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ABSTRACT 

Recent success of AlphaFold2 in protein structure prediction relied heavily on co-

evolutionary information derived from homologous protein sequences found in the 

huge, integrated database of protein sequences (Big Fantastic Database). In contrast, 

the existing nucleotide databases were not consolidated to facilitate wider and deeper 

homology search. Here, we built a comprehensive database by including the noncoding 

RNA sequences from RNAcentral, the transcriptome assembly and metagenome 

assembly from MG-RAST, the genomic sequences from Genome Warehouse (GWH), 

and the genomic sequences from MGnify, in addition to NCBI’s nucleotide database 

(nt) and its subsets. The resulting MARS database (Master database of All possible 

RNA sequences) is 20-fold larger than NCBI’s nt database or 60-fold larger than 

RNAcentral. The new dataset along with a new split-search strategy allows a substantial 

improvement in homology search over existing state-of-the-art techniques. It also 

yields more accurate and more sensitive multiple sequence alignments (MSA) than 

manually curated MSAs from Rfam for the majority of structured RNAs mapped to 

Rfam. The results indicate that MARS coupled with the fully automatic homology 
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search tool RNAcmap will be useful for improved structural and functional inference 

of noncoding RNAs. 
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INTRODUCTION 

There are two major categories of RNAs: those coded for proteins (messenger RNA, 

mRNA) and those not (noncoding RNAs, ncRNA). The first ncRNA discovered was 

transfer-RNA (tRNA) in 1958[1]. Since then, new types of noncoding RNAs were 

constantly uncovered once every a few years[2]. These noncoding RNAs can have a 

length ranging from ~20 nucleotides in microRNAs (miRNA)[3] to >100kB for a long 

noncoding RNA (lncRNA) like AIR [4]. These RNAs can perform functions at the 

sequence level by simple complementary base-pairing in the case of miRNA[3], at the 

secondary structural level in the case of RNA switches [5], and at the tertiary structural 

level in the cases of tRNA, ribosomal RNA (rRNA), ribozymes, and riboswitches [6]. 

The number of distinct ncRNAs greatly exceeds that of distinct proteins. This is 

exemplified by the fact that our human genome dedicated more than 70% for RNA 

transcripts, compared to a tiny 1.5% coded for proteins [7]. These ncRNAs actively 

participate in essentially all biological processes and implicated in >1000 diseases[2,8]. 

Given increasingly importance for annotated and unannotated RNAs in biology (coding 

and noncoding), a comprehensive sequence database for all RNAs is necessary. 

 

The most comprehensive database for ncRNAs is perhaps RNAcentral [9], which 

consolidates 56 Expert Databases and over 30 million sequences as of Jan 2022 (release 

20). Another widely used sequence library is NCBI’s nucleotide database (nt) [10]. 

Unlike RNAcentral, NCBI’s nt database contains both RNA and DNA sequences. It 

combined the GenBank, European Nucleotide Archive (EMBL-EBI), and DNA Data 

Bank of Japan databases with a sequence count of 72.9 million as of Aug 2021. 

However, neither RNAcentral, nor NCBI’s nt database is complete for all possible RNA 

sequences as many specialized databases and depositories are not included.  

 

Recently, AlphaFold2 achieved an incredible feat of accurate protein structure 

prediction for most predicted proteins in the 14th biannual meeting of critically 

assessment of structure prediction techniques (CASP 14) [11]. This success was in part 
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built on utilization of homologous sequences to extract evolution and co-evolution 

information, which contains implicitly the information on sidechain-sidechain 

distances and backbone/sidechain torsion angles. To secure as many homologous 

sequences as possible, they utilized the Big Fantastic Database (BFD) covering over 2 

billion protein sequences from reference databases, metagenomes and 

metatranscriptomes. 

 

Inspired by BFD, we build the Master database of All possible RNA Sequences 

(MARS). As in the nt database, we incorporated both RNA and DNA sequences, 

including genomic sequences. Genomic sequences were included because a large 

portion of genomic sequences are transcribed into coding and noncoding RNAs. Their 

inclusions allow us to account for all possible (or potential) RNAs. 

 

To illustrate the usefulness of the MARS database, we compare the ability to obtain 

homologous sequences by using the fully automatic pipeline RNAcmap [12]. In this 

RNAcmap pipeline, a query sequence is first searched against a database by Blast-N 

[13], followed by a covariance-model-based search by Infernal [14]. Resulting multiple 

sequence alignment (MSA) was then evaluated by direct coupling analysis tools such 

as mfDCA [15]. Evolution and co-evolution information obtained from RNAcmap 

were found useful in improving RNA secondary structure and tertiary base-pair 

prediction in SPOT-RNA2 [16] as well as distance-contact map prediction in SPOT-

RNA-2D [17]. In the latest update of RNAcmap (RNAcmap2) [18], an additional 

search by Infernal was performed on the multiple sequence alignment (MSA) produced 

by RNAcmap. A slightly expanded database was also utilized in RNAcmap2 by 

including environment samples (env nt), transcriptome shotgun assembly (tsa nt), and 

nucleotide sequences derived from the Patent Division of GenBank (pat nt) databases 

in addition to NCBI’s nucleotide (nt) database. The additional iteration as well as the 

database expansion were found effective in improving the quality of MSA obtained by 

examining the accuracy of base pairs extracted from the MSA using direct coupling 

analysis[18]. More recently, an rMSA pipeline was also proposed[19] and found useful 
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in predicting RNA distance and orientation maps by deep learning [20]. It performed 

five iterative searches against Rfam [21], RNAcentral [9], the nt database [10] by using 

Blast-N[13], nhmmer[22] and Infernal [14]. 

 

Here, we established MARS database by incorporating several additional resources. 

They include the RNAcentral database [9], the transcriptome assembly and 

metagenome assembly hosted at the University of Chicago (MG-RAST) [23,24], the 

genomic sequences from Genome Warehouse (GWH)[25,26] and the genomic 

sequences from MGnify[27]. This database has more than 20 folds (or 60 folds) over 

the number of sequences in NCBI’s nt database (or the RNAcentral database). We 

illustrated the usefulness of MARS by employing a data splitting strategy coupled with 

the homology search tool RNAcmap2. The resulting RNAcmap3 increases 36 folds in 

the median number of effective homologous sequences and 2 folds in the F1-score for 

base pair prediction by direct coupling analysis over RNAcmap2 for no-hit RNAs 

(those RNAs lacking homologs according to RNAcmap1). RNAcmap3 also yields 

more accurate multiple sequence alignments (MSA) than rMSA and manually curated 

MSAs from Rfam for the majority of structured RNAs mapped to Rfam.  

 

DATA AND METHOD 

Data collection 

The MARS database integrates all available nucleotide sequences, ranging from well-

annotated individual nucleotide sequences to poorly understood metagenomics 

assemblies. Specifically, the data source of MARS includes NCBI’s nucleotide 

database (nt)[10], environmental samples (env_nt)[10], transcriptome shotgun 

assembly (tsa_nt)[10] and nucleotide sequences from the Patent Division of Genbank 

(patnt)[10], the noncoding RNA sequences from RNAcentral[9], the transcriptome 

assembly and metagenome assembly from MG-RAST[23,24], the genomic sequences 

from Genome Warehouse (GWH)[25,26] and the genomic sequences from MGnify[27]. 
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The nt, env_nt, tsa_nt and patnt databases were downloaded from 

ftp://ftp.ncbi.nlm.nih.gov/blast/db on August 27, 2021. The RNAcentral database was 

obtained from 

https://ftp.ebi.ac.uk/pub/databases/RNAcentral/current_release/sequences on August 

17, 2021. The MG-RAST database was established by collecting assembled 

transcriptomic and metagenomic sequences from https://www.mg-rast.org on October 

7, 2021. The GWH database was downloaded from ftp://download.big.ac.cn/gwh on 

August 21, 2021. The MGnify database was downloaded from 

ftp://ftp.ebi.ac.uk/pub/databases/metagenomics/mgnify_genomes on December 21, 

2021.  

 

Data processing 

The NCBI databases were downloaded in NCBI-BLAST format. The corresponding 

fasta files were extracted by blastdbcmd from the BLAST+ 2.12.0 package[28]. The 

RNAcentral database is downloaded as a zipped fasta file and is used as-is after 

inflation. The MG-RAST, GWH, and MGnify databases are downloaded as individual 

sequences for assemblies. Sequences from the three sources are first merged according 

to their data source, resulting three bulk fasta files. The fasta files of MG-RAST and 

GWH are further formatted as follows: 1) sequences longer than 1000m bases (which 

are usually chromosomes) are deleted; 2) all sequences are transferred to DNA alphabet; 

3) all gaps, dashes and non-IUPAC characters in sequences are substituted with 

character ‘N’. After processing, all eight databases (nt, env_nt, tsa_nt patnt, 

RNAcentral, MG-RAST, GWH, and MGnify) are available as eight bulk fasta files. 

The above databases were concatenated in fasta format, resulting a raw total size of 

1742 GB. SeqKit[29] was then employed to remove 100% duplicated sequences. The 

final database versioned as the MARS database 1.0. It is released in the fasta format, 

comprised of 1,727,789,860 nucleotide sequences with 1,592,396,862,523 bases in 

total and the file size reaches 1571 GB, compared to 72.9 million sequences in nt and 

27 milion sequences in RNAcentral. 
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Application to RNA homology search by RNAcmap 

Here, we adapted the three-iteration framework of RNAcmap2 for homology search 

[18] with a major change how the databases were searched (Figure 1). As one large file 

for the sequence dataset is inefficient to handle, it was split into 149 volumes with a 

fixed size of 10 GB. Independent cmsearch processes in Infernal[14] are evoked on 

these individual volumes, producing individual multiple sequence alignments (MSAs) 

on the volumes. The individual MSAs are then merged into the MSA on the full 

database with esl-alimerge, a mini-app from Easel toolkit shipped with Infernal. This 

split strategy significantly improves the depth of resulting MSAs. To distinguish this 

change from RNAcmap2 in relation to the database search, we label the current search 

as RNAcmap3 against the MARS dataset for comparison with the previous RNAcmap 

results. 

 

Benchmark for comparing homology searches  

We employed the same benchmark datasets that were employed for comparing 

RNAcmap2 with RNAcmap1 [18]. Briefly, non-redundant RNA structures (80% cutoff 

by CD-HIT-EST [30]) were obtained from Protein Data Bank [31]. Their sequences 

were searched against the NCBI nt database by RNAcmap1 and divided into No-hit, 

Low Neff (1-10), Medium Neff (10-50) and high Neff (>50) sets with 21, 83, 31, and 110 

RNAs, respectively. Here, we will focus on No-hit, Low Neff, and Medium Neff sets 

only because co-variational, direct coupling analysis of the MSAs for the high Neff set 

has achieved highly accurate prediction of base pairs by RNAcmap1. More homologous 

sequences by RNAcmap2 or RNAcmap3 can no longer increase evolutionary or co-

evolutionary information for those with high Neff by RNAcmap1. The above 135 PDB 

structures (No-hit, Low Neff , and Medium Neff structures) were further mapped onto 

Rfam and non-Rfam families by simply searching PDB RNA sequences on the Rfam 

website (https://rfam.xfam.org). This led to 30 different Rfam families along with 105 

sequences that are not mapped to any Rfam families. The MSAs and base-pair 
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predictions from Rfam are compared to those from RNAcmap2 as done in [18] and 

RNAcmap3 developed here. 

 

The MSAs produced by RNAcmap3 were evaluated by assessing the accuracy of the 

secondary structure predicted by co-variational analysis of the MSAs, as in RNAcmap2 

[18], according to sensitivity (SN = TP/(TP + FN)), precision (PR=TP/(TP+FP)) and 

F1-score (F1=2(PRSN/(PR+SN)) for non-local base-pairs (|i-j|>3). Here, TP, FN, and 

FP are true positives, false negatives, and false positives, respectively. The F1, 

Precision and Sensitivity are calculated with the top L/3 predictions as predicted truth. 

In RNAcmap2, the co-variational analysis of MSAs was done by direct coupling 

analysis (DCA) predictors (GREMLIN[32], mfDCA[15], PLMC[33,34] and 

plmDCA[35]). Because PLMC and plmDCA failed to produce the results for some 

MSAs generated by RNAcmap3, GREMLIN and mfDCA are utilized for method 

comparison. However, only mfDCA is reported here because mfDCA consistently 

yielded better results than GREMLIN. 

 

rMSA is a recently reported pipeline for RNA homology search [19] that searched 

against nt and RNAcentral databases. Here, the versions of these two databases for 

rMSA were the same as used in RNAcmap3. The rMSA program is downloaded from 

https://github.com/pylelab/rMSA. In all searches, rMSA runs with the default run 

parameters. 

 

The RNAcmap2 results presented in the manuscript are obtained on the same version 

of NCBI databases as used in MARS. 

 

RESULTS 

 

Performance on RNA homology search 
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Table 1 compares the MSAs generated by RNAcmap2, rMSA, and RNAcmap3 in term 

of the number of effective homologous sequences (Neff) and the F1-score given by 

mfDCA for the MSAs. The distribution of F1-scores for individual RNAs is shown in 

Figure 2.  

 

RNAcmap2 and rMSA have a comparable performance in all three datasets. The 

average F1-score derived from rMSA results is slightly higher than RNAcmap2 in No-

hit RNAs, but slightly lower in Low Neff and Medium Neff RNAs. This happened despite 

that rMSA produces MSAs with much higher average Neff values than that of 

RNAcmap2 in all three datasets (Table 1). It seems that a higher Neff value (a 

statistically significant difference between Neff values with a p-value of 0.006) does 

not necessarily produce a higher MSA quality (a statistically insignificant difference 

between F1-scores with a p-value of 0.628).  

 

RNAcmap3 outperforms both RNAcmap2 and rMSA in all three datasets on all 

performance indicators although overall comparable performance on the Medium set. 

RNAcmap3 increases in average F1-score over RNAcmap2 by 136.8% for no-hit RNAs, 

43.4% for Low Neff RNAs and 6.98% for Medium Neff RNAs, respectively. RNAcmap3 

also increases in average F1-score over rMSA by 113.7% for no-hit RNAs, 49.8% for 

Low Neff RNAs and 9.0% for Medium Neff RNAs, respectively. The RNAcmap3-

generated MSAs have Neff values much higher than that of rMSA MSAs. RNAcmap3 

yields MSAs with median Neff >100 even for No hit RNAs. Comparing to RNAcmap2, 

the high Neff values (p-value=3.74 × 10ିଵଷ) are indeed related to much better MSA 

qualities as reflected by the F1-scores (p-value=4.14 × 10ି଻). Note that there is a zero 

F1-score for RNAcmap3 (PDB 1g1x_E in Medium Neff RNAs) due to poor 

performance of RNAfold for providing initial secondary structure employed in 

homology search. This leads to a smaller median F1-score for RNAcmap3 on Medium 

Neff RNAs, compared to that for rMSA. More discussions can be found below. 
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Among three RNA datasets, the improvement of RNAcmap3 is the most significant for 

the No hit and Low Neff datasets. In fact, the performance of RNAcmap3 on No hit 

RNAs is better than that of RNAcmap2 on Low Neff RNAs. RNAcmap3 in the Low Neff 

dataset also outperforms RNAcmap2 in the Medium Neff dataset. This is consistent with 

the drastically increased Neff values. The performance improvement of RNAcmap3 on 

the Medium Neff RNAs is <10% over RNAcmap2 (or rMSA), because RNAcmap2 also 

generates MSAs with sufficient Neff values. This is in line with the notion that 

prediction accuracy by covariational analysis along with MSA depth has an upper limit. 

Similar results (Supplementary Table S1 and Supplementary Figure S1) were obtained 

when GREMLIN was employed to measure the quality of MSA  

 

Comparison between RNAcmap3 and manually annotated Rfam 

Rfam clusters RNA sequences into the families according to the homology in 

sequence and secondary structure. When possible, Rfam utilizes experimentally 

determined secondary structures for homology search and alignment. By comparison, 

a method like RNAcmap or rMSA employed RNAfold for initial secondary structure 

prediction. Thus, Rfam is often considered as the gold standard for RNA MSAs 

although not all RNAs in Rfam employed experimentally determined secondary 

structure.  

 

Figure 3 shows the F1-scores from mfDCA-predicted base-pairs (top L/3) using the 

MSAs (1 RNA in the no-hit set, 14 in the low Neff set and 15 in the medium Neff set) 

from Rfam, RNAcmap2, and RNAcmap3, respectively. For medium Neff RNAs, 

RNAcmap3 retains the significantly improved performance of RNAcmap2 over Rfam. 

For low Neff RNAs, the performance on some sequences is significantly improved over 

Rfam (and RNAcmap2) but not improved for others. 

 

A more detailed comparison for each family is shown in Table 2. In the mapped 30 

families, RNAcmap3 outperforms Rfam in 17 families, and Rfam performs better than 
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RNAcmap3 in 10 families, with equal performance on 3 families. On the other hand, 

RNAcmap3 outperforms RNAcmap2 in 15/30 families and RNAcmap2 outperforms 

RNAcmap3 in 9/30 families, with 6 families in similar performance. RNAcmap3 

improves more over RNAcmap2 when both improves over Rfam (10 in 18 families). 

In the 9 families that RNAcmap2 does not perform as well as Rfam, RNAcmap3 

improves the performance in 5 families, while fails to do so on the remaining 4. 

Interestingly, average-speaking, RNAcmap2 performs better on the Rfam-mapped 

sequences than Non-Rfam sequences. However, RNAcmap3 seems to perform even 

better on Non-Rfam sequences than the Rfam-mapped sequences. 

 

One big difference between Rfam and RNAcmap is that Rfam relied on known 

secondary structures whereas RNAcmap employed secondary structure predicted by 

RNAfold. Table 2 and Figure 4 illustrated the dependence of RNAcmap performance 

on RNAfold. In particular, the improvement of RNAcmap2 or RNAcmap3 over Rfam 

F1 score is positively correlated with the F1 score given by RNAfold with a Pearson’s 

correlation coefficient of 0.573 (p=0.001) for RNAcmap3 and 0.359 (p=0.051) for 

RNAcmap2. If RNAfold predictions have a F1-score of >0.667, RNAcmap3 always 

performs equally or better than RNAcmap2 and Rfam.  

 

DISCUSSION 

 

This work established a comprehensive database of nucleotide sequences by including 

NCBI’s nucleotide database (nt), environmental samples (env_nt), transcriptome 

shotgun assembly (tsa_nt) and nucleotide sequences from the Patent Division of 

Genbank (patnt), the noncoding RNA sequences from RNAcentral, the transcriptome 

assembly and metagenome assembly from MG-RAST, the genomic sequences from 

Genome Warehouse (GWH) and the genomic sequences from MGnify. This 

compilation led to the MARS database of nucleotide sequences that is more than 20 

times larger than the commonly used nt database in the number of sequences. Using a 
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split-search strategy for the MARS database allows RNAcmap3 to gain a deeper MSA 

and yield better co-evolution coupling than RNAcmap2 and rMSA. Moreover, despite 

using RNAfold as the initial secondary structure for homology inference, RNAcmap3 

can achieve more accurate inference of secondary structure from MSA than from Rfam 

MSAs. RNAcmap3 is expected to be useful for improving RNA homology search. 

 

One issue of MARS is the huge size of the sequence datasets with 1.5TB for its first 

version. This huge size makes the homology search very slow, despite of the strategy 

of data splitting for parallel processing. A typical search for a 100-base long sequence 

would take 4 hours on 24 cpus. Longer sequences of >1000 nucleotides long are 

prohibitively slow. One expects that the sequence database will continue to expand 

exponentially given the low cost of high-throughput sequencing. Unfortunately, not all 

datasets contained in the MARS can be updated fully automatically. For example, an 

ftp access to the MGnify database with a script frequently suffers from broken 

connections. One must rely on manual intervention to complete the process. 

 

For RNAcmap3, one limitation is that one must use a predicted secondary structure as 

the initial guess for homology search. Here, we employed RNAfold. We found that the 

performance of the method is somewhat depending on how accurate is the initial 

RNAfold prediction (Figure 4). This problem can be addressed with improved 

prediction of secondary structure, for example, by deep learning techniques (e.g. SPOT-

RNA [36], MXfold2[37], UFold [38]). However, there is a risk of overtraining for some 

of these deep learning techniques, which would make some methods to perform poorly 

for unseen RNA families [39]. Thus, caution must be exercised when using these deep 

learning techniques. 

Data availability 

All datasets, RNAcmap3 can be downloaded from http://zhouyq-

lab.szbl.ac.cn/download/ 
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Figure legends 

 

 

Figure 1 The schematic diagram of the RNAcmap3 pipeline. CSS: Consensus 

Secondary Structure. CM: Covariance Model. L: Length of the input RNA sequence. 

 

Table 1 Performance comparison by F1-Score (harmonic mean of precision and 

sensitivity) among RNAcmap2, RNAcmap3 and rMSA on No-hit, Low Neff and 

Medium Neff datasets using mfDCA predictor 

Dataset Pipeline F1 Precision Sensitivity Median Neff 

No-hit RNAs 

(21 RNAs) 

RNAcmap2 0.204 0.218 0.206 3.0 

rMSA 0.226 0.243 0.223 10.0 

RNAcmap3 0.483 0.501 0.489 107.1 

Low Neff 

RNAs (83 

RNAs) 

RNAcmap2 0.426 0.472 0.396 13.5 

rMSA 0.408 0.446 0.383 25.1 

RNAcmap3 0.611 0.667 0.574 156.5 

RNAcmap2 0.587 0.658 0.541 86.4 
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Medium Neff 

RNAs 

 (31 RNAs) 

rMSA 0.576 0.639 0.553 183.9 

RNAcmap3 0.628 0.692 0.604 307.1 

 

 

Figure 2 Violin plot of F1-score predicted by mfDCA using MSA generated by 

RNAcmap2, rMSA, and RNAcmap3. The density estimation is computed for no hit 

RNAs (21 RNAs), Low Neff RNAs (83 RNAs) and Medium Neff RNAs (31 RNAs), 

respectively. In the Violin plot, the empty circle denotes the median, the thick vertical 

bar in the centre denotes the interquartile range, and the thin vertical bar shows the 

range of data points within another 1.5 interquartile range extension from the thick bar 

ends. The Violin plot is cut off at the range of all actual data points. 

 

Table 2 Performance given by Rfam, RNAcmap2, RNAcmap3 and RNAfold with 

F1-score on 30 Rfam mapped families using the mfDCA predictor, as well as on 

105 non-Rfam RNAs. 

Rfam 

Family 
RNA type 

No. of 

RNAs 

PDB 

chain 

Rfam 

(neff) 

RNAcmap2 

(neff) 

RNAcmap3 

(neff) 
RNAfold 

RF00005 tRNA 1 2DU4_C 

0.778 

(3037.1) 

0.704 

(59.0) 

0.556 

(712.4) 

0.370 
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RF00008 

Hammerhead 

ribozyme 

1 2QUS_A 

0.604 

(171.0) 

0.792 

(149.2) 

0.792 

(1340.9) 

0.933 

RF00026 

U6 

spliceosomal 

1 4N0T_B 

0.000 

(2412.8) 

0.439 

(227.9) 

0.465 

(158.2) 

0.513 

RF00100 7SK 1 5LYU_A 

0.844 

(1832.6) 

0.622 

(45.9) 

0.844 

(192.9) 

1.000 

RF00102 VA 1 6OL3_C 

0.409 

(29.7) 

0.782 

(65.4) 

0.782 

(404.3) 

0.879 

RF00164 

Coronavirus 3’ 

stem-loop II-

like motif 

1 1XJR_A 

0.412 

(4.0) 

0.588 

(21.7) 

0.824 

(204.1) 

0.824 

RF00228 

Hepatitis A 

virus internal 

ribosome entry 

site 

1 6MWN_A 

0.090 

(1) 

0.716 

(633.2) 

0.716 

(249.0) 

0.746 

RF00390 UPSK 1 6MJ0_A 

0.066 

(1) 

0.306 

(26.8) 

0.316 

(135.8) 

0.364 

RF00442 

Guanidine-I 

riboswitch 

1 5T83_A 

0.556 

(152.7) 

0.250 

(300.1) 

0.247 

(169.4) 

0.000 

RF00458 

Cripavirus 

internal 

ribosome entry 

site 

1 2IL9_A 

0.391 

(14.0) 

0.628 

(93.5) 

0.565 

(128.3) 

0.537 

RF00505 RydC 1 4V2S_Q 

0.270 

(4) 

0.526 

(65.9) 

0.571 

(1271.1) 

0.606 

RF01344 

CRISPR RNA 

direct repeat 

element 

1 6JDV_B 

0.000 

(6.8) 

0.880 

(132.5) 

0.900 

(432.3) 

0.917 
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RF01415 

Flavivirus 

3’UTR stem 

loop IV 

1 4PQV_A 

0.267 

(4.9) 

0.133 

(9.9) 

0.222 

(206.9) 

0.263 

RF01689 AdoCbl variant 1 4FRN_A 

0.613 

(60.5) 

0.427 

(12.3) 

0.507 

(107.1) 

0.424 

RF01704 

Downstream 

peptide 

1 6QN3_A 

0.733 

(52.3) 

0.733 

(38.7) 

0.733 

(156.0) 

0.759 

RF01725 

SAM-I/IV 

variant 

riboswitch 

1 4L81_A 

0.500 

(169.8) 

0.611 

(118.2) 

0.750 

(574.0) 

0.857 

RF01734 

Fluoride 

riboswitch 

1 4ENA_A 

0.800 

(242.2) 

0.629 

(52.4) 

0.514 

(106.0) 

0.345 

RF01750 

ZMP/ZTP 

riboswitch 

1 4XWF_A 

0.622 

(102.4) 

0.444 

(262.8) 

0.622 

(490.1) 

0.667 

RF01763 

Guanidine-III 

riboswitch 

1 5O69_A 

0.513 

(5.1) 

0.513 

(4.1) 

0.359 

(112.8) 

0.609 

RF01786 

Cyclic di-

GMP-II 

riboswitch 

1 3Q3Z_A 

0.847 

(372.1) 

0.847 

(332.8) 

0.576 

(650.6) 

0.441 

RF01826 

SAM-V 

riboswitch 

1 6FZ0_A 

0.300 

(2.9) 

0.524 

(24.1) 

0.238 

(2251.0) 

0.400 

RF01852 

Selenocysteine 

transfer 

1 3ADB_C 

0.866 

(298.8) 

0.896 

(56.9) 

0.896 

(1002.5) 

0.941 

RF02519 ToxI antitoxin 1 4ATO_G 

0.091 

(1.2) 

0.364 

(15.3) 

0.364 

(156.5) 

0.444 

RF02553 Y RNA-like 1 6CU1_A 

0.698 

(84.2) 

0.476 

(330.6) 

0.387 

(381.7) 

0.393 

RF02678 

Hatchet 

ribozyme 

1 6JQ5_A 

0.222 

(3.2) 

0.444 

(9.0) 

0.704 

(84.1) 

0.766 
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RF02679 

Pistol 

ribozyme 

1 6UFJ_A 

0.486 

(43.3) 

0.541 

(47.6) 

0.378 

(849.0) 

0.320 

RF02680 

PreQ1-III 

riboswitch 

1 4RZD_A 

0.261 

(2.8) 

0.294 

(11.9) 

0.353 

(110.7) 

0.414 

RF02683 

NiCo 

riboswitch 

1 4RUM_A 

0.627 

(118.2) 

0.667 

(61.7) 

0.866 

(625.4) 

0.892 

RF02796 Pab160 1 3LWO_D 

0.462 

(3.3) 

0.667 

(13.5) 

0.821 

(592.8) 

0.865 

RF03013 nadA 1 6TFE_A 

0.737 

(28.8) 

0.632 

(14.0) 

0.842 

(190.3) 

0.872 

Mean 30 Families - - 

0.469 

(308.8) 

0.569 

(107.9) 

0.590 

(468.2) 

0.612 

Non-Rfam - 105 - - 0.389 0.596 - 

 

 

Figure 3 Violin plot of F1-score predicted by mfDCA using MSAs provided by 

Rfam, RNAcmap2 and RNAcmap3 for RNAs mapped to Rfam. The density 

estimation is computed for no hit RNAs (1 RNAs), Low Neff RNAs (14 RNAs), and 

Medium Neff RNAs (15 RNAs), respectively. In the Violin plot, the empty circle 

denotes the median, the thick vertical bar in the centre denotes the interquartile range, 

and the thin vertical bar shows the range of data points within another 1.5 interquartile 
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range extension from the thick bar ends. The Violin plot is cut off at the range of all 

actual data points. 

 

 

Figure 4. The difference between F1-scores given by RNAcmap2 (or RNAcmap3) and 

the F1-scores given by Rfam as a function of F1-score given by RNAfold. RNAcmap3 

and RNAcmap2 results are shown in orange and blue, respectively. The results of 

RNAcmap3 and RNAcmap2 are linked with a red line if RNAcmap3 improves over 

RNAcmap2 and a blue line, if otherwise. 

 

Supplementary material 

Table S1 Performance comparison between RNAcmap2, RNAcmap3 and rMSA 

on No-hit, Low Neff and Medium Neff datasets using the GREMLIN predictor 
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Figure S1 Violin plot of F1-score predicted by GREMLIN using MSA generated 

by RNAcmap2, rMSA and RNAcmap3. The density estimation is computed for no 

hit RNAs (21 RNAs), Low Neff RNAs (83 RNAs), and Medium Neff RNAs (31 RNAs), 

respectively. In the Violin plot, the empty circle denotes the median, the thick vertical 

bar in the centre denotes the interquartile range, and the thin vertical bar shows the 

range of data points that within another 1.5 interquartile range extension from the thick 

bar ends. The Violin plot is cut off at the range of all actual data points. 
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