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Summary

Background: Normative modeling is a statistical approach to quantify the degree to which a particular
individual-level measure deviates from the pattern observed in a normative reference population. When applied
to human brain morphometric measures it has the potential to inform about the significance of normative
deviations for health and disease. Normative models can be implemented using a variety of algorithms that have
not been systematically appraised.

Methods: To address this gap, eight algorithms were compared in terms of performance and computational
efficiency using brain regional morphometric data from 37,407 healthy individuals (53% female; aged 3-90
years) collated from 87 international MRI datasets. Performance was assessed with the mean absolute error
(MAE) and computational efficiency was inferred from central processing unit (CPU) time. The algorithms
evaluated were Ordinary Least Squares Regression (OLSR), Bayesian Linear Regression (BLR), Generalized
Additive Models for Location, Scale, and Shape (GAMLSS), Parametric Lambda, Mu, Sigma (LMS), Gaussian
Process Regression (GPR), Warped Bayesian Linear Regression (WBLG), Hierarchical Bayesian Regression
(HBR), and Multivariable Fractional Polynomial Regression (MFPR). Model optimization involved testing nine
covariate combinations pertaining to acquisition features, parcellation software versions, and global
neuroimaging measures (i.e., total intracranial volume, mean cortical thickness, and mean cortical surface area).

Findings: Statistical comparisons across models at Prpr<0- 05 indicated that the MFPR-derived sex- and region-
specific models with nonlinear polynomials for age and linear effects of global measures had superior predictive
accuracy; the range of the MAE of the models of regional subcortical volumes was 70-520 mm?® and the
corresponding ranges for regional cortical thickness and regional cortical surface area were 0-09-0-26 mm and
24-560 mm?, respectively. The MFPR-derived models were also computationally more efficient with a CPU
time below one second compared to a range of 2 seconds to 60 minutes for the other algorithms. The
performance of all sex- and region-specific MFPR models plateaued at sample sizes exceeding 3,000 and
showed comparable MAEs across distinct 10-year age-bins covering the human lifespan.

Interpretation: These results provide an empirically benchmarked framework for normative modeling of brain
morphometry that is useful for interpreting prior literature and supporting future study designs. The model and
tools described here are freely available through CentileBrain (https://centilebrain.org/), a user-friendly web
platform.
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Research in context
Evidence before this study

Normative reference values of neuroimaging measures of brain structure and function have great potential as
clinical and research tools, but the models used to generate these values must be methodologically robust. We
searched electronic databases for articles published in English between Jan 1, 2018, and Jan 31, 2023, using
combinations of words or terms that included “normative modeling”, OR “growth curves” OR “centile curves”
AND terms referring to specific morphometric features. Although multiple studies employed normative models
of brain morphometry, we identified a critical knowledge gap in the paucity of benchmarking statistical methods
and sensitivity testing for key parameters that may influence model performance.

Added value of this study

This study leveraged a large and international sample of healthy individuals (N=37,407) covering the human
lifespan to benchmark eight statistical algorithms for normative modeling of brain morphometric measures. In
addition to identifying the optimal algorithm, it also defined those parameters pertaining to image acquisition,
sample composition, and size that are essential for robust modeling.

Implications of all the available evidence

This study provides guidance for the evaluation of prior literature and for the design of future studies. In the
context of open and inclusive science, the scripts and model parameters developed are freely available through
a web platform with minimal requirements in terms of computational infrastructure and user skills.
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Introduction

Normative modeling is a class of statistical methods to quantify the degree to which a particular individual-level
measure deviates from the pattern observed in a normative reference population. Normative modeling of
neuroimaging phenotypes has mostly focused on brain morphometry given the wide availability of structural
magnetic resonance imaging (MRI) data' with recent extensions into diffusion MRL> Normative modeling is
emerging as a promising new approach to the investigation of brain alternations in neuropsychiatric disorders.®
' However, the value of normative models as research and potentially clinical tools relies on their
methodological robustness which has yet to be empirically investigated.

Available normative modeling studies employ a range of linear, nonlinear, and Bayesian algorithms that reflect
researchers’ preferences.!!? At present, there is no systematic comparative evaluation of the performance of
these algorithms and no empirical determination of the key parameters that may influence model performance.
For example, the minimum sample size necessary for reliable normative estimates of brain morphometric
measures has not been established and with few exceptions,' '3 the size of the samples used for the normative
reference population is small to modest (range: 145-870).57101415

To address this critical knowledge gap, the aim of the current study is to identify the optimal approach for
normative modeling of brain morphometric data through systematic empirical benchmarking. To this purpose,
regional measures of subcortical volume, cortical thickness, and cortical surface area were pooled into a
multisite sample of 37,407 healthy individuals (53% female, age range: 3-90 years) which was then split into a
training and a test subset. Eight algorithms, representing the range of methods currently used in normative
modeling studies, were evaluated in terms of their accuracy and computational efficiency, in sex-specific models
for each brain morphometric feature. The algorithms evaluated were Ordinary Least Squares Regression
(OLSR), Bayesian Linear Regression (BLR), Generalized Additive Models for Location, Scale, and Shape
(GAMLSS), Parametric Lambda, Mu, Sigma (LMS), Gaussian Process Regression (GPR), Warped Bayesian
Linear Regression (WBLG), Hierarchical Bayesian Regression (HBR), and Multivariable Fractional
Polynomial Regression (MFPR). For each regional morphometric measure, model optimization involved nine
combinations of covariates pertaining to acquisition and parcellation methods, and linear and non-linear effects
of age and global neuroimaging measures. All models were tested for robustness to sample composition (size
and age range). The results form the basis of CentileBrain (https://centilebrain.org/), an empirically
benchmarked framework for normative modeling that is made available to the scientific community through a
dedicated web platform.
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Methods

Samples

We collated de-identified data from 87 datasets from Europe, Australia, USA, South Africa, and East Asia
(appendix 1 p 2; appendix 2). Data use aligned with the policies of the ENIGMA Lifespan Working Group
(https://enigma.ini.usc.edu/ongoing/enigma-lifespan/), and the policies of individual studies and national
repositories. Based on the information provided in each dataset, data were further selected to include high-
quality neuroimaging measures (appendix 1 p 3) from participants that were free of psychiatric, medical, and
neurological morbidity and cognitive impairment at the time of scanning. Only scans acquired at baseline were
included from datasets with multiple scanning assessments.

Brain morphometry

Acquisition protocols and scanner vendors varied across datasets (appendix 2). Morphometric feature extraction
from whole-brain T;-weighted images was implemented using the standard pipelines in the FreeSurfer image
analysis suite (http://surfer.nmr.mgh.harvard.edu/) (appendix 2) to yield global measures of total intracranial
volume (ICV), mean cortical thickness, and mean surface area, and regional measures of cortical thickness
(N=68) and cortical surface area (N=68) based on the Desikan-Killiany atlas
(https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation) and 14 subcortical volumetric measures based
on the Aseg atlas (https://freesurfer.net/fswiki/SubcorticalSegmentation). Sex-specific normative models were
developed separately for each of the 150 regional morphometry measures to accommodate sex differences in
brain morphometry.'¢

Optimization of normative models

The procedures used to generate optimized sex-specific models for each brain morphometric measure are
illustrated in figure 1 and consisted of the following steps:

(I) Data preparation: Sex-specific subsamples of the study sample were randomly split into a training subset
(80%) and a test subset (20%) stratified by scanning site. In each subset, data were mean-centered after extreme
values in each site-dataset were identified and removed using the interquartile range (IQR) method.

(11) Algorithm selection: The data for each morphometric measure were analyzed with the following algorithms:

(1) Ordinary Least Squares Regression (OLSR) (implemented using the “/m” function in R): This is a linear
regression model that aims to minimize the sum of squared differences between the observed and predicted
values;

(2) Bayesian Linear Regression (BLR) (implemented using the “stan” package in R): This is a linear model in
which the outcome variable and the model parameters are assumed to be drawn from a probability distribution;

(3) Generalized Additive Models for Location, Scale, and Shape (GAMLSS): This framework can model
heteroskedasticity, non-linear effects of variables, and hierarchical structure of the data. This algorithm was
implemented using the “carer” package in R following prior recommendations;'’

(4) Parametric Lambda (1), Mu (), Sigma (o) (LMS) method: This subclass of GAMLSS assumes that the
outcome variable follows the Box-Cox Cole and Green distribution. This algorithm was implemented using the
“gamlss” package in R;"

(5) Gaussian Process Regression (GPR): This is a nonparametric regression model that follows Bayesian
principles, and was implemented using the “kernlab” package in R and the “sigest” function for estimating the
hyperparameter sigma;

(6) Warped Bayesian Linear Regression (WBLR):'® This framework is based on Bayesian linear regression with
likelihood warping and was implemented using the “PCNtoolkit” (https://github.com/amarquand/PCNtoolkit)
in Python following authors’ recommendations;

(7) Hierarchical Bayesian Regression (HBR):!%!2 This approach also uses Bayesian principles and is considered
particularly useful when variance from multiple hierarchical levels are present, including the scanning protocol
or site effects. This algorithm was implemented using the “PCNtoolkit”
(https://github.com/amarquand/PCNtoolkit) in Python following authors’ recommendations;
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(8) Multivariable Fractional Polynomial Regression (MFPR): This algorithm enables the determination of the
functional form of a predictor variable by testing a broad family of shapes and multiple turning points while
simultaneously providing a good fit at the extremes of the covariates. This algorithm was implemented using
the “mfp” package in R and the closed test procedure (known as RA2) was used to select the most appropriate
fractional polynomial.

For the HBR, WBLR, GPR, and GAMLSS, site effects were modeled as random effects as recommended by
prior literature.'*!7!° For all other algorithms, site-harmonization used ComBat-GAM? as this approach has the
potential to generate models without having to recalculate model parameters for each unseen dataset.

The processes outlined above generated eight models for each regional morphometric measure per sex. These
models were trained using five-fold cross-validation (SF-CV) in the corresponding sex-specific training subset
with age being the only explanatory variable and then model parameters were tested in the corresponding sex-
specific test subset. The cross-validated mean absolute error (MAE), which is the average of the absolute
differences (i.e., errors) between the predicted and the actual value of the outcome variable, was the main
measure of model performance supplemented by the root mean square error (RMSE), which is the standard
deviation of the prediction errors. The computational efficiency of each model was assessed using the central
processing unit (CPU) time of the supercomputing infrastructure of the Icahn School of Medicine at Mount
Sinai (https://labs.icahn.mssm.edu/minervalab/resources/hardware-technical-specs/).

Across regional morphometric measures (and separately in males and females), the MAEs and RMSEs of the
models generated by each algorithm were concatenated as a single vector to enable pairwise comparisons
between algorithms. Results were considered significant across comparisons at Prpr<0-05 using false discovery
rate (FDR) correction for multiple testing.

(I1I) Model optimization: After selecting the best-performing algorithm, model optimization involved the
evaluation of improvements in the MAE (and RMSE) by adding the following explanatory variables: (1) global
neuroimaging measures (i.e., ICV, mean cortical thickness or mean cortical surface area, as appropriate); both
linear and non-linear contributions from these variables were considered; (2) scanner vendor type; (3)
FreeSurfer version; and (4) combinations of these variables. Each of these models was trained using SF-CV in
the corresponding sex-specific training subset and then tested in the corresponding sex-specific test subset.
Variables that significantly improved performance were retained.

Upon completion of steps (/)-(11I), optimized sex-specific and region-specific models were defined based on
the best-performing algorithm and covariate combination.

Sensitivity analyses of the optimal normative models

Sample size: The study sample was partitioned into 75 sex-specific random subsets comprising between 200 to
15,000 participants in increments of 200. The robustness of the optimized sex- and region-specific models to
sample size in terms of MAE and RMSE was assessed in each partition using SF-CV.

Distinct age bins: Model accuracy may be influenced by the sample’s age range and by distinct challenges
encountered in scanning different age groups such as higher levels of motion in pediatric populations.?!
Accordingly, the study sample was divided into nine sex-specific age-bins (i.e., age<10 years; 10<age<20 years;
20<age<30 years; 30<age<40 years; 40<age<50 years; 50<age<60 years; 60<age<70 years; 70<age<80 years;
80<age<90 years). The MAE and RMSE of each optimized sex- and region-specific model were estimated in
each age bin using SF-CV. Subsequently, Pearson’s correlation coefficients were computed between the MAE
and RMSE values of the models within each sex-specific age bin with those derived from the sex-specific subset
of the entire sample.

Model comparison: The optimized sex- and region-specific models of the best-performing algorithm were
compared to those based on the other algorithms through a series of pairwise tests between the concatenated
MAE and RMSE of the models across all regional measures.

Role of the funding source

The funders of the study had no role in the study design, data collection, analysis, and interpretation, and in the
writing of the manuscript.
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Results

Identification of the best-performing algorithm: The MAE, RMSE and CPU time for each sex- and region-
specific model are shown in appendix 1 (pp 5—6) and appendix 3. As the same general pattern was noted across
all models in both sexes, the MAE, RMSE, and CPU of the models for the left thalamic volume and left medial
orbitofrontal cortical thickness and surface area are shown as exemplars in figure 2 and appendix 1 (p 4). Across
all models, the OLSR and MFPR had the shortest CPU times (less than one second) while GPR had the longest
(25-60 minutes). Across all sex- and region-specific models, the LMS, GPR, WBLR, and MFPR had
comparable values for MAE and RMSE that were statistically better at Prpr<0-05 than those for BLR, OLSR,
and HBR. Accordingly, the MFPR emerged as the preferred algorithm given its combined advantages in
accuracy and computational efficiency.

Selection of explanatory variables for model optimization: Based on the preceding results, we assessed
improvements in the MAE and RMSE of sex- and region-specific models generated by the MFPR after adding
scanner vendor, FreeSurfer version, and global neuroimaging measures (i.e., ICV, mean cortical thickness, or
mean cortical surface area, as indicated) and their linear and non-linear combinations as covariates. The results
are shown in appendix 1 (pp 8-9) and appendix 4. As the same pattern was observed for all sex- and region-
specific models, we continue to use the left thalamic volume and left medial orbitofrontal cortex thickness and
area as exemplars in figure 3 and appendix 1 (p 7). The impact of the scanner and FreeSurfer version on model
performance was minimal while the opposite was the case for the global neuroimaging measures. Accordingly,
we define as “optimal models” the sex- and region-specific models that were based on the MFPR algorithm
with nonlinear fractional polynomials of age and linear effects of the appropriate global neuroimaging measure
(i.e., ICV for models of regional subcortical volumes, mean cortical thickness for models of regional cortical
thickness and mean cortical surface area for models of regional cortical surface area).

Sensitivity analyses: (1) Sample size: The MAE and RMSE values of the optimal sex- and region-specific
models plateaued at a sample size of approximately 3,000 participants as shown in figure 4 and appendix 1 (p
10); (2) Distinct age bins: The MAE and RMSE values of the optimal sex- and region-specific models in each
of the nine age bins are presented in figure 5, appendix 1 (p 11) and appendix 5. Across all age bins, the
correlation coefficient between the MAE or RMSE values of the sex- and region-specific models obtained from
the full study sample and MAE or RMSE values of the corresponding models estimated in each age bin were
all greater than 0-98, suggesting the robustness of the model accuracy across all age groups; (3) Model
comparison: To test the advantage of the optimal sex- and region-specific models further, we computed models
with the same covariates using the HBR, GPR, GAMLSS, and WBLR algorithms. We focused on these
algorithms as they have been applied to other large normative datasets."!*!7!° The MAE, RMSE, and CPU time
for each of the sex- and region-specific model derived from these five algorithms are shown in appendix 1 (pp
13—-14) and appendix 6. Pairwise statistical comparison of the models from each algorithm indicated superior
accuracy at Pppr<0-05 for the optimal MFPR-derived models. We illustrate these findings in figure 6 and
appendix 1 (p 12) using the left thalamic volume and left medial orbitofrontal cortical thickness and surface
area as exemplars. In addition to having better accuracy, the MFPR-derived models remained the most
computationally efficient with CPU times of less than a second.
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Discussion

The present study undertook a comparative evaluation of eight algorithms commonly used for normative
modeling using morphometric data (i.e., 14 regional subcortical volumes, 68 measures of cortical thickness, and
68 measures of cortical surface area) from a multisite sample of 37,407 healthy individuals. Models based on
the MFPR algorithm with nonlinear fractional polynomials of age and linear global neuroimaging measures
emerged as optimal based on their performance and computational efficiency, the latter being an important
consideration when analyzing large datasets. These models were robust to variations in sample composition
with respect to age and their performance plateaued at sample sizes of = 3,000. Establishing a minimum sample
size requirement for normative models of brain morphometry provides a useful point of reference when
evaluating prior literature or designing new studies.

The presented findings validate our choice to use MFPR in our previous normative studies on brain
morphometry>* and white matter microstructure based on diffusion-weighted MRIL.?>?* Further, after testing the
impact of nine combinations of explanatory variables on model performance we found that global morphometric
measures (i.e., ICV, mean cortical thickness, mean cortical surface area) had the most significant effect. This
observation is aligned with prior literature on the contribution of ICV in explaining the variance of regional
subcortical volumes and cortical surface area measures.’** The present study extended these findings by
demonstrating that mean cortical thickness and mean surface area outperformed ICV as explanatory variables
in normative models of regional cortical thickness and cortical surface area respectively. Accordingly, the
optimal normative models for brain morphometry consisted of an MFPR algorithm and a combination of
explanatory variables that comprised nonlinear fractional polynomials of age and linear global measures of ICV,
mean cortical thickness, and mean cortical surface area for models of regional subcortical volume, regional
cortical thickness, and regional cortical surface area respectively. Sensitivity analyses across different age bins
supported the applicability of the models developed in the whole study sample, which spanned an age range of
3-90 years, to groups with a more restricted age range and at different points in their life trajectories.

Site effects are a major challenge when aggregating multisite data as they may confound or bias results. The
most common methods for minimizing site effects involve either site harmonization using ComBat-GAM?°
prior to normative modeling or the inclusion of site as an explanatory variable in the normative models. A recent
publication that used a smaller sample (569 healthy participants) and a narrower age range (6-40 years)
suggested the HBR with site as an explanatory variable may be superior to ComBat-based site harmonization
for the normative modeling of brain morphometry.!® We found no support for this assertion, as in this study
MFPR-derived models using Combat-GAM for site harmonization outperformed HBR-derived models with site
as a random effect. An additional advantage of using ComBat-GAM is that it removes the requirement for
calibration and model parameter adaptation every time the model is applied to data from a new site. In the HBR
models, by contrast, pre-trained parameters can be used for new data if they originate from one of the sites in
the training dataset'® or under the assumption that the variation accounted for by an unseen site should align
with that of the sites in the training dataset.'?

Prior studies have shown that sex accounts for a significant amount of variance in brain morphology,**? both
cross-sectionally'® and longitudinally.’® Accordingly, we developed sex-specific models for each brain
morphometric measure thus extending prior normative studies that considered males and females together.!%!?
Additionally, we provide normative models for regional cortical surface area measures that were not included
in prior studies"!"” despite the important functional implications of age-related changes in the cortical surface
area for cognition during development?’ and aging.”® We note that the current normative model is compiled
cross-sectionally, from people of different ages who experienced different exposures to factors that can
influence brain health. In later life, samples of healthy individuals are likely to include those that are more
resilient to mortality and morbidity.

The present study did not include an exhaustive list of potential explanatory variables. It could be argued that
the inclusion of other variables, such as childhood adversity, premature birth, or socioeconomic status that are
known to influence brain morphometry,?* could have further improved model performance. Exploring this
possibility further could be best achieved within the context of single large-scale studies where such variables
would be consistently recorded in all participants. On the other hand, the inclusion of multiple explanatory
variables in the normative model itself could restrict its applicability to those datasets where all such features
were assessed.
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In conclusion, this study presents a detailed evaluation of the comparative performance of the key eight
algorithms used for normative modeling and of the influence of key parameters pertaining to site effects,
covariates, sample size, and sample composition with respect to age on model accuracy and robustness.
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Data availability

Access to individual participant data from each dataset is available through access requests addressed to the
principal investigators of the original studies or to the relevant data repositories. Details are provided in appendix
2.

Code availability

A dedicated web portal (https://centilebrain.org) provides the optimal model parameters, as pre-trained models,
to be applied to any user-specified dataset in the context of open science.
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Figures

Figure 1. Flowchart of normative model optimization

(1) The study sample was stratified by sex and split into training (80%) and testing (20%) datasets, followed by outlier removal, and mean-centering. (2)
Normative models were generated using eight different algorithms and compared in terms of accuracy and computational efficiency; (3) Explanatory variables
were added to the optimal algorithm to identify the appropriate combination for optimal model performance.
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Figure 2. Illustrative examples of comparative algorithm performance

Algorithm performance for each regional morphometric measure was assessed separately in males and females using the mean absolute error (MAE), the root
mean square error (RMSE), and the central processing unit (CPU) time. Details of all the models are presented in supplementary figures S3—S4 and appendix
3. The pattern identified was the same across all region-specific models and in both sexes. The MAE, RMSE, and CPU times of the models for left thalamic
volume (left panel), the left medial orbitofrontal cortical thickness (middle panel) and surface area (right panel) as exemplars here for females and in appendix

1 (p 4) for males.

HBR=Hierarchical Bayesian Regression; OLSR=Ordinary Least Squares Regression; BLR=Bayesian Linear Regression; GAMLSS=Generalized Additive
Models for Location, Scale and Shape; LMS=Lambda (), Mu (u), Sigma (o) Quantile Regression, GPR=Gaussian Process Regression, WBLR=Warped

Bayesian Linear Regression; MFPR=Multivariable Fractional Polynomial Regression.
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Figure 3. Illustrative examples of the performance of MFPR-derived models as a function of explanatory variables
For each regional morphometric measure, sex-specific models derived from Multivariable Fractional Polynomial Regression (MFPR) were trained and tested
using nine different covariate combinations that included linear and non-linear effects of age, FreeSurfer version (FS), scanner vendor, intracranial volume
(ICV) and global estimates of mean cortical thickness or area. The mean absolute error (MAE) and root mean square error (RMSE) of all the models in males
and females are shown in appendix 1 (pp 8-9) and appendix 4. In both sexes, the pattern identified was identical for all region-specific models. The MAE and

RSME of the models for left thalamic volume (left panel), the left medial orbitofrontal cortical thickness (middle panel), and surface area (right panel) as

exemplars are presented here for females and in appendix 1 (p 7) for males. The optimal variable combination is marked with a dashed frame.
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Figure 4. Performance of region-
specific MFPR-derived models as a
function of sample size

Models for each regional morphometric
measure were estimated in random sex-
specific subsets of 200 to 15,000
participants, in increments of 200,
generated from the study sample. Each
line represents the values of the mean
absolute error (MAE), or root mean
square error (RMSE) derived from the
optimized  Multivariable  Fractional
Polynomial Regression (MFPR) models
of each regional morphometric measure
as a function of sample size. The pattern
identified was identical in both sexes. The
data from females are shown here and in
appendix 1 (p 10) for males.
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Figure 5. Performance of region-specific models in distinct age groups

Sex- and region-specific models of all morphometric measures for different age groups were estimated by partitioning the sex-specific training and testing
subsets of the study sample into nine age bins (i.e., age<10 years; 10<age<20 years; 20<age<30 years; 30<age<40 years; 40<age<50 years; 50<age<60 years;
60<age<70 years; 70<age<80 years; 80<age<90 years). Details are provided in appendix 5. The pattern was identical in both sexes. The figure presents the
distribution of the mean absolute error (MAE) and the root mean square error (RMSE) across all region-specific models in females in the training (upper panel)
and test subset (lower panel). The results for males are presented in appendix 1 (p 11).
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Figure 6. Illustrative examples of the comparative performance of HBR, GPR, GAMLSS, WBLR, and MFPR-derived models

Region-specific models with the optimized covariate combination were estimated in males and females separately using Hierarchical Bayesian Regression
(HBR), Gaussian Process Regression (GPR), Generalized Additive Models for Location, Scale, and Shape (GAMLSS), Warped Bayesian Linear Regression
(WBLR), and Multivariable Fractional Polynomial Regression (MFPR). Model performance was assessed in terms of mean absolute error (MAE), root mean
square error (RMSE), and central processing unit (CPU). In both sexes and across all regional morphometric measures, MFPR-derived models outperformed
all others at Pepr<0-05 (appendix 1 pp 13—14; appendix 6). The MAE, RSME, and CPU time of the models for left thalamic volume (left panel), the left medial
orbitofrontal cortical thickness (middle panel), and surface area (right panel) as exemplars are presented here for females and in appendix 1 (p 12) for males.
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