation, error handling, speed, stability, and extensibility.

Relative to the original system [15], McClintock 2 includes six new short-read TE

detectors, pre-processing and analysis modules, interactive HTML reports, and a re-

producible simulation system that we used here to cross-validate the re-implemented

system and evaluate component TE detectors. We acknowledge that not all avail-

able short-read TE detectors are currently incorporated into the McClintock 2 meta-

pipeline, however use of Conda and Snakemake in the re-implemented meta-pipeline

puts us in a better position to integrate additional or improved components in the

future. We are also considering modifications to allow installation of TE detectors

from user-downloaded executables or source code to be able to integrate meth-

ods like MELT [84] that have high performance but have restrictive licenses which

prevent automatic installation. Our reproducible simulation framework now allows

evaluation of McClintock 2 component performance in a wide range of organismal

contexts besides S. cerevisiae, including humans and other model organisms. In the

future, we plan to modify the simulation framework to allow multiple insertions in a

single synthetic genome to reduce the number of replicates needed to analyze larger

genomes that have longer run times. We also plan to implement a complementary

evaluation system that uses TE annotations in long-read assemblies as gold stan-

dards to empirically benchmark TE detectors using short-read WGS data from the

same strain [16, 52].

Based on performance evaluations in simulated WGS data, we conclude that Re-

locaTE2 is the best McClintock 2 component to detect non-reference TE insertions

in S. cerevisiae at base-pair accuracy, which supports use of this method in re-

cent yeast experimental evolution studies [85, 40]. However, we caution against

the general conclusion that RelocaTE2 is the best McClintock 2 component for

other species, since this method can have long run times that precludes its use in

larger genomes [16, 52]. By combining results from simulated data with consistency

analyses in empirical WGS data, we also identify TEMP, TEMP2 and TEBreak

as additional “best-in-class” methods for predicting Ty insertions in S. cerevisiae

WGS resequencing data with 50× fold-coverage or higher, albeit with lower posi-

tional accuracy than RelocaTE2. Results from the four best-in-class McClintock 2

components for S. cerevisiae provide additional support to the emerging view that

Ty2 is the most abundant TE in this species [79], although we acknowledge that

non-independence of strains and sampling bias in the strain panel analyzed [63, 65]

could influence the conclusion about the relative abundance of Ty families in S. cere-

visiae. Finally, we show that best-in-class McClintock 2 components for S. cerevisiae

generate reasonable non-reference TE predictions with sufficient resolution to reveal

a dyad pattern of integration in nucleosome-bound regions upstream of yeast tRNA

genes for Ty1, Ty2, and Ty4. This finding allows knowledge about fine-scale tar-

get preferences revealed in experimentally induced Ty1 insertions [74, 76, 82] to be
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extended to natural Ty1 insertions and related copia-superfamily retrotransposons

in yeast. Together with the new bioinformatics resources provided in McClintock

2, our work provides novel biological insights about TEs in one of the best-studied

model systems and a paradigm for selecting optimal non-reference TE detectors in

a diversity of organisms.
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