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Abstract 

How living systems achieve precision in form and function despite their intrinsic stochasticity is a 

fundamental yet open question in biology. Here, we establish a quantitative morphomap of pre-

implantation embryogenesis in mouse, rabbit and monkey embryos, which reveals that although 

blastomere divisions desynchronise passively without compensation, 8-cell embryos still display 

robust 3D structure. Using topological analysis and genetic perturbations in mouse, we show that 

embryos progressively change their cellular connectivity to a preferred topology, which can be 

predicted by a simple physical model where noise and actomyosin-driven compaction facilitate 

topological transitions lowering surface energy. This favours the most compact embryo packing at the 

8- and 16-cell stage, thus promoting higher number of inner cells. Impairing mitotic 

desynchronisation reduces embryo packing compactness and generates significantly more cell mis-

allocation and a lower proportion of inner-cell-mass-fated cells, suggesting that stochasticity in 

division timing contributes to achieving robust patterning and morphogenesis. 
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Introduction 

Living systems rely on molecular and cellular mechanisms with intrinsically stochastic dynamics. 

Nonetheless, they establish robust forms and functions on multiple scales with complex interplay 

between molecules, cells, tissues and species across evolutionary time. Cell organisation and decision 

making have been largely considered instructive, i.e., a signal instructs the recipient cell to 

differentiate or trigger some signalling pathway (Chubb, 2017), which may lead to the notion that 

variability is destructive and must be reduced or filtered out. However, it remains unknown whether 

robust mechanisms and decision making have been evolutionarily selected to accommodate 

stochasticity, or if the processes at the source of variability have been selected to grant robustness. The 

last decades have shown a growing interest for a decision making paradigm based on stochastic 

dynamics (Balázsi et al., 2011; Eldar and Elowitz, 2010; Raj and van Oudenaarden, 2008; Spratt and 

Lane, 2022), particularly in bacteria where gene expression variability was successfully manipulated 

to demonstrate its role in cell differentiation (Maamar et al., 2007; Süel et al., 2007). Stochastic 

processes have since been shown to be involved in a wide variety of context and species, including cell 

fate specification (Chang et al., 2008; Lord et al., 2019; Maamar et al., 2007; Meyer and Roeder, 2014; 

Ohnishi et al., 2014; Simon et al., 2018; Süel et al., 2007), cancer adaptation (Bell and Gilan, 2020; 

Brock et al., 2009; Feinberg and Irizarry, 2010; Feinberg et al., 2006; Koldobskiy et al., 2021), embryo 

morphogenesis (Carlson et al., 2015; Dumollard et al., 2017), leaf formation (Hong et al., 2016; Hong 

et al., 2018), tissue folding (Haas et al., 2018), cell sorting (Yanagida et al., 2022) and evolvability 

(Bromham, 2003; Draghi, 2019; Hernández et al., 2022; Schmid et al., 2022). 

Early mammalian embryos have been shown to exhibit intra- and inter-embryo variability in gene 

expression (Ohnishi et al., 2014; Dietrich and Hiiragi, 2007; Roberts et al., 2011; Lavagi et al., 2018), 

making them an excellent model to study the role of variability in a minimal and robust system. Not 

only gene expression, but other mechanical and temporal parameters exhibit measurable variability 

within and between embryos that may affect patterning and morphogenesis. For instance, the 2nd 

cleavage orientation was shown to be random (Louvet-Vallée et al., 2005); the variability in cleavage 

timing has been suggested to impact cell-fate segregation (Kelly et al., 1978; Mashiko et al., 2022); the 

nuclear-cytoplasmic ratio has been linked to cell differentiation (Aiken et al., 2004); and 

heterogeneity in cell contractility was shown to drive cell sorting in 16-cell stage mouse embryo 

(Maître et al., 2016; Samarage et al., 2015) while cell-to-cell variability in cellular fluidity may 

contribute to the segregation of primitive endoderm and epiblast in blastocysts (Yanagida et al., 

2022). Although recent studies in mouse showed that at least some of these variabilities are regulated 

by the feedbacks between cell polarity, tissue mechanics and gene expression (Maître et al., 2016; 

Korotkevich et al., 2017), the role that intercellular variabilities may play in development and its 

robustness has not been explored yet. 

To formally address the role of variability, it needs to be quantified with an adequate number of 

samples suitable for statistical analyses, and tested with its manipulation in space and/or time. In this 

study, we thus developed such an experimental system using mouse pre-implantation embryos. While 

spatial organisation of development is relatively well studied in the context of morphogenesis and 
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patterning, less is known about the temporal regulation of developmental progression. Therefore, we 

started characterising and measuring the variability among cells in developmental timing. 

Results 

Embryo variability in cleavage timing increases at a constant and species-specific rate 

To characterise the variability of the developmental timing of pre-implantation mouse embryos, we 

first measured the natural variability in cleavage timing between cells within an embryo (Figure 1A 

and Video S1). The cell cycles and cleavages of mammalian embryos run asynchronously among 

blastomeres (Bowman and McLaren) but their variability and potential correlation have not been 

quantitatively characterised. The duration of the 3rd cleavage (4- to 8-cell stage), for example, ranged 

from 30 minutes to 3h30 depending on the embryo, accompanied by variable duration of the inter-

mitotic period (Pearson correlation � = 20.606((� < 0.05), Figure S1A). To assess whether the timing 

of divisions is actively regulated or coordinated among cells, we built a semi-automatic cell-tracking 

pipeline and quantified cleavage timing in 16 embryos, from the 4- to the 32- or 64-cell stage (Figure 

1B,C). For this, we tested the null-hypothesis that cells do not show any coordination: assuming the 

cell cycle length follows a normally distributed random variable of variance �!", the successive 

accumulation of mitosis timing differences should be normally distributed, with variance linearly 

increasing with the cleavage number (Figure 1D). Deviation from the linear relationship between 

variance and cleavage number would be indicative of an active synchronisation or desynchronisation 

by the cell’s nearby environment (Figure S1B). In line with the null hypothesis, the distribution of the 

division timing measured for the 3rd, 4th, 5th and 6th cleavage followed a normal distribution (Figure 

1E) and linearly correlated with the cleavage number (Pearson correlation � = 0.522((� < 10#$), 
Figure 1F). Although the average cell cycle length increased after the 5th cleavage (+1 hour, Figure 

S1C), due to a longer cell cycle for cells in the inner cell mass (ICM) compared to cells in the 

trophectoderm (TE, 1.5 hour of difference, Figure S1D), we did not find significant correlation 

between cell position and timing of division, suggesting that the lengthening of the cell cycle was due 

to cell differentiation and not cell-cell interaction (Figure 1G). To confirm this, we experimentally 

introduced a substantial asynchrony in the cleavage timing by inserting a time-shifted 1/8th 

blastomere under the zona pellucida of host embryos at the 8-cell stage, effectively generating 

heterochronic chimera (Figure 1H). However, neither the time-shift of the donor cell or that of the 

host cell was affected during the following cleavages (Figure 1I). Altogether, these observations 

indicate a lack of discernible cell-cell coordination in cleavage timing, which results in a cell-

autonomous desynchronisation at a constant rate.  

Since various mammalian embryos undergo asynchronous cleavage cycles, we performed a similar 

characterisation of variability in division timing by injecting rabbit and monkey embryos with mRNAs 

encoding myrTagRFP-T;H2B-EGFP and mT-T2A-H2B-EGFP, respectively (Figure S1E,F and Video 

S2 and S3). Live-imaging microscopy and its analysis showed that rabbit and monkey embryos share a 

similar desynchronisation pattern, with their desynchronisation rate higher than that of mouse 

embryos (Figure 1J). Notably, the desynchronisation rate is species-specific, which suggests that 
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variability in cleavage timing may be an evolutionary trait that plays a role in the following 

developmental processes. 

Embryo spatial variability reduces during the 8-cell stage 

To investigate the impact of cleavage timing variability on the robustness of development, we 

developed a pipeline to parameterise cell shape and build a statistical vector map of morphogenesis – 

or morphomap (Figure 2A). First, cells were automatically labelled, followed by manual curation, from 

3D-images of H2B-GFP; mT transgenic embryos. Then, the surface of the labelled objects was fitted 

with exponential splines (Delgado-Gonzalo et al., 2013) (see Figure S2A,B and Methods for details), 

generating a set of 63 parameters describing both the shape of each cell and its relative position in the 

embryo. Each embryo was thus geometrically described by a unique set of 63 parameters times 8 

blastomeres: 504 parameters, projected in 2D for visualisation. The tSNE 2D-projection of the 504D-

morphomap of 29 embryos (Figure 2B) and measurement of pair-wise 446,985 distances between 946 

3D-images of embryos developing during the 8-cell stage revealed that embryos become more and 

more geometrically similar and converge towards a specific area of the morphomap (Pearson 

correlation � = 20.228 (� < 10#%&), Figures 2C and S2C).  

Likewise, we built the morphomap for rabbit (� = 10, Figures 2D and S2D) and monkey (� = 4, 

Figures 2E and S2E) embryos to examine whether their embryos show similar geometrical 

convergence (Figure 2F). Rabbit and monkey embryos were larger in volume than mouse embryos 

(Figure S2F), hence their total volume was normalised to allow for direct comparison. Remarkably, 

the three species exhibited similar geometrical structures and shared the same morphomap. The 

absence of cluster by species suggests that similar design principles could govern embryo shape 

changes during the 8-cell stage in the three species.  

In search of such a principle driving geometrical convergence, we looked into compaction. In mouse 

embryos, compaction starts at the 8-cell stage which results in significant cell shape changes and an 

overall smoothing of embryo surface. Using the compaction parameter � (defined as the ratio between 

cell-cell and cell-bulk surface tensions (Maître et al., 2015), Figure S2G), we quantified the 

compaction over time and showed a significant decrease of the �-parameter, indicative of an increase 

of the degree of compaction and cell shape change (Figures 2G,H and S2G). However, these changes 

by compaction were not sufficient to explain the geometrical convergence, since the decrease in inter-

embryo distance correlates with � when it is below 0.4 (Figure S2H), while many embryos did not 

reach � below 0.4	(Figure	2H). This suggests that cell shape changes due to compaction are not 

sufficient to explain the observed geometrical convergence. 

Embryo topological variability reduces during the 8-cell stage 

We reasoned that the morphomap encompasses both shape and arrangement of the cells. While the 

former is linked to the geometrical changes induced by compaction, the latter depends on the cell-cell 

contact structure, that is, in the topological properties of the embryo packing (Giammona and 

Campàs, 2021; Imran Alsous et al., 2018; Kuang et al., 2022; Petridou et al., 2021). Therefore, to 

identify the mechanism driving morphological convergence, we examined cellular topology in the 8-

cell-stage embryo. For 8 adhesive passive spheres, it has been shown that although there is an 
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infinitely large number of 3D geometrical arrangements, only 13 packings are rigid, i.e., correspond to 

a local energy minimum where the configuration is stable as any relative cell-cell displacement costs 

finite energy (Arkus et al., 2009; Arkus et al., 2011; Jacobs, 1998) (Figures 3A and S3A). We thus used 

these 13 packings as landmarks to interpret our morphomaps, and classified embryos either as non-

rigid (NR) or as belonging to one of the rigid packings, based on the topological proximity of the cell-

cell contact structure of the embryo to one of the 13 rigid packings (see Methods for details). 

This analysis revealed that although many embryos were non-rigid at the start of the 8-cell stage, 

nearly all of them converged towards one of the 13 rigid packings at the end (Figure S3B). Strikingly, 

we could observe an additional and unexpected topological convergence within rigid packings, as two 

specific rigid packings, D2d and Cs(2), became highly overly represented over time (30.3% and 29.8%, 

respectively, of 29 embryos, Figure S3B). All the other rigid packings were grouped and referred to as 

“Others” in subsequent analyses. Remarkably, D2d overlaps with the attractor region detected by our 

morphospace analysis (Figure 3B). However, the inter-embryo distance within all embryo packings 

was stable over the course of the 8-cell stage (Figure 3C), suggesting that the overall geometrical 

convergence is linked to topological transitions from geometrically heterogeneous and NR packings to 

the most homogeneous one (D2d). To test this prediction, we analysed the evolution of the topological 

transitions over time. Fifty-three topological transitions were observed from 29 embryos during which 

cell contacts were created, lost or strengthened (Figure 3D, Video S4). Indeed, transitions from NR to 

Others, Others to Others, Others to Cs(2) and Cs(2) to D2d were overly represented (Figure 3E) 

resulting in the significant decrease of non-rigid packings described earlier and in a dramatic increase 

of D2d proportion over the course of the 8-cell stage (Figure 3F). A similar topological transition was 

also observed in rabbit and monkey embryos (Figure 3G). Collectively, these analyses show that the 

overall geometrical convergence among mammalian embryos is driven by a chain of topological 

transitions towards D2d via Cs(2). 

Surface energy minimisation with compaction is sufficient to recapitulate geometrical 

and topological convergence 

This convergence towards a single packing was surprising as it was shown for attractive hard spheres 

that all 13 rigid packings have the same energy (Arkus et al., 2009). Upon compaction, cell-cell 

adhesion configuration has been shown to be well-described by a soap-bubble model (Goel et al., 

1986; Hayashi and Carthew, 2004; Heisenberg, 2017; Maître et al., 2015; Maître et al., 2016; Pierre et 

al., 2016) where the relative energy can be determined with the cell-cell contact surface area, the 

contact-free surface area (not in contact with other cells) and the relative surface tension or �-

parameter (Figure 4A, see also Methods). To test how cell-cell adhesion and compaction (given �-

parameter) changes the stabilities of embryo packings, we thus used the Surface Evolver software 

(Brakke, 1992) to simulate morphogenesis – in both a theoretical and data-driven manner. Using the 

13 rigid packings (Figure 3A) as initial conditions to our model, we simulated the compaction from 

low to high compaction (� = 0.8 and 0.3 respectively, Figures 4B,C and S4A,B). Crucially, compaction 

leads to few specific packings having a lower energy than others (with D2d being the lowest, Figure 

4D), and as a consequence, the model predicted a dramatic convergence at high compaction towards 

D2d for most of the rigid packings (Figures 4E,F and S4C). Several of these transitions could occur 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 24, 2023. ; https://doi.org/10.1101/2023.01.24.525420doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525420
http://creativecommons.org/licenses/by-nc/4.0/


even with low level of noise, due to compaction near-deterministically creating new cell contacts 

(Figure S4D,E) while a number of others required cell re-arrangements (or T1 transitions), which has 

been shown to be associated to energy barriers across different modelling frameworks (Bi et al., 2014; 

Bi et al., 2016; Marmottant et al., 2009; Pinheiro et al., 2022), and thus noise to go from one 

minimum to another (Figure 4C, see also Methods). We also found that Cs(2) was the second most 

stable packing, functioning as a transition intermediary towards D2d in the simulations. The model 

thus closely mirrored our experimental datasets for topological transitions observed in 8-cell stage 

embryo.  

To challenge its predictions further and more quantitatively, we compared embryo morphodynamics 

with their simulated counterparts, by using real embryo structure and geometry and topology at the 

start of the 8-cell stage as an initial condition to start the simulation (Figure 4G). The model could 

successfully recapitulate both the transitions from non-rigid to rigid packings as well as the 

geometrical convergence (Figure 4H). In particular, we found that the geometrical distance between 

embryos and their corresponding simulations is significantly smaller than the geometrical distance in 

random pairs of embryos (Figure 4I). Taken together, our in-silico model based on the surface energy 

minimisation was able to recapitulate the 8-cell embryo morphogenesis and predict geometrical and 

topological convergence to D2d. The attraction to D2d can thus be explained by having the least surface 

energy for every tested �-parameter (Figures 4D and S4E), which suggests that with a sufficient 

amount of time and some level of dynamic changes and fluctuation in cell shape (Figure S4A,B), all 

packings would eventually converge to D2d (Figure 4J). 

Compaction and surface contractility drive topological transitions 

Our simulations predict that compaction plays a key role in the convergence towards a well-defined 

topological structure, by favouring a specific cellular packing as well as lowering barriers for 

transitions. Consistently, we found that the increase in probability towards the D2d topology correlated 

strongly with the compaction parameter � (Figures 5A and S5A,B), increasing from 0.0% to 28.2% for � between 0.8 and 0.6 respectively, and from 27.6% to 70.0% for � < 0.45. Although the decrease of � 

varied significantly from embryo to embryo, the probability of D2d topology correlated much more 

strongly with � than with time (Figure 3F), arguing that compaction is a primary driver of the 

convergence to D2d during the course of the 8-cell stage. To functionally test this, we first generated 

mT embryos that lack the maternal allele of Myh9 (hereafter referred to as mMyh9+/-). As Myh9 is the 

specific isoform of myosin heavy chain that is required to generate surface tensions, in its absence 

embryos fail to compact properly and build cortical contractility (Maître et al., 2015) (Figure 5B,C and 

Video S5). In line with the predictions, mMyh9+/- embryos showed no topological transitions to D2d 

for compaction parameter until as low as 0.55 (Figures 5D and S5C), while non-rigid packings were 

overly-represented throughout the 8-cell stage (mean ± s. d. = 75.6%± 7.8) and embryos did not 

converge topologically nor geometrically (Figures 5E and S5D). Furthermore, using para-

aminoblebbistatin (PAB, 10 µM), a photostable myosin II inhibitor (Várkuti et al., 2016), we obtained 

embryos with a milder effect on compaction and showing intermediate topological and geometrical 

outcome (Figure S5E-I and Video S6). Altogether, these findings confirm the predictions of our model 
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and demonstrate that compaction and surface contractility drive topological transitions and spatial 

convergence in the early mouse embryo. 

Variability in cleavage timing promotes robustness in morphogenesis and ICM-TE 

patterning 

We thus far characterised the temporal variability in cleavage timing and the spatial convergence of 

the packings in the 8-cell embryo. Based on these characterisations, we next wished to investigate 

their impact on the forthcoming developmental stages, in particular on the first inside-outside cell fate 

patterning in the mouse embryo. First, we examined the impact of spatial convergence of the 8-cell 

embryo on the inside-outside cell segregation that happens in the 16-cell embryo. However, the 

number of potential rigid packings grows super-exponentially with the number of spheres involved, 

making the mapping of embryo packings yet unfeasible for the 16 cell stage (Holmes-Cerfon, 2016). To 

overcome this difficulty, we introduced a packing parameter that measures the deviation of outer cells 

from a certain distance to the embryo centre, inverted such that a higher value indicates a more 

packed embryo (Figure S6A and Methods). This packing parameter shows a high correlation with the 

8-cell stage topological convergence (Figure 6A), justifying its use as a proxy in subsequent 

developmental stages. To determine the packing parameter at the 16-cell stage, we defined an outer 

cell as one belonging to the group with higher contact-free surface area, of the two groups forming a 

bi-modal distribution of the contact-free surface area (Figures 6B and S6B; Methods). When the 

packing parameter of the 16-cell embryos was computed using outer cells, it showed a clear 

correlation with that of the 8-cell embryos (Pearson correlation � = 0.658 (� < 0.01), Figure 6C) and 

the number of inner cells (Pearson correlation � = 0.591 (� < 0.01), Figure 6D), indicating that 

spatial convergence at the 8-cell stage facilitates the packing and hence the generation of inner cells in 

the 16-cell embryos. These findings show that spatial convergence and higher packing promote 

generation of inner cells in the early mouse embryo. 

Next, we investigated the impact of variability in cleavage timing on the spatial convergence and 

precision in embryo patterning. To test the impact of temporal variability, we pharmaceutically 

synchronised mitotic entry at the 8- to 16-cell cleavage (Figure 6E) using an APC/C inhibitor (APCin) 

or a blocker of microtubule polymerisation (Nocadazole) during the 8- to 16-cell mitotic period (group 

“m-phase”), while control embryos undergo the same treatment during the inter-mitotic period, hence 

having no impact on division synchrony (group “interphase”). The APCin-treated embryos had a lower 

packing parameter (mean ± s. d. = 0.47 ± 0.18 and 0.37 ± 0.11 for untreated and APCin treated 

embryos respectively, Figure S6C-G), while maintaining a high number of inner cells (mean ± s. d. =	7.67 ± 1.03). Remarkably, this resulted in a lower proportion of the ICM-fated Sox2+ cells than in the 

control groups, both after APCin or Nocodazole treatment (Figure 6H). This indicates that 

synchronisation of the 4th cleavage led to formation of the lower proportion of ICM-fated cells in the 

embryo. Moreover, treated embryos show significantly higher proportions of cells ectopically 

expressing Sox2 or Cdx2 (Figure 6I-K). Collectively, these results demonstrate that a certain degree of 

desynchronisation of the cleavages in the early mouse embryo enhances embryo packing, generation 

of the ICM fate, and precision in the inside-outside patterning. 
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Discussion 

In this study, we measured and manipulated spatial and temporal variabilities in early mammalian 

embryogenesis, which demonstrated that spatial and temporal variabilities are functionally linked and 

an asynchrony in cell divisions facilitates robust morphogenesis and patterning. 

Measurement and manipulation of temporal and spatial variabilities 

Although cell-lineage has been established for many species, few studies focused on the cell-to-cell 

variability in spatial arrangement or cleavage timing (Anderson et al., 2017; Kelly et al., 1978; Olivier 

et al., 2010; Van et al., 1981; Villoutreix et al., 2016), with the exception of active desynchronisation 

described in Ascidian embryos (Dumollard et al., 2013; Dumollard et al., 2017; Sallé and Minc, 2022) 

and in human embryos (Mashiko et al., 2022; Roux, 1995). With a small number of cells and 

progressively accumulating variabilities in space and time, early mammalian embryos present an 

excellent opportunity to measure the building of variabilities during development.  

To measure the spatial variability, we developed a new morphometric based on exponential-splines 

and compared embryos geometrically. While other methods have been used (Guignard et al., 2020; 

Kuang et al., 2022), including Fourier-shape descriptors (Agus et al., 2020; Ducroz et al., 2012; 

Tournemenne et al., 2014; Valizadeh and Babapour Mofrad, 2022) and dictionary-based shape-

descriptors (Andrews et al., 2021; Saad et al., 2019; Tassy et al., 2006; Xiong and Sugioka, 2020), 

exponential splines encompass all geometrical hidden features (including volume, position, contacts, 

and compaction) with an arbitrary number of parameters and only a few assumptions, offering a 

generic tool to build developmental morphomaps. Regardless of the method, the geometrical data are 

ultimately reduced to fewer parameters which inherently approximate the actual cell shape. By 

smoothing the surface of the object, spline approximation of the surface minimise technical noise 

introduced by the imaging and processing techniques, such as voxel anisotropy or segmentation 

errors, while preserving the key geometrical features. Furthermore, topological analysis offers a 

theoretical framework which can be used to add landmarks to morphomaps, thus enhancing their 

interpretability in terms of packing. While it is possible to generate a morphomap and classify 

topologies for the 16-cell stage or later, the number of minimally rigid topologies increases super-

exponentially with the number of cells (Holmes-Cerfon, 2016), so that further conceptual and 

technical advancements would be required to perform such exhaustive classification. 

The spatial variability at the beginning of an inter-mitotic period may be largely influenced by 

previous cell divisions, as cytokinesis generates force separating two daughter cells, thereby 

rearranging embryonic packings locally and abruptly, in a stochastic fashion. In particular, cleavage 

synchrony and axis of division could play a key role. Our present study focused on changing timing, 

and experimental synchronisation revealed a functional link between temporal and spatial 

variabilities in embryogenesis, however, future studies may directly disrupt the spatial arrangement of 

the cells. 

It will also be interesting to examine whether temporal variability in cleavage timing is generated by 

stochastic and/or deterministic mechanisms (Froese, 1964; Sandler et al., 2015; Soltani et al., 2016). 

In addition, although we used cleavage timing to characterise the temporal variability in 

developmental progression, future studies may consider using, for example, the onset of certain gene 
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expression as a timer of the development. Overall, since spatio-temporal variability is widespread, it 

will be interesting to explore its possible role in various developmental contexts, as cell fate, 

segregation and form are being established further. 

Optimal spatio-temporal variability facilitates robust morphogenesis and patterning 

We showed that changes in cortical contractility drives not only compaction (Maître et al., 2016; 

Samarage et al., 2015), but also topological transitions by lowering the surface energy of specific 

packings, thus favouring embryo convergence towards an optimally packed shape. There is, however, 

an infinite number of possible trajectories between two defined topologies. What makes the embryo 

follow one trajectory over another is yet to be elucidated and depends on the shape of the energy 

landscape, passive minimisation of surface energy and active cellular mechanisms. Although 

additional mechanisms may constrain embryos to a limited subset of the morphomap, e.g., a 

geometrical constraint of the zona pellucida, as shown with the eggshell in C. elegans (Seirin-Lee et 

al., 2022), or the possible spatial coupling between sister cells at the 8-cell stage (Lim et al., 2020), we 

showed that minimisation of contractility-driven surface energy plays a critical role and are sufficient 

to explain key features of geometrical and topological convergence. 

In this study, we discussed three different, yet interdependent, expression of variabilities: cleavage 

asynchrony, cell shape fluctuation and packing heterogeneity. The first two may be described as 

temporally varying input mechanisms which impact the latter spatial variability. Cell contractility is 

thought to generate stochastic fluctuations of cellular shape and to facilitate the loss and the 

formation of cell-cell contacts. Some minimal level of fluctuations is therefore required for topological 

transition. In synchronous cleavages, the cell shape changes are dominated by the impact of cell 

divisions, which results in dramatic geometrical and topological changes leading to disrupted 

morphogenesis and patterning. Interestingly, the idea that noise is not detrimental to reach a given 

stable state, but instead might be necessary to avoid being trapped in local minima, has been heavily 

explored in computer science as well as in physics and chemistry (Horsthemke and Lefever, 2006; van 

Kampen, 2007), as exemplified for instance in the method of stochastic gradient descent for finding 

optima in systems with complex energy landscapes (Arbib, 1998; Tsypkin, 1971). We thus conjecture 

that intermediate levels of variability – spatial or temporal, either arising from cleavages or 

contractility fluctuations – might be optimal for converging towards stereotypical embryo shapes and 

pattern. 

Shared and distinct features across mammals highlight essential processes ensuring 

developmental robustness 

Previous work showed that mouse, rabbit, monkey and other species exhibit unique and shared 

developmental features in gene expression, epigenetic regulation, or as a whole with interspecies 

chimeras (Simerly et al., 2011; Okamoto et al., 2011; Wu et al., 2016; Nakamura et al., 2016; Fu et al., 

2020; Bouchereau et al., 2022). However, little was known about cellular morphogenesis, cleavages, 

and their variabilities. Here we demonstrated that the cellular morphogenesis of mouse, rabbit and 

monkey embryos can be described in a shared morphomap, revealing key similarities and differences 

between species. Rabbit embryos showed a much higher spatial variability and a low proportion of D2d 
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packing, which is in line with our model derived from mouse embryos given that little compaction is 

observed at the 8-cell stage. Instead, the compaction in rabbit embryos starts when embryos reach the 

32- and 64-cell stage (Koyama et al., 1994), which opens the possibility for a late topological and 

geometrical convergence. By contrast, monkey embryos display robust geometrical and topological 

patterns despite the absence of compaction at the 8-cell stage. This suggests that cleavage asynchrony 

may facilitate robust morphogenesis, by promoting an optimal packing from the beginning of the 8-

cell stage. Alternatively, the zona pellucida appears to expert higher spatial constraints to monkey 

embryos than to mouse embryos (see Figures 2E and S2C, in comparison to Figures 2A and S2A), and 

this may also contribute to the efficient convergence and packing (Giammona and Campàs, 2021; 

Seirin-Lee et al., 2022). 

Overall, the dynamics of the variability in cleavage timing is closely linked to the spatial organisation 

of the cells within the embryo, and ultimately to morphogenesis and patterning. Our finding of 

species-specific dynamics of variability in cleavage timing suggests an intriguing possibility that the 

temporal variability may be an evolutionary trait generating an optimal spatial noise, ultimately 

ensuring robustness in embryogenesis. 
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Figure 1 
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Figure 1. Embryo variability in cleavage timing increases at a constant and species-specific 

rate. 

(A) Maximum intensity projection of a representative live imaging dataset, out of 16 datasets from 5 

independent experiments, of a mouse embryo expressing mT (magenta); H2B-EGFP (cyan) 

developing from the 4- to the 16-cell stage. Time post imaging (hh:mm); Scale bar, 25 µm. See also 

Video S1. (B) Schematic representation of the tracking pipeline. 3D+time microscopy data were 

analysed to automatically detect nuclei centre position, then automatically tracked and manually 

curated to ensure maximum accuracy. See also Methods. (C) Representative curated tracking 

displaying the 3rd (yellow), 4th (blue), 5th (red) and 6th (green) cleavages covering a period of 43 

hours from left to right. Each branch represents a cell. Each branching represents a mitosis. 

(D) Schematic representation of the null hypothesis (H0) under which the distribution of the timing of 

mitosis at the nth cleavage is normally distributed with a variance of �'" and equals the cumulative sum 

of independent normally distributed random variables with a variance of �!" such that �'" = (� 2 1)�!". 
See also Figure S2B. (E) Density distribution of the timing of mitosis around the mean grouped by 

cleavage number, measured from 16 embryos of 5 independent experiments. Black line, gaussian fit 

of each distribution (�. �. = 0.83, 1.22, 1.86	and 2.17 for the 3rd, 4th, 5th and 6th cleavage respectively). n, 

number of mitoses. N, number of embryos. Colour code as in (C). (F) Variance in mitosis timing as a 

function of cleavage number. Dashed line, linear regression. Pearson correlation � = 0.989 (� =0.011, ��(&% = [0.552; 0.999]). Colour code as in (C). (G) Time difference in mitosis timing as a 

function of spatial distance for each pair of same-generation cells (black dots), measured for 7856 

pairs of cells in 16 embryos from 5 independent experiments. Red line, linear regression. Pearson 

correlation � = 0.085 (� < 10#%*, ��(&% = [0.063; 0.107]). (H) Diagram of the experimental generation 

of heterochronic chimera. A time-shifted blastomere from an 8-cell stage donor (magenta) is inserted 

under the zona pellucida of 8-cell stage host (cyan), generating a 9 cells heterochronic chimera. See 

also Methods. (I) Evolution of the shift in timing of division between the 4th and the 5th cleavage 

between host and donor in 9-cell heterochronic embryos. (J) Comparison of the variance of the 

mitosis timing normalised by the cell cycle length, as a function of the cleavage number in mouse 

(black, 16 embryos from 5 independent experiments), rabbit (blue, 6 embryos from 3 independent 

experiments) and monkey (yellow, 4 embryos from 2 independent experiments). Thick lines, linear 

regression. Error bars, 95% confidence interval. 
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Figure 2 
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Figure 2. Embryo spatial variability reduces during the 8-cell stage. 

(A) Descriptive representation of the geometrical distance measurement pipeline. 3D images of 

embryo membranes (first column) were automatically segmented, manually curated to generate high 

accuracy labelled volumes (second column), and fitted with exponential splines (third column) 

producing a set of 504 parameters for each embryo at each timepoint (fourth column). The distance 

between each pair of 3D images was computed from the exponential spline parameters, and used to 

project the 504D-morphomap on a 2D plane (see also Methods). (B,F,G) tSNE projection of the 

morphomap. Each embryo is represented with a sequence timepoints and coloured as a function of 

the normalised progression though the 8-cell stage (B, early in magenta to late in cyan), the species 

(F, mouse in black, rabbit in blue and monkey in yellow) or the compaction parameter (G, high alpha 

or low compaction in green, low alpha or high compaction in yellow). Isolines, density map of the end 

of the 8-cell stage. � = 29 mouse embryos, 10 rabbit embryos and 4 monkey embryos. 

(C,H) Normalised time course through the 8-cell stage of the mean ± s.d. of the 406 pair-wise 

geometrical distances (C) and the mean compaction parameter � (H) in 29 embryos. Light grey lines, 

individual embryo tracks. See also Figure S2E,F. (D,E) Cross-section of a representative live imaging 

dataset of a rabbit embryo (D, � = 10 embryos from 4 independent experiments) and a monkey 

embryo (E, � = 4 embryos from 2 independent experiments) expressing myrTagRFP-T (D) and mT 

(E). Scale bar, 50 µm. Time after the beginning (white, top-left corner) and before the end (red, top-

right corner) of the 8-cell stage. See also Figure S2B,C. 
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Figure 3 
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Figure 3. Embryo topological variability reduces during the 8-cell stage. 

(A) The 13 rigid packings and two examples of non-rigid packings (NR) for clusters of 8 spheres. 

Rigid packings were named using the Schoenflies notation and describes the symmetry of the 

packing in three dimensions. A number between parenthesis was added to differentiate packings 

sharing the same Schoenflies notation. See also Figure S3A. (B) tSNE projection of the morphomap. 

Each embryo is represented with a sequence of connected timepoints and coloured as a function of 

the topological proximity to Cs(2) (magenta), D2d (cyan), or any other rigid packing (grey). Non rigid 

packings (NR) are coloured in black. Isolines, density map of the end of the 8-cell stage. � = 29 

mouse embryos. (C) Normalised time course through the 8-cell stage of the mean ± s.d. of pair-wise 

geometrical distances within embryos categorized and coloured as in (B). (D) Cross-section (first 

row), surface of cell segmentation (second row) and topological network (third row) of a 

representative topological transition from C1(3) (first column) to D2d (second and third columns). Arrow 

heads point the absence of cell-cell contact (first column), the initiation of a contact (second column), 

and the expansion of the contact (third column) between two cells respectively marked with a red and 

blue star (first row) or represented in red and blue (second and third row). Cell-cell contact loss 

(magenta) and gain (cyan) has been highlighted on the topology network among lasting contacts 

(grey). Time after the beginning (white, top-left corner) and before the end (red, top-right corner) of 

the 8-cell stage. Scale bar, 25 µm. See also Video S4. (E) Topological transition map as observed in 

mouse embryos at the 8-cell stage between Cs(2) (magenta), D2d (cyan), non-rigid (NR, black) or any 

other rigid packings (Others, grey). An arrow indicates that a topological transition between two 

groups was observed once (dotted lines) or more (solid lines). Circle area is proportional to the 

topology proportion. Arrows are labelled and sized by the occurrence of the transition. Red arrows 

indicate the direction of the net flux of transitions. � = 53 transitions. (F) Evolution of the proportion of 

Cs(2) (magenta), D2d (cyan), non-rigid (NR, black) or any other rigid packings (Others, grey) as a 

function of the normalised progression through the 8-cell stage. � = 29 mouse embryos. See also 

Figure S2B. (G) Evolution of the proportion of topologies identified as D2d in mouse (black, � = 29 

embryos), rabbit (blue, � = 10 embryos) and monkey (yellow, � = 4 embryos) as a function of the 

normalised progression through the 8-cell stage. 
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Figure 4 
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Figure 4. Surface energy minimisation with compaction is sufficient to recapitulate geometrical 

and topological convergence. 

(A) Diagram of the biophysical model. The total energy of an embryo depends on cell-cell contact 

area (�+,- between cells � and �), the contact-free area (�+ for cell �), and the �-parameter (half the 

ratio between the cell-cell surface tension �.. and cell-medium surface tension �./). At mechanical 

equilibrium, the �-parameter is inversely proportional to the angle between the surface of two 

adjacent cells � (Young-Dupré equation). Blue, surface areas; red, surface tensions; magenta, angle. 

(B,C) Simulation of the compaction of the D2d (B) and Cs(2) (C) packing from � = 0.8 to � = 0.3 

showing a topological transition to D2d at � = 0.3 in (C). (D) Relative energy of the packings obtained 

computationally after compaction of the 13 rigid packings to � = 0.8, 0.55 and 0.3. Colour code 

corresponds to the topological proximity to Cs(2) (magenta), D2d (cyan) and other rigid packings 

(grey), and may differ from the initial packing used in the simulation due to topological transitions. 

(E,F) tSNE projection of the morphomap of minimally rigid packings during in silico compaction. Each 

rigid packing is represented with a sequence of points connected from � = 0.8 to � = 0.3 and 

coloured as a function of the compaction parameter (E) and the topological proximity to Cs(2), D2d or 

any other rigid packing (F, respectively magenta, cyan and grey). (G) 2D schematic explaining the 

process of importing 3D segmentations in Surface Evolver as 3D objects. The labels (top-left) are 

imported into Surface Evolver as clouds of points from which a convex shape is generated with 

correct contacts and positions (bottom-left). The first optimisation generates an uncompacted object 

with � = 0.95 ensuring cell volume consistency with the embryo (bottom-right). Further simulated 

compaction is then performed up to the relevant experimentally calculated �-parameter (top-right). 

See also Methods. (H) Visual comparison of the 3D segmentation of a representative mouse embryo 

(first row) and the corresponding in silico simulation (second row) at � = 0.7 (beginning of the 

simulation, left column) and � = 0.4 (end of the simulation, right column). Time after the beginning 

(white, top-left corner) and before the end (red, top-right corner) of the 8-cell stage. Scale bar, 25 µm. 

(I) Distribution of the pair-wise distance in-between embryos (white, 10 embryos, 45 pairs) and 

between embryos and simulations (red, 10 embryos and 10 simulations) as a function of the 

compaction parameter from � = 0.65 (low compaction) to � = 0.4 (high compaction). (J) Schematic 

summary of the physical model. At very low compaction (� = 0.9), rigid packings are energetically 

equivalent, while compaction biases the relative energy of the different local minima, which favours 

noise-induced topological transitions (� = 0.6). At higher compaction rate (� = 0.3), multiple 

topologies have converged to D2d, although some topologies (D3d, C2v(2), Cs(3) and Cs(1a)) would 

require higher noise or longer time scales. See also Figure S4A,B. 
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Figure 5. Compaction and surface contractility drive topological transitions. 

(A,D) Proportion of Cs(2) (magenta), D2d (cyan), other rigid packings (Others, grey) and non-rigid 

packings (NR, black) as a function of the compaction parameter in control mouse embryos (A, � = 29 

embryos) and mMyh9+/- mutants (D, � = 6 embryos). (B) Normalised time course through the 8-cell 

stage of the mean �-parameter for control mouse embryos (black, � = 29 embryos) and mMyh9+/- 

mutants (blue, � = 6 embryos). Light colours, individual tracks. See also Figure S5D. (C) Max 

projection of a representative live imaging of mMyh9+/- mutants at the beginning (top) and the end 

(bottom) of the 8-cell stage (� = 6 embryos). Time after the beginning (white, top-left corner) and 

before the end (red, top-right corner) of the 8-cell stage. Scale bar, 25 µm. See also Video S5. 

(E) tSNE projection of the morphomap of control mouse embryos (black, � = 29 embryos) and 

mMyh9+/- mutants (blue, � = 6 embryos). Isolines, density map at the end of the 8-cell stage of control 

embryos. See also Figure S5F. 
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Figure 6 
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Figure 6. Variability in cleavage timing promotes robustness in morphogenesis and ICM-TE 

patterning. 

(A) Packing parameter at the 8-cell stage as a function of the topology of the embryo. � = 20 

embryos. (B) Bi-modal count distribution of the contact-free area of individual cells (grey bars, � =320 cells pooled from 20 embryos) fitted with the sum of an inner and an outer gaussian distribution 

(black line, mean ± s. d. = 12.1%± 9.6 and 48.4%± 6.5 respectively). Dashed line, cut-off between 

inner and outer cells, defined as the intersection point of the two gaussians (cut-off = 32.6%). 

(C) Packing parameter at the 16-cell stage as a function of the packing parameter at the 8-cell stage. 

Pearson correlation � = 0.658 (� < 0.01). Solid line, linear regression. Shaded ribbon, standard error. 

(D) Packing parameter as a function of the number of inner cells. Pearson correlation � = 0.591 (� <0.01). Solid line, linear regression. Shaded ribbon, standard error. (E) Diagram of the synchronisation 

experiment describing the three conditions used in (F-H). Embryos were treated for 4 hours with 

APCin or Nocodazole at the beginning (group interphase, � = 25 embryos from 4 independent 

experiments and � = 25 embryos from 6 independent experiments for APCin and Nocodazole 

treatment respectively) or at the end (group m-phase, � = 43 embryos from 4 independent 

experiments and � = 72 embryos from 6 independent experiments for APCin and Nocodazole 

treatment respectively) of the 8-cell stage, or were not treated at all (group control, � = 57 embryos 

from 10 independent experiments). Embryos were fixed at the expected 32-cell stage (see Methods). 

(F) Representative cross-section of fixed embryos from the control group (top-left), the interphase 

group treated with APCin (top-right), the m-phase group treated with APCin (bottom-left) and the m-

phase group treated with Nocodazole (bottom-right, stained without Phalloidin). Cyan, TE-fated cells 

(Cdx2); Magenta, ICM-fated cells (Sox2); Orange, F-actin (Phalloidin). Scale bar, 25 µm. 

(G,H,J,K) Box plot of the number of cells (G), the proportion of Sox2+ cells (H), ectopic Sox2+ cells (J) 

and ectopic Cdx2+ cells (K) in embryos treated with APCin (red), Nocodazole (blue) or not treated 

(grey) in the three experimental groups as described in (E). Two-sided Mann-Whitney test; n.s., non-

significant; *, p-value < 0.05; ***, p-value < 0.001. (I) Axial (top row) and lateral (bottom row) cross-

section of fixed embryos from group m-phase, treated with APCin. Arrow head indicates ectopic 

Sox2+ (left column) and Cdx2+ (right column) cells. Colours and scale bar as in (F). 
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Materials and Methods 

Mouse work 

We performed mouse animal work in the Laboratory Animal Resources (LAR) at the European 

Molecular Biology Laboratory with permission from the Institutional Animal Care and Use Committee 

(IACUC) overseeing the operation (IACUC number TH11 00 11). LAR is operated as stated in 

international animal welfare rules (Federation for Laboratory Animal Science Associations guidelines 

and recommendations). Mouse colonies are maintained in specific pathogen-free conditions with 12–

12 h light-dark cycle. All mice used for experiments were older than 8 weeks. 

Rabbit work 

We performed rabbit animal work following the International Guidelines on Biomedical Research 

involving animals, as promulgated by the Society for the Study of Reproduction, and with the 

European Convention on Animal Experimentation. The researchers involved in work with the rabbits 

were all licensed for animal experimentation by the French veterinary services. The rabbit 

experimental design was carried out under the approval of national ethic committee (APAFIS #2180-

2015112615371038v2) and under the approval of the local ethic committee (Comethea n°45, registered 

under n°12/107 and n°15/59). 

Monkey work 

We performed monkey animal work with female cynomolgus monkeys (Macaca fascicularis), of ages 

ranging from 6 to 11 years. The light-dark cycle was maintained as 12-12 hours of artificial lighting 

from 8 a.m. to 8 p.m. Each animal was fed 20 g/kg of body weight of commercial pellet monkey chow 

(CMK-1; CLEA Japan) in the morning, supplemented with 20–50 g of sweet potato in the afternoon. 

Water was available ad libitum. Temperature and humidity in the animal rooms were maintained at 

25 ± 2°C and 50 ± 5%, respectively. The animal experiments were appropriately performed by 

following the Animal Research: Reporting in Vivo Experiments (ARRIVE) guidelines developed by the 

National Centre for the Replacement, Refinement & Reduction of Animals in Research (NC3Rs), and 

also by following “The Act on Welfare and Management of Animals” from Ministry of the 

Environment, “Fundamental Guidelines for Proper Conduct of Animal Experiment and Related 

Activities in Academic Research Institutions” under the jurisdiction of the Ministry of Education, 

Culture, Sports, Science and Technology, and “Guidelines for Proper Conduct of Animal Experiments” 

from Science Council of Japan. All animal experimental procedures were approved by the Animal Care 

and Use Committee of Shiga University of Medical Science (approval number: 2021-10-4). 

Mouse lines 

The following mouse lines were used in this study: (C57BL/6xC3H) F1 for WT, mTmG (Gt(ROSA) 

26Sortm4(ACTB-tdTomato,-EGFP)Luo) (Muzumdar et al., 2007), CAG H2B-EGFP (Tg(HIST1H2BB/EGFP)1Pa) 

(Hadjantonakis and Papaioannou, 2004) and Myh9tm5RSad (Jacobelli et al., 2010). Double transgenic 

mTmG ; H2B-EGFP line was generated by breeding mTmG (homozygous or heterozygous) females 

with H2B-EGFP males. Transgenic mMyh9 ; mTmG ; H2B-EGFP embryos were generated by 

maternal deletion of Myosin-9 using ZP3-Cre (Tg(Zp3-cre)93Knw) mice (de Vries et al., 2000) and 
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Myh9tm5RSad mice. Myh9tm5RSad/tm5RSad ; Zp3Cre/+ mothers were bred with mTmG ; H2B-EGFP fathers. 

mG line was generated by maternal excision of the mT sequence using ZP3-Cre mice and mTmG mice. 

Genotyping was done using the following primers: 

- mTmG and mG lines: 250 b.p. (transgenic) and 330 b.p. (wild-type) PCR product size with 

primers oIMR7318 (CTCTGCTGCCTCCTGGCTTCT), oIMR7319 

(CGAGGCGGATCACAAGCAATA) and oIMR7320 (TCAATGGGCGGGGGTCGTT), 

- CAG H2B-EGFP: 900 b.p. (transgenic) PCR product size with primers CAG-F 

(GGCTTCTGGCGTGTGACCGGC) and EXFP-R (GTCTTGTAGTTGCCGTCGTC); 324 b.p. 

(wild-type) PCR product size with primers oIMR7338 (CTAGGCCACAGAATTGAAAGATCT) 

and oIMR7339 (GTAGGTGGAAATTCTAGCATCATCC); PCR must be done separately, 

- Myh9tm5RSad: 770 b.p. (transgenic) and 600 b.p. (wild-type) PCR product size with primers 

Myh 9F (ATGGGCAGGTTCTTATAAGG) and Myh 9R (GGGACACAGTGGAATCCCTT), 

- ZP3-Cre: 300 b.p. (transgenic) PCR product size with primers cre upper 

(TGCTGTTTCACTGGTTGTGCGGCG) and cre lower (TGCCTTCTCTACACCTGCGGTGCT). 

Recovery of mouse embryos 

Embryos were recovered from super-ovulated female mice. For superovulation, intraperitoneal 

injection of 5 international units (IU) of pregnant mare’s serum gonadotropin (PMSG, Intervet, 

Intergonan) and following injection of 5-IU human chorionic gonadotropin (hCG; Intervet, Ovogest 

1500) 48 h later were performed. 4-cell stage embryos were recovered at E2.0 by inserting a needle in 

the ampulla and flushing the oviduct and the uterus with KSOMaa including HEPES (H-KSOMaa; 

Zenith Biotech, ZEHP-050). Recovered embryos were washed three times in drops of KSOMaa 

(Zenith Biotech, ZEKS-050) and then transferred into 10 µl drops of KSOMaa covered with mineral oil 

(Sigma-Aldrich, M8410). Embryos were maintained in an incubator (Thermo Fisher Scientific) at 

37ºC with 5% CO2. 

Recovery of rabbit embryos 

New Zealand White female rabbits (20–22 weeks old) were super-ovulated using 5 subcutaneous 

administrations of porcine follicle stimulating hormone (pFSH, Merial, Stimufol) for 3 days before 

mating: two doses of 5 µg on day 1 at 12 hours intervals, two doses of 10 µg on day 2 at 12 hours 

intervals, and one dose of 5 µg on day 3 followed 12 hours later by an intravenous administration of 

30IU hCG (Intervet, Chorulon) at the time of mating (natural mating). Embryos were collected from 

oviducts and perfused with DPBS (Thermo Fisher Scientific, 14190) at 19 hours post-coitum (h.p.c.) to 

obtain embryos at 2 pronuclei stage. Embryos were maintained in 0.5mL of TCM199-HEPES 

(Biochrom, F0665) + 10% foetal bovine serum (FBS, Thermo Fisher Scientific, 10500) + 0.5% of 

penicillin/streptomycin (Thermo Fisher Scientific, 15140) in a 4-well dish (Nunc, 176740) until the 

microinjection. 

Intracytoplasmic sperm injection (ICSI) 

Monkey oocyte collection was performed as described previously (Tsukiyama et al., 2019). Briefly, two 

weeks after the subcutaneous injection of 0.9 mg of a gonadotropin-releasing hormone antagonist 
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(Takeda Chemical Industries, Leuplin for Injection Kit), a micro-infusion pump (ALZET Osmotic 

Pumps, iPRECIO SMP-200) with 15 IU/kg human FSH (hFSH, Merck Biopharma, Gonal-f) was 

embedded subcutaneously under anaesthesia and injected 7 µL/h for 10 days. After the hFSH 

treatment, 400 IU/kg human chorionic gonadotropin (hCG, Asuka Pharmaceutical, Gonatropin) was 

injected intramuscularly. Forty hours after the hCG treatment, oocytes were collected by follicular 

aspiration using a laparoscope (Machida Endoscope, LA-6500). Cumulus-oocyte complexes (COCs) 

were recovered in alpha modification of Eagle’s medium (MP Biomedicals, 09103112-CF), containing 

10% serum substitute supplement (Irvine Scientific, 99193). The COCs were stripped off cumulus cells 

with 0.5 mg/ml hyaluronidase (Sigma-Aldrich, H4272). ICSI was carried out on metaphase II (MII)-

stage oocytes in mTALP+HEPES (Parrish et al., 1988) with a micromanipulator. Fresh sperm were 

collected by electric stimulation of the penis with no anaesthesia. 

In vitro transcription 

H2B-EGFP mRNA was transcribed from plasmid #1 pCS-H2B-EGFP (Megason, 2009) (Addgene, 

Plasmid #53744). To construct pCS2-myrTagRFP-T (plasmid #2), TagRFP-T fused with eight amino 

acids, GSSKSKPK, at the N-terminus for myristoylation was amplified (primer set: 5’-GGATCCATGG 

GCAGCAGCAA GAGCAAGCCC AAGAGCGAGC TGATTAAG-3’ and 5’-CTCGAGTCAC TTGTGCCC-3’) 

and cloned into the BamHI-XhoI sites of pCS2+. To construct pcDNA3.1-membrane-tdTomato-T2A-

H2B-GFP-poly(A83) (plasmid #3), an amplified PCR product from pCAG-TAG (Addgene, Plasmid 

#26771) was cloned into the KpnI-NotI sites of pcDNA3.1-H2B mCherry-poly(A83) (Yamagata et al., 

2005). The vector #3 was linearized with XhoI and treated with 0.5% SDS, 0.2 mg/mL Proteinase K 

(Thermo-Fisher, QS0510) for 30 min at 50°C, purified with phenol-chloroform, and precipitated with 

ethanol. 

Then, the purified vectors were used as a template for in vitro transcription. The mRNA from 

plasmid #1 and #2 was transcribed using the mMESSAGE mMACHINE SP6 Transcription Kit 

(Thermo Fisher Scientific, AM1340) and purified with the NucleoSpin RNA Clean-up XS kit 

(Macherey-Nagel, 740902). The mRNA from plasmid #3 was transcribed using the mMESSAGE 

mMACHINE T7 Transcription Kit (Thermo Fisher Scientific, AM1344) and purified with the 

MEGAclear Transcription Clean-Up Kit (Thermo Fisher Scientific, AM1908). 

Micro-injection of mRNAs 

Rabbit zygotes were micro-injected into the cytoplasm with a mRNA’s mix of H2b-GFP (50 ng/µL 

final concentration) and myrTagRFP-T (150 ng/µL final concentration) in water. Microinjections were 

performed using a DIC inverted microscope (Olympus, IX71) equipped with micromanipulators 

(Eppendorf, TransferMan NK) and electronic microinjector (Eppendorf, femtojet injector). After 

microinjection, unlysed embryos were cultured during 2 to 3 hours in 40 µL micro drops of TCM199 

(Sigma-Aldrich, M4530) + 10% foetal bovine serum (FBS, Thermo Fisher Scientific, 10500) + 0.5% 

penicillin/streptomycin (Thermo Fisher Scientific, 15140) under mineral oil (Sigma-Aldrich, M8410) 

at 38.5°C under 5% CO2.  

For microinjection in monkey eggs, the mRNA was co-injected with sperm during ICSI. The sperm 

were washed in a drop of 300 ng/µL mRNA, and co-injected into the MII-stage oocytes. Following co-
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injection, embryos were cultured in monkey culture medium (CMRL 1066 Medium (Thermo Fisher 

Scientific, 21540026) supplemented with 20% FBS) at 38°C in 5% CO2 and 5% O2. 

Transport of microinjected rabbit zygotes 

Two to three hours after microinjection, 0.5 mL tubes were over-filled with M2 (Sigma-Aldrich, 

M7167) at 38.5°C to remove air bubbles. Tubes were placed into an insulated box (Polystyrene foam 

transport box) with the Velvet cooling elements (Velvet, SVE2) and antifreeze elements (Velvet, AF1) 

to maintain 8°C during 36 to 48 hours. The samples were sent from the collection site (Jouy-en-Josas, 

France) to the European Molecular Biology Laboratory (Heidelberg, Germany) via a regular courier 

service overnight. Before reception of the embryos, rabbit culture medium (TCM199 (Sigma, M4530) 

+ 10% FBS (Thermo Fisher Scientific, 10500) + 0.5% penicillin/streptomycin (Thermo Fisher 

Scientific, 15140)) was freshly prepared and stored at 38.5ºC and 5% CO2 for at least an hour. Upon 

reception of the embryos, the temperature inside the box was checked (8ºC), the embryos transferred 

to a 4-well dish (Nunc, 176740) with M2 (Sigma, M7167) at room temperature for 5 minutes, washed 

four times in 40 µL drops of equilibrated and pre-warmed rabbit culture medium, then transferred to 

10 µL drops of equilibrated and pre-warmed rabbit culture medium covered with mineral oil (Sigma, 

M8410). Embryos were maintained in an incubator (Thermo Fisher Scientific) at 38.5ºC with 5% CO2 

for one hour until the beginning of the imaging. 

Transport of microinjected monkey embryos 

Forty-five hours after microinjection, 4-cell stage monkey embryos were transferred into 300 µL 

monkey culture medium (CMRL 1066 Medium supplemented with 20% FBS) covered with 1 mL 

mineral oil in a 1.5 mL tube. Tubes were placed into 38.5ºC water in a vacuum bottle in an insulated 

box to maintain temperature during 1.5 hours of transportation from collection site (Shiga University 

of Medical Science, Japan) to the imaging site (Kyoto University, Japan). Upon arrival, embryos were 

washed three times with pre-warmed monkey culture medium, then transferred to 10 µL drops of 

equilibrated and pre-warmed monkey culture medium covered with mineral oil. Embryos were 

maintained in an incubator (PHCbi, MCO-170MUV) at 38°C with 5% CO2 and 5% O2 for one hour 

until the beginning of the imaging. 

Chemical treatments 

For Myosin inhibition (Figure 5), 4-cell stage embryos were washed and cultured in pre-equilibrated 

KSOMaa (Zenith Biotech, ZEKS-050) supplemented with DMSO (vehicle; Sigma-Aldrich, D2650) and 

para-aminoblebbistatin (10 µM; Optopharma, DR-Am-89) for 24 hours until the 16-cell stage. For the 

synchronisation of cell mitoses at the 4th cleavage (Figure 6), 8-cell stage embryos were washed and 

cultured at the appropriate timing for 4.5 hours in pre-equilibrated KSOMaa supplemented with 

1:1000 DMSO (control group), APCin (100 µM; Tocris Bioscience, 5747) or Nocodazole (0.5 µM; 

Sigma-Aldrich, M1404). Embryos were then washed in pre-equilibrated KSOMaa. The interphase 

group was formed using early uncompacted 8-cell stage embryos, while the m-phase group was 

formed using late compacted 8-cell stage embryos. Embryonic stage (early or late 8-cell stage) was 

determined by visual inspection with bright-field binocular microscope (Zeiss, Discovery.V8).  
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Generation of heterochronic embryos 

mTmG and mG mice were super-ovulated four hours apart. Embryos were recovered at the 4- to 8-cell 

stage and imaged every 30 minutes in the InVi-SPIM to identify the beginning of the 8-cell stage. 

Pairs of one mT and one mG expressing embryos with 3 to 6 hours of difference were selected to 

generate heterochronic chimeras. First, one of the two embryos was randomly chosen to be the donor. 

To dissociate the donor embryo into single blastomeres, the zona pellucida (ZP) was removed by 

incubating the embryos in pronase (0.5% w/v Proteinase K in H-KSOMaa supplemented with 0.5% 

PVP-40 (Sigma-Aldrich, P0930)) covered with mineral oil for 2-3 minutes. Embryos were then 

washed 5 times in 10 µL drops of H-KSOMaa. Afterwards, the embryos were placed into a 50 µL drop 

of dissociation medium (Biggers et al., 2000) (KSOMaa without Ca2+ and Mg2+). Blastomeres were 

then dissociated in the drop by pipetting up and down in a narrow glass capillary (Brand, 708744). 

Dissociated blastomeres were incubated in KSOMaa drops covered with mineral oil until the host 

embryo was ready for the graft. To prepare the host, we used a micro-manipulation device (Narishige, 

MON202-D) mounted on a Zeiss Axio Observer Z1 microscope to create a slit in the ZP. First, the host 

embryos were placed in a 50 µL drop of H-KSOMaa covered with mineral oil in a glass-bottom dish 

(MatTek, P50G-1.5-14-F) and mounted on the microscope with temperature of the incubation 

chamber maintained at 37°C. To make a slit in the ZP of the host, a holding pipette and a pulled glass 

needle mounted on the micromanipulator were used. Both the holding pipette and pulled needle were 

custom-made from glass capillaries (Warner Instrument, GC100T-15) using a micropipette puller 

(Sutter Instrument, P-1000) and a microforge (Narishige, MF-900). The host embryo was maintained 

in place with the holding pipette and the glass needle was inserted tangentially to the embryo under 

the ZP and pulled in a perpendicular direction without damaging the cells, thus generating a slit in the 

ZP. Next, one of the donor’s blastomeres was randomly picked and inserted in the slit under the host’s 

ZP using another custom-made glass pipette mounted on the micromanipulator. The resulting 9-cell 

heterochronic chimeras were then transferred to KSOMaa and put back in the InVi-SPIM and imaged 

every half an hour until the 32-cell stage. Finally, timing of division was manually inspected from 8- to 

16-cell stage and from 16- to 32-cell stage. Host and donor cells were identified based on the 

expression of mT or mG. 

Immunostaining 

Embryos were fixed in 100µL of 4% paraformaldehyde (PFA, Electron Microscopy Sciences, 19208) in 

DPBS for 15 min at room temperature, washed three times for 5 minutes in DPBS with 0.1% Tween-20 

(wDPBS, Sigma-Aldrich, P7949) + 1% bovine serum albumin (BSA, Sigma-Aldrich, 9647), 

permeabilised 15 minutes at room temperature in DPBS with 0.5% TritonX-100 (Sigma-Aldrich, 

T8787), washed three times for 5 minutes in wDPBS+1% BSA, and blocked 4 hours at room 

temperature in wDPBS+3% BSA. Embryos were then transferred into 70 µL of primary antibody 

solution in wDPBS+3% BSA and incubated overnight at 4ºC. Primary antibodies against Cdx2 

(Biogenex, MU392A-UC) and Sox2 (Cell Signalling, D9B8N) were diluted at 1:150. Embryos were then 

washed three times for 5 minutes in wDPSB+1% BSA and transferred into 70 µL of secondary 

antibody solution in wDPSB+1% BSA for 2 hours at room temperature. Secondary antibodies 

conjugated with Cy5 against mouse Ig (Jackson ImmunoResearch, 715-175-150) and Alexa Fluor 488 
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Plus against rabbit Ig (Thermo Fisher Scientific, A11008) were diluted at 1:200. For embryos fixed 

after treatment with APCin (Figure 6), Phalloidin-Rhodamin (Thermo Fisher Scientific, R415) was 

added in the secondary antibody solution diluted at 1:200. Before imaging, embryos were washed 

three times for 5 minutes in wDPBS+1% BSA, transferred 10 minutes at room temperature in 

wDPBS+1% BSA supplemented with DAPI (1:1000, Thermo Fisher Scientific, D3751) to stain DNA, 

washed three times for 5 minutes in wDPBS+1%BSA and mounted in 5 µL drops of wDPBS for 

imaging the same day. 

Confocal microscopy 

Imaging of immunostained embryos was performed with LSM 780 (Zeiss). C-Apochromat 403 1.1 NA 

water objective (Zeiss) was used. 

Light-sheet microscopy 

Embryos were live-imaged using InVi-SPIM (Luxendo). Embryos were aligned in a V-shaped sample 

holder covered with transparent fluorinated ethylene propylene foil (FEP, Luxendo), in approximately 

100 µL of culture medium covered with 200 µL of mineral oil to prevent evaporation. The sample 

holder was enclosed in an environmentally controlled incubation box with 5% CO2 and 5% O2 at 37ºC 

(mouse), 38ºC (monkey) or 38.5ºC (rabbit). For Figure 1, embryos were isolated in wells to facilitate 

their identification after imaging, fixation and immunostaining. To shape the wells, we used a flamed 

glass capillary (Marienfeld Superior, 2930210) with a spherical tip of approximatively 200 µm of 

diameter to carefully press and stretch the FEP foil shaping up to 12 wells per sample holder. InVi-

SPIM was equipped with a Nikon 25x/1.1NA water immersion detective objective and a Nikon 10x/0.3 

NA water immersion illumination objective. The illumination plane and focal plane were aligned 

before each imaging session and maintained during the imaging. Images were taken by a CMOS 

camera (Hamamatsu, ORCA Flash4.0 V2) using software LuxControl (Luxendo). The lasers and filters 

used were 488 nm with BP525/50 and 561 nm with LP561 to image GFP and tdTomato/RFP 

fluorophores respectively. Exposure time for each plane was set to 30 ms. Imaging was done using a 

lateral resolution of 0.104 µm/px or 0.208 µm/px binned to 0.416 µm for analysis. Due to technical 

difficulties with the motorised stage, the InVi-SPIM used a larger than requested step size between 

optical slices. To determine the real step size, we computed for each embryo the width:depth ratio and 

the height:depth ratio in voxels of all cells at every timepoint of the segmented 8-cell stage. Assuming 

that these ratio equals 1 on average, as with the width:height ratio, we determined the real step size in 

µm for each embryo individually (Table S1). Imaging settings, including duration of imaging and time 

interval for each dataset, are summarised in Table S1. 

Generation of cluster of spheres in-silico 

We describe the method to generate in-silico surrogates of packings such that they can be 

manipulated using the software Surface Evolver (Brakke, 1992), a classical tool to study the surfaces 

and topological transitions shaped by surface tension. Input data provides the geolocation of the 

centre of masses of cells, area of contact between cells and volume of each cell. Output data is a file 

compatible with Surface Evolver (file extension fe). For each cell, we created a cloud of points at 

distance R of its centre of mass, such that the enclosed volume corresponded to volume of the cell. For 
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adjacent cells, we created a triangle – a simplex – that was shared among the two cells in contact. 

Then, we created the convex hull of the cloud of points, including the contact simplices if present, 

even though they can break locally the convexity of the object. This resulted in a structure made of 

triangular simplices to which we provided a consistent orientation such that they can be properly 

interpreted by Surface Evolver. Volumes were also given consistently with the volumes in the input 

data. The first optimization steps of Surface Evolver are sufficient to generate a structure akin to the 

input data, both at the topological and geometrical level, and also to remove the potential non-convex 

regions generated at the contact points. The surface tensions can then be modified such that one 

reproduces the compaction process. See also Figure 4G for a schematic description of the process. 

In-silico compaction and energy minimisation 

Following previous findings that cell-cell adhesion during mouse compaction could be described well 

by the analogy to soap bubble (Maître et al., 2015; Maître et al., 2016), the energy of a given 

configuration is defined by �010 = 3 V�.2�.2+ + !

"
�..�..+ X3

+4%      , 

where we have summed by all eight cells their cell-fluid energy (�.2being the cell-fluid tension and �.2+  

the cell-fluid area of cell i) and their cell-cell energy (�..being the cell-cell tension and �..+  the area of 

cell i in contact with other cells, note that the factor ½ is to avoid double summation). We set all 

cellular volumes to unity. We can set �.. = 1 without loss of generality, so that the minimization 

problem depends only on the tension ratio � = �../�.2. It has been shown previously that this 

parameter � can be estimated from the angles between cell-cell contacts and the fluid interface 

(Young-Dupré equation, see also Figure S2E and 4A). Note that � = %

"
 corresponds to soap bubbles (all 

tensions are equal and all angles are 120º), � = 0 corresponds to only cell-fluid tension so that the 

embryo will be perfectly spherical regardless of the contact topology, and � > 1 corresponds to the 

non-adhesive case as it becomes energetically favourable for cells to dissociate (as cell-cell tensions 

are larger than cell-fluid tensions). 

To explore how each of the 13 rigid packings evolve with compaction, we first initialized the software 

with the 13 possible packings and a very small adhesion strength (� = 0.95), which ensured that cells 

showed very small cell-cell contacts, and no tricellular junctions, in analogy with adhesive hard 

colloids (Arkus et al., 2009). We then slowly decremented � by 0.05, each time allowing for 

equilibration to a minimal energy configuration. This allowed us to calculate how energies of each 

configuration evolve as a function of �.	Importantly, while for � close to 1, energies of all 13 packings 

were very similar, as expected theoretically, decreasing � broke the degeneracy of the system. We 

found that D2d was always the lowest energy configuration, followed by the Cs(2) packing (Figure 4D). 

The local stability of these energy minima was verified in Surface Evolver by coarsening and 

remeshing the surface, effectively adding noise and checking whether the system always converged 

towards the same energy configuration. Interestingly, we found that 2 of the 13 packings (Cs(5) and 

C2v(1)) disappeared upon compaction, as the associated deformations create new contacts which make 

the system converge to D2d even in the absence of noise. For the other packings, convergence towards 

the global minimum (D2d) required T1 topological transitions, which is associated to energy costs in 
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foam models. Indeed, we found that the introduction of a large amount of remeshing noise in the 

system was necessary to allow these packings to converge towards D2d via topological transitions 

(Figure 4E,F and S4A,B). Note that two of the most anisotropic packings (C2v(2) and D3d) could not 

converge towards D2d, at least within the noise values possible with the Evolver package. It is possible 

that these highly anisotropic packings are unfavoured by other factors, such as asynchronous 

divisions. 

Nearest neighbour algorithm 

For cell tracking, registration or alignment of two sets of 3D points (PA and PB) or 3D segmentation 

(SA and SB), we developed a nearest neighbour algorithm in Python, available in the package 

morphomap (see section Code availability). For segmentation, the centre of mass of each cell in SA 

and SB was used to generate PA and PB respectively. First, we computed CA and CB, the centres of mass 

of PA and PB respectively. Second, PA and PB were translated to the origin such that PA0 = PA-CA and 

PB0 = PB-CB. Third, we generated 125,000 transformation matrices including rotation (10 values 

between 0º and 360º for pitch, roll and yaw) and scaling (5 values 0.5, 0.75, 1.0, 1.25 and 1.50 along 

the X, Y and Z axis), corresponding to 125,000 transformations tPB0 of PB0. Pair-wise Euclidean 

distances between points of tPB0 and PA0 were computed and sorted. The pair were assigned once, in 

order from the smallest distance to the biggest distance. If tPB0 had unassigned cells after the first 

round, a second round of assignation was done, assuming mitosis. The alignment score was computed 

as the sum of the squared distance between assigned points of PA0 and tPB0. The best three scores were 

kept and a new set of 125,000 transformation matrices was generated exploring the grid cell around 

the selected values, progressively refining a grid search of rotations and scaling. The algorithm 

stopped after 3 iterations (corresponding to variations of 0.36º for the rotation and 0.025% for the 

scaling). In case of segmentation, the score was weighted by the Jaccard index between segmented 

cells (number of voxels in common divided by the total number of voxels). The nearest neighbour 

algorithm produced a translation vector, rotation parameters, scaling parameters and a list of cell 

assignment. Computation was distributed on the EMBL’s cluster. 

Tracking and manual curation 

For mouse embryos, nuclear centres were detected using a Difference of Gaussians algorithm (Faure 

et al., 2016) (DoG). The best parameters for the DoG algorithm were found by a grid-search procedure 

which explored thousands of different configuration parameters simultaneously using EMBL's 

computing cluster. The best output was manually chosen and used for tracking using our nearest 

neighbour algorithm. Manual curation from the 4-cell stage to the 32- or 64-cell stage was performed 

by one operator using the software Mov-IT (Faure et al., 2016) and validated by a second operator. All 

the cells were inspected. Alternatively, for rabbit and monkey embryos, we used a custom-made cell 

detection and tracking algorithm (unpublished) based on nuclear segmentation with Cellpose 

(Pachitariu and Stringer, 2022; Stringer et al., 2021) and semi-automatic shape tracking using Napari 

(Sofroniew, Nicholas et al., 2022). 
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Identification of cell fate and back-tracking 

Identification of inner-cell-mass (ICM) and trophectoderm (TE) progenitor cells was done by fixation 

and immunostaining of embryos less than 15 minutes after the end of the live imaging. Sox2 and Cdx2 

positive cells (respectively ICM- and TE-fated cells) were identified by the signal intensity and 

mapped on the last timepoint of the live-imaged dataset. The alignment of the cells from the confocal 

imaging of immunostained embryos and the cells from the corresponding live-imaged embryos was 

done using our nearest neighbour algorithm. The identity of cells as determined by the 

immunostaining was then transferred to the last time point of the live-imaged dataset. Finally, cell 

identity was propagated backwards with a higher priority to TE-fated cells. 

Measurement of cleavage timing variability 

Cells were annotated with their generation number determined by the number of cells at the 

beginning of the imaging (zygote stage being the 1st generation). After each mitosis, daughter cells’ 

generation was incremented. The variability in division timing at the nth cleavage was measured as the 

standard deviation of the timing of division (in hours) of the cells of the nth generation in one embryo. 

When multiple embryos were pooled, the timing of division at one generation was first centred to zero 

for each embryo before computing the standard deviation of all the pooled cells at that generation. 

Embryos with less than 80% of cells dividing to the nth generation during the imaging period were 

removed from the analysis. 

Time and spatial difference between cells 

For each embryo, all unique pair of cells of the same generation were generated. The time difference 

was measured as the time (in hour) between the divisions of the cells in the pair. The spatial difference 

was measured as the Euclidean distance between the two cells 15 minutes before the first mitosis. 

Membrane segmentation and curation 

The segmentation pipeline used to process the 3D images of the membrane signal uses the PlantSeg 

package (Wolny et al., 2020) based on previous work done in electron microscopy images of neural 

tissue (Beier et al., 2017; Funke et al., 2019; Wolf et al., 2018) where a combination of a strong 

boundary predictor and graph partitioning methods has been shown to deliver accurate segmentation 

results. Briefly, the method consists of two major steps. In the first step, a convolutional neural 

network (CNN) is trained to predict cell boundaries. Then, a region adjacency graph is constructed 

from the pixels with edge weights computed from the boundary predictions. In the second step, a 

partitioning of the region adjacency graph is computed to produce the segmentation. The accuracy of 

this method is highly dependent on the boundary segmentation given by the CNN. Since no ground 

truth segmentation was initially available for our data, no dedicated CNN could be trained to 

accurately segment cell membranes. Instead, we used the following iterative procedure. In the first 

iteration a pre-trained CNN available in the PlantSeg package was used to generate the initial 

membrane probability maps. Specifically, we used a CNN trained on the confocal stacks of the 

Arabidopsis ovules dataset named “confocal_unet_bce_dice_ds2”. Having the cell boundary 

prediction, the initial segmentation was produced with PlantSeg. Then, the segmentation has been 

improved by visually choosing the most correctly segmented regions, manually correcting the 
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remaining errors and using the results as training data for a dedicated neural network for the 

membrane prediction task. This process of choosing the best segmentation, proofreading and re-

training the network was performed three times. A fourth optimisation was performed individually for 

each dataset, using 5 timepoints regularly spaced in the time series and manually curated to generate 

a dedicated neural network for the membrane prediction of a unique dataset, allowing for the 

segmentation of hundreds of timepoints with almost no curation required. 

The resulting network was used as a basis for the graph partitioning in PlantSeg. For the final 

segmentation of embryos into cells we have chosen the MultiCut graph partitioning strategy (Andres 

et al., 2011; Bansal et al., 2004; Kappes et al., 2011), implemented (Pape et al., 2017) in PlantSeg. The 

best hyperparameters for the MultiCut algorithm have been found by a grid-search procedure which 

explored thousands of different configuration parameters simultaneously using EMBL's computing 

cluster. Manual curation and editing were performed by one operator using a custom-made 

application (unpublished) and validated by a second operator. 

Preparation of the labelled data for analysis 

After curation, the segmentation data were scaled without interpolation with Fiji (Schindelin et al., 

2012) to generate isotropic voxel size of 0.416 x 0.416 x 0.416 µm3. Polar bodies were automatically 

removed from the segmentation file based on volume size and blastomeres were automatically tracked 

using our weighted nearest neighbour algorithm. Finally, segmentation holes and gaps between cells 

were closed with a dilation of one voxel around each labelled cell. For each embryo, we checked 

sudden changes of cell volume and Jaccard index over time to identify and correct potential 

segmentation errors. 

Parametrisation with exponential splines 

Short summary 

Each cell has been parametrised independently using exponential splines. Assuming a continuous 

surface without holes, cells are modelled as deformations of a continuously-defined parametric spline 

sphere with n longitudes and m latitudes. In this study, we used n=5 and m=5 to maximise the 

accuracy of the geometrical approximation while avoiding over-fitting of artefactual information (e.g., 

voxel aliasing). Equations have been re-derived from previous work (Delgado-Gonzalo et al., 2013) to 

accommodate for mathematical errors. The Python package splinefit is available as part of the package 

morphomap (see section Code availability). 

Setup 

Data are assumed to be 3D image volumes (in .tif format) containing integer masks for each individual 

cells. Each cell is a single connected component which voxels are all labelled with the same integer 

value. Label values may be any unique integer, and background voxels are labelled as 0. 

Fitting pipeline 

Cells are assumed to have a sphere topology (no void, no hole). We therefore model them as 

deformations of a continuously-defined parametric spline sphere. The resulting closed surfaces are �" 

smooth. We advocate for a continuously-defined parametric (implicit) representation as it allows for 

fast surface comparison across physical object size and voxel size. In this pipeline, each cell is 
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processed independently. The embryo is thus defined as a collection of non-interacting deformed 

spheroids with no built-in notion of contact or spatial interactions. 

Parametrisation, general form 

The sphere � of radius � * =, embedded in =*, is defined in its parametric form for �, � * [0,1] as 

�(�, �) = `�	cos(2��)	sin(��)�	sin(2��)	sin(��)�	cos(��) d . 
The two parameters, � and �, run along the latitudes and longitudes respectively, as depicted in Figure 

S2A. Note that latitudes are defined as full circles (closed), while longitudes are half-circle arcs (open). 

The parametric form of a 3D ellipsoid naturally follows for �, � * [0,1] as 

�(�, �) = `�	cos(2��)	sin(��)�	sin(2��)	sin(��)�	cos(��) d , 
with �, �, � * = the three ellipse axes. 

Parametrisation, spline model 

The 3D ellipsoid � can be perfectly interpolated as a spline surface following 

 �(�, �) = h h �5##%

64!

5$

74#%

[�, �]�"8
5#

,9:;
(�0� 2 �)� 8

5$#%
V(�< 2 1)� 2 �X, (1) 

where �[�, �] are the parameters of the model, called control points. The integers �0 and �< 

correspond to the number of parameters along each latitude and longitude, respectively. The function �=: = ³ = is the exponential spline basis (Delgado-Gonzalo et al., 2012), given by 

 �=(�) =
«¬
¬«
¬¬
§cos(�|�|)cos v�2w 2 cos(�)V1 2 cos(�)X 0 f |�| < 12v1 2 cosV�(3/2 2 |�|)Xw2V1 2 cos(�)X 12 f |�| < 32
0 32 f |�|

. (2) 

The basis �= reproduces the space generated by {1, �, e>= , e#>=}. Because latitudes are closed circles, the 

basis associated to � is �0-periodized as 

�"8
5#

,9:;
(�) =h�"8

5#'*%

(� 2 �0�). 
The expression (1) is here normalized such that the two continuous parameters run in [0,1]. 
For the ellipsoid to be properly closed, smoothness must be ensured at the poles. This translates to the 

two following conditions: 

i) Interpolation, i.e., all longitudes meet at two well-defined points, the north pole �A and the 

south pole �B: 

 �A = �[1, �]� 8
5$#%

(21) + �[0, �]� 8
5$#%

(0) + �[21, �]� 8
5$#%

(1), (3) 

 �B = �[�<, �]� 8
5$#%

(21) + �[�< 2 1, �]� 8
5$#%

(0) + �[�< 2 2, �]� 8
5$#%

(1). (4) 
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ii) Smoothness, i.e., each pole has a properly defined tangent plane characterized by two tangent 

plane vectors: 

"�"� (�, �)|<4! = �%,A	cos(2��) + �",A	sin(2��),"�"� (�, �)|<4% = �%,B	cos(2��) + �",B	sin(2��),  

with �%,A, �",A, �%,B, �",B * =* the tangent plane vectors of the north and south pole, respectively. 

From (1), the above relations translate to 

 �%,A	cos(2��) + �",A	sin(2��) =  

 �%,A(�< 2 1) h h �5##%

64!

5$

74#%

[�, �]�"8
5#

,9:;
(�0� 2 �)�2 8

5$#%
(2�), (5) 

 �%,Bcos(2��) + �",Bsin(2��) =  

 �%,B(�< 2 1) h h �5##%

64!

5$

74#%

[�, �]�"8
5#

,9:;
(�0� 2 �)�2 8

5$#%
V(�< 2 1) 2 �X.  

 

The initial set of control points parameterizing an ellipse of axes �, �, � * = and center �! * =*, with 

north-south axis aligned along �, are given by 

�A = �! + �	0	0� � , !�B = �! 2 �	0	0� � ,
�%,A = �	��	00 � , !�",A = � 0	��	0 � ,
�%,B = �	��	00 � , !�",B = � 0	��	0 � ,

 

and 

�[�, �] = �! +
¿
¿¿¿
»�)�"85#cos �2���0

�� 8
(5$#%)

sin � ��(�< 2 1)�
�)�"8

5#

sin �2���0

�� 8
(5$#%)

sin � ��(�< 2 1)�
�)� 8

(5$#%)
cos � ��(�< 2 1)� £

¿¿¿
¿

 

 

for � = 1,& ,�< 2 2 and � = 0,& ,�0 2 1, with 

�= = 2�1 2 cos v2�� w�
cos v��w 2 cos v3�� w . 

The surface (1) is thus fully determined by �0(�< 2 2) + 6 parameters: �A, �B, �%,A, �",A, �%,B, �",B, and �[�, �] for � = 1,& ,�< 2 2, � = 0,& ,�0 2 1 (see also Figure S2B). Due to the support size of the 

exponential spline basis, extra control points are added at the extremities of each open longitude to 

ensure a correct behaviour at the boundaries. The extra control points �[�, �] for � = 21,0,�< 2 1,�<, � = 0,& ,�0 2 1 are computed from the known parameters as 
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 �[21, �] = �[1, �] 2 �%,A�5#[�] + �",A�5#[�](�< 2 1)�2 8
5$#%

(1) , (6) 

 �[0, �] = �A 2 � 8
5$#%

(1)(�[21, �] + �[1, �])
� 8
5$#%

(0) , (7) 

 �[�<, �] = �[�< 2 2, �] 2 �%,B�5#[�] + �",B�5#[�](�< 2 1)�2 8
5$#%

(1) , (8) 

 �[�< 2 1, �] = �B 2 � 8
5$#%

(1)(�[�< 2 2, �] + �[�<, �])� 8
5$#%

(0) . (9) 

with 

�=[�] = �=	cos �2��� � , �=[�] = �=	sin �2��� � . 
 

The relation (6) is obtained by identifying that 

 �%,A	cos(2��) + �",A	sin(2��)  

 = �%,A h �5#
5##%

64!

[�]�"8
5#

,9:;
(�0� 2 �) + �",A h �5#

5##%

64!

[�]�"8
5#

,9:;
(�0� 2 �) (10) 

 = (�< 2 1) h h �5##%
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 = (�< 2 1) h �5##%
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(21)�"8
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,9:;
(�0� 2 �) (12) 

 = (�< 2 1) h (�[21, �] 2 �[1, �])5##%

64!

�2 8
5$#%

(1)�"8
5#

,9:;
(�0� 2 �). (13) 

First, (10) is the direct expansion of the cosine and sine in the basis �E (2). Then, (11) is obtained 

directly from (5). Finally, (12) is obtained by noticing that, because �= is supported in �2 *

"
, *
"
�, all 

terms in the sum vanish except for � = 21,0,1. The symmetry properties of the basis impose that �2=(0) = 0 and �2=(21) = 2�2=(1), yielding (13). One obtains (8) in a similar way. The relations (7) 

and (8) are obtained directly from (3) and (4), respectively. Note that �[0, �] b �A and �[�<, �] b �B 

due to the non-interpolatory behaviour of �=. 

For visualization purpose, the continuously-defined spline surface can be discretized as 

�v -

(5$#%)F$G%
, +

5#F#
w for � = 0,& , (�< 2 1)�< and � = 0,& ,�0�0 2 1, with �0 , �< * 57 some user-defined 

sampling rates (i.e., amount of samples in each interval between successive control points) along � and �, respectively. In this study, we chose �< = 5,  �0 = 5, �< = 5 and �0 = 5 to optimise smoothing, 

geometrical accuracy and computation time. 
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Axes identification: 

When parametrizing a cell, the identification of the north-south axis is an important design choice. 

We identified the following strategies: 

i) Canonical =* basis: The north-south axis is aligned with � and control points are placed along 

rays �[�] = cos v"86
5#
w� + sin v"86

5#
w � in the �, � plane, 

ii) Custom axis: We determine a rotation matrix � and a centre (e.g., obtained from the 

alignment of two embryos) onto which the model can be registered. The north-south axis is 

aligned with �I = �� and control points are placed along rays �[�] = cos v"86
5#
w �I + sin v"86

5#
w�I 

in the �, � plane, with �I = �� and �I = ��. 

Data sampling, ray tracing 

Considering the surface model (1) and well-defined parametrization axes, interpolation points are 

identified by ray tracing in order to reconstruct the spline surface from voxel data. 

Ray tracing is implemented relying on the 3D Digital Differential Analyzer (DDA) algorithm 

(Amanatides and Woo, 1987). A ray between two floating-point valued positions �! and �% is defined 

for � g 0 as �! + ��, with � = �% 2 �!. The algorithm is initialized by defining, for each image 

dimension �, the two quantities �J,KLM = 7%

N%
 and �J = OPQR(N%)

N%
. The DDA then proceeds as described by 

the following algorithm: 

Result: Matrix � of grid intersection points � = +�!, � empty matrix 

while � < +�%, do 

 �S+' = argmin �J,SET 

 �J&'(
= �J4J&'(

+ 1 

 for � b �S+' do 

  �J = �!,J + �J,SET�J 

 end 

 insert � as new row of � 

 �J&'(
= �J&'(

+ sign(�J&'(
) 

 �J&'(,SET = �J&'(,SET + �J&'(
 

end 

 

Each step of the algorithm requires � floating point comparisons (where � is the image dimension) 

and 2 floating point addition, making it reasonably fast. 

In our case, data contain instance segmented volumes and ray tracing is thus carried out to identify 

sample points on the object surface. In this context, rays are traced in latitude planes, starting from 

the north-south axis and expanding until the image boundaries. Tracing stops at the first zero-labelled 

voxel. 
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Data sampling, interpolation 

Given a set of data points �[�, �] = �� -

(5$#%)F$G%,
'

)#*#

� on the surface, the corresponding �[�, �] can be 

estimated by solving the linear system �� = �, 
where 

• � is a �0(�< + 2) × 1 control points matrix with entries [�]6G5#(7G%) = �[�, �], 
• � is a (�0�0)V(�< 2 1)�< + 1X ×�0(�< + 2) basis functions matrix with entries 

[�]+G-(5#F#),6G5#(7G%) = �"+

)#
,9:;

v +

F#
2 �w� +

)$,!

v -(5$#%)

(5$#%)F$G%
2 �w, 

• � is a (�0�0)V(�< 2 1)�< + 1X × 1 data point matrix with entries [�]+G-(5#F#) = �[�, �]. 
The system is solved for � by finding the least-square best solution that minimizes the squared �" 

norm ' � 2�� '"". The poles are estimated from �[�, �], � = 21,& ,�<,� = 0,& ,�0 2 1, relying on (7) 

and (9) as 

�A = 1�0

h � 8
5$#%

5##%

64!

(0)�[0, �] + � 8
5$#%

(1)(�[21, �] + �[1, �]),
�B = 1�0

h � 8
5$#%

5##%

64!

(0)�[�< 2 1, �] + � 8
5$#%

(1)(�[�< 2 2, �] + �[�<, �]).
 

The tangent planes are retrieved from (6) and (8). For the north tangent plane, 

§�%,A	�5#[�] + �",A	�5#[�] = �(�[21, �] 2 �[1, �])�%,A	�5#[� + 1] + �",A	�5#[� + 1] = �(�[21, � + 1] 2 �[1, � + 1]), 
leading to 

�%,A = ��0

h �5#[� + 1](�[21, �] 2 �[1, �]) 2 �5#[�](�[21, � + 1] 2 �[1, � + 1])�5#[�]�5#[� + 1] 2 �5#[�]�5#[� + 1]
5##%

64!

,
�",A = ��0

h �5#[� + 1](�[21, �] 2 �[1, �]) 2 �5#[�](�[21, � + 1] 2 �[1, � + 1])�5#[� + 1]�5#[�] 2 �5#[�]�5#[� + 1]
5##%

64!

, 
with � = (�< 2 1)�2 8

5$#%
(1). 

A similar development follows for the south tangent plane. 

Time normalisation at the 8-cell stage 

Time progression through the 8-cell stage was normalised between 0 (first timepoint with 8 cells) and 

1 (last timepoint with 8 cells).  

Pair-wise distance and 2D projection 

To compute the geometrical distance between two sets of 3D image, we first generated the 

corresponding segmentation SA and SB. Second, we used our nearest neighbour algorithm to 

determine the best transformation matrix (M) and the best list of cell assignment between SA and SB. 

Then we computed the spline parameters for SA with a North/South axis aligned with the Z-axis of the 
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image, and the spline parameters for SB with a North/South axis V such that the MV aligned with the 

Z-axis of the image. Finally, for each pair of assigned cells between SA and SB, we computed the 

squared Euclidean distance (d) between spline parameters with the same latitude/longitude. The final 

geometrical distance was defined as the sum of all the distances d, divided by 10,000 for visual clarity. 

The projection was done using the implementation of the tSNE algorithm found in scikit-learn 

(Pedregosa et al., 2011). The morphomap pipeline was implemented in the Python package 

morphomap (see section Code availability). 

Measurement of the �-parameter 

To determine the �-parameter, we used the segmentation data. We developed the Python package 

interfaces (see section Code availability) to determine the angle between two cells, and the 

corresponding value of �. First, we identified all the voxels on the surface of the embryo (VS, non-zero 

voxels with 6-connected neighbours of exactly 2 voxel types, itself and zero), all the voxels on the 

external line interface between two cells (VL, non-zero voxels with 6-connected neighbours of exactly 3 

different voxel types, itself, zero and a third arbitrary value) and all the voxels belonging to the 

external interface between three cells or more (VP, non-zero voxels with 6-connected neighbours of at 

least 4 different voxels types, itself, zero and other arbitrary values). We defined two parameters: the 

exclusion radius RE and the inclusion radius RI. 

For each points P of VL, between cell A and B, that is further than RE away from any points in VP, we 

listed all the points PA and PB of VS that are within a RI distance from P and belongs to cell A and B 

respectively. We fitted two plans such that P belongs to them and the Euclidean distance to PA and PB 

is minimised. Finally, we computed the angle between the two plans and determined the �-parameter 

using the Young-Dupré equation as previously described (Maître et al., 2015). RE (30 voxels) and RI 

(15 voxels) values were optimised to accurately described theoretical data with known �-parameter. 

Estimation of contacts and surface areas 

To estimate the surface area, we used our Python package interfaces (see section Code availability) 

and we triangulated the voxels belonging to the surface of interest using a marching cube algorithm 

(Lewiner et al., 2003) and the surface area measurement implemented in scikit-image (van der Walt 

et al., 2014). Using the segmentation data, the interface between two cells was defined as the list of 

non-zero voxels with 6-connected neighbours of exactly 2 voxel types. Note that the interface between 

a cell and the background is included (one voxel type being zero). The triangulation was performed on 

the whole cells, but only the triangles less than 2 voxels away from the interface were used in the 

estimation of the surface area. The interface surface areas were linearly corrected to ensure that the 

sum of all the interface surface areas equals the estimated surface of the whole cell. 

Identification of the closest rigid packing 

Preliminaries 

i) We refer to the 13 rigid packings possible with 8 hard spheres described in Arkus et al., 

2009 as the set of the 13 ideal packings, 

ii) Data of cell contacts is provided as a matrix where the two indices of each position 

represent the labelling of the two cells in potential contact, 
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iii) The entries of the matrix display the proportion of the surface area of the first cell 

involved in the contact with the second cell. 

Rigidity condition 

Prior to any computation, we perform a first check whether the topological structure under study is 

rigid or floppy. In rigid structures, no independent movements of the elements are allowed unless we 

perform some work over the system (Jacobs, 1998) (see also Figure S3A). For three dimensions, the 

condition of rigidity for a system with � elements and � constraints (in our case, links) states that: 

a) � g 3� 2 6 which, in the case of � = 8 implies that � g 18 that is, that the network of cell 

cell-contacts has at least 18 links, 

b) No node of the network has less than three links. That means that no cell of the packing is 

in contact to less than 3 other cells. 

Distance between two arbitrary packings 

To evaluate the distance between two packings we must consider the adjacency matrix of the network 

describing the topological structure of the packing. Given a packing made of � cells (�%, ï , �3), the 

values of the adjacency matrix � of the packing are defined such that �+- = 1 if cell �+ and �- are in 

contact and �+- = 0 otherwise. Given that there are 8! = 40320 different ways to label the cells leading 

to the same topological structure, the direct comparison of adjacency matrices is not affordable. 

Furthermore, one must consider that soft spheres may define contacts in places where hard spheres 

cannot, making the space of possible equivalent configurations even bigger. Therefore, it is much 

more suitable to work with the ordered spectrum of eigenvalues, which is invariant under permutation 

of the adjacency matrices. Since, by construction, the adjacency matrix is symmetric and made of non-

negative real entries, the eigenvalue spectrum is all made of  real numbers. Thanks to this last 

property, one can easily compute the distance between two packings: The vector representing the 

eigenvalue spectrum of the adjacency matrix � is defined as �V = (�%, ï , �3) where �% > �" > ï > �3. 

Consider that these two packings can be represented by adjacency matrices � and �I, respectively. The 

distance between these two packings is obtained by considering the Euclidean distance between the 

vectors representing the (ordered) eigenvalue spectrum of each: 

d(uV, uV-) = ®3 (»+ 2 �+I)"3
P4%      , 

where �V = (�%, ï , �3) and �V- = (�%I , ï , �3I ). 
Finding the closest ideal packing to the real embryo packing 

To identify the closest ideal packing to the topological structure of the embryo under study, we 

proceed as follows: 

i) Check if the number of contacts of the embryo is 18 –recall that we already filtered the 

non-rigid packings, 

ii) If the number of contacts is larger than 18, remove those with the lowest contact area 

until we reach the exact number of 18 contacts, 

iii) Binarize the matrix of contacts such that all contacts are set to 1, 
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iv) Compute the distance to all 13 ideal rigid packings as described above. 

Pick the ideal packing displaying the closest distance 

Enumeration of topological transitions 

A topological transition was defined as two consecutive timepoints with different identified closest 

minimally rigid packing. Temporary transitions lasting one timepoint were ignored from the analysis 

unless the identified topologies right before and right after were different. For example, the sequence 

AABABB (3 transitions, with A and B two arbitrary topologies) was transformed to AAAABB (one 

transition), while the sequence AABCC (2 transitions, with C a third arbitrary topology) was not 

modified. 

Measurement of the packing parameter 

We first determine the centroid ci of the outer cells i. We then used the average coordinates of outer 

cells’ centroid to obtain the centroid of the embryo e. For every outer cell, we computed the Euclidean 

distance di from ci to e. The packing parameter was defined as the invert of the standard deviation of 

{d1, d2, …, di} (see Figure S6a for a graphical representation of the packing parameter). 

Inner/outer cell classification 

Cells at the 8-cell stage were all considered outer. For the 16-cell stage, we computed the contact-free 

area (i.e., the surface area of the cell that is not in contact with another cell) and binned the cells in 10 

groups from 0% (completely inside) to approximately 60% (most of the cell surface exposed to the 

outside environment). The resulting count histogram exhibited a bi-modal distribution. We fitted the 

histogram values with the sum of two weighted Gaussian distributions.	The	cut-off	between	inner	and	outer	cells	was	defined	as	the	value	of	contact-free	surface	area	at	which	the	two	gaussians	intersect. 
Count of ectopic Sox2+ and Cdx2+ cells 

For the early blastocyst stage, fate-based cell type was determined as Sox2+ (Cdx2+ respectively) if the 

immunostaining signal intensity for Sox2 (Cdx2) was higher than the one for Cdx2 (Sox2). Sox2+ and 

Cdx2+ cells were labelled as inner and outer respectively, based on fate markers. 

Additionally, we computed the �-shape of the cell centres (Edelsbrunner and Mücke, 1994) using the 

R package alphashape3d (Lafarge and Pateiro-Lopez, 2020) and labelled the cells as outer and inner 

if they belongs to the surface determined by the �-shape or not respectively. Ectopic cells are, by 

definition, cells with label discrepancies between fate markers and their positions in the embryo. 

Embryos with no identified inner or outer cells based on marker signal intensity and/or cell 

coordinates were excluded from the analysis. 

Dataset usage 

Use of live imaging datasets in figures is described in Table S2. 

Code availability 

Code used to produce the figure panels and the analyses in this study is available on the following 

public repository: https://gitlab.com/fabreges/fabreges-2023/ 
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Statistical Analysis 

All statistical analyses were performed using RStudio 2022.12.0+353 (Posit team, 2022) with R 4.2.2 

(R Core Team, 2022), with the base library and the following libraries: alphashape3d (Lafarge and 

Pateiro-Lopez, 2020), ggplot2 (Wickham, 2016), ggrepel (Slowikowski et al., 2022) and namespace 

(Chang et al., 2012). No statistical analysis was used to predetermine sample size. No sample was 

excluded. No randomization method was used. The investigators were not blinded during 

experiments. Sample sizes, statistical tests and p-values are indicated in the text, figures and figure 

legends. n-values indicate number of embryos analysed for different experimental conditions unless 

mentioned otherwise. Error bars indicate mean ± s.d. unless mentioned otherwise.  
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