

Title: Social play behavior shapes the development of prefrontal inhibition in a region-specific manner

Running title: Region-specific effects of social play on PFC development

Authors:

Ate Bijlsma^{1,2}, Louk J.M.J. Vanderschuren¹, Corette J. Wierenga^{2,3}

Affiliations:

¹ Department of Population Health Sciences, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands

² Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands

³ Donders Institute and Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands

corresponding authors

Prof. Dr. Corette J. Wierenga corette.wierenga@donders.ru.nl

Prof. Dr. Louk J.M.J. Vanderschuren l.j.m.j.vanderschuren@uu.nl

Author Contribution: The study was conceived by AB, LV and CW. Experiments were designed by AB, LV and CW. Experiments and analysis were performed by AB. Manuscript was written by AB, LV and CW.

1 **Abstract**

2 Experience-dependent organization of neuronal connectivity is critical for brain development. We
3 recently demonstrated the importance of social play behavior for the developmental fine-tuning of
4 inhibitory synapses in the medial prefrontal cortex (mPFC) in rats. When these effects of play
5 experience exactly occur and if this happens uniformly throughout the prefrontal cortex is currently
6 unclear. Here we report important temporal and regional heterogeneity in the impact of social play on
7 the development of excitatory and inhibitory neurotransmission in the mPFC and the orbitofrontal
8 cortex (OFC). We recorded in layer 5 pyramidal neurons from juvenile (postnatal day (P)21), adolescent
9 (P42) and adult (P85) rats after social play deprivation (SPD; between P21-P42). The development of
10 these PFC subregions followed different trajectories. On P21, inhibitory and excitatory synaptic input
11 was multiple times higher in the OFC than in the mPFC. SPD did not affect excitatory currents, but
12 reduced inhibitory transmission in both mPFC and OFC. Intriguingly, the reduction occurred in the
13 mPFC during SPD, while the reduction in the OFC only became manifested after SPD. These data reveal
14 a complex interaction between social play experience and the specific developmental trajectories of
15 prefrontal subregions.

16

17 **Keywords**

18 - Brain development, Experience-dependent plasticity, Inhibitory signaling, Prefrontal cortex, Social
19 play behavior

20 **Introduction**

21 The developing brain requires proper external input to fine-tune activity and connectivity in
22 neural circuits for optimal functionality throughout life. Experience-dependent plasticity is well
23 described in the sensory cortex, but it is also essential for the development of higher-order brain
24 regions, including the prefrontal cortex (PFC) (Larsen and Luna, 2018; Bicks et al., 2020). The PFC is
25 undergoing intensive functional remodeling during the juvenile and adolescent phases of life, roughly
26 between postnatal day (P) 21 and 85 in rodents (Kolb et al., 2012; Thomases et al., 2013; Caballero and
27 Tseng, 2016; Caballero et al., 2016; Larsen and Luna, 2018). Cytoarchitectonic characteristics of the
28 PFC do not stabilize until around P30. Around this time, white matter volume increases because of
29 myelination, and grey matter volume in the PFC starts to decrease due to synaptic pruning and
30 apoptosis (Markham et al., 2007). In addition, at the onset of adolescence (around P30–P42), the PFC
31 starts to receive long-range afferents from sensory and subcortical brain regions including the
32 amygdala, ventral hippocampus and mediodorsal thalamus (Hoover and Vertes, 2007, 2011; Murphy
33 and Deutch, 2018; Yang et al., 2021). During adolescence (P35–P60), local interneurons are undergoing
34 important remodeling (Caballero et al., 2014a; Cass et al., 2014; Caballero and Tseng, 2016), which is
35 critical for the maturation of the PFC network (Tseng et al., 2008). Proper functioning of the prefrontal
36 network in adulthood is important for working memory and cognitive flexibility (Murray et al., 2015)
37 and the vulnerability to fear (Courtin et al., 2014), stress (Sriparna Ghosal, Brendan Hare, 2017) and
38 psychosis (Tanaka, 2008).

39 During the juvenile and adolescent phases of life, when PFC development is in progress, most
40 mammals species, including rats and humans, display an abundance of a pleasurable and energetic
41 form of social interaction, known as social play behavior (Panksepp et al., 1984; Vanderschuren et al.,
42 1997; Pellis and Pellis, 2009; Manduca et al., 2014). One important characteristic of social play is that
43 it allows animals to experiment with their own behavior and their interactions with others. This
44 experimentation during social play is thought to facilitate the development of a rich behavioral

45 repertoire, that allows an individual to quickly adapt in a changeable world. In this way, social play may
46 subserve the development of PFC-dependent skills such as flexibility, creativity, and decision-making
47 (Špinka et al., 2001; Pellis and Pellis, 2009; Vanderschuren and Trezza, 2014). Indeed, during play the
48 PFC is engaged (Van Kerkhof et al., 2014) and required (Bell et al., 2009; van Kerkhof et al., 2013).
49 Moreover, limiting the time young animals can play has been shown to lead to impaired social
50 interactions (Hol et al., 1999; Van Den Berg et al., 1999) and long-lasting changes in PFC function and
51 circuitry in adulthood (Bell et al., 2010; Baarendse et al., 2013; Vanderschuren and Trezza, 2014).

52 The PFC comprises multiple subregions that display functional specialization and overlap
53 (Miller and Cohen, 2001; Dalley et al., 2004; Izquierdo et al., 2017; Verharen et al., 2020). Of these,
54 both the medial prefrontal cortex (mPFC) and the orbitofrontal cortex (OFC) are required for social play
55 (Schneider and Koch, 2005; Pellis et al., 2006; Bell et al., 2009; Van Kerkhof et al., 2013), and social play
56 facilitates the maturation of these regions (Pellis et al., 2010; Baarendse et al., 2013; Himmler et al.,
57 2018). Both subregions have been implicated in higher cognitive, so-called executive functions,
58 whereby the OFC is thought to have the upper hand in emotionally colored cognition, such as reward-
59 based decision making (Schoenbaum et al., 1998, 2009; Rolls, 2000; O'Doherty et al., 2003), and the
60 mPFC subserves functions in working memory and planning (Bechara and Damasio, 2005; Posner et
61 al., 2007; Euston et al., 2012). However, there is also a substantial degree of functional overlap
62 between PFC regions (Sul et al., 2010; Lodge, 2011; Hardung et al., 2017). During the production of
63 social behaviors the mPFC and OFC are functionally linked to each other and the two regions are
64 reciprocally connected (Singer et al., 2009; Hoover and Vertes, 2011).

65 We recently showed that deprivation of social play affects inhibitory, but not excitatory
66 connections in the adult mPFC, emphasizing the importance of social play for PFC circuit development
67 (Bijlsma et al., 2022). How social play contributes to the development of OFC connections is currently
68 unknown. Additionally, how the excitatory and inhibitory inputs of the two subregions develop and
69 how the deprivation of social play experiences affects their developmental trajectories has not been

70 addressed. Here we report the distinct development of synaptic inputs onto layer 5 pyramidal neurons
71 in the mPFC and OFC and describe how social play deprivation (SPD) differentially affects the
72 developmental trajectories of these two PFC regions.

73

74 **Materials and Methods**

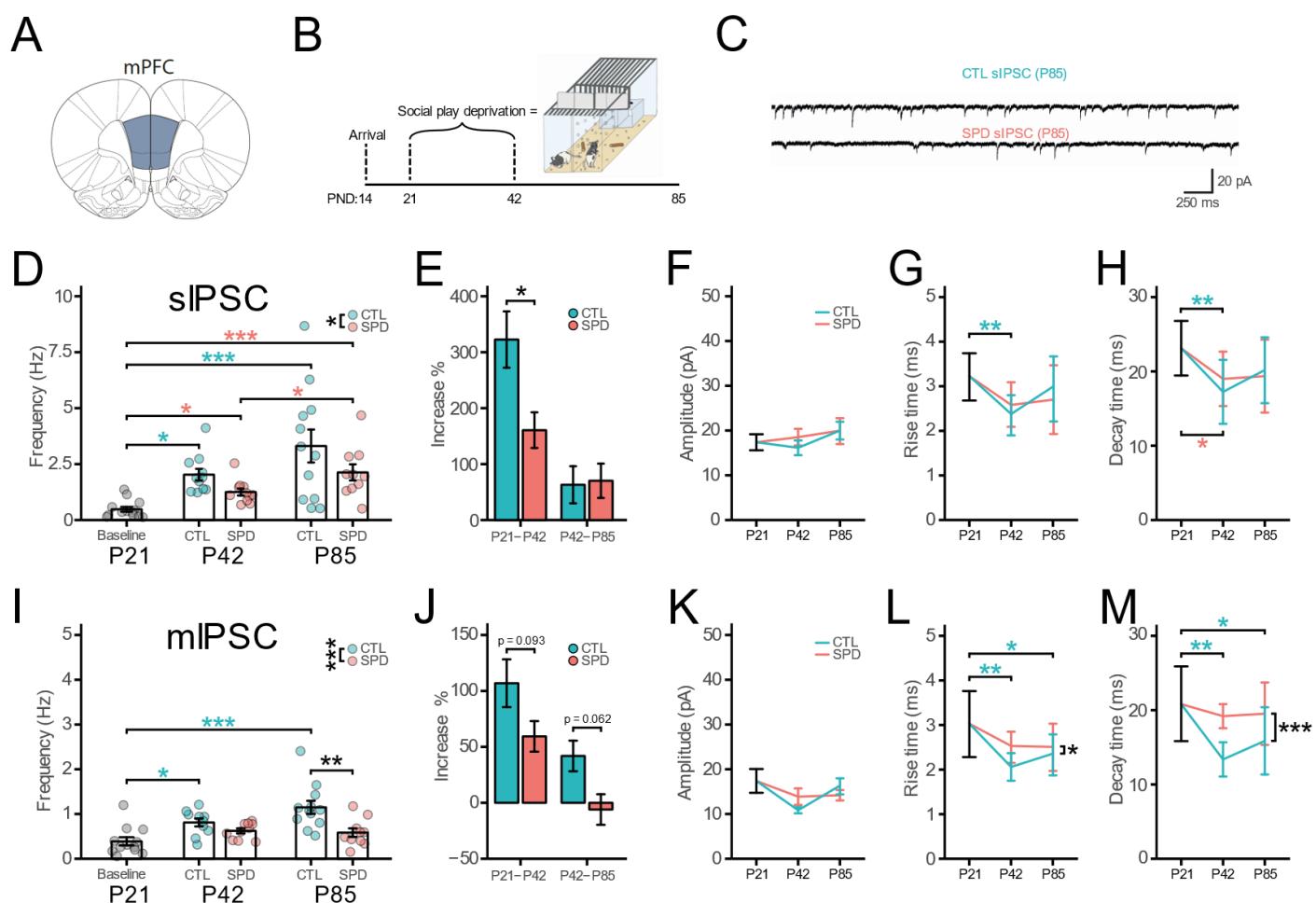
75 **Animals and housing conditions**

76 All experimental procedures were approved by the Animal Ethics Committee of Utrecht University and
77 the Dutch Central Animal Testing Committee and were conducted in accordance with Dutch (Wet op
78 de Dierproeven, 1996; Herziene Wet op de Dierproeven, 2014) and European legislation (Guideline
79 86/609/EEC; Directive 2010/63/EU). Male Lister Hooded rats were obtained from Charles River
80 (Germany) on postnatal day (P) 14 in litters with nursing mothers. All rats were subject to a normal
81 12:12h light-dark cycle with ad libitum access to water and food. Rats used in the P21 measurements
82 were directly taken from the litter at P21. Rats used in the P42 and P85 groups were weaned on P21
83 and were either allocated to the control (CTL) group or the social play deprivation (SPD) group. CTL rats
84 were housed in pairs for the remainder of the experiment. SPD rats were pair-housed but during P21
85 to P42 a transparent Plexiglas divider containing small holes was placed in the middle of their home
86 cage creating two separate, identical compartments. SPD rats were able to see, smell and hear one
87 another but they were unable to physically interact. On P42, the Plexiglas divider was removed and
88 SPD rats were housed in pairs for the remainder of the experiment. Rats were weighed and handled at
89 least once a week until they were used for neurophysiological experiments. Experiments were
90 performed on P21, P42 and P85 with a spread of 2 days as it was not always possible to perform
91 measurements on the exact postnatal day.

92 **Electrophysiological analysis**

93 *Slice preparation:* Rats were anaesthetized with Isoflurane and then transcardially perfused with ice-
94 cold modified artificial cerebrospinal fluid (ACSF) containing (in mM): 92 Choline chloride, 2.5 KCl, 1.2
95 NaH_2PO_4 , 30 NaHCO_3 , 20 HEPES, 25 glucose, 5 Na-ascorbate, 3 Na-pyruvate, 0.5 CaCl_2 , and 10 MgSO_4 ,
96 bubbled with 95% O_2 and 5% CO_2 (pH 7.3–7.4). The brain was quickly removed after decapitation and
97 coronal slices (300 μm) of the medial PFC (consisting of the prelimbic and infralimbic cortex) and OFC
98 (consisting of the ventral and lateral orbital cortex) were prepared using a vibratome (Leica VT1000S,
99 Leica Microsystems) in ice-cold modified ACSF. Slices were initially incubated in the carbonated
100 modified ACSF for 5 min at 35 °C and then transferred into a holding chamber containing standard
101 ACSF containing (in mM): 126 NaCl, 3 KCl, 1.3 MgCl_2 , 2 $\text{CaCl}_2 \cdot 2\text{H}_2\text{O}$, 20 glucose, 1.25 NaH_2PO_4 and 26
102 NaHCO_3 bubbled with 95% O_2 and 5% CO_2 (pH 7.3) at room temperature for at least 30 minutes. They
103 were subsequently transferred to the recording chamber, perfused with standard ACSF that is
104 continuously bubbled with 95% O_2 and 5% CO_2 at 28–32 °C. *Whole-cell recordings and analysis:* Whole-
105 cell patch-clamp recordings were performed from layer 5 pyramidal neurons in the medial PFC and
106 OFC. Neurons were visualized with an Olympus BX51W1 microscope using infrared video microscopy
107 and differential interference contrast (DIC) optics. Patch electrodes were pulled from borosilicate glass
108 capillaries and had a resistance of 4–6 MΩ when filled with intracellular solutions. Excitatory
109 postsynaptic currents (EPSCs) were recorded with an internal solution containing (in mM): 140 K-
110 gluconate, 4 KCl, 10 HEPES, 0.5 EGTA, 4 MgATP, 0.4 NaGTP, 4 $\text{Na}_2\text{-phosphocreatine}$ (pH 7.3 with KOH).
111 Spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in the presence of 6,7-
112 dinitroquinoxaline-2,3-dione (DNQX) (20 μM) and D,L-2-amino-5-phosphopentanoic acid (D,L-AP5) (50
113 μM), with an internal solution containing (in mM): 70 K-gluconate, 70 KCl, 10 HEPES, 0.5 EGTA, 4
114 MgATP, 0.4 NaGTP, 4 $\text{Na}_2\text{-phosphocreatine}$ (pH 7.3 with KOH). Action-potential independent miniature
115 IPSCs (mIPSCs) were recorded under the same conditions as sIPSCs, but in the presence of 1 μM
116 tetrodotoxin (TTX) to block voltage-gated sodium channels. The membrane potential was held at -70
117 mV for voltage-clamp experiments. Signals were amplified, filtered at 2 kHz and digitized at 10 kHz

118 using a MultiClamp 700B amplifier (Molecular Devices) and stored using pClamp 10 software. Series
119 resistance was constantly monitored, and the cells were rejected from analysis if the resistance
120 changed by >20% during the experiment or reached a value higher than 30 MΩ. No series resistance
121 compensation was used. Resting membrane potential was measured in bridge mode (I=0) immediately
122 after obtaining whole-cell access. The basic electrophysiological properties of the cells were
123 determined from the voltage responses to a series of hyperpolarizing and depolarizing square current
124 pulses. Passive and active membrane properties were analysed with Matlab (R2019b, MathWorks)
125 using a custom script. Miniature and spontaneous synaptic currents (IPSCs and EPSCs) data were
126 analysed with Mini Analysis (Synaptosoft). The detected currents were manually inspected to exclude
127 false events.


128 **Data processing and statistical analyses**

129 Statistical analyses and data processing were performed with GraphPad Prism (Software Inc.) and
130 RStudio 1_2_5019 (R version 3.6.1, R Foundation for Statistical Computing). The variance between cells
131 within slices was larger than the variance between slices, indicating that individual cells can be treated
132 as independent measurements. Differences between time points (P21, P42 and P85) were tested with
133 one-way ANOVA followed by a Tukey's test when significant (denoted in figures by a color-coded
134 asterisk in blue for CTL and red for SPD). Differences between groups were tested with two-way ANOVA
135 followed by a Tukey's test (black asterisks in figures). Percentage growth for the P21-P42 timeframe
136 was calculated by normalizing the values of P42 (CTL and SPD) to the mean of P21. For the P42-P85
137 timeframe, the P85 values were normalized to the P42 mean of the same condition. All graphs
138 represent the mean ± standard error of the mean (SEM) with individual data points shown in colored
139 circles.

140 **Results**

141 We performed whole cell patch clamp recordings in layer 5 (L5) pyramidal cells in the mPFC (Fig. 1A)
142 in slices prepared from juvenile (P21), adolescent (P42) and adult (P85) control (CTL) male rats to assess
143 the development of their synaptic input currents (Fig. 1B,C). We found that the frequency of inhibitory
144 inputs onto L5 mPFC pyramidal neurons strongly increased between P21 and P85. A large, 3-fold,
145 increase in sIPSC frequency occurred between P21 and P42 (Fig 1D,E). Between P42 and P85, a smaller
146 ~60% increase in sIPSC frequency was observed, while large individual differences between L5 cells
147 emerged (Fig 1D,E). Amplitudes of the sIPSCs remained stable across time points (Fig. 1F), while rise
148 and decay kinetics were faster at P42 compared to P21, an effect that was less prominent at P85 (Fig.
149 1G,H). This suggests that the inhibitory synaptic inputs to L5 cells in the mPFC are undergoing intense
150 development between P21 and P42, with a smaller rate of growth after P42 until adulthood. These
151 findings are in agreement with previous studies showing an increase in inhibitory synaptic inputs (Cass
152 et al., 2014; Kalemaki et al., 2020) and accelerating kinetics (Vicini et al., 2001; Hashimoto et al., 2010)
153 during early development.

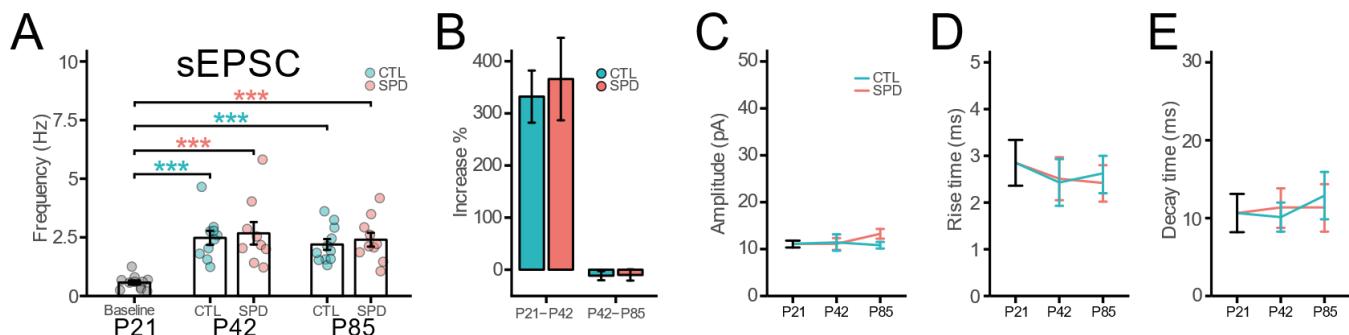

154 We previously showed that SPD during P21-42 results in a reduction of inhibitory synapses
155 onto L5 pyramidal somata in the mPFC of adult rats (Bijlsma et al., 2022). Here we assessed how SPD
156 (Fig. 1B) affects the developmental trajectory of the synaptic circuitry in the mPFC. We observed that
157 the large increase in sIPSCs found in CTL animals between P21 and P42 was reduced in SPD animals,
158 and sIPSC frequency modestly increased between P42 to P85 (Fig. 1D). Interestingly, when the
159 developmental increase was calculated relative to the sIPSC frequency at P42, we observed that the
160 sIPSC reduction in L5 cells was entirely attributable to the SPD period between P21 and P42, while the
161 increase from P42 to P85 was comparable in both conditions (Fig. 1E). SPD did not affect sIPSC
162 amplitude (Fig. 1F) and the developmental acceleration of rise and decay time (Fig. 1G,H).

Fig. 1. (A) Schematic diagram depicting the recording site in the mPFC. (B) Social play deprivation (SPD) paradigm. (C) Example traces of spontaneous inhibitory postsynaptic currents (sIPSCs) in L5 pyramidal cells in slices from P85 control (CTL) and SPD rats. (D) Frequency of sIPSCs in Baseline (P21), CTL and SPD slices (P42 & P85) (CTL 1W-ANOVA, Time: $p<0.001$; SPD 1W-ANOVA, Time: $p<0.001$; 2W-ANOVA, Condition: $p=0.031$, Time: $p=0.023$, Interaction: $p=0.67$). (E) Percentage increase of sIPSC frequency from P21 to P42 and P42 to P85 for both CTL and SPD slices (P21-P42 T-Test, $p=0.018$; P42-P85 T-Test, $p=0.88$). (F-H) Amplitude (F) (CTL 1W-ANOVA, Time: $p=0.34$; SPD 1W-ANOVA, Time: $p=0.72$; 2W-ANOVA, Condition: $p=0.63$, Time: $p=0.22$, Interaction: $p=0.56$), Rise time (G) (CTL 1W-ANOVA, Time: $p=0.005$; SPD 1W-ANOVA, Time: $p=0.045$; 2W-ANOVA, Condition: $p=0.95$, Time: $p=0.078$, Interaction: $p=0.24$) and Decay time (H) (CTL 1W-ANOVA, Time: $p=0.004$; SPD 1W-ANOVA, Time: $p=0.020$; 2W-ANOVA, Condition: $p=0.77$, Time: $p=0.23$, Interaction: $p=0.36$) of sIPSC events. (I) Frequency of miniature inhibitory postsynaptic currents (mIPSCs) in Baseline (P21), CTL and SPD slices (P42 & P85) (CTL 1W-ANOVA, Time: $p<0.001$; SPD 1W-ANOVA, Time: $p<0.001$; 2W-ANOVA, Condition: $p<0.001$, Time: $p=0.15$, Interaction: $p=0.089$) (J) Percentage increase of mIPSC frequency from P21 to P42 and P42 to P85 for both CTL and SPD slices (P21-P42 T-Test, $p=0.093$; P42-P85 T-Test, $p=0.062$). (K-M) Amplitude (K) (CTL 1W-ANOVA, Time: $p=0.072$; SPD 1W-ANOVA, Time: $p=0.42$; 2W-ANOVA, Condition: $p=0.85$, Time: $p=0.058$, Interaction: $p=0.10$), Rise time (L) (CTL 1W-ANOVA, Time: $p=0.001$; SPD 1W-ANOVA, Time: $p=0.081$; 2W-ANOVA, Condition: $p=0.042$, Time: $p=0.32$, Interaction: $p=0.34$) and Decay time (M) (CTL 1W-ANOVA, Time: $p<0.001$; SPD 1W-ANOVA, Time: $p=0.61$; 2W-ANOVA, Condition: $p<0.001$, Time: $p=0.20$, Interaction: $p=0.34$) of mIPSC events. (D-H) Data from 13 (P21), 11 (P42 CTL), 11 (P42 SPD), 12 (P85 CTL), 10 (P85 SPD) cells. (I-M) Data from 12 (P21), 10 (P42 CTL), 10 (P42 SPD), 12 (P85 CTL), 10 (P85 SPD) cells. Statistical range: * $p\leq0.05$; ** $p<0.01$; *** $p<0.001$

164 We also recorded miniature inhibitory postsynaptic currents (mIPSCs) in the presence of TTX
165 which blocked all neuronal activity in the slices. In CTL slices, mIPSC frequency doubled between P21
166 and P42, followed by a smaller increase between P42 and P85 (Fig. 1I,J). Consistent with our
167 observations for sIPSCs, mIPSC amplitudes did not change over this developmental period (Fig. 1K),
168 while rise and decay kinetics became faster (Fig. 1L,M). The developmental increase in the frequency
169 of mIPSCs was smaller compared to sIPSCs (compare fig. 1E and 1J), which suggests that the increase
170 in inhibitory currents reflects the formation of new inhibitory synapses during this period as well as an
171 increase in activity-dependent release. Consistent with our previous findings (Bijlsma et al., 2022),
172 mIPSC frequency was reduced in the mPFC of SPD slices at P85, but the reduction was less pronounced
173 at P42 (Fig. 1I). The developmental gain in mIPSC frequency between P21 and P42 was weaker in SPD
174 rats compared to CTL rats and mIPSC frequency remained stable between P42 and P85, while mIPSC
175 frequency in CTL rats still increased (Fig. 1J). The amplitude (Fig. 1K) of the mIPSCs were not affected
176 by SPD, but the acceleration of rise and decay kinetics appeared less pronounced compared to CTL (Fig.
177 1L,M). Together, these results indicate that SPD interferes with the development of activity-dependent
178 and -independent inhibitory currents in L5 cells of the mPFC and that the strongest effect is observed
179 immediately after the deprivation period.

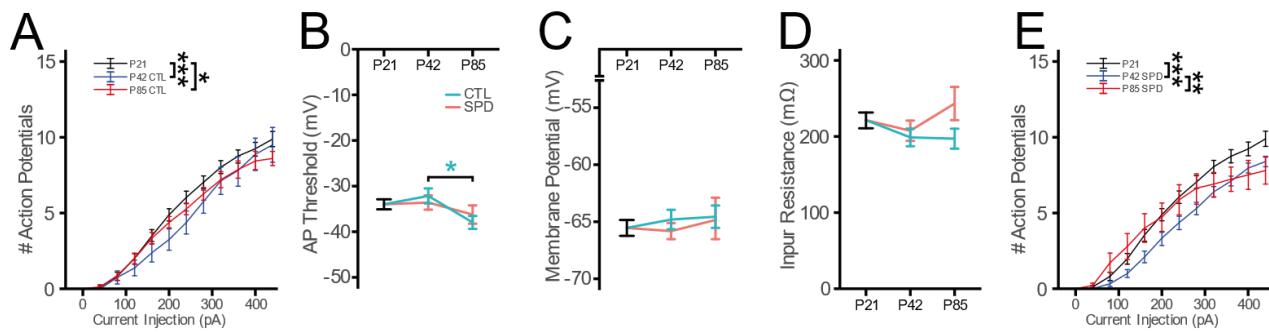

180 We previously showed that excitatory synaptic currents in L5 cells were unaffected by SPD in
181 the adult mPFC. However, SPD may influence the developmental time course of excitatory synapse
182 formation in the mPFC. We therefore measured excitatory synaptic inputs in mPFC slices from CTL and
183 SPD rats at all three ages. In CTL slices, we observed a large increase in sEPSC frequency between P21
184 and P42, but sEPSC frequency remained stable after P42 (Fig. 2A,B). This is in line with the reported
185 developmental increase of sEPSCs onto L5 fast-spiking interneurons in mPFC slices in a similar
186 developmental period (Caballero et al., 2014a). The amplitudes of excitatory inputs remained stable
187 over this period (Fig. 2C). The rise and decay times of sEPSCs were comparable between all time points
188 (Fig. 2D,E). SPD did not affect any aspect of sEPSCs (Fig. 2A-E). These data indicate that similar to
189 inhibitory synapses, excitatory synaptic inputs to L5 neurons in the mPFC undergo strong growth

Fig. 2. (A) Frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in Baseline (P21), CTL and SPD slices (P42 & P85) (CTL 1W-ANOVA, Time: p<0.001; SPD 1W-ANOVA, Time: p<0.001; 2W-ANOVA, Condition: p=0.55, Time: p=0.40, Interaction: p=0.99). (B) Percentage increase of sEPSC frequency from P21 to P42 and P42 to P85 for both CTL and SPD mPFC slices (P21-P42 T-Test, p=0.73; P42-P85 T-Test, p=0.93). (C-E) Amplitude (C) (CTL 1W-ANOVA, Time: p=0.94; SPD 1W-ANOVA, Time: p=0.22; 2W-ANOVA, Condition: p=0.36, Time: p=0.55, Interaction: p=0.27), Rise time (D) (CTL 1W-ANOVA, Time: p=0.15; SPD 1W-ANOVA, Time: p=0.11; 2W-ANOVA, Condition: p=0.70, Time: p=0.76, Interaction: p=0.38) and Decay time (E) (CTL 1W-ANOVA, Time: p=0.052; SPD 1W-ANOVA, Time: p=0.84; 2W-ANOVA, Condition: p=0.76, Time: p=0.11, Interaction: p=0.14) of sEPSC events. (A-E) Data from 11 (P21), 10 (P42 CTL), 9 (P42 SPD), 11 (P85 CTL), 10 (P85 SPD) cells. Statistical range: * p≤0.05; ** p<0.01; *** p<0.001

190 between P21 and P42. However, in stark contrast to inhibitory synapses, the development of excitatory
 191 synapses is not affected by SPD.

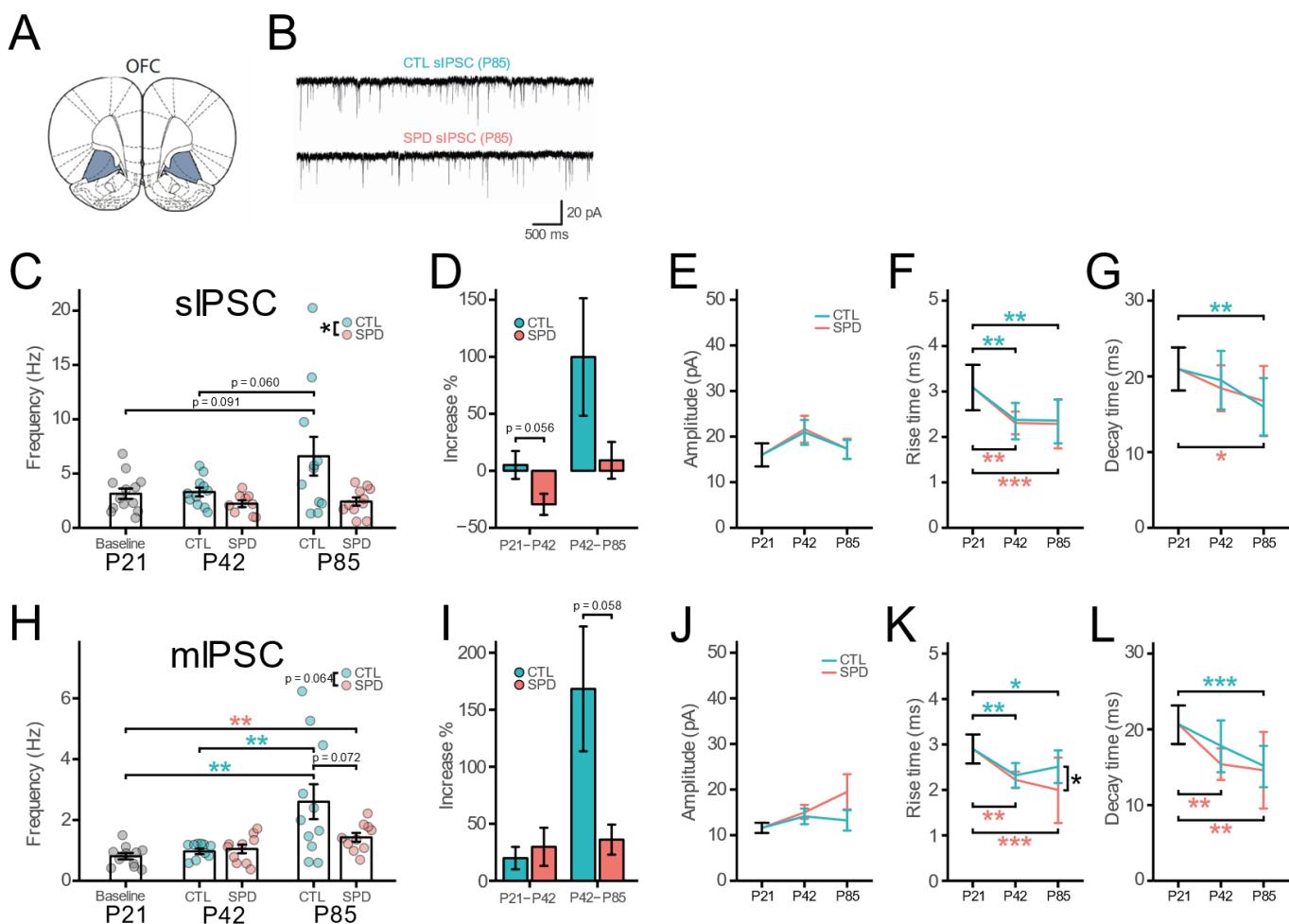

192 We also assessed the intrinsic excitability of L5 pyramidal neurons in mPFC slices from CTL and
 193 SPD rats. We recorded action potentials (APs) during a series of increasing current injections. We
 194 observed that the intrinsic excitability of CTL cells slightly decreased from P21 to P42 and this was
 195 maintained in the P85 rats (Fig. 3A). AP threshold remained stable between P21 and P42 but was
 196 slightly lower at P85 (Fig. 3B). The membrane potential (Fig. 3C) and input resistance (Fig. 3D) were not
 197 different between time points. In slices from SPD rats, the developmental reduction in intrinsic
 198 excitability between P21 and P42 (Fig. 3E) was comparable to the CTL animals (comparing Fig. 3A and
 199 Fig. 3E, P42 CTL-SPD 2W-ANOVA, condition: p=0.097). This reduction was partly reversed, especially at
 200 lower current injections, in P85 rats. When comparing CTL and SPD cells at P85, no differences were
 201 found in AP number (comparing Fig. 3A and Fig. 3E, P85 CTL-SPD 2W-ANOVA, condition: p=0.79). The
 202 AP threshold (Fig. 3B), resting membrane potential (Fig. 3C) and input resistance (Fig. 3D) of the
 203 recorded neurons remained unaffected by SPD, in line with current literature (Baarendse et al., 2013;

Fig. 3. (A) Number of action potentials after current injections in Baseline (P21) and CTL (P42 & P85) mPFC slices (2W-ANOVA, AP: $p<0.001$, Current: $p<0.001$, Interaction: $p=0.93$). (B-D) AP Threshold (B) (CTL 1W-ANOVA, Time: $p=0.039$; SPD 1W-ANOVA, Time: $p=0.51$; 2W-ANOVA, Condition: $p=0.86$, Time: $p=0.020$. Interaction: $p=0.36$), resting potential (C) (CTL 1W-ANOVA, Time: $p=0.68$; SPD 1W-ANOVA, Time: $p=0.77$; 2W-ANOVA, Condition: $p=0.55$, Time: $p=0.53$, Interaction: $p=0.70$) and input resistance (D) (CTL 1W-ANOVA, Time: $p=0.26$; SPD 1W-ANOVA, Time: $p=0.31$; 2W-ANOVA, Condition: $p=0.13$. Time: $p=0.26$, Interaction: $p=0.24$). (E) Number of action potentials after current injections in Baseline (P21) and SPD (P42 & P85) slices (2W-ANOVA, AP: $p<0.001$, Current: $p<0.001$, Interaction: $p=0.030$). (A-E) Data from 33 (P21), 16 (P42 CTL), 21 (P42 SPD), 15 (P85 CTL), 14 (P85 SPD) cells. Statistical range: * $p\leq0.05$; ** $p<0.01$; *** $p<0.001$

204 Bicks et al., 2020; Yamamoto et al., 2020). Our data indicate that AP firing in L5 pyramidal neurons is
 205 slightly reduced over development and that this is only mildly affected by SPD.

206 In contrast to the mPFC, developmental studies on circuitry development in the OFC are scarce
 207 or even absent. We therefore compared the development of the OFC and the mPFC and we assessed
 208 how SPD affects OFC development. Interestingly, the frequency of sIPSCs on OFC L5 pyramidal neurons
 209 at P21 (Fig. 4A,B) was 6-fold higher than in mPFC P21 slices in CTL rats. The sIPSC frequency remained
 210 stable between P21 and P42, and between P42 and P85 the frequency doubled (Fig. 4C,D). Similar to
 211 the mPFC, sIPSC amplitudes remained stable across time points (Fig. 4E) while the rise and decay
 212 kinetics became slightly faster in P42 and P85 rats compared to juvenile animals (Fig. 4F,G). This
 213 suggests that inhibitory synaptic inputs to L5 cells in the OFC only undergo growth after P42.

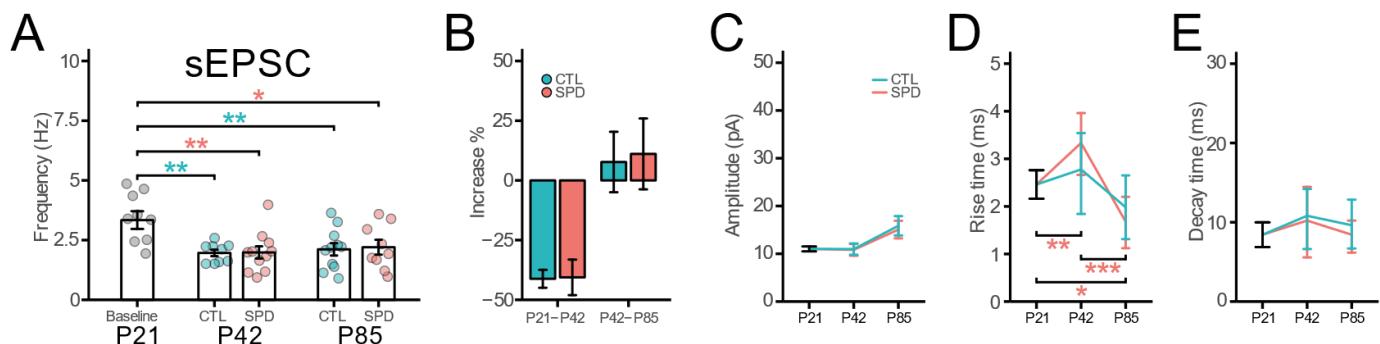


Fig. 4. **(A)** Schematic diagram depicting the recording site in the OFC. **(B)** Example traces of spontaneous inhibitory postsynaptic currents (sIPSCs) in L5 pyramidal cells in slices from P85 control (CTL) and SPD rats. **(C)** Frequency of sIPSCs in Baseline (P21), CTL and SPD slices (P42 & P85) (CTL 1W-ANOVA, Time: p=0.045; SPD 1W-ANOVA, Time: p=0.26; 2W-ANOVA, Condition: p=0.012, Time: p=0.073, Interaction: p=0.13). **(D)** Percentage increase of sIPSC frequency from P21 to P42 and P42 to P85 for both CTL and SPD slices (P21-P42 T-Test, p=0.056; P42-P85 T-Test, p=0.12). **(E-G)** Amplitude (E) CTL 1W-ANOVA, Time: p=0.35; SPD 1W-ANOVA, Time: p=0.310; 2W-ANOVA, Condition: p=0.93, Time: p=0.12, Interaction: p=0.92), Rise time (F) (CTL 1W-ANOVA, Time: p<0.001; SPD 1W-ANOVA, Time: p<0.001; 2W-ANOVA, Condition: p=0.74, Time: p=0.95, Interaction: p=0.97) and Decay time (G) (CTL 1W-ANOVA, Time: p=0.007; SPD 1W-ANOVA, Time: p=0.032; 2W-ANOVA, Condition: p=0.85, Time: p=0.044, Interaction: p=0.47) of sIPSC events. **(H)** Frequency of miniature inhibitory postsynaptic currents (mIPSCs) in Baseline (P21), CTL and SPD slices (P42 & P85) (CTL 1W-ANOVA, Time: p=0.002; SPD 1W-ANOVA, Time: p=0.008; 2W-ANOVA, Condition: p=0.064, Time: p=0.006, Interaction: p=0.077). **(I)** Percentage increase of mIPSC frequency from P21 to P42 and P42 to P85 for both CTL and SPD slices (P21-P42 T-Test, p=0.76; P42-P85 T-Test, p=0.058). **(J-L)** Amplitude (J) (CTL 1W-ANOVA, Time: p=0.51; SPD 1W-ANOVA, Time: p=0.084; 2W-ANOVA, Condition: p=0.17, Time: p=0.53, Interaction: p=0.27), Rise time (K) (CTL 1W-ANOVA, Time: p=0.002; SPD 1W-ANOVA, Time: p<0.001; 2W-ANOVA, Condition: p=0.035, Time: p=0.89, Interaction: p=0.16) and Decay time (L) (CTL 1W-ANOVA, Time: p<0.001; SPD 1W-ANOVA, Time: p=0.001; 2W-ANOVA, Condition: p=0.27, Time: p=0.15, Interaction: p=0.43) of mIPSC events. (C-G) Data from 13 (P21), 11 (P42 CTL), 9 (P42 SPD), 11 (P85 CTL), 11 (P85 SPD) cells. (E-L) Data from 11 (P21), 9 (P42 CTL), 10 (P42 SPD), 11 (P85 CTL), 10 (P85 SPD) cells. Statistical range: * p≤0.05; ** p<0.01; *** p<0.001

215 Similar to the mPFC, sIPSC frequency in the OFC in slices from SPD rats was reduced compared
216 to CTL at P85. The sIPSC frequency in SPD slices showed a small reduction between P21 and P42, and
217 the increase that was observed in CTL rats between P42 and P85 was completely absent in SPD rats
218 (Fig. 4C,D). Similar to our observations in the mPFC, SPD did not affect sIPSC amplitude (Fig. 4E) or the
219 acceleration in rise and decay kinetics (Fig. 4F, G). These results show that SPD reduces sIPSC frequency
220 slightly during the deprivation period and impairs the growth of inhibitory synapses onto L5 neurons
221 in the OFC afterwards.

222 The developmental time course of mIPSCs was comparable to that of sIPSCs, with no change
223 in frequency between P21 and P42 and a ~2-fold increase between P42 and P85 (Fig. 4H,I). Event
224 amplitudes remained unchanged across the different time points (Fig. 4J) with both rise and decay
225 kinetics becoming faster after P21 (Fig. 4K,L), similar to the mPFC. We did not find any effect of SPD on
226 the mIPSC frequency between P21 and P42 (Fig. 4H), while the increase between P42 and P85 was
227 substantially reduced after SPD compared to CTL (Fig. 4I). SPD did not affect mIPSC amplitude (Fig. 4J),
228 rise (Fig. 4K) and decay time (Fig. 4L). As the frequency of sIPSCs was substantially higher than of
229 mIPSCs at P21, it is clear that there was already an activity-dependent component in the sIPSCs in the
230 OFC at this early age, which was different from the mPFC. The effects of SPD are comparable between
231 spontaneous and miniature inhibitory currents, suggesting that the SPD effect does not depend on
232 activity but reflects a reduction in the number of inhibitory synapses after P42.

233 We also assessed the development of excitatory synapses in the OFC. Similar to the inhibitory
234 synapses, sEPSC frequency was higher at P21 in the OFC compared to the mPFC. sEPSC frequency
235 decreased between P21 and P42 and then remained stable until P85 (Fig. 5A,B). Amplitudes showed a
236 small increase between P42 and P85 (Fig. 5C). sEPSC rise kinetics became faster with development (Fig.
237 5D), while the decay kinetics remained stable (Fig. 5E). SPD rats showed a similar decrease in sEPSC
238 frequency between P21 and P42 and an increase in sEPSC amplitude between P42 and P85 compared

Fig. 5. (A) Frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in Baseline (P21), CTL and SPD OFC slices (P42 & P85) (CTL 1W-ANOVA, Time: $p=0.002$; SPD 1W-ANOVA, Time: $p=0.008$; 2W-ANOVA, Condition: $p=0.88$, Time: $p=0.47$, Interaction: $p=0.89$). (B) Percentage increase of sEPSC frequency from P21 to P42 and P42 to P85 for both CTL and SPD slices (P21-P42 T-Test, $p=0.95$; P42-P85 T-Test, $p=0.87$). (C-E) Amplitude (C) (CTL 1W-ANOVA, Time: $p=0.038$; SPD 1W-ANOVA, Time: $p=0.054$; 2W-ANOVA, Condition: $p=0.57$, Time: $p=0.009$, Interaction: $p=0.84$), Rise time (D) (CTL 1W-ANOVA, Time: $p=0.083$; SPD 1W-ANOVA, Time: $p<0.001$; 2W-ANOVA, Condition: $p=0.24$, Time: $p<0.001$, Interaction: $p=0.048$) and Decay time (E) (CTL 1W-ANOVA, Time: $p=0.44$; SPD 1W-ANOVA, Time: $p=0.41$; 2W-ANOVA, Condition: $p=0.46$, Time: $p=0.30$, Interaction: $p=0.61$) of sEPSC events. (A-E) Data from 8 (P21), 9 (P42 CTL), 11 (P42 SPD), 11 (P85 CTL), 9 (P85 SPD) cells. Statistical range: * $p\le0.05$; ** $p<0.01$; *** $p<0.001$

239 to CTL rats. No differences were found in rise and decay kinetics after SPD (Fig. 5A-E). This indicates

240 that similar to the mPFC, SPD did not affect the development of excitatory currents in the OFC.

241 Intrinsic excitability of layer 5 pyramidal neurons was assessed in OFC slices from CTL and SPD

242 rats. Similar to what was observed in the mPFC, the intrinsic excitability of OFC cells decreased from

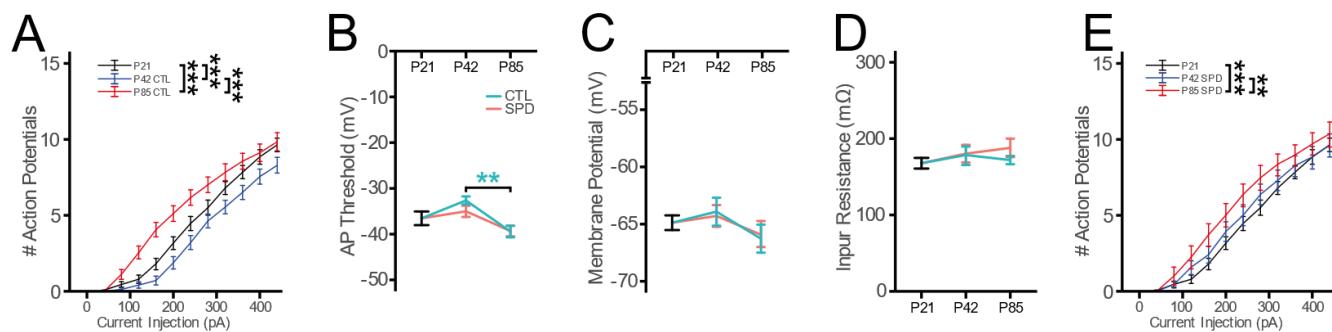
243 P21 to P42, but then recovered at P85 (Fig. 6A). AP threshold increased between P21 and P42 after

244 which a small decrease was found at P85 (Fig. 6B), eventually coming back at P21 levels. The membrane

245 potential (Fig. 6C) and input resistance (Fig. 6D) did not change over this developmental period. In SPD

246 slices, the transient reduction in intrinsic excitability between P21 and P42 was absent (comparing Fig.

247 6A and Fig. 6E, P42 CTL-SPD 2W-ANOVA, condition: $p<0.001$), and AP firing rates showed a gradual


248 increase over development (Fig. 6E). AP firing rates at P85 were comparable between CTL and SPD

249 slices (comparing Fig. 6A and Fig. 6E, P85 CTL-SPD 2W-ANOVA, condition: $p=0.56$). The membrane

250 potential (Fig. 6B), AP threshold (Fig. 6C) and input resistance (Fig. 6D) of the recorded neurons were

251 unaffected after SPD. These experiments show that SPD has a small, but transient, effect on the

252 intrinsic excitability of L5 cells in the OFC.

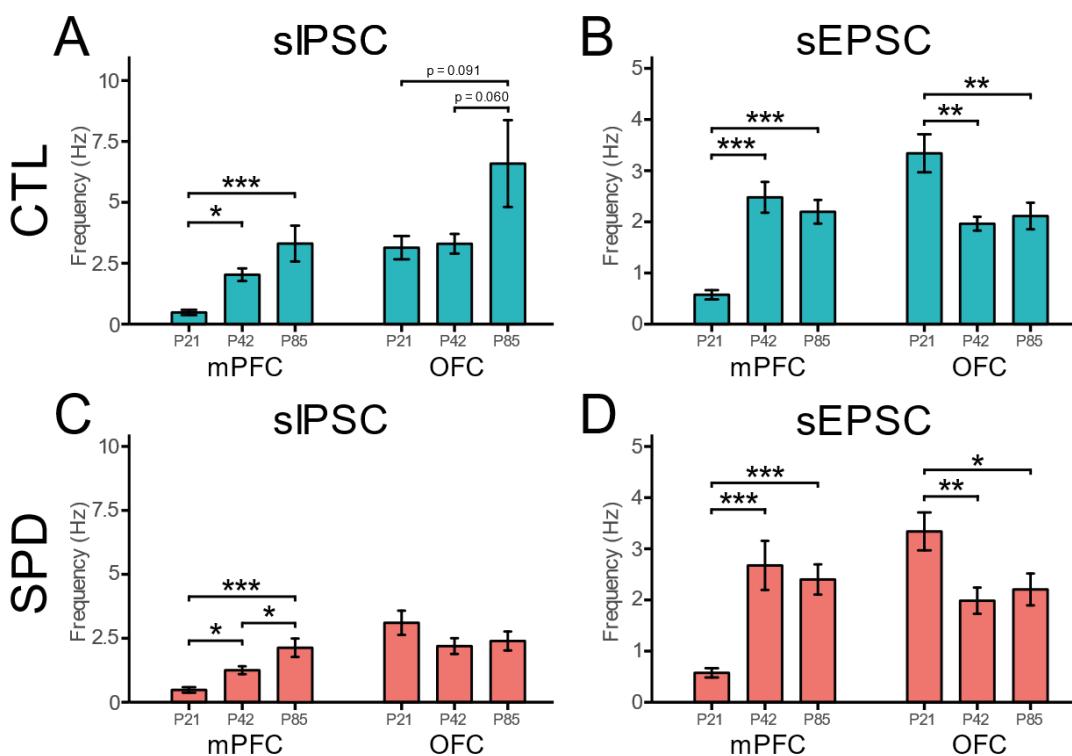


Fig. 6. (A) Number of action potentials after current injections in Baseline (P21) and CTL (P42 & P85) OFC slices (2W-ANOVA, AP: $p<0.001$, Current: $p<0.001$, Interaction: $p<0.001$). (B-D) AP Threshold (B) (CTL 1W-ANOVA, Time: $p=0.002$; SPD 1W-ANOVA, Time: $p=0.16$; 2W-ANOVA, Condition: $p=0.47$. Time: $p<0.001$, Interaction: $p=0.31$), resting potential (C) (CTL 1W-ANOVA, Time: $p=0.31$; SPD 1W-ANOVA, Time: $p=0.60$; 2W-ANOVA, Condition: $p=0.88$, Time: $p=0.11$, Interaction: $p=0.70$) and input resistance (D) (CTL 1W-ANOVA, Time: $p=0.74$; SPD 1W-ANOVA, Time: $p=0.46$; 2W-ANOVA, Condition: $p=0.51$. Time: $p=0.97$, Interaction: $p=0.59$). (E) Number of action potentials after current injections in Baseline (P21) and SPD (P42 & P85) slices (2W-ANOVA, AP: $p<0.001$, Current: $p<0.001$, Interaction: $p=0.99$). (A-E) Data from 24 (P21), 24 (P42 CTL), 27 (P42 SPD), 18 (P85 CTL), 13 (P85 SPD) cells. Statistical range: * $p\leq0.05$; ** $p<0.01$; *** $p<0.001$

253 Together, these data highlight the differential development of synaptic connections onto L5
 254 pyramidal cells in the mPFC and OFC. At P21, inhibitory and excitatory synaptic inputs onto L5
 255 pyramidal cells were already present in the OFC, while these were largely absent, or at least silent, in
 256 the mPFC (Fig. 7A,B). SPD strongly affected the development of inhibitory inputs in both brain regions
 257 (Fig. 7D) while leaving excitatory synapses unaffected (Fig. 7D) and with only a transient effect on the
 258 firing properties of L5 cells. In both brain regions, inhibitory currents were reduced in adult slices from
 259 SPD rats, but this reduction occurred at different times in the OFC and mPFC. The strongest reduction
 260 of inhibitory inputs in the mPFC was observed immediately after SPD at P42, while the reduction of
 261 sIPSCs in the OFC occurred between P42 and P85.

262 Discussion

263 In this study we present the developmental timeline of inhibitory and excitatory synaptic inputs onto
 264 layer 5 pyramidal neurons in two subregions of the rat PFC, i.e. the mPFC and OFC. We found that
 265 these subregions develop with a differential time course and that SPD affects inhibitory but not

Fig. 7. (A,B) Frequency of sIPSCs (A) (mPFC 1W-ANOVA, Time: $p<0.001$; OFC 1W-ANOVA, Time: $p=0.049$) and sEPSCs (B) (mPFC 1W-ANOVA, Time: $p<0.001$; OFC 1W-ANOVA, Time: $p=0.002$) in Baseline (P21) and CTL slices (P42 & P85) of both the mPFC and OFC. **(C,D)** Frequency of sIPSCs (C) (mPFC 1W-ANOVA, Time: $p<0.001$; OFC 1W-ANOVA, Time: $p=0.265$) and sEPSCs (D) (mPFC 1W-ANOVA, Time: $p<0.001$; OFC 1W-ANOVA, Time: $p=0.007$) in Baseline (P21) and SPD slices (P42 & P85) of both the mPFC and OFC. Statistical range: * $p\leq0.05$; ** $p<0.01$; *** $p<0.001$

266 excitatory inputs onto L5 pyramidal neurons in both regions, resulting in a specific reduction of
 267 inhibitory currents in adulthood. However, the reduction in IPSCs in the two PFC subregions arose via
 268 differential developmental trajectories. In the mPFC, development was mostly affected by SPD
 269 between P21 and P42, while IPSCs in the OFC were mainly affected after P42.

270 Social play enhances neural activity in the PFC and in corticostriatal and limbic structures which
 271 are connected to the PFC in the adult brain (Gordon et al., 2002, 2003; Hoover and Vertes, 2011; Van
 272 Kerkhof et al., 2014). Social play is almost absent before P21 (Baenninger, 1967; Panksepp, 1981), so
 273 activity in the PFC generated by social play is expected to be low at that age. During early adolescence
 274 (~P30 - P42), play is abundant and play-induced neural activity is likely one of the driving forces of PFC

275 maturation. Both the OFC and mPFC have been implicated in social play behavior (Schneider and Koch,
276 2005; Van Kerkhof et al., 2013), but they exert a differential function in social interactions and cognitive
277 flexibility. The mPFC in rats is important for shifting between cognitive strategies (Ragozzino et al.,
278 1999; Birrell and Brown, 2000) and for coordination of movements during social interactions (Bell et
279 al., 2010). In contrast, the OFC may be more involved in shifting between stimulus-reward associations
280 (Ghods-Sharifi et al., 2008) and response modulation when interacting with different social play
281 partners (Pellis et al., 2006). The current study shows that social play is one of the important driving
282 forces of PFC maturation, and that SPD differentially affects the development of synaptic connections
283 in the mPFC and the OFC.

284 To the best of our knowledge, our study is the first study that explicitly compares the
285 developmental trajectory of inhibitory and excitatory synaptic inputs across these developmental
286 timepoints in both the mPFC and OFC. So far, there have been a handful of studies that examined the
287 development of postsynaptic inputs in the mPFC (Caballero et al., 2014b; Cass et al., 2014; Miyamae
288 et al., 2017; Kroon et al., 2019; Kalemaki et al., 2020), but the development of the OFC circuitry has not
289 been addressed. Our data show that the synaptic connections onto L5 cells in the mPFC and OFC
290 develop via distinct trajectories (Fig. 7A,B). In the mPFC, the frequency of inhibitory inputs increases
291 across juvenile and adolescent development with a strong increase in activity-dependent currents
292 between P21 and P42. This coincides well with the described transition from an inhibitory system
293 dominated mostly by regular spiking (calretinin (CR)-positive) to fast-spiking (parvalbumin (PV)-
294 positive) interneurons (Caballero et al., 2014a; Caballero and Tseng, 2016) and the increasing
295 excitatory drive onto PV interneurons (Caballero et al., 2014a). The modest additional increase in sIPSC
296 frequency between P42 and P85 is also in agreement with a previous report (Cass et al., 2014). In
297 contrast, the frequency of inhibitory inputs in the OFC was already high at P21 and remained stable
298 until P42 (Fig. 7A). Comparison of mIPSC and sIPSC frequencies (Figs 1 and 4) indicates a strong activity-
299 dependent contribution to the inhibitory drive, which occurs earlier in the OFC than in the mPFC. This
300 suggests that the transition of the inhibitory system to a PV interneuron-dominated system occurred

301 earlier in the OFC than in the mPFC. The development of excitatory inputs to L5 cells increased in the
302 mPFC between P21 and P42 (Caballero et al., 2014a), but decreased in the OFC to reach comparable
303 values at P42 (Fig. 7B). In both regions, sEPSC frequency remained stable after P42 until adulthood.
304 Together, our data demonstrates a clear difference in the development of synaptic circuitry in these
305 two main subregions of the rat PFC, which likely influences how they are affected by early life
306 experience.

307 The mPFC and OFC are reciprocally connected, which was shown by extensive anatomical
308 studies using antero- and retrograde tracers (Vertes, 2004; Hoover and Vertes, 2007, 2011). It is
309 therefore likely that a synaptic change in one of the regions will affect the circuit development in the
310 other. Consistent with our previous findings (Bijlsma et al., 2022), we observed that SPD affects the
311 inhibitory, but not the excitatory, connections in both PFC regions. SPD resulted in reduced synaptic
312 inhibition, reminiscent of the impaired development of inhibitory connections that has been described
313 after sensory deprivation (Mowery et al., 2019; Reh et al., 2020). The reduction in IPSCs occurred
314 before P42 in the mPFC, while inhibitory currents in the OFC were only affected after P42. This late
315 effect in the OFC could either reflect a specific effect of the recovery from SPD in the OFC, or an indirect
316 consequence of the reduced IPSCs in the mPFC and possibly other regions. It will be important to
317 determine which inputs to the OFC are responsible for the difference in excitatory and inhibitory drive
318 of L5 cells in the mPFC and OFC at P21, before the onset of play.

319 Together, our results demonstrate that excitatory and inhibitory synaptic inputs in the mPFC
320 and OFC follow distinct developmental trajectories, and that lack of social play experience disturbs this
321 development in a region-specific manner. This study highlights the differential vulnerability of PFC
322 subregions to developmental insults, such as the lack of social play, which likely contributes to the
323 multifaceted impact on cognitive performance in adulthood.

324 **Acknowledgements**

325 This work was supported by the Netherlands Organisation for Scientific Research (NWO)
326 (ALWOP.2015.105).

327

328 **References**

329 Baarendse PJJ, Counotte DS, O'Donnell P, Vanderschuren LJM (2013) Early social experience is critical for the
330 development of cognitive control and dopamine modulation of prefrontal cortex function.
331 *Neuropsychopharmacology* 38:1485–1494.

332 Baenninger LP (1967) Comparison of behavioural development in socially isolated and grouped rats. *Anim
333 Behav* 15:312–323.

334 Bechara A, Damasio AR (2005) The somatic marker hypothesis: A neural theory of economic decision. *Games
335 Econ Behav* 52:336–372.

336 Bell HC, McCaffrey DR, Forgie ML, Kolb B, Pellis SM (2009) The Role of the Medial Prefrontal Cortex in the Play
337 Fighting of Rats. *Behav Neurosci* 123:1158–1168.

338 Bell HC, Pellis SM, Kolb B (2010) Juvenile peer play experience and the development of the orbitofrontal and
339 medial prefrontal cortices. *Behav Brain Res* 207:7–13.

340 Bicks LK, Yamamoto K, Flanigan ME, Kim JM, Kato D, Lucas EK, Koike H, Peng MS, Brady DM, Chandrasekaran S,
341 Norman KJ, Smith MR, Clem RL, Russo SJ, Akbarian S, Morishita H (2020) Prefrontal parvalbumin
342 interneurons require juvenile social experience to establish adult social behavior. *Nat Commun* 11
343 Available at: <http://dx.doi.org/10.1038/s41467-020-14740-z>.

344 Bijlsma A, Omrani A, Spoelder M, Verharen JPH, Bauer L, Cornelis C, de Zwart B, van Dorland R, Vanderschuren
345 LJM, Wierenga CJ (2022) Social play behavior is critical for the development of prefrontal inhibitory
346 synapses and cognitive flexibility in rats. *J Neurosci* 00:JN-RM-0524-22.

347 Caballero A, Flores-Barrera E, Cass DK, Tseng KY (2014a) Differential regulation of parvalbumin and calretinin

348 interneurons in the prefrontal cortex during adolescence. *Brain Struct Funct* 219:395–406.

349 Caballero A, Granberg R, Tseng KY (2016) Mechanisms contributing to prefrontal cortex maturation during
350 adolescence. *Neurosci Biobehav Rev* 70:4–12 Available at:
351 <http://dx.doi.org/10.1016/j.neubiorev.2016.05.013>.

352 Caballero A, Thomases DR, Flores-Barrera E, Cass DK, Tseng KY (2014b) Emergence of GABAergic-dependent
353 regulation of input-specific plasticity in the adult rat prefrontal cortex during adolescence.
354 *Psychopharmacology (Berl)* 231:1789–1796.

355 Caballero A, Tseng KY (2016) GABAergic Function as a Limiting Factor for Prefrontal Maturation during
356 Adolescence. *Trends Neurosci* 39:441–448 Available at: <http://dx.doi.org/10.1016/j.tins.2016.04.010>.

357 Cass DK, Flores-Barrera E, Thomases DR, Vital WF, Caballero A, Tseng KY (2014) CB1 cannabinoid receptor
358 stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal
359 cortex. *Mol Psychiatry* 19:536–543.

360 Courtin J, Chaudun F, Rozeske RR, Karalis N, Gonzalez-Campo C, Wurtz H, Abdi A, Baufreton J, Bienvenu TCM,
361 Herry C (2014) Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression.
362 *Nature* 505:92–96.

363 Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: Neural and
364 neurochemical substrates. *Neurosci Biobehav Rev* 28:771–784.

365 Euston DR, Gruber AJ, McNaughton BL (2012) The Role of Medial Prefrontal Cortex in Memory and Decision
366 Making. *Neuron* 76:1057–1070 Available at: <http://dx.doi.org/10.1016/j.neuron.2012.12.002>.

367 Ghods-Sharifi S, Haluk DM, Floresco SB (2008) Differential effects of inactivation of the orbitofrontal cortex on
368 strategy set-shifting and reversal learning. *Neurobiol Learn Mem* 89:567–573.

369 Gordon NS, Burke S, Akil H, Watson SJ, Panksepp J (2003) Socially-induced brain ‘fertilization’: play promotes
370 brain derived neurotrophic factor transcription in the amygdala and dorsolateral frontal cortex in juvenile
371 rats. *Neurosci Lett* 341:17–20.

372 Gordon NS, Kollack-Walker S, Akil H, Panksepp J (2002) Expression of c-fos gene activation during rough and

373 tumble play in juvenile rats. *Brain Res Bull* 57:651–659.

374 Hardung S, Epple R, Jäckel Z, Eriksson D, Uran C, Senn V, Gibor L, Yizhar O, Diester I (2017) A Functional
375 Gradient in the Rodent Prefrontal Cortex Supports Behavioral Inhibition. *Curr Biol* 27:549–555.

376 Hashimoto T, Nguyen QL, Rotaru D, Keenan T, Arion D, Beneyto M, Gonzalez-burgos G, Lewis DA (2010)
377 Protracted Developmental Trajectories of GABA_A Receptor α 1 and α 2 Subunit Expression in Primate
378 Prefrontal Cortex. *Biol Psychiatry* 65:1015–1023.

379 Himmller BT, Mychasiuk R, Nakahashi A, Himmller SM, Pellis SM, Kolb B (2018) Juvenile social experience and
380 differential age-related changes in the dendritic morphologies of subareas of the prefrontal cortex in rats.
381 *Synapse* 72:1–9.

382 Hol T, Van Den Berg CL, Van Ree JM, Spruijt BM (1999) Isolation during the play period in infancy decreases
383 adult social interactions in rats. *Behav Brain Res* 100:91–97.

384 Hoover WB, Vertes RP (2007) Anatomical analysis of afferent projections to the medial prefrontal cortex in the
385 rat. *Brain Struct Funct* 212:149–179.

386 Hoover WB, Vertes RP (2011) Projections of the medial orbital and ventral orbital cortex in the rat. *J Comp
387 Neurol* 519:3766–3801.

388 Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A (2017) The neural basis of reversal learning: An
389 updated perspective. *Neuroscience* 345:12–26 Available at:
390 <http://dx.doi.org/10.1016/j.neuroscience.2016.03.021>.

391 Kalemaki K, Xu X, Hanganu-Opatz IL, Sidiropoulou K, Karagogeos D (2020) Early postnatal inhibitory circuit
392 development in the mouse medial prefrontal and primary somatosensory cortex. *bioRxiv*.

393 Kolb B, Mychasiuk R, Muhammad A, Li Y, Frost DO, Gibb R (2012) Experience and the developing prefrontal
394 cortex. *Proc Natl Acad Sci U S A* 109:17186–17196.

395 Kroon T, van Hugte E, van Linge L, Mansvelder HD, Meredith RM (2019) Early postnatal development of
396 pyramidal neurons across layers of the mouse medial prefrontal cortex. *Sci Rep* 9:1–16.

397 Larsen B, Luna B (2018) Adolescence as a neurobiological critical period for the development of higher-order

398 cognition. *Neurosci Biobehav Rev* 94:179–195 Available at:
399 <https://doi.org/10.1016/j.neubiorev.2018.09.005>.

400 Lodge DJ (2011) The medial prefrontal and orbitofrontal cortices differentially regulate dopamine system
401 function. *Neuropsychopharmacology* 36:1227–1236 Available at: <http://dx.doi.org/10.1038/npp.2011.7>.

402 Manduca A, Campolongo P, Palmery M, Vanderschuren LJM, Cuomo V, Trezza V (2014) Social play behavior,
403 ultrasonic vocalizations and their modulation by morphine and amphetamine in Wistar and Sprague-
404 Dawley rats. *Psychopharmacology (Berl)* 231:1661–1673.

405 Markham JA, Morris JR, Juraska JM (2007) Neuron number decreases in the rat ventral, but not dorsal, medial
406 prefrontal cortex between adolescence and adulthood. *Neuroscience* 144:961–968.

407 Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. *Annu Rev Neurosci* 24:167–202.

408 Miyamae T, Chen K, Lewis DA, Gonzalez-Burgos G (2017) Distinct physiological maturation of parvalbumin-
409 positive neuron subtypes in mouse prefrontal cortex. *J Neurosci* 37:4883–4902.

410 Mowery TM, Caras ML, Hassan SI, Wang DJ, Dimidschstein J, Fishell G, Sanes DH (2019) Preserving inhibition
411 during developmental hearing loss rescues auditory learning and perception. *J Neurosci* 39:8347–8361.

412 Murphy MJM, Deutch AY (2018) Organization of afferents to the orbitofrontal cortex in the rat. *J Comp Neurol*
413 526:1498–1526.

414 Murray AJ, Woloszynowska-Fraser MU, Ansel-Bollepalli L, Cole KLH, Foggetti A, Crouch B, Riedel G, Wulff P
415 (2015) Parvalbumin-positive interneurons of the prefrontal cortex support working memory and cognitive
416 flexibility. *Sci Rep* 5:1–14 Available at: <http://dx.doi.org/10.1038/srep16778>.

417 O'Doherty J, Critchley H, Deichmann R, Dolan RJ (2003) Dissociating valence of outcome from behavioral
418 control in human orbital and ventral prefrontal cortices. *J Neurosci* 23:7931–7939.

419 Panksepp J (1981) The ontogeny of play in rats. *Dev Psychobiol* 14:327–332.

420 Panksepp J, Siviy S, Normansell L (1984) The psychobiology of play: Theoretical and methodological
421 perspectives. *Neurosci Biobehav Rev* 8:465–492.

422 Pellis SM, Hastings E, Shimizu T, Kamitakahara H, Komorowska J, Forgie ML, Kolb B (2006) The effects of orbital

423 frontal cortex damage on the modulation of defensive responses by rats in playful and nonplayful social
424 contexts. *Behav Neurosci* 120:72–84.

425 Pellis SM, Pellis V (2009) The playful brain: venturing to the limits of neuroscience. London, UK: Oneworld
426 Publications.

427 Pellis SM, Pellis VC, Bell HC (2010) The function of play in the development of the social brain. *Am J Play* 2:278–
428 296 Available at: <https://mail.google.com/mail/u/1/>.

429 Posner MI, Rothbart MK, Sheese BE, Tang Y (2007) The anterior cingulate gyrus and the mechanism of self-
430 regulation. *Cogn Affect Behav Neurosci* 7:391–395.

431 Reh RK, Dias BG, Nelson III CA, Kaufer D, Werker JF, Kolb B, Levine JD, Hensch TK (2020) Critical period
432 regulation across multiple timescales. *Proc Natl Acad Sci* 201820836:online ahead of print.

433 Rolls ET (2000) The orbitofrontal cortex and reward. *Cereb Cortex* 10:284–294.

434 Schneider M, Koch M (2005) Deficient social and play behavior in juvenile and adult rats after neonatal cortical
435 lesion: Effects of chronic pubertal cannabinoid treatment. *Neuropsychopharmacology* 30:944–957.

436 Schoenbaum G, Chiba AA, Gallagher M (1998) Orbitofrontal cortex and basolateral amygdala encode expected
437 outcomes during learning. *Nat Neurosci* 1:155–159.

438 Schoenbaum G, Roesch MR, Stalnaker TA, Takahashi YK (2009) A new perspective on the role of the
439 orbitofrontal cortex in adaptive behaviour. *Nat Rev Neurosci* Available at:
440 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3011229/pdf/nihms259543.pdf%0Ahttp://dx.doi.org/10.1016/j.cell.2015.07.046%0Ahttp://dx.doi.org/10.1038/nature12024%0Ahttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf>.

443 Singer BF, Tanabe LM, Gorny G, Jake-Matthews C, Li Y, Kolb B, Vezina P (2009) Amphetamine-Induced Changes
444 in Dendritic Morphology in Rat Forebrain Correspond to Associative Drug Conditioning Rather than
445 Nonassociative Drug Sensitization. *Biol Psychiatry* 65:835–840 Available at:
446 <http://dx.doi.org/10.1016/j.biopsych.2008.12.020>.

447 Špinka M, Newberry RC, Bekoff M (2001) Mammalian play: Training for the unexpected. *Q Rev Biol* 76:141–168.

448 Sriparna Ghosal, Brendan Hare and RSD (2017) Prefrontal Cortex GABAergic Deficits and Circuit Dysfunction in
449 the Pathophysiology and Treatment of Chronic Stress and Depression. *Physiol Behav* 176:139–148.

450 Sul JH, Kim H, Huh N, Lee D, Jung MW (2010) Distinct roles of rodent orbitofrontal and medial prefrontal cortex
451 in decision making. *Neuron* 66:449–460 Available at: <http://dx.doi.org/10.1016/j.neuron.2010.03.033>.

452 Tanaka S (2008) Dysfunctional GABAergic inhibition in the prefrontal cortex leading to “psychotic”
453 hyperactivation. *BMC Neurosci* 9:12–14.

454 Thomases DR, Cass DK, Tseng KY (2013) Periadolescent exposure to the NMDA receptor antagonist MK-801
455 impairs the functional maturation of local GABAergic circuits in the adult prefrontal cortex. *J Neurosci*
456 33:26–34.

457 Tseng KY, Lewis BL, Hashimoto T, Sesack SR, Kloc M, Lewis DA, O'Donnell P (2008) A neonatal ventral
458 hippocampal lesion causes functional deficits in adult prefrontal cortical interneurons. *J Neurosci*
459 28:12691–12699.

460 Van Den Berg CL, Hol T, Van Ree JM, Spruijt BM, Everts H, Koolhaas JM (1999) Play is indispensable for an
461 adequate development of coping with social challenges in the rat. *Dev Psychobiol* 34:129–138.

462 Van Kerkhof LW, Damsteegt R, Trezza V, Voorn P, Vanderschuren LJ (2013) Social play behavior in adolescent
463 rats is mediated by functional activity in medial prefrontal cortex and striatum.
464 *Neuropsychopharmacology* 38:1899–1909 Available at: <http://dx.doi.org/10.1038/npp.2013.83>.

465 van Kerkhof LWM, Damsteegt R, Trezza V, Voorn P, Vanderschuren LJ (2013) Functional integrity of the
466 habenula is necessary for social play behaviour in rats. *Eur J Neurosci* 38:3465–3475.

467 Van Kerkhof LWM, Trezza V, Mulder T, Gao P, Voorn P, Vanderschuren LJ (2014) Cellular activation in limbic
468 brain systems during social play behaviour in rats. *Brain Struct Funct* 219:1181–1211.

469 Vanderschuren LJ, Niesink RJM, Van Ree JM (1997) The neurobiology of social play behavior in rats. *Neurosci*
470 *Biobehav Rev* 21:309–326.

471 Vanderschuren LJ, Trezza V (2014) What the laboratory rat has taught us about social play behavior: role in
472 behavioral development and neural mechanisms. *Curr Top Behav Neurosci* 16:189–212.

473 Verharen JPH, Ouden HEM den, Adan RAH, Vanderschuren LJM (2020) Modulation of value-based decision

474 making behavior by subregions of the rat prefrontal cortex. *Psychopharmacology (Berl)*:doi:

475 10.1007/s00213-020-05454-7.

476 Vertes RP (2004) Differential Projections of the Infralimbic and Prelimbic Cortex in the Rat. *Synapse* 51:32–58.

477 Vicini S, Ferguson C, Prybylowski K, Kralic J, Morrow AL, Homanics GE (2001) GABA_A receptor $\alpha 1$ subunit

478 deletion prevents developmental changes of inhibitory synaptic currents in cerebellar neurons. *J Neurosci*

479 21:3009–3016.

480 Yamamoto K, Yoshino H, Ogawa Y, Okamura K, Nishihata Y, Makinodan M, Saito Y, Kishimoto T (2020) Juvenile

481 Social Isolation Enhances the Activity of Inhibitory Neuronal Circuits in the Medial Prefrontal Cortex. *Front*

482 *Cell Neurosci* 14:1–12.

483 Yang SS, Mack NR, Shu Y, Gao WJ (2021) Prefrontal GABAergic Interneurons Gate Long-Range Afferents to

484 Regulate Prefrontal Cortex-Associated Complex Behaviors. *Front Neural Circuits* 15:1–14.

485