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ABSTRACT

Recent success of AlphaFold2 in protein structure prediction relied heavily on co-
evolutionary information derived from homologous protein sequences found in the
huge, integrated database of protein sequences (Big Fantastic Database). In contrast,
the existing nucleotide databases were not consolidated to facilitate wider and deeper
homology search. Here, we built a comprehensive database by including the noncoding
RNA sequences from RNAcentral, the transcriptome assembly and metagenome
assembly from MG-RAST, the genomic sequences from Genome Warehouse (GWH),
and the genomic sequences from MGnify, in addition to NCBI’s nucleotide database
(nt) and its subsets. The resulting MARS database (Master database of All possible
RNA sequences) is 20-fold larger than NCBI’s nt database or 60-fold larger than
RNAcentral. The new dataset along with a new split-search strategy allows a substantial
improvement in homology search over existing state-of-the-art techniques. It also
yields more accurate and more sensitive multiple sequence alignments (MSA) than
manually curated MSAs from Rfam for the majority of structured RNAs mapped to

Rfam. The results indicate that MARS coupled with the fully automatic homology
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search tool RNAcmap will be useful for improved structural and functional inference

of noncoding RNAs.
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INTRODUCTION

There are two major categories of RNAs: those coded for proteins (messenger RNA,
mRNA) and those not (noncoding RNAs, ncRNA). The first ncRNA discovered was
transfer-RNA (tRNA) in 1958[1]. Since then, new types of noncoding RNAs were
constantly uncovered once every a few years[2]. These noncoding RNAs can have a
length ranging from ~20 nucleotides in microRNAs (miRNA)[3] to >100kB for a long
noncoding RNA (IncRNA) like AIR [4]. These RNAs can perform functions at the
sequence level by simple complementary base-pairing in the case of miRNA[3], at the
secondary structural level in the case of RNA switches [5], and at the tertiary structural
level in the cases of tRNA, ribosomal RNA (rRNA), ribozymes, and riboswitches [6].
The number of distinct ncRNAs greatly exceeds that of distinct proteins. This is
exemplified by the fact that our human genome dedicated more than 70% for RNA
transcripts, compared to a tiny 1.5% coded for proteins [7]. These ncRNAs actively
participate in essentially all biological processes and implicated in >1000 diseases[2,8].
Given increasingly importance for annotated and unannotated RNAs in biology (coding

and noncoding), a comprehensive sequence database for all RN As is necessary.

The most comprehensive database for ncRNAs is perhaps RNAcentral [9], which
consolidates 56 Expert Databases and over 30 million sequences as of Jan 2022 (release
20). Another widely used sequence library is NCBI’s nucleotide database (nt) [10].
Unlike RNAcentral, NCBI’s nt database contains both RNA and DNA sequences. It
combined the GenBank, European Nucleotide Archive (EMBL-EBI), and DNA Data
Bank of Japan databases with a sequence count of 72.9 million as of Aug 2021.
However, neither RN Acentral, nor NCBI’s nt database is complete for all possible RNA

sequences as many specialized databases and depositories are not included.

Recently, AlphaFold2 achieved an incredible feat of accurate protein structure
prediction for most predicted proteins in the 14" biannual meeting of critically

assessment of structure prediction techniques (CASP 14) [11]. This success was in part
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built on utilization of homologous sequences to extract evolution and co-evolution
information, which contains implicitly the information on sidechain-sidechain
distances and backbone/sidechain torsion angles. To secure as many homologous
sequences as possible, they utilized the Big Fantastic Database (BFD) covering over 2
billion protein sequences from reference databases, metagenomes and

metatranscriptomes.

Inspired by BFD, we build the Master database of All possible RNA Sequences
(MARS). As in the nt database, we incorporated both RNA and DNA sequences,
including genomic sequences. Genomic sequences were included because a large
portion of genomic sequences are transcribed into coding and noncoding RNAs. Their

inclusions allow us to account for all possible (or potential) RNAs.

To illustrate the usefulness of the MARS database, we compare the ability to obtain
homologous sequences by using the fully automatic pipeline RNAcmap [12]. In this
RNAcmap pipeline, a query sequence is first searched against a database by Blast-N
[13], followed by a covariance-model-based search by Infernal [14]. Resulting multiple
sequence alignment (MSA) was then evaluated by direct coupling analysis tools such
as mfDCA [15]. Evolution and co-evolution information obtained from RNAcmap
were found useful in improving RNA secondary structure and tertiary base-pair
prediction in SPOT-RNA2 [16] as well as distance-contact map prediction in SPOT-
RNA-2D [17]. In the latest update of RNAcmap (RNAcmap2) [18], an additional
search by Infernal was performed on the multiple sequence alignment (MSA) produced
by RNAcmap. A slightly expanded database was also utilized in RNAcmap2 by
including environment samples (env nt), transcriptome shotgun assembly (tsa nt), and
nucleotide sequences derived from the Patent Division of GenBank (pat nt) databases
in addition to NCBI’s nucleotide (nt) database. The additional iteration as well as the
database expansion were found effective in improving the quality of MSA obtained by
examining the accuracy of base pairs extracted from the MSA using direct coupling

analysis[ 18]. More recently, an rMSA pipeline was also proposed[19] and found useful
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in predicting RNA distance and orientation maps by deep learning [20]. It performed
five iterative searches against Rfam [21], RNAcentral [9], the nt database [10] by using
Blast-N[13], nhmmer[22] and Infernal [14].

Here, we established MARS database by incorporating several additional resources.
They include the RNAcentral database [9], the transcriptome assembly and
metagenome assembly hosted at the University of Chicago (MG-RAST) [23,24], the
genomic sequences from Genome Warehouse (GWH)[25,26] and the genomic
sequences from MGnify[27]. This database has more than 20 folds (or 60 folds) over
the number of sequences in NCBI’s nt database (or the RNAcentral database). We
illustrated the usefulness of MARS by employing a data splitting strategy coupled with
the homology search tool RNAcmap2. The resulting RNAcmap3 increases 36 folds in
the median number of effective homologous sequences and 2 folds in the F1-score for
base pair prediction by direct coupling analysis over RNAcmap2 for no-hit RNAs
(those RNAs lacking homologs according to RNAcmapl). RNAcmap3 also yields
more accurate multiple sequence alignments (MSA) than rMSA and manually curated

MSAs from Rfam for the majority of structured RNAs mapped to Rfam.

DATA AND METHOD

Data collection

The MARS database integrates all available nucleotide sequences, ranging from well-
annotated individual nucleotide sequences to poorly understood metagenomics
assemblies. Specifically, the data source of MARS includes NCBI’s nucleotide
database (nt)[10], environmental samples (env_nt)[10], transcriptome shotgun
assembly (tsa_nt)[10] and nucleotide sequences from the Patent Division of Genbank
(patnt)[10], the noncoding RNA sequences from RNAcentral[9], the transcriptome
assembly and metagenome assembly from MG-RAST[23,24], the genomic sequences

from Genome Warehouse (GWH)[25,26] and the genomic sequences from MGnify[27].
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The nt, env nt, tsa nt and patnt databases were downloaded from
ftp://ftp.ncbi.nlm.nih.gov/blast/db on August 27, 2021. The RNAcentral database was
obtained from
https://ftp.ebi.ac.uk/pub/databases/RNAcentral/current release/sequences on August
17, 2021. The MG-RAST database was established by collecting assembled
transcriptomic and metagenomic sequences from https://www.mg-rast.org on October
7, 2021. The GWH database was downloaded from ftp://download.big.ac.cn/gwh on
August 21, 2021. The MGnify database was downloaded from
ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify genomes on December 21,

2021.

Data processing

The NCBI databases were downloaded in NCBI-BLAST format. The corresponding
fasta files were extracted by blastdbcmd from the BLAST+ 2.12.0 package[28]. The
RNAcentral database is downloaded as a zipped fasta file and is used as-is after
inflation. The MG-RAST, GWH, and MGnify databases are downloaded as individual
sequences for assemblies. Sequences from the three sources are first merged according
to their data source, resulting three bulk fasta files. The fasta files of MG-RAST and
GWH are further formatted as follows: 1) sequences longer than 1000m bases (which
are usually chromosomes) are deleted; 2) all sequences are transferred to DNA alphabet;
3) all gaps, dashes and non-IUPAC characters in sequences are substituted with
character ‘N’. After processing, all eight databases (nt, env nt, tsa nt patnt,
RNAcentral, MG-RAST, GWH, and MGnify) are available as eight bulk fasta files.
The above databases were concatenated in fasta format, resulting a raw total size of
1742 GB. SeqKit[29] was then employed to remove 100% duplicated sequences. The
final database versioned as the MARS database 1.0. It is released in the fasta format,
comprised of 1,727,789,860 nucleotide sequences with 1,592,396,862,523 bases in
total and the file size reaches 1571 GB, compared to 72.9 million sequences in nt and

27 milion sequences in RNAcentral.
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Application to RNA homology search by RNAcmap

Here, we adapted the three-iteration framework of RNAcmap2 for homology search
[18] with a major change how the databases were searched (Figure 1). As one large file
for the sequence dataset is inefficient to handle, it was split into 149 volumes with a
fixed size of 10 GB. Independent cmsearch processes in Infernal[14] are evoked on
these individual volumes, producing individual multiple sequence alignments (MSAs)
on the volumes. The individual MSAs are then merged into the MSA on the full
database with esl-alimerge, a mini-app from Easel toolkit shipped with Infernal. This
split strategy significantly improves the depth of resulting MSAs. To distinguish this
change from RNAcmap2 in relation to the database search, we label the current search
as RNAcmap3 against the MARS dataset for comparison with the previous RNAcmap

results.

Benchmark for comparing homology searches

We employed the same benchmark datasets that were employed for comparing
RNAcmap2 with RNAcmapl [18]. Briefly, non-redundant RNA structures (80% cutoff
by CD-HIT-EST [30]) were obtained from Protein Data Bank [31]. Their sequences
were searched against the NCBI n¢ database by RNAcmapl and divided into No-hit,
Low Nesr (1-10), Medium Nefr (10-50) and high Negr (>50) sets with 21, 83, 31, and 110
RNAs, respectively. Here, we will focus on No-hit, Low Nefr, and Medium Nefr sets
only because co-variational, direct coupling analysis of the MSAs for the high Nefr set
has achieved highly accurate prediction of base pairs by RNAcmap1. More homologous
sequences by RNAcmap2 or RNAcmap3 can no longer increase evolutionary or co-
evolutionary information for those with high Neff by RNAcmap]1. The above 135 PDB
structures (No-hit, Low Netr , and Medium Nesr structures) were further mapped onto
Rfam and non-Rfam families by simply searching PDB RNA sequences on the Rfam

website (https://rfam.xfam.org). This led to 30 different Rfam families along with 105

sequences that are not mapped to any Rfam families. The MSAs and base-pair
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predictions from Rfam are compared to those from RNAcmap2 as done in [18] and

RNAcmap3 developed here.

The MSAs produced by RNAcmap3 were evaluated by assessing the accuracy of the
secondary structure predicted by co-variational analysis of the MSAs, as in RNAcmap2
[18], according to sensitivity (SN = TP/(TP + FN)), precision (PR=TP/(TP+FP)) and
F1-score (F1=2(PR xSN/(PR+SN)) for non-local base-pairs (|i-j|>3). Here, TP, FN, and
FP are true positives, false negatives, and false positives, respectively. The FI,
Precision and Sensitivity are calculated with the top L/3 predictions as predicted truth.
In RNAcmap2, the co-variational analysis of MSAs was done by direct coupling
analysis (DCA) predictors (GREMLIN[32], mfDCAJ[15], PLMCJ[33,34] and
plmDCA[35]). Because PLMC and plmDCA failed to produce the results for some
MSAs generated by RNAcmap3, GREMLIN and mfDCA are utilized for method
comparison. However, only mfDCA is reported here because mfDCA consistently

yielded better results than GREMLIN.

rMSA is a recently reported pipeline for RNA homology search [19] that searched
against nt and RNAcentral databases. Here, the versions of these two databases for
rMSA were the same as used in RNAcmap3. The rtMSA program is downloaded from
https://github.com/pylelab/rMSA. In all searches, IMSA runs with the default run

parameters.

The RNAcmap?2 results presented in the manuscript are obtained on the same version

of NCBI databases as used in MARS.

RESULTS

Performance on RNA homology search
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Table 1 compares the MSAs generated by RNAcmap2, rMSA, and RNAcmap3 in term
of the number of effective homologous sequences (Neff) and the F1-score given by
mfDCA for the MSAs. The distribution of F1-scores for individual RNAs is shown in

Figure 2.

RNAcmap2 and rMSA have a comparable performance in all three datasets. The
average F1-score derived from rMSA results is slightly higher than RNAcmap2 in No-
hit RNAs, but slightly lower in Low Nefrand Medium Ness RN As. This happened despite
that tMSA produces MSAs with much higher average Nesr values than that of
RNAcmap2 in all three datasets (Table 1). It seems that a higher Nes value (a
statistically significant difference between Neff values with a p-value of 0.006) does
not necessarily produce a higher MSA quality (a statistically insignificant difference

between Fl-scores with a p-value of 0.628).

RNAcmap3 outperforms both RNAcmap2 and rMSA in all three datasets on all
performance indicators although overall comparable performance on the Medium set.
RNAcmap3 increases in average F1-score over RNAcmap2 by 136.8% for no-hit RNAs,
43.4% for Low Nerf RNAs and 6.98% for Medium Nefr RNAs, respectively. RNAcmap3
also increases in average F1-score over rMSA by 113.7% for no-hit RNAs, 49.8% for
Low Netrf RNAs and 9.0% for Medium Nesr RNAs, respectively. The RNAcmap3-
generated MSAs have Nefr values much higher than that of rMSA MSAs. RNAcmap3
yields MSAs with median Negr>100 even for No hit RNAs. Comparing to RNAcmap2,
the high Nefr values (p-value=3.74 x 10713) are indeed related to much better MSA
qualities as reflected by the F1-scores (p-value=4.14 X 10~7). Note that there is a zero
Fl-score for RNAcmap3 (PDB 1glx E in Medium N RNAs) due to poor
performance of RNAfold for providing initial secondary structure employed in
homology search. This leads to a smaller median F1-score for RNAcmap3 on Medium

Nefr RNAs, compared to that for IMSA. More discussions can be found below.
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Among three RNA datasets, the improvement of RNAcmap3 is the most significant for
the No hit and Low Nefr datasets. In fact, the performance of RNAcmap3 on No hit
RNAs is better than that of RNAcmap2 on Low Nefr RNAs. RNAcmap3 in the Low Nefr
dataset also outperforms RNAcmap?2 in the Medium Nesr dataset. This is consistent with
the drastically increased Nefr values. The performance improvement of RNAcmap3 on
the Medium Nesr RNAs 1s <10% over RNAcmap?2 (or rMSA), because RNAcmap?2 also
generates MSAs with sufficient Negr values. This is in line with the notion that
prediction accuracy by covariational analysis along with MSA depth has an upper limit.
Similar results (Supplementary Table S1 and Supplementary Figure S1) were obtained

when GREMLIN was employed to measure the quality of MSA

Comparison between RNAcmap3 and manually annotated Rfam

Rfam clusters RNA sequences into the families according to the homology in
sequence and secondary structure. When possible, Rfam utilizes experimentally
determined secondary structures for homology search and alignment. By comparison,
a method like RNAcmap or rtMSA employed RNAfold for initial secondary structure
prediction. Thus, Rfam is often considered as the gold standard for RNA MSAs
although not all RNAs in Rfam employed experimentally determined secondary

structure.

Figure 3 shows the F1-scores from mfDCA-predicted base-pairs (top L/3) using the
MSAs (1 RNA in the no-hit set, 14 in the low Nefr set and 15 in the medium Nesr set)
from Rfam, RNAcmap2, and RNAcmap3, respectively. For medium Ner RNAs,
RNAcmap3 retains the significantly improved performance of RNAcmap2 over Rfam.
For low Nerr RNAS, the performance on some sequences is significantly improved over

Rfam (and RNAcmap?2) but not improved for others.

A more detailed comparison for each family is shown in Table 2. In the mapped 30

families, RNAcmap3 outperforms Rfam in 17 families, and Rfam performs better than
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RNAcmap3 in 10 families, with equal performance on 3 families. On the other hand,
RNAcmap3 outperforms RNAcmap2 in 15/30 families and RNAcmap2 outperforms
RNAcmap3 in 9/30 families, with 6 families in similar performance. RNAcmap3
improves more over RNAcmap2 when both improves over Rfam (10 in 18 families).
In the 9 families that RNAcmap2 does not perform as well as Rfam, RNAcmap3
improves the performance in 5 families, while fails to do so on the remaining 4.
Interestingly, average-speaking, RNAcmap2 performs better on the Rfam-mapped
sequences than Non-Rfam sequences. However, RNAcmap3 seems to perform even

better on Non-Rfam sequences than the Rfam-mapped sequences.

One big difference between Rfam and RNAcmap is that Rfam relied on known
secondary structures whereas RNAcmap employed secondary structure predicted by
RNAfold. Table 2 and Figure 4 illustrated the dependence of RNAcmap performance
on RNAfold. In particular, the improvement of RNAcmap2 or RNAcmap3 over Rfam
F1 score is positively correlated with the F1 score given by RNAfold with a Pearson’s
correlation coefficient of 0.573 (p=0.001) for RNAcmap3 and 0.359 (p=0.051) for
RNAcmap2. If RNAfold predictions have a Fl-score of >0.667, RNAcmap3 always

performs equally or better than RNAcmap2 and Rfam.

DISCUSSION

This work established a comprehensive database of nucleotide sequences by including
NCBI’s nucleotide database (nt), environmental samples (env_nt), transcriptome
shotgun assembly (tsa nt) and nucleotide sequences from the Patent Division of
Genbank (patnt), the noncoding RNA sequences from RNAcentral, the transcriptome
assembly and metagenome assembly from MG-RAST, the genomic sequences from
Genome Warehouse (GWH) and the genomic sequences from MGnify. This
compilation led to the MARS database of nucleotide sequences that is more than 20

times larger than the commonly used nt database in the number of sequences. Using a
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split-search strategy for the MARS database allows RNAcmap3 to gain a deeper MSA
and yield better co-evolution coupling than RNAcmap2 and rtMSA. Moreover, despite
using RNAfold as the initial secondary structure for homology inference, RNAcmap3
can achieve more accurate inference of secondary structure from MSA than from Rfam

MSAs. RNAcmap3 is expected to be useful for improving RNA homology search.

One issue of MARS is the huge size of the sequence datasets with 1.5TB for its first
version. This huge size makes the homology search very slow, despite of the strategy
of data splitting for parallel processing. A typical search for a 100-base long sequence
would take 4 hours on 24 cpus. Longer sequences of >1000 nucleotides long are
prohibitively slow. One expects that the sequence database will continue to expand
exponentially given the low cost of high-throughput sequencing. Unfortunately, not all
datasets contained in the MARS can be updated fully automatically. For example, an
ftp access to the MGnify database with a script frequently suffers from broken

connections. One must rely on manual intervention to complete the process.

For RNAcmap3, one limitation is that one must use a predicted secondary structure as
the initial guess for homology search. Here, we employed RNAfold. We found that the
performance of the method is somewhat depending on how accurate is the initial
RNAfold prediction (Figure 4). This problem can be addressed with improved
prediction of secondary structure, for example, by deep learning techniques (e.g. SPOT-
RNA [36], MXfold2[37], UFold [38]). However, there is a risk of overtraining for some
of these deep learning techniques, which would make some methods to perform poorly
for unseen RNA families [39]. Thus, caution must be exercised when using these deep

learning techniques.

Data availability

All  datasets, RNAcmap3 can be downloaded from  http://zhouyqg-

lab.szbl.ac.cn/download/
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Figure 1 The schematic diagram of the RNAcmap3 pipeline. CSS: Consensus

Secondary Structure. CM: Covariance Model. L: Length of the input RNA sequence.

Table 1 Performance comparison by F1-Score (harmonic mean of precision and
sensitivity) among RNAcmap2, RNAcmap3 and rMSA on No-hit, Low Netr and

Medium Nesr datasets using mfDCA predictor

Dataset Pipeline F1 Precision Sensitivity Median Nesr
RNAcmap2 0.204 0.218 0.206 3.0

No-hit RNAs
rMSA 0.226 0.243 0.223 10.0

(21 RNAs)
RNAcmap3 0.483 0.501 0.489 107.1

Low Nett  RNAcmap2 0.426 0.472 0.396 13.5

RNAs (83 rMSA 0.408 0.446 0.383 25.1

RNAs) RNAcmap3 0.611 0.667 0.574 156.5
RNAcmap2 0.587 0.658 0.541 86.4
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Medium Net rMSA 0.576 0.639 0.553 183.9

RNAs
RNAcmap3 0.628 0.692 0.604 307.1
(31 RNAs)

1 RNAcmap2 [T rMSA [ RNAcmap3

o o =
fo)} ® o

F1-score
o
S

o
N

. \

no hit RNAs Low Neff RNAs Medium Neff RNAs

Figure 2 Violin plot of Fl1-score predicted by mfDCA using MSA generated by
RNAcmap2, rMSA, and RNAcmap3. The density estimation is computed for no hit
RNAs (21 RNAs), Low Nerf RNAs (83 RNAs) and Medium Nesr RNAs (31 RNAs),
respectively. In the Violin plot, the empty circle denotes the median, the thick vertical
bar in the centre denotes the interquartile range, and the thin vertical bar shows the
range of data points within another 1.5 interquartile range extension from the thick bar

ends. The Violin plot is cut off at the range of all actual data points.

Table 2 Performance given by Rfam, RNAcmap2, RNAcmap3 and RNAfold with
F1-score on 30 Rfam mapped families using the mfDCA predictor, as well as on

105 non-Rfam RNAs.

Rfam No. of | PDB Rfam RNAcmap2 RNAcmap3
RNA type RNAfold
Family RNAs | chain (neff) (neff) (neff)
0.778 0.704 0.556
RF00005 tRNA 1 2DU4 C 0.370
(3037.1) (59.0) (712.4)
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Hammerhead 0.604 0.792 0.792
RF00008 1 2QUS A 0.933
ribozyme (171.0) (149.2) (1340.9)
u6 0.000 0.439 0.465
RF00026 1 4NOT B 0.513
spliceosomal (2412.8) (227.9) (158.2)
0.844 0.622 0.844
RF00100 7SK 1 SLYU A 1.000
(1832.6) (45.9) (192.9)
0.409 0.782 0.782
RF00102 VA 1 60L3 C 0.879
(29.7) (65.4) (404.3)
Coronavirus 3’
0412 0.588 0.824
RF00164 stem-loop 1I- | 1 IXJR_A 0.824
(4.0) (21.7) (204.1)
like motif
Hepatitis A
virus  internal 0.090 0.716 0.716
RF00228 1 6MWN_A 0.746
ribosome entry (€8] (633.2) (249.0)
site
0.066 0.306 0.316
RF00390 UPSK 1 6MJO_A 0.364
(1) (26.8) (135.8)
Guanidine-I 0.556 0.250 0.247
RF00442 1 ST83_A 0.000
riboswitch (152.7) (300.1) (169.4)
Cripavirus
internal 0.391 0.628 0.565
RF00458 1 21L9 A 0.537
ribosome entry (14.0) (93.5) (128.3)
site
0.270 0.526 0.571
RF00505 RydC 1 4V2S Q 0.606
4) (65.9) (1271.1)
CRISPR RNA
0.000 0.880 0.900
RF01344 direct repeat | 1 6JDV_B 0917
(6.8) (132.5) (432.3)
element
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Flavivirus
0.267 0.133 0.222
RF01415 3’UTR  stem | 1 4PQV_A 0.263
4.9) 9.9) (206.9)
loop IV
0.613 0.427 0.507
RF01689 AdoCbl variant | 1 4FRN_A 0.424
(60.5) (12.3) (107.1)
Downstream 0.733 0.733 0.733
RF01704 1 6QN3_A 0.759
peptide (52.3) (38.7) (156.0)
SAM-I/IV
0.500 0.611 0.750
RF01725 variant 1 4181 A 0.857
(169.8) (118.2) (574.0)
riboswitch
Fluoride 0.800 0.629 0.514
RF01734 1 4ENA A 0.345
riboswitch (242.2) (52.4) (106.0)
ZMP/ZTP 0.622 0.444 0.622
RF01750 1 4XWF_A 0.667
riboswitch (102.4) (262.8) (490.1)
Guanidine-III 0.513 0.513 0.359
RF01763 1 5069 A 0.609
riboswitch 5.1) “4.1) (112.8)
Cyclic di-
0.847 0.847 0.576
RF01786 GMP-11 1 3Q3Z A 0.441
(372.1) (332.8) (650.6)
riboswitch
SAM-V 0.300 0.524 0.238
RF01826 1 6FZ0_A 0.400
riboswitch 2.9) (24.1) (2251.0)
Selenocysteine 0.866 0.896 0.896
RF01852 1 3ADB C 0.941
transfer (298.8) (56.9) (1002.5)
0.091 0.364 0.364
RF02519 ToxI antitoxin 1 4ATO_G 0.444
(1.2) (15.3) (156.5)
0.698 0.476 0.387
RF02553 Y RNA-like 1 6CUl_A 0.393
(84.2) (330.6) (381.7)
Hatchet 0.222 0.444 0.704
RF02678 1 6JQ5_A 0.766
ribozyme 3.2) 9.0) (84.1)
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Pistol 0.486 0.541 0.378
RF02679 1 6UFJ A 0.320
ribozyme (43.3) (47.6) (849.0)
PreQ1-III 0.261 0.294 0.353
RF02680 1 4RZD A 0.414
riboswitch (2.8) (11.9) (110.7)
NiCo 0.627 0.667 0.866
RF02683 1 4RUM_A 0.892
riboswitch (118.2) (61.7) (625.4)
0.462 0.667 0.821
RF02796 Pab160 1 3LWO D 0.865
(3.3) (13.5) (592.8)
0.737 0.632 0.842
RF03013 nadA 1 6TFE_A 0.872
(28.8) (14.0) (190.3)
0.469 0.569 0.590
Mean 30 Families - - 0.612
(308.8) (107.9) (468.2)
Non-Rfam | - 105 - - 0.389 0.596 -

[ RFAM [ 1 RNAcmap2 1 RNAcmap3

o o
o fed

F1-score
o
D

o
[N

0.0

No hit + Low Neff RNAs (15 RNAs) Medium Neff RNAs (15 RNAs)
Figure 3 Violin plot of Fl1-score predicted by mfDCA using MSAs provided by
Rfam, RNAcmap2 and RNAcmap3 for RNAs mapped to Rfam. The density
estimation is computed for no hit RNAs (1 RNAs), Low Neff RNAs (14 RNAs), and
Medium Neff RNAs (15 RNAs), respectively. In the Violin plot, the empty circle
denotes the median, the thick vertical bar in the centre denotes the interquartile range,

and the thin vertical bar shows the range of data points within another 1.5 interquartile


https://doi.org/10.1101/2023.02.01.526559
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.01.526559; this version posted February 3, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

range extension from the thick bar ends. The Violin plot is cut off at the range of all

actual data points.
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Figure 4. The difference between F1-scores given by RNAcmap2 (or RNAcmap3) and
the F1-scores given by Rfam as a function of F1-score given by RNAfold. RNAcmap3
and RNAcmap2 results are shown in orange and blue, respectively. The results of
RNAcmap3 and RNAcmap?2 are linked with a red line if RNAcmap3 improves over

RNAcmap?2 and a blue line, if otherwise.

Supplementary material

Table S1 Performance comparison between RNAcmap2, RNAcmap3 and rMSA
on No-hit, Low Neff and Medium Neff datasets using the GREMLIN predictor
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Figure S1 Violin plot of F1-score predicted by GREMLIN using MSA generated
by RNAcmap2, rMSA and RNAcmap3. The density estimation is computed for no
hit RNAs (21 RNAs), Low Neff RNAs (83 RNAs), and Medium Nessf RNAs (31 RNAs),
respectively. In the Violin plot, the empty circle denotes the median, the thick vertical
bar in the centre denotes the interquartile range, and the thin vertical bar shows the
range of data points that within another 1.5 interquartile range extension from the thick

bar ends. The Violin plot is cut off at the range of all actual data points.
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