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Abstract

Cancer is a disease that affects nearly all multicellular life, including birds. However,

little is known about what factors explain the variance in cancer prevalence among species. Litter

size is positively correlated with cancer prevalence in managed species of mammals, and larger

body size, but not incubation or nestling period, is linked to tumor prevalence in wild birds. Also,

birds that produce more elaborate sexual traits are expected to have fewer resources for cancer
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defenses and thus higher cancer prevalence. In this study, we examined whether cancer

prevalence is associated with a wide variety of life history traits (clutch size, incubation length,

body mass, lifespan, and the extent of sexual dimorphism) across 108 species of managed birds

in 25 different zoological facilities, sanctuaries, and veterinary clinics. We found that clutch size

was positively correlated with cancer and neoplasia (both benign and malignant) prevalence,

even after controlling for body mass. Cancer prevalence was not associated with incubation

length, body mass, lifespan, or sexual dimorphism. The positive correlations of clutch size with

cancer prevalence and neoplasia prevalence suggest that there may be life-history trade-offs

between reproductive investment and somatic maintenance (in the form of cancer prevention

mechanisms) in managed birds.

Introduction

Nearly all multicellular organisms are susceptible to neoplastic disease1,2. Neoplasia is a

disease consisting of uncontrolled cell division and growth, resulting ultimately in the formation

of a tumor, as well as invasion or metastasis in case of malignant neoplasia (aka cancer)3,4. Over

the past few decades, cancer research has focused on identifying different molecular pathways,

hallmarks, and control mechanisms of cancer – all with the ultimate aim of improving cancer

treatment5,6. Evolutionary biology has also been an important component of cancer research over

the last 50 years3,7. The ecological conditions under which organisms evolved have shaped their

responses to various diseases, including cancer8,9. Understanding why organisms differ in their

ability to suppress cancer, as well as how they respond to neoplastic expansion, is a central

question in comparative cancer research.
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In general, life history trade-offs govern how organisms allocate time and resources to

fitness components such as growth, self (or somatic)-maintenance, and reproduction10,11. Somatic

maintenance can include tumor suppression mechanisms such as cell cycle control and DNA

damage repair. These trade-offs may help explain the variation in cancer prevalence across

species. For example, long-lived species that invest in somatic maintenance over reproduction

likely evolved enhanced mechanisms to suppress or evade cancer during their relatively long

lifespans compared to short-lived species that invest heavily in reproductive effort rather than

somatic maintenance12. Peto’s paradox predicts that bigger-longer lived animals would not be

more vulnerable to cancer13–15. Utilizing this life history tradeoff approach can both give us

insight into the basic biology and origins of cancer and also provide opportunities to discover

either universal or novel mechanisms of cancer suppression that could have clinical applications

to humans.

Birds (class Aves) represent a diverse vertebrate clade with considerable variation in

life-history characteristics. This makes birds a suitable system for investigating the correlation

between cancer risk and certain phenotypic traits, such as body mass and lifespan. Double-barred

finches weigh on average just 9.5 grams, whereas greater rheas weigh on average 23 kilograms.

Gouldian finches live on average up to six months, whereas salmon-crested cockatoos live on

average up to 65 years (supplementary data). Birds also have a ZW genetic sex determination

system, with females as the heterogametic sex, and therefore can also shed light on possible sex

biases in health outcomes. For instance, female birds may be more susceptible to deleterious

mutations promoting cancer development, whereas male birds may be protected by non-mutant

versions of those alleles on their extra Z chromosome. This is known in humans as the two-X
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chromosome theory of cancer protection16. If this two-chromosome theory is correct, we would

expect female birds to have higher cancer prevalence than male birds.

Cancer prevalence in birds has been an area of ongoing study. Previous work reports that

birds have on average the lowest cancer prevalence amongst vertebrates2,17,18. Within birds, there

is much variation in cancer prevalence which may be explained by some phenotypic traits. For

instance, Møller et al. surveyed free-living Eurasian birds post-mortem and found that, when

analyzing at least 20 individuals per species, larger body size was correlated with tumor

prevalence19, while neither incubation nor nestling time were correlated with tumor prevalence19.

Separate studies have reported neoplasms (benign and malignant tumors combined) in bird

species, either free-living or in human care2,20–25, but the prevalence of malignancy itself has not

been measured before across bird species.

Clutch size could also be an important factor influencing the amount of energy devoted to

somatic maintenance, including immune function, given the energetic trade-off between

maintenance of a particular species’ own body versus its offspring26,27. There may also be a

trade-off between reproductive investments and somatic maintenance28 such that sexually

dimorphic or dichromatic species experience increased cancer prevalence29 due to the somatic

maintenance costs incurred by growing and maintaining these exaggerated morphological

traits30–33. However, there has not been a study investigating the relationship between

reproductive or sexually selected traits and cancer prevalence in birds.

To investigate the relationship between life history and cancer risk in birds, we combined

trait-rich life-history databases with cancer prevalence data from veterinary records of 108 bird

species under managed care. We hypothesized that the incredible diversity of life-history

strategies observed across the class Aves can explain taxonomic differences in cancer risk in
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birds, due to the evolutionary trade-offs between growth, reproduction, and somatic maintenance.

We test Peto’s paradox (under the expectation that body mass does not explain variation in

cancer prevalence) in birds, and investigate whether malignancy prevalence or neoplasia

prevalence is correlated with other avian traits such as incubation length, clutch size, and degree

of sexual dimorphism and dichromatism. We also test for sex differences in cancer prevalence in

birds, e.g., whether female birds (ZW sex chromosomes) have higher cancer prevalence than

male birds (ZZ sex chromosomes). This study is the first to examine a wide range of life history

traits in birds in order to predict cancer prevalence.

[Figure 1]

Methods

Cancer data from managed populations of  birds

To collect avian cancer records, we collaborated with numerous zoological facilities,

sanctuaries, and veterinary clinics. The data represent over 25 years of pathology records from

25 different institutions using 5,499 individual necropsies, including descriptions of age at death

of 1287 individuals from 51 species, and malignancies and benign tumors across 108 bird

species across 24 different avian orders managed under human care34. We measured malignancy

prevalence and neoplasia prevalence (benign and malignant tumor) for each species by dividing

the total number of necropsies reporting malignancies (or neoplasms) by the total number of
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necropsies available for that species (supplementary data); a measurement also used in previous

studies9,35.

Life-history data

We assembled life-history variables from multiple published resources, including

AnAge36 and the Amniote Life History Database37. The collected life-history variables included

species averages of adult body mass (g), lifespan (months), incubation length (months), clutch

size (number of offspring)36,37, presence and degree of sexual plumage dichromatism (plumage

brightness and plumage hue)38, and sexual size dimorphism (mass and tail size)39.

Data filtering

We only included bird species for which we had at least 20 necropsies in our analysis. For

analyses comparing female and male malignancy prevalence or neoplasia prevalence, as well as

sex bias regressions, we used species with at least 10 necropsy records per sex. We present the

neoplasia and malignancy prevalence of 108 bird species (supplementary data). We were not able

to find data on every life-history variable for every species, so in the life-history analyses, the

number of species is less than 108 (body mass correlations: 100 species; lifespan correlations: 59

species; body mass x lifespan correlations: 57 species; incubation length correlations: 34 species;

clutch size correlations including domesticated/semi-domesticated species: 51 species; clutch

size correlations excluding domesticated/semi-domesticated species: 45 species; dimorphism in

brightness correlations: 18 species; dimorphism in hue correlations: 24 species; dimorphism in

mass correlations: 47 species; dimorphism in tail size correlations: 34 species; sex differences in

neoplasia prevalence: 31 species). We removed all necropsies from birds that had lived in the
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wild. We excluded chickens (Gallus gallus) from the analyses because as a largely domesticated

agricultural species they have been selected for egg laying and frequently develop ovarian

cancer40. We only included chickens (Gallus gallus) in Table 1 and in the Supp. Fig. 3 illustration

of normalized frequency of the species’ age at death as a percentage of the species lifespan.

We excluded all infant data from our dataset because: (1) the low prevalence of

age-related diseases, such as cancer, in infants would likely bias the neoplasia prevalence data

towards lower values and (2) cancers in infants are medically different than adult cancers41. We

defined infancy as a record's age that is smaller or equal to that species’ age of infancy (or the

average of male and female maturity). In cases of no records of infancy age, the record was

considered an infant if it contained any of the following words: infant, juvenile, immature,

adolescent, hatchling, subadult, neonate, newborn, offspring, fledgling. We performed

correlations between clutch size and neoplasia or cancer prevalence with and without removing

domesticated and semi-domesticated species42–51(Supplementary data). When comparing female

and male malignancy prevalence and neoplasia prevalence, we removed all cases of reproductive

cancer in order to minimize any effects of controlled reproduction in managed environments on

our results.

Statistical analyses

We performed all statistical analyses in R version 4.0.552. We prepared figures using the

data visualization software ggplot253 and performed analyses in dplyr54. We performed all

phylogenetic analyses using the R packages ape, phytools, geiger, tidyverse, powerAnalysis

(https://github.com/cran/powerAnalysis), and caper55–59 using phylogenetic generalized least

squares (PGLS) regressions to take into account the phylogenetic non-independence among
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species60 and weighting analyses by ​​1/(square root of the number of necropsies per species)

following Revell57. We obtained avian phylogenetic trees from NCBI creator

(https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi). We performed Shapiro's

test61 to check for normality of the life history data and Grubbs’ & Rosner’s tests to identify and

remove significant outliers. Based on the “transformTukey” function (“rcompanion” R package),

which suggests a power transformation that makes values as normally distributed as possible, we

log10-transformed the adult body mass data, log10-transformed the adult mass · longevity data,

transformed the longevity data to the power of 0.425, and transformed clutch size ( –1・ clutch

size–0.125).

We measured sexual differences in all seven biometric variables [plumage brightness,

plumage hue, mass (g), and tail size (g)] as the natural log of the male biometric variable divided

by the natural log of the female biometric variable. We also compared male malignancy

prevalence or neoplasia prevalence versus female malignancy prevalence or neoplasia

prevalence. The denominators in the case of the male malignancy prevalence or neoplasia

prevalence are the total number of necropsied males, whereas the denominators in the case of the

female malignancy prevalence or neoplasia prevalence are the total number of necropsied

females. The distribution of the sex differences in cancer (i.e.,“female malignancy prevalence

minus male malignancy prevalence”, “female neoplasia prevalence minus male neoplasia

prevalence”) did not follow a normal distribution and had significant outliers. Therefore, we

compared malignancy prevalence and neoplasia prevalence between males and females using the

non-parametric paired-samples sign test. We tested whether the P-values passed the False

Discovery Rate (FDR) correction in each of these 26 analyses (Table 2).
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Results

The range of neoplasia prevalence among the examined 108 bird species varied from 0%

to 29%, with a mean of 4.4%, whereas malignancy prevalence among these species varied from

0% to 17.4%, with a mean of 2.3% (Table 1; supplementary data). Among the four avian

taxonomic orders with at least 10 species per order in our dataset (Psittaciformes, Passeriformes,

Columbiformes, and Anseriformes), the Anseriformes had on average the highest malignancy

prevalence (mean ± SD: 2.84% ± 2.81%), whereas the Columbiformes had on average the lowest

malignancy prevalence (mean ± SD: 1.12% ± 1.84%) (Supplementary data). We found no

significant correlation between neoplasia or malignancy prevalence: and (1) adult body mass

across 100 bird species and 5042 necropsies (Fig. 2A; Fig. 2B; Table 2); nor (2) adult mass times

lifespan across 57 bird species and 3464 necropsies (Supp. Fig. 1A; Supp. Fig. 1B: Table 2).

Neoplasia and malignancy prevalence were not higher in longer-lived birds (Fig. 3A; Fig. 3B:

Table 2; 59 species and 3593 necropsies), and deaths with a necropsy diagnosis of cancer were

not skewed towards old age across 1287 individuals from 51 species (Supp. Fig. 3).

We found that length of incubation was not significantly correlated with neoplasia or

malignancy prevalence (Fig. 4A; Fig. 4B; Table 2; 34 species and 1806 necropsies). However,

species with larger clutch sizes had significantly higher neoplasia and malignancy prevalence

even after applying FDR corrections for multiple testing (P-value = 0.005, R² = 0.99; and

P-value = 0.0019, R² = 0.99, respectively; Fig. 5; 51 species and 2119 necropsies), and after

controlling for species body mass (P-value = 0.005, R² = 0.17; and P-value = 0.0014, R² = 0.17,

respectively; Table 2). The positive correlation between clutch size and malignancy prevalence,

but not neoplasia prevalence, remained significant after removing domesticated and
10
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semi-domesticated species (P-value = 0.004, R² = 0.99; Supp. Fig. 4B; 45 species and 1839

necropsies) and controlling for body mass (P-value = 0.004, R² = 0.1; Table 2; 45 species). We

found no significant associations between neoplasia or malignancy prevalence and several

sexually dimorphic and dichromatic traits (Fig. 6; Table 2). Also, neoplasia and malignancy

prevalence were not significantly different between males and females across 31 species (Fig. 7;

Supp. Fig. 2; Table 2).

[Figure 2-7]

Discussion

We hypothesized that differences in life-history traits, including clutch size, may explain

some of the variation in cancer prevalence across managed bird species. Species varied in their

clutch sizes from scarlet-chested sunbirds laying on average 1.85 eggs, to greater rheas laying

>10 times as many (23 eggs on average). We found that clutch size explained a statistically

significant portion (17%) of the variation in cancer prevalence when controlling for log10 adult

mass. Species with larger clutch size had higher malignancy and neoplasia prevalence, even after

FDR corrections and controlling for body mass. The positive correlation between clutch size and

malignancy prevalence remained significant even after removing domesticated and

semi-domesticated species from the analysis. However, no other life-history trait that we

measured, such as adult body mass, lifespan, incubation length, sexual size dimorphism or sexual

dichromatism, explained the variance in avian cancer prevalence, nor was there a significant

difference in cancer or neoplasia prevalence between male and female birds.
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Body mass and lifespan are not associated with cancer in birds managed under

human care

Our observations in populations of birds managed under human care show no significant

correlation between neoplasia or malignancy prevalence and adult body mass, lifespan, or adult

mass times lifespan in birds, supporting Peto’s paradox62; however, these results are in contrast to

the observation of cancer in free-living birds19. While there is a trend in our data for larger birds

to have more cancer, this was not statistically significant (P-value = 0.29). The discrepancy

between our study and that of Møller et al.19, may be due to the different number of individuals

sampled per species ( ≥3 records per species in Møller et al.19 versus ≥20 necropsies per species

in our study), the different species of birds analyzed (238 free-living bird species in Denmark19

versus 108 managed bird species from multiple institutions), or body mass mostly measured with

a precision balance19 versus collected from the literature. In addition, birds collected by Mølller

et al. were mostly killed by hunters (both human and non-human), whereas those in our study

were protected from predation and thus allowed to live long enough to succumb to various

diseases of old age, including cancer. Unfortunately, only six species of birds are common in

Møller et al.’s19 and this study’s dataset, limiting our ability to compare cancer prevalence in wild

versus managed birds. In general, patterns of tumor incidence or neoplasia prevalence were

consistent between these free-living birds and populations managed under human care

(Supplementary Table 1). Therefore, while there are many potential sources of error in the

enumeration of the life-history traits and neoplasia prevalence in either wild or managed birds, it

is promising that there is consistency in shared data trends across studies.

Interestingly, the roseate spoonbill, ranked 18th among the oldest species with lifespan

data in our dataset, has the highest neoplasia prevalence (29.03%), but no reported malignancy
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(0% malignancy prevalence). We found that birds that live longer do not have significantly

higher cancer prevalence than shorter-lived species, and there is not a skew in terms of more

cancer deaths towards old age. This may be explained by the observation that long-lived birds

have coevolved pathways that increase longevity in part through decreasing cancer rates63,64.

Specifically, in long-lived birds, there is an increased selective pressure for genes related to

controlling cell division and tumor suppression63. Long-lived mammals, such as bats, have extra

copies of FBXO31 and mutations in the insulin-like growth factor 1 receptor/growth-hormone

receptor related to blocking the cell cycle and responding to DNA damage65–67. The fact that

erythrocyte telomeres of long-lived birds shorten at a slower pace than erythrocyte telomeres of

shorter-lived birds68 may provide an additional mechanistic explanation for the lower than

expected cancer prevalence in long-lived birds.

Neoplasia and cancer prevalences are higher in species with larger clutch sizes

Our results are consistent with previous findings that larger litter size is associated with

cancer prevalence in mammals35,69. Many of the life-history traits described in this article, such

as body mass, number of offspring produced, incubation time, and longevity, are tightly linked

with each other70–74 (Supp. Fig. 5). No significant correlations were found between cancer

prevalence and lifespan, adult mass, or incubation/gestation length in birds or mammals35. Larger

clutch size is correlated with malignancy prevalence and neoplasia prevalence, even after

corrections for multiple testing and controlling for species body mass. This discrepancy between

clutch size predicting neoplasia prevalence but not the other (correlated) life-history variables

may be due to the fact that we only have clutch size data on a subset of the species (51 bird

species) for which we have other life-history data (e.g., 100 bird species with adult mass data). It
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could also be that distinct molecular pathways associated with clutch size have coevolved with

increased neoplasia and malignancy prevalence.

We found that when including domesticated species in the analyses, both malignancy and

neoplasia prevalence are positively correlated with clutch size, however, when excluding

domesticated species, only malignancy prevalence remains positively correlated with clutch size;

indicating that differential selection pressures may be acting on neoplasia versus malignancy. In

some birds kept in enclosures with artificial light, we speculate that the exposure to artificial

light could be one explanation for the association between neoplasia prevalence and clutch size

when domesticated and semi-domesticated species are included in the analysis. Artificial light is

used in poultry industries, as well as parakeet breeding, to lengthen the hours of egg laying75,76,

and such prolonged exposure to light of high intensity has been suggested to cause hyperplasia

and neoplasia in the pituitary76.

Is sexual dimorphism or dichromatism correlated with cancer prevalence in

birds?

The strength of sexual selection could impose energetic constraints resulting in tradeoffs

between investment in mate competition and somatic (anti-cancer) maintenance28. Sexually

dimorphic or dichromatic species with extreme phenotypes, such as large and colorful ornaments

or weapons, may have an increased risk of cancer28. This may be because selection for rapid cell

growth in these tissues leads to the potential increased tumor growth as a byproduct. It may also

be that there is selection for increased allocation of resources towards these costly sexual

traits77,78 at the expense of DNA repair and immune defenses28. However, even though

testosterone in male red-legged partridges can increase the concentration of carotenoids,
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responsible for colorful traits, and testosterone suppresses the immune system, carotenoids also

have immunoenhancing effects79. We found no significant difference in cancer prevalence in

relation to sexual dimorphism and dichromatism. When factoring in both hue (the dominant

wavelength of color) and brightness (the intensity of color), the degree of sexual dichromatism

showed no significant correlation with neoplasia or malignancy prevalence. While most males

tend to be larger than the females, that is not always the case, especially within birds of prey80.

When examining the degree of sexual size dimorphism, we found no significant difference in

cancer prevalence and differing sizes between sexes. This means that sexually dimorphic birds

who spend time and energy in creating colorful plumage or larger body parts do not seem to pay

a cost in terms of cancer susceptibility. It is possible that the birds in our study did not experience

such tradeoffs because under human care they may have high energy budgets that allow them to

invest both in sexually selected traits as well as in somatic maintenance in the form of cancer

suppression. The same might not be the case for wild birds who are under greater energetic

constraints and might therefore be more likely to experience tradeoffs.

Do female birds have higher cancer prevalence than male birds?

Cancer rates in most other species, including humans, are biased toward males16. Current

theory states that the double X chromosome found in females may offer some cancer

protection16. For example, if the X chromosome carries a cancer-inducing mutation, the extra X

chromosome present in females may carry a non-deleterious variant of the allele, whereas males

(XY) without the extra X chromosome would not have this protective variant. In alignment with

the two-X chromosome theory of cancer protection, previous work has shown that female birds

(ZW) have more neoplasms than male birds (ZZ), but this was not validated statistically with
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sex-specific neoplasia prevalence2. We found that females do not have significantly different

neoplasia prevalence or malignant prevalence than male birds. This analysis was done excluding

reproductive cancers because living in managed environments with controlled reproduction

could be affecting the animals’ susceptibility to cancers of the reproductive system.

Future directions

We constructed a large and high-quality dataset including not only a significantly larger

number of life history variables for birds than previous studies, but also detailed necropsy

information for a large number of individuals per species, allowing greater error reduction, the

inclusion of potential covariant traits, as well as the ability to distinguish benign and malignant

tumors. Still, our study does not have information about the exact tissue where neoplasms were

found in every individual, and future studies would benefit from knowledge of the relationships

between distinct cancer types and life history in birds. There may also be evolutionary

mismatches between animals in zoological institutions and in the wild. For example, peregrines81

and 84% of the mammalian species analyzed by Tidière et al.82 lived longer in zoos than in the

wild. However, no significant difference was found in the maximum lifespan of 6 families of

birds under human care versus wild birds (16 species of Anatidae, 3 species of Ciconidae, 10

species of Accipitridae, 6 species of Gruidae, 7 species of Corvidae, 3 species Pelecanidae)83.

Future studies using a larger dataset with tracked life history and cancer records for every

individual and tissue from birds in zoological institutions and in the wild would be helpful to

better understand the role of life-history traits in cancer susceptibility.

Recent studies have focused on the evolutionary history of specific oncogenes in birds84.

Specifically, the expansion of an oncoprotein, Golgi phosphoprotein 3, may contribute to birds’
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relatively lower cancer susceptibility84 compared to mammals2,17,18. Although Golgi

phosphoprotein 3 has many functions, such as modulating the dynamics of adhesion85 and

regulating the function of mitochondria86, its exact molecular association with cancer suppression

is not entirely clear84. Future work could examine the possible variation in the number of

oncogenes and tumor-suppressors across bird species to identify how they are linked with cancer

susceptibility and large clutch/litter size, and whether this correlation occurs in wild animals or is

an artifact of domestication and artificial selection.

Several ecological factors may be driving many of the cancers in birds in our dataset.

Previous work in chickens has shown that spontaneous and experimental infection with

toxoplasma leads to the development of glioma-like tumors87,88. Tumors were also detected in 25

out of 1669 free-living birds in the area of Chernobyl and were positively correlated with

exposure to radiation89. To assess whether infections, radiation, or even nutritional factors, such

as and carnivorous diets90, are associated with the malignancies and neoplasms of birds in our

dataset, a systematic analysis of the carcinogens that these birds may be exposed to in managed

settings would be necessary. This would also inform us about potential mechanisms that protect

birds from radiation-induced DNA damage91, as well as associations between unpredictable

environments and fast life history strategies (e.g., production of more offspring)92 that explain

cancer susceptibility across species.

Conclusions

We explored cancer prevalence across 108 managed species of birds. We found that

among the examined life history factors, only clutch size was correlated (positively) with

malignancy prevalence and neoplasia prevalence. Our findings are consistent with previous work
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which looked across 37 species of mammals in managed environments, finding that species with

larger litter sizes were more vulnerable to cancer35. Further work is necessary, however, to

examine whether these patterns hold up in wild and free-ranging populations.

Figure legends

Figure 1. Sexual dimorphism in birds. Birds display a wide range of sexual dimorphism in size

and plumage color.

Figure 2. Larger body mass is not correlated with neoplasia prevalence (A) or malignancy

prevalence (B) across 100 bird species. Dot size indicates the number of necropsies per species.

Colors show the taxonomic order of each species, and black lines show the

phylogenetically-controlled linear regression of the logarithm of adult mass versus malignancy

prevalence or neoplasia prevalence.

Figure 3. Longer lifespan is not correlated with neoplasia prevalence (A) or malignancy

prevalence (B) across 59 bird species. Dot size indicates the number of necropsies per species.

Colors show the taxonomic order of each species. Black lines show the

phylogenetically-controlled linear regression of the normalized values of species lifespan versus

malignancy prevalence or neoplasia prevalence.

Figure 4. Incubation length is not correlated with neoplasia prevalence (A) or malignancy

prevalence (B) when controlling for body mass across 34 bird species. Different colors

indicate the order in which each species belongs and the size of the dot indicates the number of

necropsies per species. Black lines show the phylogenetically-controlled linear regression of

incubation length versus malignancy prevalence or neoplasia prevalence.
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Figure 5. Larger clutch size is correlated with neoplasia prevalence (A) and malignancy

prevalence (B) across 51 bird species. After controlling for species body mass, the positive

correlation between clutch size and neoplasia prevalence (P-value = 0.005; Table 2) and

malignancy prevalence (P-value = 0.0014; Table 2) remains significant. Dot size indicates the

number of necropsies per species. Colors show the taxonomic order of each species. Black lines

show the phylogenetically-controlled linear regression of the normalized values of clutch size

versus malignancy prevalence or neoplasia prevalence.

Figure 6. Sexual dimorphic traits are not correlated with neoplasia or malignancy

prevalence in birds. The degree of dimorphism in brightness is not correlated with neoplasia

prevalence (A) or malignancy prevalence (B) across 18 species of birds. The degree of

dimorphism in hue is not correlated with neoplasia prevalence (C) or malignancy prevalence (D)

across 24 species of birds. The degree of dimorphism in mass is not correlated with neoplasia

prevalence (E) or malignancy prevalence (F) across 47 species of birds. The degree of

dimorphism in tail size is not correlated with neoplasia prevalence (G) or malignancy prevalence

(H) across 34 species of birds. A positive score on the x-axis indicates that the species has a

relatively higher score in that trait in males than females, whereas a negative score on the x-axis

shows that the species has a relatively higher score in that trait in females than males. Black lines

show the phylogenetically-controlled linear regression of the degree of dimorphism in the trait

versus neoplasia prevalence or malignancy prevalence. Different colors indicate the order in

which each species belongs and the size of the dot indicates the total number of necropsies per

species.

Figure 7. Neoplasia (A) and malignancy prevalence (B) are not significantly different

between females and males across 31 bird species. Horizontal bars show the median neoplasia
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(A) or malignancy prevalence (B). We added minimal jitter for better visualization of individual

data points.
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Tables

Table 1. Species (A, B) with the highest and lowest malignancy prevalence and neoplasia prevalence.

A. Species with the highest neoplasia prevalence and lowest malignancy prevalence. This table includes 10 species with the

highest neoplasia prevalence and lowest malignancy prevalence in our dataset (Supplementary data). Another 54 species in our

dataset have 0% malignancy prevalence (Supplementary data).​​

Species (common name) ↑ Neoplasia
prevalence
(necropsies)

Species (common name) ↓ Malignancy
prevalence
(necropsies)

Platalea ajaja (roseate spoonbill) 29.03% (31) Spheniscus demersus (African penguin) 0% (210)

Gallus gallus (chicken) 25.7% (272) Lophura edwardsi (Edwards's pheasant) 0% (110)

Anas platyrhynchos (mallard duck) 21.2% (33) Agapornis nigrigenis (black-cheeked lovebird) 0% (108)

Athene cunicularia (burrowing owl) 20.8% (24) Eudocimus ruber (scarlet ibis) 0% (105)

Melopsittacus undulatus (budgerigar) 20.7% (477) Pitta sordida (hooded pitta) 0% (89)

Numida meleagris (lebanonfowl) 16.6% (54) Rollulus rouloul (crested partridge) 0% (80)
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Aix sponsa (wood duck) 15.1% (33) Trichoglossus moluccanus (rainbow lorikeet) 0% (80)

Netta rufina (red crested pochard) 15% (20) Theristicus melanopis (black-faced ibis) 0% (72)

Rhea americana (greater rhea) 14.2% (21) Eos bornea (red lory) 0% (60)

Agapornis fischeri (Fischer's lovebird) 14.2% (28) Copsychus malabaricus (​​white-rumped shama) 0% (59)

B. Species with the highest malignancy prevalence and lowest neoplasia prevalence. This table includes 10 species with the

highest malignancy prevalence and lowest neoplasia prevalence in our dataset (Supplementary data). Another 34 species in our

dataset have 0% neoplasia prevalence (Supplementary data).

Species (common name) ↑ Malignancy
prevalence
(necropsies)

Species (common name) ↓ Neoplasia
prevalence
(necropsies)

Gallus gallus (chicken) 22.7% (272) Spheniscus demersus (African penguin) 0% (210)

Melopsittacus undulatus (budgerigar) 17.4% (477) Lophura edwardsi (Edwards's pheasant) 0% (110)

Athene cunicularia (burrowing owl) 16.6% (24) Pitta sordida (hooded pitta) 0% (89)

Anas platyrhynchos (mallard duck) 12.1% (33) Rollulus rouloul (crested partridge) 0% (80)

Meleagris gallopavo (wild turkey) 11.2% (71) Trichoglossus moluccanus (rainbow lorikeet) 0% (80)

Numida meleagris (lebanonfowl) 11.1% (54) Theristicus melanopus (black-faced ibis) 0% (72)

Acryllium vulturinum (vulturine
guineafowl)

10.2% (39)
Copsychus malabaricus (​​white-rumped shama)

0% (59)
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Nymphicus hollandicus (cockatiel) 10% (70) Chalcophaps indica (common emerald dove) 0% (48)

Colinus virginianus (northern bobwhite) 10% (30) Ptilinopus superbus (superb fruit dove) 0% (48)

Leucopsar rothschildi (Bali myna) 9.6% (52) Crex crex (corncrake) 0% (47)

Table 2. Summary statistics. We present the summary statistics of phylogenetic regressions (PGLS) between neoplasia and

malignancy prevalence and life history variables, except for the comparison of neoplasia and malignancy prevalence in females and

males for which we present the summary statistics of paired-samples sign tests. The number of species analyzed is different in the

majority of analyses. This is due to the fact that not all life history variables are available for every species in the literature. In the 1st

P-value column we report the P-value of the first variable (i.e., variable A in the multivariate analysis), and in the 2nd P-value column

we report the P-value of variable B. We highlight the P-values that passed the False Discovery Rate (FDR) correction with an asterisk

(*). In the F-statistics column we report the F-statistics of variable A, and in the “Type of Association” column we report the positive

(+) or negative (–) correlation between the variable A and the prevalence of neoplasia or malignancy. High lambda values show that

the associations are mainly explained by common ancestry. † indicates that the R² value was not available.

Independent
variable(s)

Figure Dependent
variable

R² F-statistic and degrees of
freedom (DF)

Lambda Type of
association

P-value of
variable A

P-value of
variable B

log10 adult mass 2A Neoplasia
prevalence

0.91 3.19 on 1 and 98 DF 0.00006 + 0.07 NA†
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2B Malignancy
prevalence

0.91 1.09 on 1 and 98 DF 0.22 + 0.29 NA†

lifespan0.425 3A Neoplasia
prevalence

0.95 0.04 on 1 and 57 DF 0.00006 – 0.82 NA†

3B Malignancy
prevalence

0.95 0.15 on 1 and 57 DF 0.00006 – 0.69 NA†

incubation
length

4A Neoplasia
prevalence

0.93 0.47 on 1 and 32 DF 0.00006 + 0.49 NA†

4B Malignancy
prevalence

0.93 2.73 on 1 and 32 DF 0.00006 + 0.10 NA†

–1 · clutch
size–0.125

5A Neoplasia
prevalence

0.99 8.31 on 1 and 49 DF 0.00006 + 0.005* NA†

5B Malignancy
prevalence

0.99 10.80 on 1 and 49 DF 0.01 + 0.0019* NA†

–1 · clutch
size–0.125 + log10
adult mass

Neoplasia
prevalence

0.17 8.38 on 1 and 48 DF 0.00006 + 0.005* 0.19

Malignancy
prevalence

0.17 11.48 on 1 and 48 DF 0.00006 + 0.0014* 0.05

–1 · clutch
size–0.125

Supp.
Fig.
4A

Neoplasia
prevalence

0.99 3.68 on 1 and 43 DF 0.009 + 0.06 NA†
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(having
excluded
domesticated
and
semi-domesticat
ed species)

Supp.
Fig.
4B

Malignancy
prevalence

0.99 8.78 on 1 and 43 DF 0.00006 + 0.004* NA†

–1 · clutch
size–0.125 + log10
adult mass
(having
excluded
domesticated
and
semi-domesticat
ed species)

Neoplasia
prevalence

0.08 3.91 on 1 and 42 DF 0.00006 + 0.05 0.35

Malignancy
prevalence

0.1 8.9 on 1 and 42 DF 0.00006 + 0.004* 0.21

degree of
dimorphism in
brightness

6A Neoplasia
prevalence

0.75 1.00 on 1 and 16 DF 0.11 + 0.33 NA†

6B Malignancy
prevalence

0.73 0.09 on 1 and 16 DF 0.33 + 0.76 NA†

degree of
dimorphism in
hue

6C Neoplasia
prevalence

0.44 0.09 on 1 and 22 DF 0.10 – 0.76 NA†

6D Malignancy
prevalence

0.41 0.15 on 1 and 22 DF 0.35 – 0.69 NA†
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degree of
dimorphism in
mass

6E Neoplasia
prevalence

1 1.14 on 1 and 45 DF 0.24 – 0.28 NA†

6F Malignancy
prevalence

1 0.10 on 1 and 45 DF 0.32 – 0.74 NA†

degree of
dimorphism in
tail size

6G Neoplasia
prevalence

1 0.03 on 1 and 32 DF 0.40 – 0.84 NA†

6H Malignancy
prevalence

1 0.11 on 1 and 32 DF 0.60 + 0.73 NA†

sex 7A Neoplasia
prevalence

97.1% CI = -0.05 - 0% 0.16 NA†

7B Malignancy
prevalence

97.1% CI = 0 - 0.01% 0.66 NA†

log10 (adult
mass · lifespan)

Supp.
Fig.
1A

Neoplasia
prevalence

0.97 0.06 on 1 and 55 DF 0.00006 + 0.79 NA†

Supp.
Fig.
1B

Malignancy
prevalence

0.97 0.001 on 1 and 55 DF 0.00006 – 0.97 NA†
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Supplementary material

Supplementary Figure 1. The log10 of adult mass times lifespan is not correlated with

neoplasia prevalence (A) or malignancy prevalence (B) across 57 bird species. The black

lines show the phylogenetically-controlled linear regression of the log10 of adult mass times

lifespan versus malignancy prevalence or neoplasia prevalence. Adult mass is measured in

grams, whereas lifespan is measured in months. Different colors show the different order each

species belongs to.
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Supplementary Figure 2. No significant sex bias in neoplasia (A) or malignancy prevalence

(B) across 31 bird species. Each dot in plot A shows the male neoplasia prevalence and female

neoplasia prevalence of a species. Whereas each dot in plot B shows the male malignancy

prevalence and female malignancy prevalence of a species.

Supplementary Figure 3. Cancer deaths are not skewed towards old age. Normalized

frequency of a species’ age at death as a percentage of the species lifespan. Each density plot

shows the necropsied individuals that had tumors (blue) and the necropsied individuals that did

not have tumors (red). There are 1287 individuals in this distribution from which we have

lifespan data.

Supplementary Figure 4. Larger clutch size is correlated with malignancy prevalence (B)

but not neoplasia prevalence (A) across 45 bird species after removing domesticated and

semi-domesticated species from the analyses . After controlling for species body mass, the

positive correlation between clutch size and malignancy prevalence remains significant (P-value

= 0.004; Table 2). Dot size shows the number of necropsies per species. Colors show the

taxonomic order of each species. Black lines indicate the phylogenetically-controlled linear

regression of the normalized values of clutch size versus malignancy prevalence or neoplasia

prevalence.

Supplementary Figure 5. Pearson’s correlation matrix with four life history variables

shared by 19 species in our dataset (log10 of adult mass, lifespan0.425, incubation length, –1・

clutch size–0.125).

Supplementary data

Life history and cancer dataset used in this study.
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Supplementary Table 1. Common species analyzed in Møller et al.19 and our study. Here we present species’ tumor incidence and

number of records in Møller et al.19 versus neoplasia prevalence and number of necropsies in our study. We also present the P-values

of Fisher’s exact test.

Species (common name) Tumor incidence in Møller et al.’s
study (# records)

Neoplasia prevalence in this
study (# necropsies)

P-value

Columba livia (rock pigeon) 0% (3) 1.8% (55) 1

Anas acuta (northern pintail) 0% (3) 4.3% (23) 1

Milvus milvus (red kite) 0% (3) 0% (36) 1

Crex crex (corncrake) 0% (4) 0% (47) 1

Fringilla coelebs (chaffinch) 0% (213) 0% (45) 1

Anas platyrhynchos (mallard duck) 4.7% (21) 21.2% (33) 0.13
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