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Abstract

Pairing of the T cell receptor (TCR) with its cognate peptide-MHC (pMHC) is a cornerstone in T
cell-mediated immunity. Recently, single-cell sequencing coupled with DNA-barcoded MHC
multimer staining has enabled high-throughput studies of T cell specificities. However, the
immense variability of TCR-pMHC interactions combined with the relatively low signal-to-noise
ratio in the data generated using current technologies are complicating these studies. Several
approaches have been proposed for denoising single-cell TCR-pMHC specificity data. Here, we
present a benchmark evaluating two such denoising methods, ICON and ITRAP. We applied
and evaluated the methods on publicly available immune profiling data provided by 10x
Genomics. We find that both methods identified approximately 75% of the raw data as noise.
We analyzed both internal metrics developed for the purpose and performance on independent
data using machine learning methods trained on the raw and denoised 10x data. We find an
increased signal-to-noise ratio comparing the denoised to the raw data for both methods, and
demonstrate an overall superior performance of the ITRAP method in terms of both data
consistency and performance. In conclusion, this study demonstrates that Improving the data
quality by optimizing signal yield from high throughput studies of TCRpMHC-specificity is

paramount in increasing our understanding of T cell-mediated immunity.
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Introduction

The specificity of T cells form the hallmark of cellular immunity. T cell specificity is determined by
the triad of interactions between the T cell receptor (TCR), a peptide (p), and its restricting major
histocompatibility complex (MHC). The TCR is a heterodimeric protein, typically consisting of an
a- and B-chain. These chains are formed during T cell development as a result of stochastic
recombination of the Variable (V), Diversity (D) and Joining (J) genes (1-5). As a result of the
somatic recombination, highly variable joining segments are introduced, VJ and VDJ for a- and
B-chains respectively, facilitating a diverse TCR repertoire that ensures protection from a broad
and ever-changing range of pathogens or cancerous mutations (6,7). The joining segments are
contained in a region known as the complementarity determining region 3 (CDR3). CDR1 and
CDR2 reside in highly polymorphic regions of the V-gene. These three CDRs per chain form
flexible loops of the TCR which engage with the peptide-MHC (pMHC) complex, thereby
determining the specificity of the T cell (1-5,8,9).

Recent studies have elucidated shared TCR sequence features of T cells that share a common
specificity, and for selected pMHCs, it has been possible to train models allowing to predict
binding for TCRs novel to the trained model (1-5,10,11). The current primary limitation for the
further development of such models is the lack of training data in terms of both quantity and
diversity. Traditionally, TCR specificity data have been generated by assays such as multimer
sorting and re-exposure assays, followed by bulk sequencing of typically the CDR3-loop of the
TCRpB-chain. Such approaches hence fail to provide information about the paired TCR a- and
B-chains. Recent studies have demonstrated that such paired information is essential to
properly deduce and model TCR specificities (12,13). However, the advent of single-cell
sequencing platforms promises a solution to this, generating high-throughput paired a-/B-chain
TCR data. In addition these platforms intrinsically provide information on both positive as well as

negative binding pairs (14), which is crucial when training machine learning models.

10x Genomics has specifically developed an immune profiling platform that couples TCR
sequencing of both a- and B-chains with DNA barcoded peptide-MHC (pMHC) multimers, DNA
barcoded surface marker antibodies, and DNA barcoded cell hashing antibodies. The platform
is designed to capture a single cell together in a gel-bead in emulsion (GEM) (15,16). Each
GEM contains GEM-specific barcoded primers which ensure the back-tracing of transcripts to

the cell of origin. As the platform promises single-cell capture, the contents of a GEM should
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reflect a single cell and its associated barcoded analytes, hence GEM and T cell may be used
interchangeably. The GEM primers also contain a unique molecular identifier (UMI) which
ensures the quantification of transcripts unbiased by PCR amplification(17). Thus, single-cell
screening of TCR-pMHC interactions yields the sequences of the TCR a-/B-chains and the
expression level of both chains as well as the count of each unique pMHC binding event which

can be interpreted as a proxy for T cell binding affinity (14).

In 2019, 10x Genomics released a large, state-of-the-art data set (14) which spurred activity
within the TCR-pMHC modeling community (1-5,14,19, 25). The 10x Genomics data contained
T cell specificities from four healthy donors screened against a panel of 50 pMHCs which
includes 44 pMHCs for positive selection and 6 negative control pMHCs (14). However, this
data presented new challenges. The single-cell platform is generally associated with a poor
signal-to-noise ratio due to GEM-to-GEM leakage and capture of ambient analytes from
suspension. The challenge was handled in various ways. In NetTCR-2.0, the data was utilized
solely to define negative TCR-pMHC pairs, i.e. pairs that were not detected to bind any of the
investigated pMHC complexes, thereby bypassing handling the noise within the detected
positive data (12). Since the true TCR-pMHC pairs are a point of contention, the authors of
ImRex purposefully omitted the 10x data (18), while the authors of TcellMatch and DeepTCR
relied on the network to extract the salient pMHC-specific features of the TCRs (19,20). The
authors of TCRAI were the first to develop a computational method, named ICON (Integrative
COntext-specific Normalization), to discriminate true TCR-pMHC binding signal from nonspecific
background noise (21). ICON was developed based on 10x Genomics data, utilizing the
negative controls to empirically estimate the background binding noise per donor. The UMI
counts of pMHCs were then corrected by subtracting the donor-specific estimated background
noise. UMI counts were further corrected by penalizing pMHCs multiplets i.e., GEMs containing
multiple DNA barcodes corresponding to two or more different pMHCs. The final step of ICON is
the normalization of UMI counts across pMHCs and GEMs to make them directly comparable.

As a result, ICON identified a total of 53,062 T cells belonging to 5,722 unique clonotypes.

Recently, we have proposed an alternative denoising framework: ITRAP (improved T cell and
Antigen Pairing) (22). The ITRAP framework was originally developed and tested on in-house
single-cell data generated using the 10x Genomics platform similar to the public 10x Genomics
data. In comparison to ICON, ITRAP takes a different approach for denoising. The key is to

study GEMs in an ensemble rather than individually, since this allows deviations to be averaged
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out. That is, If a pMHC is distributed with a significantly higher mean UMI in the ensemble
compared to others, we expect this pMHC to reflect the true target of the clonotype, collectively
providing a golden standard. The ITRAP framework consists of a series of filtering approaches
to obtain increasingly accurate TCR-pMHC pairing. The first filtering step is based on identifying
expected targets by comparing the UMI distributions of all pMHCs detected within a clonotype
consisting of 10 or more GEMs. Based on the labeling of true and false targets, an accuracy
score is next defined, and thresholds on UMI counts can be defined to maximize this accuracy.
By globally applying the optimal threshold, the remaining clonotypes are next filtered to ideally
represent the same level of accuracy in their pMHC annotations. Another key step of ITRAP
filtering is ensuring HLA correspondence between pMHC and the HLA haplotype of the T cell
donor. In immune profiling assays, the option to hash cells by donor-of-origin enables the
assignment of HLA haplotype restriction to each cell. Correspondence between the allele of
pMHC and donor haplotype can be used to verify the assignment of the pMHC, assuming that a
T cell is restricted solely to the allele for which it was selected during the thymocyte maturation
process. In the public 10x data, the cells are not hashed, however, the experiment was run in

parallel for each donor, enabling in silico hashing of the individual single-cell runs.

In this study, we report a benchmark of the ICON and ITRAP frameworks. Both methods are
applied to the 10x Genomics data since this is the only data set containing negative controls as
is required by ICON. As no external golden standard exists, the performance of the two
methods is evaluated on internal performance metrics GEM retention, accuracy, average
binding concordance, and AUC of similarity scores earlier presented by Povisen et al. (22), as
well as in terms of predictive performance of machine learning methods trained on the raw and

denoised 10X data on independent data.

Material and Methods

Data Retrieval

The 10x Genomics data set used for this study was downloaded from

https://support.10xgenomics.com/single-cell-vdj/datasets (Application Note. A New Way of

Exploring Immunity).
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The ICON-filtered dataset was curated by Zhang et al. employing ICON for identifying reliable
TCR-pMHC interactions. The resulting filtered data was downloaded from
http://advances.sciencemag.org/cgi/content/full/7/20/eabf5835/DC1. This dataset contains
53,062 cells (here referred to as GEMs) that passed the ICON filtering with ICON-corrected
pMHC and TCR annotations. The ICON output provided with the publication contains a fifth

donor, donor V, which was removed from the set (14,052 GEMs). This donor V was part of an
internal experiment by Zhang et al., and raw data was not available and has not been acquired

for this benchmark.

Data Curation

The data consists of four sets of single-cell RNA sequencing and immune profiling from four
healthy donors. The sets were concatenated for one combined analysis. GEM-specific 10x
barcodes (GEM barcodes) were observed in duplicates across the donor sets (625,170
duplicate GEMs of raw TCR annotation and 386 duplicate GEMs of raw pMHC annotations). As
a result the GEM barcodes were additionally suffixed by donor, i.e.
AAACCTGTCTAACTTC-6-s2. Cells (referred to as GEMs) were removed if the annotated
CDR3ap sequences were not productive, full length, or contained non-lUPAC characters,
resulting in 181,913 GEMs.

ITRAP Data Filtering

ITRAP consists of different types of filters that can be applied to single-cell immune profiling
data to reliably identify TCR-pMHC interactions. The accepted inputs include single-cell RNA
sequencing, targeted T cell receptor sequencing, dCODE-Dextramer sequencing for DNA
barcoded pMHC multimers, as well as CITE-seq sequencing of DNA barcoded cell hashing
antibodies. The method includes the following major steps as described in (22) and applied to
the current data as outlined below (note that the filtering process is subsequent and can be

stopped at any given user-defined step):

Step 1: Correction of 10x annotated clonotypes. Instead of limiting clonotypes to groups of
GEMs with exact nucleotide sequence identity, clonotypes were defined based on VJap-gene
annotation and the CDR3af3 amino acid sequences. For clonotypes for GEMs containing only

one TCR chain, the other chain was imputed if the present chain matched only one
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pre-established clonotype. GEMs containing multiple chains were annotated by the most

abundant chain by UMI count.

Step 2: Filtering based on data-driven thresholds. For clonotypes consisting of more than 10
GEMs, the expected target was identified if a pMHC had a significantly higher UMI distribution
than other pMHCs also captured in GEMs of the given clonotype. Significance was tested by
Wilcoxon at a=0.05. The pMHCs not declared as target are considered background noise. An
accuracy score was obtained based on the fraction of target pMHCs over background pMHCs.
The optimal UMI threshold was selected as the UMI value that maximized this accuracy score.
Next, the thresholds were applied to the entire data set, and for each retrained GEM, the pMHC
target was assigned from the highest pMHC UMI count.

Step 3: Match pMHC HLA allele with donor haplotype. The HLA-A, -B, and -C haplotypes were
provided by an application note following the release of the single-cell sequencing of the four
healthy individuals. Since the samples were sequenced individually the haplotypes were easily
added to the data sets. GEMs consisting of a mismatch between donor haplotype and pMHC

were discarded.

Step 4: Selecting GEMs with paired af chains. GEMs with only a single chain were removed.
For GEMs with multiple a- and/or B-chains, the ones with the highest UMI counts were assigned
to each GEM.

Step 5: Filtering specificity singlets. If a TCR-pMHC pair was only observed once, it was

discarded to increase confidence in matches.

Step 6: Selecting 10x annotated cells. Application of the 10x provided filter "is_cell" (14).

TCR Specificity Prediction

In order to quantify the benefit of removing noisy observations from the original 10x dataset, we
trained the NetTCR-2.1 CDR3af framework on i) the unfiltered 10x data, ii) the ITRAP-filtered
data using optimal UMI threshold and donor HLA matching, iii) ICON-filtered data, with the
setup recommended by the authors (21). For details on the modeling framework refer to (23). In
short, NetTCR-2.1 uses convolutional neural networks to predict the binding of a TCR and a

peptide-MHC complex. In the current work, the inputs to the model are the CDR3 a and B amino


https://sciwheel.com/work/citation?ids=13588395&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=11132166&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=14042131&pre=&suf=&sa=0
https://doi.org/10.1101/2023.02.01.526310
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.01.526310; this version posted February 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

acid sequences. For each of the peptides present in the data set, a model is trained on the TCR
data specific to that epitope. These models are subsequently used to obtain predictions over an
external evaluation set.

Both the raw and filtered data consist of GEMs with annotated TCRpMHC triads. In each case,
a set of positive TCR-peptide pairs was built by selecting, for each clonotype, the most frequent
pMHC across GEMs (for that clonotype) as the target pMHC. To validate the trained models, an
external evaluation set was retrieved from VDJdb (24). This dataset consisted of 927 TCR
sequences relative to 4 epitopes (GILGFVFTL, GLCTLVAML, ELAGIGILTV, IVTDFSVIK). Also,
the training set was restricted to the set of 4 peptides, to ensure overlap between the training
and evaluation set. For both data sets, negative peptide-TCR pairs were artificially generated by
pairing the positive TCRs with the other 3 peptides different from their target cognate.

To investigate performance inflation due to a similarity overlap between training and evaluation
sets, TCRs from the evaluation data that had a kernel similarity value (25) above 0.9 to the
training TCRs were removed.

The training set was randomly split into 5 partitions and the models were trained using 5-fold
nested cross-validation. The resulting 20 trained models were used in an ensemble to get
predictions over the TCRs in the evaluation set. The different training and evaluation datasets

are available at https://github.com/mnielLab/ITRAP benchmark.

Results

Summary of the public 10x data

The public data set made available by 10x Genomics is the result of screening CD8" T cells
from four healthy donors against a panel of 50 pMHC DNA barcode-labeled multimers. The
complete data was initially reduced to only include IUPAC encoded amino acids within CDR3
sequences and further only considered GEMs which contained both TCR and pMHC
annotations, resulting in 181,913 GEMs. Donors investigated by 10x Genomics were selected
by HLA haplotype to ensure overlap with the HLA alleles of the pMHC panel. 44 of the
multimers contain antigenic peptides derived from CMV, EBV, influenza, HTLV, HPV, HIV, and
known cancer antigens. It should be noted that the donors were all seronegative for HIV, HBV,
and HBC. The remaining six multimers contained negative control peptides restricted by five
HLAs. The specificities of each of the four donors were screened in parallel i.e., in four different

experimental runs. Therefore, unique GEM-specific 10x barcodes (GEM barcodes) were in
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some cases observed in replicas across runs. In order to distinguish these distinct GEMs, an

extra suffix was added denoting the donor (sample ID). The unfiltered output is portrayed in

Figure 1, which clearly demonstrates the issue of noise, as every GEM contains multiple

pMHCs. Most GEMs contain TCRs annotated with a unique a- and B-chain, however, ~16% are

annotated with only an a- or a 3-chain while ~10% are annotated with multiple a- or B-chains,

which further challenges the investigation of specificity.
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Figure 1: Visualization of all detected pMHC barcodes (y-axis) within each of the 181,913 GEMs (x-axis).

In each GEM the most abundant pMHC is marked by a color, while the remaining pMHCs in the GEM are

gray. The marker size reports the UMI count of the given pMHC and the shape recounts whether the HLA
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allele of the pMHC matches the HLA haplotype of the donor, which is provided in the experimental report
(14). The first color bar indicates the type of TCR chain annotation; whether the TCR has a unique
ap-pair, is missing a chain, or consists of multiple chains. The second color bar is a specificity check
against the specificity databases IEDB and VDJdb. Colors highlight the GEMs where the CDR3af3
sequences are contained in the databases. The green color represents a match between the database

pMHC and the detected pMHC, while red indicates a mismatch.

Alignment of ICON- and 10x-assigned GEMs revealing inconsistent

annotations

In order to compare the ICON and ITRAP filtering frameworks, the outputs from each method
were aligned based on the GEM barcode, consisting of 16 nucleotides, a suffix pertaining to the
sequencing well, and a sample ID suffix. ICON reported retention of 53,062 GEMs out of the
total set of 181,913 GEMs. However, ICON only contains 5,031 GEMs that match the original
database on the full GEM barcode, due to inconsistencies in the suffix annotation. When
stripping the barcode down to only the 16 nucleotides, we were able to align 39,806 GEM
barcodes, as exemplified in Figure 2a. We also observed inconsistencies of TCRaf8 annotations
in 3,391 GEMs, as illustrated in Figure 2b+c. 1,854 GEMs were missing either an a- or a
B-chain in the 10x data, but not in the ICON set, while 1,537 GEMs were fully annotated, but
had inconsistent TCR annotations between ICON and the 10x data. The inconsistencies in
TCRap annotations may have arisen from imputations based on the 10x-provided clonotype
summary. However, such imputation should be performed with caution because the same CDR3
may form part of several different clonotypes. The example given in Figure 2b represents an
imputation likely based on the CDR3[ sequence. In this example, the CDR3f sequence is part
of 42 distinct 10x clonotypes, all carrying the same CDR3[ sequence, but paired with different
CDR3a sequences. The same case is made for 2c and all the other inconsistent GEMs.
Imputation by 10x clonotypes is further made difficult as their clonotype definition allows multiple
a- or B-chains in one clonotype, perhaps a reflection of incomplete allelic exclusion. Thus, 116 of
the fully annotated GEMs with mismatching TCRaf annotations between ICON and 10x can be
explained by a switch from one chain to the other, still within the same clonotype definition.

This non-conformity has challenged the benchmark, however, we have proceeded assuming
that there is a reasonable, however undocumented, explanation for GEM assignments provided
in the ICON data set.
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Figure 2: lllustrations of annotation inconsistencies. The figure shows examples of GEMs and their TCR
annotations from 10x and ICON, respectively. The observed inconsistencies are grouped into three major
groups. The inconsistencies are highlighted with a red star in each group. (a) 33,342 GEMs were mapped
from the ICON set with inconsistent GEM barcode suffixes. Mapping was based on the GEM barcode
nucleotide sequence and TCR annotations. (b) 1854 GEMs were missing either an a- or a B-chain in the
10x data, but not in the ICON set. (c) 1537 GEMs were fully annotated, but the TCR annotations were
inconsistent between ICON and the 10x data.
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ITRAP - Revisiting clonotype assignment

For efficient utilization of ITRAP, the 10x-assigned clonotypes were redefined. The original
annotations of clonotypes were based on unique nucleotide sequences of the T cell receptor to
identify expansions of clonally-related T cells. However, the somatic pedigree is not relevant for
understanding the biochemical properties of the TCR. Instead, we are interested in grouping T
cells of TCRs with identical amino acid sequences including identical CDR3s. This regrouping of
GEMs results in larger clonotypes beneficial for statistical power in the ITRAP filtering steps.
Thus, in ITRAP, a clonotype is generally defined by a unique set of Vap- and JaB-genes as well
as CDR3af, with few exceptions of repeated chain multiplets across GEMs. It should be noted
that redefining clonotypes does not affect the individual GEM annotations of Va Ja-genes or
CDR3ap sequences but only pertains to how GEMs are grouped and labeled. Redefining 10x

clonotypes resulted in 76,627 unique clonotypes.

The optimized ITRAP threshold on UMI counts

Of the 76,627 clonotypes, 1,151 were represented by 10 or more GEMs, and for 1,107 of them,
we were able to annotate an expected binder (for details on this step refer to Materials and
Methods). Running the UMI threshold search step on these clonotypes optimizing the proportion
of GEMs where the most abundant pMHC aligns with the expected target, the derived optimized
thresholds values were: a minimum UMI of 5 for any pMHC. For pMHC multiplets, the most
abundant pMHC must be 1.2 times greater in UMI counts than the second most abundant
pMHC, and a minimum of 1 UMI for TCR a- and B-chains. By this filter, the data set is reduced
to 91,652 GEMs and 27,925 unique clonotypes. Additionally, filtering on matching HLA serves
as the recommended minimum of filters for ITRAP. Doing this results in a set of 40,584 GEMs
and 6,751 unique clonotypes with complete TCR annotation. These stepwise filtered data are

available from https://services.healthtech.dtu.dk/suppl/immunology/ITRAP_benchmark/.

Benchmark of ICON and ITRAP

The two filtering frameworks were benchmarked on four performance metrics, as described by
Povlsen et al. (22): fraction of retained GEMs, accuracy of specificity, average binding
concordance across all clonotypes, and AUC of CDR3a similarities. Accuracy is computed as
the fraction of GEMs where the most abundant pMHC (by UMI counts) corresponds to the
expected binder of a clonotype. An expected binder is defined for each clonotype as the pMHC

which is distributed with a mean UMI count significantly higher than all other pMHCs detected


https://sciwheel.com/work/citation?ids=13588417&pre=&suf=&sa=0
https://doi.org/10.1101/2023.02.01.526310
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.01.526310; this version posted February 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

as binders for the given clonotype (Wilcoxon, a=0.05). Binding concordance is computed as the
fraction of GEMs within a clonotype that binds a given pMHC and describes the dispersion of
pMHC annotations within the clonotype. In a data set where no cross-reactivity is expected,
excluding technical artifacts, the average binding concordance should be 100%. Finally, the
similarity between two TCRs is defined as the summed score of the pairwise CDR3a and
CDR3B similarities each calculated using the kernel similarity method described (25). Here, in
short, clonotypes within a given “plateau” (i.e clonotypes annotated to a given peptide) were
compared against other clonotypes within the plateau and the same number of randomly
sampled clonotypes from other plateaus, and a maximal inter and intra similarity score found.
The AUC metric is computed based on the hypothesis that different TCRs binding the same
pMHC (intra-specificity) are more similar to each other than to TCRs of other specificities

(inter-specificity) (26).
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Figure 3: Performance metrics for evaluating the filtering steps of ITRAP with ICON. The ITRAP filtering
steps consist of total (raw, unfiltered data), optimal threshold obtained from grid search, matching HLA,

complete TCRs with a unique set of a- and B-chain, specificity multiplets i.e., TCR-pMHC pairs observed
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in two or more GEMSs, and "is cell" defined by 10x Genomics Cellranger. ICON vyields a single output,
however, an addendum has been made to also filter ICON output on HLA match between pMHC and HLA
haplotype of the donor. (a) The boxplots show kernel similarity scores between CDR3 sequences of
intra- (white) and inter- (dark) specificity for each of the filtering steps. A significant difference (Wilcoxon,
a=0.05) of mean between inter- and intra-specificity is marked with an asterisk to the right (b) (for details
on this metric refer to text). Here, the boxplots show the cumulative effect of ITRAP filters on similarity
scores. (c) Performance is measured and summarized by a number of metrics: ratio of retained GEMs
(GEMSs), accuracy defined by the proportion of GEMs where most abundant pMHC matches the expected
binder (accuracy), average binding concordance (avg. conc.) and AUC of similarity scores (AUC). The

ITRAP filters are also here cumulatively added to show increasing improvement in performance.

The summary of both filtering frameworks across our selected performance metrics is presented
in Figure 3. Both ICON and ITRAP discard a large number of GEMs (Figure 3a). The
recommended filtering steps for ITRAP consist of filtering on UMI thresholds and matching HLA
between annotated pMHC and HLA haplotype of the donor, which yields 40,584 GEMs, which is
slightly more than ICON (39,806). This is, both methods discard ~78% of the raw input data. In
terms of performance metrics, the results reveal an overall high performance of both

frameworks.

In terms of accuracy, both methods achieve a performance gain of ~22% (improved from ~80%
to 97%) with a slight advantage in favor of ITRAP. When it comes to concordance, a similar
large gain was observed for both methods with an advantage in favor of ICON. This is a
consequence of the fact that ICON was essentially designed for optimizing this metric.

Figure 3b and 3c show the effects of each filter either alone (b) or in combination (c), in terms of
the distribution of intra- versus inter-specificity distributions. The results clearly demonstrate how
the separation of inter- and inter-specificity improves as more filters are applied. To quantify the
separation of distributions, an AUC score was computed from the principles that perfect
intra-specificity scores are close to a maximum value of 2, while inter-specificity resembles
completely different TCRs of similarity close to 0. Note that AUC here does not translate into a
predictive performance, but rather reflects the extent to which intra-similarity can be
distinguished from inter-similarity values. These AUC values are displayed as the last
performance metric in Figure 3a, again confirming an improved quality of the data after filtering
by both methods. Applying an additional specificity multiplet filtering step removing specificity
singlets, removes an additional small set of 5624 GEMSs, but yields a high gain in AUC and

results in the largest separation between intra- and inter-specificity distributions of all filtering
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steps. Here, a specificity singlet is defined as a TCR-pMHC pair only detected with a single
GEM, which makes the pairing more susceptible to artifacts. However, those GEMs represent

unique clonotypes, so this filter also vastly reduces the total number of clonotypes.

As mentioned, ICON does not discard GEMs based on HLA match between pMHC and donor
haplotype. However, we have tested the impact of adding that filter to ICON, which reduces the
yield to 33,531 GEMs. Based on the AUC of similarity scores, the recommended ITRAP filters
yield a slightly higher performance compared to ICON (66.5 versus 62.5).

In conclusion, ITRAP overall outperforms ICON in these benchmark evaluations both in terms of

yield, accuracy and similarity AUC.

Visual inspection of ICON and ITRAP outputs

The differences in binding concordance between ITRAP and ICON are clearly visualized in
Figure 4 and Figure 5. Figure 4 presents the ITRAP-filters of UMI threshold, HLA matching, and

complete TCRs i.e., unique pairing of a- and 3-chain.

With an average binding concordance of 98.7, we observe 407 GEMs with a binding
concordance of less than 50%, which we will refer to as outliers. A substantial proportion of
these are pMHC targets annotated to different HLA alleles. This contradicts the prevailing belief
that T cells are restricted to the HLA for which they were positively selected during maturation.
We thus suspect that some of these events are a result of random capture of ambient multimer

barcode.

In 65 GEMs of the 407 outliers, an expected pMHC target had not been identified, due to the
small sizes of the clones. Of the remaining 320 outliers, 76 GEMs exhibit a pattern that aligns
with potential cross-reactivity. That is, a TCR will typically have a single, preferred target while
allowing binding of other pMHCs to a lesser extent, i.e. clones of a clonotype may display a
single dominant pMHC response of high binding concordance with few smaller responses of low
binding concordance. For the clonotypes of these 76 GEMs, the dominant high-concordance
pMHC coincides with the expected target of the individual clonotypes. In 18 of these GEMs, the
corresponding clonotypes showed divergent HLA restriction between the annotated
low-concordance pMHC and the expected target for the given clonotype. In all of the 76 GEMs,

the expected target was detected albeit at a lower UMI count than the annotated pMHC.
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The remaining set of 266 GEMSs consists of 80 clonotypes exhibiting highly dispersed binding to
many different pMHCs, all with low binding concordance. All of these GEMs also contain
multiplets of pMHCs. Based on these observations, we conclude that the majority of the 407
outliers are likely artifacts that have escaped the ITRAP filtering steps and thus not true

cross-binding events.
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Figure 4: ITRAP-derived specificity per clonotype. ITRAP-filters consist of UMI threshold, HLA matching,
and complete TCRs i.e., a unique pairing of a- and 3-chain. The library peptides are listed on the y-axis
and each clonotype is represented on the x-axis. Below the x-axis is annotated the total number of
clonotypes and GEMs in the presented data. The marker size shows the number of GEMs supporting a
given specificity. The color indicates the binding concordance which is calculated as the fraction of GEMs
within a clonotype that supports a given pMHC. The higher the concordance, the larger the fraction of

supporting GEMs.
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Figure 5 presents the ICON retrieved specificities. With an average binding concordance of
99.9%, most clonotypes are paired with a single specificity, and only 24 GEMs are categorized
as outliers. 13 of the outliers are annotated with a pMHC that does not match the allele of the
donor. 4 of the outliers contain CDR3 sequences that differ from the 10x annotation and may be

a result of imputation.

Finally, a key difference between the two methods is that ITRAP retains 45 pMHCs from the
staining whereas ICON retains 34 pMHCs. The 11 peptides retained by ITRAP and not ICON
elicit small and few responses, but are primarily not involved in cross-binding events. With both
filtering frameworks, the largest responses are toward KLG HLA*A-03:01 (n=1085 for ITRAP,
n=2681 for ICON), RKA HLA*B-08:01 (n=1178 for ITRAP, n=450 for ICON) and GIL
HLA*A-02:01 (n=1337 for ITRAP, n=842 for ICON). ICON retains more GEMs and more

clonotypes within these peptides, at the expense of other specificities, than ITRAP does.
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Figure 5: ICON-derived specificity per clonotype. The library peptides are listed on the y-axis and each

clonotype is represented on the x-axis. Below the x-axis is annotated the total number of clonotypes and


https://doi.org/10.1101/2023.02.01.526310
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.01.526310; this version posted February 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

GEMs in the presented data. The marker size shows the number of GEMs supporting a given specificity.
The color indicates the binding concordance which is calculated as the fraction of GEMs within a
clonotype that supports a given pMHC. The higher the concordance, the larger the fraction of supporting
GEMs.

Predicting TCR specificity with ITRAP- and ICON-filtered data

To quantify the potential predictive performance gain derived from filtering and denoising the
raw TCR data, we trained NetTCR-2.1 (12) on the raw 10x data and on the ICON and
ITRAP-filtered datasets (for details refer to Materials and Method). Note, that the data split for
training here was done randomly for the three data sets, likely inflating the reported
cross-validation performance. However, since the aim is to compare the methods and not create
a new model, we deem this justified. We evaluated the performance of the three models on an
independent dataset derived from VDJdb (24). The evaluation set consisted of 927 positive
TCRs relative to the 4 peptides in consideration. Table 1 reports the number of positive
evaluation TCRs for each epitope. The counts of positive TCRs are reported both before and
after similarity filtering. Negative data was added by introducing swapped TCRs as described in

materials and methods.

Epitope # pos # pos after
filtering
GILGFVFTL 649 219
GLCTLVAML 213 122
ELAGIGILTV 57 46
IVTDFSVIK 8 6

Table 1: Counts of positive TCRs in the evaluation set, for each peptide. The first column
contains the epitope sequence, the middle column contains the count of positive TCRs in the
original evaluation set, the last column reports the number of positive TCRs left after the

similarity reduction step.

The results of the experiment are shown in Figure 6. The cross-validation performance refers to

the performance on the concatenated test sets while the predictions on the evaluation set were
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calculated as an ensemble of the predictions of the 20 trained models. For the evaluation
predictions, we reported the AUCs on the full evaluation set (middle panel) and on the similarity
reduced set (lower panel). For each trained model, the AUC was reported on a per-peptide
level. An overall performance value was also given by averaging AUCs across peptides. We
reported the average AUCs both as a mean value of the AUCs from each peptide and as a
weighted average of the peptide AUCs, weighted by the number of positive TCRs for that

specific peptide in the dataset.

Both in cross-validation and on the external data, the models trained on ICON and ITRAP
datasets outperformed the models trained on unfiltered data. Interestingly, the ICON
outperformed ITRAP on almost all the peptides in cross-validation. This can be explained by
looking at the similarity between the test and training partitions in cross-validation. Figure 7
shows, for each peptide, the distribution of kernel similarities between the positive TCRs in the
test set and their nearest neighboring positive TCR in the training. For the GIL and IVT peptides,
ICON has a higher median similarity between training and test set, leading to a higher AUC
value in cross-validation for these two peptides. The models trained on ITRAP-filtered data
generalize better on the external dataset, outperforming ICON across all peptides. For the
similarity-reduced evaluation set, all the differences in AUC between ICON and ITRAP are
significantly different for all peptides except IVT (p<0.05, bootstrap test on the AUC with 100
repetitions). This is also confirmed by the improved average and weighted average performance
of the model trained on ITRAP data. Furthermore, the gap in performance between the two
methods was increased when the overlap between the training and evaluation set was reduced.
ITRAP showed a 2% increase in average AUC (and 1% weighted average AUC) compared to
ICON on the evaluation set with no similarity filtering; when removing the evaluation TCRs with
a similarity >0.9 to the training set, ITRAP yielded 5% gain in average AUC (4% weighted
average AUC) .
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Figure 6: Performance of NetTCR-2.1 in terms of AUC on the raw 10x data and on the filtered datasets.
The AUC is given on the concatenated test sets from cross-validation and on the external evaluation set
from VDJdb (before and after removing evaluation TCRs similar to sequences in the training set).
'average' refers to the mean of the AUC values across peptides; 'w_average' is a weighted average of
AUCs across peptides, weighted by the number of positive TCRs for the peptides in the dataset in

consideration.
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Figure 7: Kernel similarity values between positive TCRs in the test set and their nearest neighbor in the

positive set of training TCRs.

Discussion

T cell specificity is defined from subtle sequence and structural properties of the TCRs, and
learning the rules defining this specificity has been challenged by the current lack of a large
number of observations of high-quality paired TCRaf data with known pMHC targets. Single-cell
screening assays may pave the way to resolve this. The technology enables the study of
TCR-to-pMHC binders, decisive non-binders, and even cross-binding. However, single-cell data
is generally characterized by low quality, and denoising single-cell specificity data is therefore a
critical bottleneck in studying T cell specificity. Here, we have evaluated two methods, ITRAP
and ICON, both aiming at resolving this bottleneck, filtering noise and putative artifacts from true
binding events. Since no golden standard exists, the methods are evaluated via metrics
designed for the purpose, as well as in the application of developing prediction models for TCR

specificity, enabling data-driven quality assessment.

Both methods were applied to the same raw dataset generated by 10x Genomics. The two
filtering frameworks both demonstrate very good performance, but with diverging upsides and
downsides. ICON excels at reducing ambiguous specificity annotations, such that the majority of

clonotypes are annotated with exactly one pMHC target. This however, also becomes a
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hindrance in detecting cross-reactivity. Conversely, the ITRAP method includes more GEMs

across more pMHCs and does not explicitly exclude potential cross-reactive binding events.

The filtering frameworks were evaluated on four metrics: retention of GEMs, binding accuracy
guided by expected targets, average binding concordance, and AUC of kernel similarity scores.
Both methods discarded the vast majority, retaining only ~22% of the raw data. ITRAP achieved
the highest accuracy score. However, binding accuracy may be a biased metric in this context
as ITRAP was specifically designed to maximize this score. Similarly, ICON displayed a superior
average binding concordance, favoring low dispersion of specificity within a clonotype, which
ICON was purposefully designed to reduce. The AUC of kernel similarity scores used in this
work as a metric for quantifying separation of distributions in terms of the TCR similarities within
and between annotated clonotypes acts as the only method-independent metric. Here, ITRAP

demonstrated improved performance compared to ICON.

Each framework has a set of requirements for the method to work optimally. ICON relies on
gene expression data to remove duplicates and negative control pMHC multimers to correct
binding signals of positive pMHC, and a set of negative control pMHCs to set a cutoff for pMHC
UMI counts. The impact of gene expression data was previously tested for ITRAP, which
showed only minute added performance (22). Due to the low impact and the high expense of
running gene expression sequencing, this filtering step was deprioritized in ITRAP. ITRAP on
the other hand heavily relies on cell hashing, where HLA typing of donors is known, to validate
specificities (though the framework can be run excluding this filtering step). This, of course, also
confers an additional cost. However, as demonstrated in this and the original ITRAP study, this
step is critical when running the 10x analysis on samples for multiple donors, since it allows

further denoising and analysis of donor specific T cell repertoires.

Both frameworks assume that the pMHC UMI count acts as a proxy for a given TCR-pMHC pair
binding affinity, and use the count either directly (ITRAP) or corrected and normalized (ICON) to
filter away GEMs. However, it is important to note that the UMI count refers to the number of
pMHC multimers captured together with a T cell in a GEM. The count may be affected by the
extent of ambient multimers, T cell expression of TCRs, and binding affinity/avidity. Thus to
improve the filtering strategies of ITRAP or ICON future methods may implement adjusted

TCR-pMHC pairing scores.
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Pairing of TCR and pMHC is further made difficult in the cases where a presumed single cell
expresses two different a- or B-chains. The dual expression is a known phenomenon (27)—(28),
and thus cannot simply be written off as capture of multiple cells. Neither ICON nor ITRAP seek
to investigate the impact on such specificities, but simply annotate the most abundantly
expressed chain. To improve specificity detection, this aspect should be investigated further.
Moreover, CDR3a- and B-pairs are not unique, but exist in various combinations, despite the
stochastic process under which they are produced. Therefore, imputing CDR3 chains for GEMs
with either multiple chains or GEMs missing a chain, will often not result in a unique pairing. We
speculate that ICON has attempted such imputations since we observed discrepancies in CDR3
annotations between 10x and ICON data sets. The comparison was further complicated by
inconsistent GEM barcodes between ICON and the 10x data. The alteration of barcodes is

unaccounted for by the authors of ICON.

To further quantify how the two filtering approaches increased the signal-to-noise ratio, we
trained TCR specificity prediction models on i) the raw 10x dataset, ii) the ITRAP-filtered data
(using UMI threshold and HLA matching criteria), and iii) ICON-filtered data. The results showed
that both ICON and ITRAP-filtered data sets lead to improved performance, compared to
training on the raw 10x data. This further confirms that both methods filter out artifacts from the
datasets, increasing the signal-to-noise ratio. The two models performed comparably in
cross-validation. However, ITRAP demonstrated better generalizability compared to ICON on a

novel set of TCRs obtained from VDJdb, independent from the training data.

Conclusions

In conclusion, in this work we have compared two methods, ITRAP and ICON for denoising of
single-cell TCR pMHC data. ITRAP was demonstrated to provide a higher yield (more GEMs
and clonotypes covering more pMHC molecules were retrained), higher accuracy and large
TCR similarity within and discrepancy between clonotypes compared to ICON. Using the data to
train TCR specificity prediction models, also demonstrated a higher value of the ITRAP
denoised data, resulting in models with higher generalization power compared to models trained
on the ICON-filtered data. Moreover, and in contrast to ICON, ITRAP allows users to define
which filtering steps to include, enabling to focus the filtering steps towards the generation of
data with either high sensitivity or specificity. In summary, we believe ITRAP to be a highly

valuable tool for the analysis of single-cell TCR specificity data, and we expect the tool to serve


https://sciwheel.com/work/citation?ids=13588403&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=7180433&pre=&suf=&sa=0
https://doi.org/10.1101/2023.02.01.526310
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.02.01.526310; this version posted February 3, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

the community toward enabling an interpretation and denoising of such data resulting in an

improved understanding of the underlying rules defining TCR specificity.

Data Availability Statement

The different data sets analyzed and generated in this study are available at
https://services.healthtech.dtu.dk/suppl/immunology/ITRAP_benchmark/. These data includes
the raw data file (raw.cvs), the data filtered by the optimized UMI count thresholds (opt_thr.csv),
the data filtered by the UMI thresholds and HLA matching (hla_match.csv), and final filtered
data including only GEMs with complete TCR annotation (tcr.csv).

The data used for the ML training and evaluation of the two denoising pipelines is available at
https://github.com/mnielLab/iTRAP_benchmark.
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