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Abstract

The biosphere genomics era is transforming life science research, but existing methods
struggle to efficiently reduce the vast dimensionality of the protein universe. We present
DIAMOND DeepClust, an ultra-fast cascaded clustering method optimized to cluster the 19
billion protein sequences currently defining the protein biosphere. As a result, we detect
1.7 billion clusters of which 32% hold more than one sequence. This means that 544 million
clusters represent 94% of all known proteins, illustrating that clustering across the tree of

life can significantly accelerate comparative studies in the Earth BioGenome era.

Main

As the global biosphere is increasingly sequenced and annotated’?345, an unprecedented quality
of evolutionary insights can now be harnessed to transform the life sciences, where discovery is
often driven by the dimensionality reduction of massive experimental data into distinct categories
(clusters) that capture common features for inference and predictive tasks. In practice, one such
application is the grouping of proteins into related sequence classes that enabled recently
celebrated breakthroughs such as protein structure prediction®’, comparative biosphere
genomics®®, and classification within metagenomic samples'®''2, These studies are early

adopters of leveraging evolutionary information at scale for groundbreaking molecular and
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functional applications and provide first examples of organizing the entire protein universe for

downstream predictive tasks.

Recently, we introduced DIAMOND v2 to meet the user demands for scaling protein search to
the tree of life,. With DIAMOND v2, we pledged to support the ongoing efforts of the Earth
BioGenome project which aims to capture and assemble the genomes of more than 1.8 million
eukaryotic species within this decade®. In this community quest to compare query sequences
against the entire tree of life when millions of species are available, we identified the ability to
cluster this vast protein sequence diversity space as a key factor currently limiting the association

of sequences across large sets of divergent species.

Here, we perform a comprehensive experimental study to demonstrate that deep-clustering the
protein universe of the assembled biosphere which currently consists of ~19 billion sequences is
already possible today. In the Earth BioGenome era, the ability to reduce the sequence space
can significantly accelerate protein comparisons when dealing with millions of species and tens
of billions of sequences. For this purpose, we estimated that the Earth BioGenome consortium
will generate ~27 billion protein sequences when averaging ~15,000 genes per species times
~1.8 million successfully assembled species. Current protein clustering approaches implemented
in the standard tools CD-HIT'3, UClust™, and Linclust' are limited when aiming to cluster billions
of proteins with such broad sequence diversity in reasonable time and with sufficient clustering
sensitivity at lower identity-boundaries. To overcome this limitation and provide a future-proof
software solution, we implemented DIAMOND DeepClust, a cascaded clustering method
leveraging sensitive protein alignments generated with DIAMOND v228 for incremental clustering
and near-complete discovery of distant clusterable homologs at tree-of-life scale (Fig.
1)(Supplementary fig. 1-7). Using DIAMOND DeepClust, we reach this clustering milestone to

sensitively cluster 19 billion sequences in 18 days on 27 high performance computing (HPC)
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nodes (using 250,000 CPU hours in total). This achievement to simultaneously balance speed
and sensitivity rather than having to choose between them allows us to substitute Linclust, UClust,
and CD-HIT and meet the user demands of the Earth BioGenome project, where clustering
sensitivity across large evolutionary distances is paramount. We further optimized our clustering
procedure to be memory efficient for laptop users, but also scale linearly in a High Performance
Computing (HPC) and Computing Cloud infrastructure to enable sensitive deep-clustering for a
vast portfolio of applications (Methods). Finally, we designed an incremental procedure that allows
users to add new sequences to a large collection of existing clusters so that the sequencing and
assembly community can swiftly add incoming sequences to our biosphere cluster database

without the need to re-cluster the entire dataset (Methods).

As a result of clustering ~19 billion sequences with 30% sequence identity and 90% coverage
thresholds across the tree of life, we determined ~1.70 billion clusters with 32% of clusters yielding
more than one element and 68% denoting singletons (only one unique sequence within each
singleton cluster). While this majority of singletons suggests the presence of a large pool of
putatively novel proteins (orphan polypeptides) within the protein universe (Experimental
Study)(Supplementary fig. 11), these ~1.16 billion unique sequences comprise only ~6% of the
full set of 19 billion sequences. The fact that 544 million clusters can capture ~94% of all known
proteins illustrates the potential of deep-clustering the protein universe to accelerate protein

search across the tree of life.

To put these ~19 billion sequences of our experimental study into perspective in regard to order
of magnitude, we projected that clustering the ~27 billion eukaryotic protein sequences of the ~1.8
million Earth BioGenome species with DIAMOND DeepClust would yield ~2.82 billion clusters
and would be feasible today on existing HPC systems (Methods). When assuming similar

proportions between singletons (6% of 27 billion sequences) and non-singletons (94% of 27 billion
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sequences) in this eukaryotic dataset (Supplementary fig. 8-9), we anticipate that the Earth
BioGenome project will discover ~1.6 billion unique (singleton) clusters which can be investigated
for their putative molecular function. The overall findings of our experimental study suggest that
the protein diversity presently available across all major lineages of life can be reduced by a factor
of 10 using sensitive deep-clustering and can further be compressed by a factor of 35 when
disregarding singletons, or even by a factor of 60 when removing clusters of size below three. This
means that 92% of the protein universe (17.8 billion sequences) can be compressed into 335 million
representative sequences for downstream analyses (Supplementary fig. 10). These compression
levels can additionally be improved when employing more liberal clustering criteria such as 70%
coverage and no identity threshold (compared to our conservative 90% coverage and 30% identity
setting). A ProtT5'-guided analysis of the protein sequence space mapped by our clustering
suggests that it is largely composed of sequences that are mostly uncharacterized by curation

efforts such as CATH'"” or Pfam™@ (Fig. 2).

Notably, the empowerment enabled by capturing protein diversity across major kingdoms of life,
for example, was also demonstrated by recent breakthroughs in protein structure prediction. The
predictive power of AlphaFold2 was largely derived from the use of the Big Fantastic Database®,
a public collection of diverse protein sequences containing 345 million clusters and 61 million
clusters with at least three members. While currently holding the status of the largest collection of
clustered protein sequences, the result of our experimental study yielding 335 million clusters with
at least three members represents a 5.5-fold increase in sequence diversity compared to the Big
Fantastic Database which can now be directly incorporated into protein structure prediction
research. We therefore provide our 1.7 billion clusters dataset as a free and publicly accessible

resource (Data availability).
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Algorithmically, DIAMOND DeepClust is based on a cascaded clustering strategy engineered to
gradually reduce the complexity of large datasets and to maximally exploit evolutionary conserved
information (Methods). Previous methodologies to cluster protein sequences such as CD-HIT"
and UCIlust™ are more than ten years old, were not designed to scale to millions of species, and
perform poorly when attempting to cluster large datasets deeper than 90% sequence identity.
Although MMseqgs2/Linclust'® presented a considerable advancement over CD-HIT and UClust,
it still suffers from comparatively low performance when clustering at high alignment sensitivity,
thereby introducing an analytics bottleneck when attempting to scale to >27 billion estimated Earth

BioGenome sequences covering the full breadth of biospheric protein space.
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Fig. 1 | Benchmark of the clustering performance of DIAMOND DeepClust, MMseqs2 and CD-HIT
using various sensitivity modes and identity thresholds. Computational benchmarks are shown for
clustering the NCBI non-redundant (NR) database currently storing ~446 million protein sequences using
different clustering criteria. a, Clustering run times for clustering the NR database on a 64-core server are
shown in hours b, The resulting cluster counts of compressing the NCBI NR database according to the
respective clustering criteria.

To formally benchmark DIAMOND DeepClust against CD-HIT and MMseqs2/Linclust, we
clustered the NCBI non-redundant (NR) database containing ~446M sequences at sequence
identity thresholds of 90%, 50% and 20% (Fig. 1). DIAMOND DeepClust solved this problem for
deep clustering in 3.6h (sensitive mode) and 7.7h (very-sensitive mode) on a single server

equipped with 64 cores compared to 1.7 days and 4 days using MMseqs2, running 11-fold and
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13-fold faster respectively. In addition, DIAMOND DeepClust exhibited higher clustering quality
as measured by the sensitivity of clusterable homologs found, the completeness of representation
by the representative sequences, and the optimality of cluster assignment (Supplementary fig. 2-
7). In particular, in the most sensitive run MMseqs2 still did not discover clusterable homologs for
9.8% of the representatives compared to 2.5% for DIAMOND ultra-sensitive (Supplementary fig.
2). Further, for MMseqgs2 and DIAMOND, 4.2% of the sequences were not within clustering
distance to any representative (Supplementary fig. 3), constituting information that is potentially
lost during clustering, while the MMseqs2 workflow to correct such errors increased the runtime
to >2 weeks compared to 9.8h using DIAMOND DeepClust (runs labeled as distance error
correction), simultaneously degrading the quality and inflating the size of the clustering (cluster
count). Lastly, MMseqgs2 misassigned 31% of sequences (vs 23% for DIAMOND) to a
representative that is not the closest to the sequence (Supplementary fig. 7), while the
computation to correct such errors ran for 2.4 months compared to 16 days using DIAMOND
DeepClust (runs labeled as assignment error correction). DIAMOND DeepClust ran 82-fold faster
than CD-HIT, 3-fold to 8-fold faster than Linclust for clustering at 90% identity and 2-fold faster for

clustering at 50% identity.
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Fig. 2 | Projection of the protein universe clustered by DIAMOND DeepClust onto its protein
language embedding space. UMAP projection of cluster representatives from clusters of size =5 after
transformation into the ProtT5'® embedding space. Each dot corresponds to a representative-sequence-
embedding labeled by whether the sequence can be annotated with knowledge derived from
SCOP'"*+ECOD2+CATH"” or Pfam'8, or when no annotation was found whether the respective
representative sequence has a homolog in UniProt, or a homolog in the BFD8+MGnify?' databases. The
result illustrates that the protein sequence space is dominated by unexplored protein sequences not
sufficiently characterized by standard databases.

In conclusion, we designed DIAMOND DeepClust to further optimize the computational steps
towards protein alignments against millions of species through dimensionality reduction
(clustering) and inspire a new type of research that embraces the biodiversity of life for molecular

research and subsequent prediction efforts.
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Methods

Algorithmic overview of DIAMOND DeepClust

Representative-based clustering

Following an analogous strategy as the gold standard approaches implemented in CD-HIT?2 and
UCLUST", we define a clustering of an input dataset of protein sequences as a subset of
representative sequences such that any input sequence lies within a user-defined distance
threshold of at least one representative sequence. As a result, each input sequence will be
assigned to one particular representative sequence. This threshold setting (identity, coverage,
and e-value) is also referred to as the clustering criterion. For the purpose of this study, in addition
to a basic e-value threshold of 0.00001 with respect to the size of the input database, we require
that a pairwise local alignment between sequences satisfy a specific minimum sequence identity
and length coverage of the co-clustered (non-representative) sequences. Analogous to
MMsegs2, we compute the approximate sequence identity instead of the BLAST-like identity
defined as the fraction of match columns in the pairwise alignment, as this allows us to save time
for backtracing of alignments (Supplementary Information). The approximate identity is derived
from the alignment score and the lengths of the aligned ranges in the sequences as a linear
regression and can be considered a better measure of evolutionary distance than the actual
sequence identity?®. Starting from a set of alignments that meet the user-specified or default
clustering criterion, we compute a set of representative sequences by first encoding the
alignments as a directed graph G where nodes represent individual protein sequences and edges
denote pairwise local alignments between them, whereby a directed edge from sequence A to
sequence B indicates that A can represent B according to the clustering criterion. In a second
step, we apply the greedy vertex cover algorithm on the alignment-graph G to determine a near-
minimal covering set of graph vertices. The algorithm repeatedly selects the vertex with the
highest node outdegree and removes it from the graph along with its out-neighbors to form a new
cluster until the graph is completely clustered. In the final round of cascaded clustering, we also
permit recursive merges of clusters to prevent clusterable pairs to remain in the final clustering.
We also implemented simple length-sorted clustering but observed better clustering quality for
the greedy vertex cover approach (data not shown).

Cascaded clustering

As exhaustive all-vs-all alignment of protein datasets consisting of hundreds of millions of
sequences is prohibitively expensive, we approach this issue by adopting cascaded clustering?*
to gradually construct larger sequence clusters in several rounds of comparison with increasing
alignment sensitivity (iterating between modes: --fast, default, --sensitive, --very-sensitive, --ultra-
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sensitive). In the first round, we subsample the seed space using minimizers? with a window size
of 12 which we empirically found to provide a good balance between speed and sensitivity, and
attempt to achieve linear computational scaling of comparisons by considering only seed hits
against the longest sequence for identical seeds rather than trialing all possible combinations™®.
This heuristic is sufficient to find meaningful representatives as the seeds at this stage are
selected to be highly specific and the longest sequence is a priori the most likely to maximize
recruitment of member sequences due to the unidirectional length coverage criterion. We
compute representative sequences from the resulting alignments by greedy vertex cover?*, which
are then passed on to the next round of cascaded clustering and subjected to an all-vs-all
DIAMOND v2 blastp search at increased sensitivity. Depending on the desired clustering depth,
two to six of these alignment rounds are chained until reaching sufficient sensitivity such that most
representatives within clustering distance have been discovered. We optimized self-alignment of
the representative databases by taking advantage of the symmetry of queries and targets in the
seeding stage, avoiding the evaluation of redundant seed hits, and thus doubling the performance
of this computation. This is accordingly taken into account when the database is processed in
blocks by eliminating redundant block combinations.

Distance error correction

Distance errors in the clustering are introduced by sequences that do not fall within the clustering
distance of their assigned representative and arise due to the recursive merging of clusters in the
cascaded clustering workflow based on alignments of only the representative sequences. These
errors do not necessarily present an error in the biological sense, since biological properties of
the sequences such as ancestry, structure and function can be conserved despite the fact that
the local alignment does not satisfy a certain threshold requirement. Nevertheless, we
implemented an additional workflow to optionally correct such errors. We first align all sequences
against their assigned representatives to find the sequences failing the clustering criterion.

After the identification of all putatively mis-clustered sequences, we re-align the set of these
sequences against the database of all representative sequences using DIAMOND V2 in iterated
blastp search mode with increasing sensitivity. If an alignment against a representative sequence
is detected, the sequence is reassigned to the cluster of that representative. If multiple
representatives satisfy the clustering criterion, the e-value of the local alignment determines the
assignment. We collect all sequences that fail to align against any representative, remove them
from the clustering and re-cluster this dataset with the cascaded clustering workflow. The resulting
sub-clustering is again subjected to the distance error correction workflow, an iterative procedure
that continues until convergence to a clustering with no distance errors.

Assignment error correction

For any given clustering a sequence may lie in clustering distance of multiple representative
sequences. Cascaded clustering or incremental clustering as performed by tools like CD-HIT or
UClust hold no guarantee of assigning a sequence to the cluster of the closest representative,
measured by a metric such as the e-value of the local alignment. Although this property of
assignment error has no impact when users wish to work only with the set of representative
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sequences in the context of dimensionality reduction, it becomes a relevant drawback when
attempting to use all cluster members for downstream analyses such as multiple sequence
alignments or gene family characterization. To this end, we have implemented a reassignment
workflow that will search all non-representative sequences against the representative database
and assign each sequence to the closest representative as measured by the e-value (if the e-
value is O for different representatives the bitscore determines the representative assignment),
while maintaining the clustering criterion.

Many-core parallelization of clustering tasks

Analogous to our computational scaling efforts introduced in DIAMOND v2, we elevated our
clustering capabilities to run massively parallel on High-Performance-Computing (HPC) and
Cloud Computing infrastructures. To accommodate servers with 128 or more compute cores, we
have refactored our multi-threading code to fix existing load imbalances during the alignment
workflow and allow the software to scale smoothly to 256 threads or more. Optimal scaling of the
seed extension stage in DIAMOND v2 is impeded by query proteins that attract a disproportionate
number of target hits or incur an unusual cost of Smith Waterman extensions based on the length
of their respective sequence, due to the use of static load balancing that is only able to distribute
different query sequences among threads. We addressed this issue in DIAMOND DeepClust by
implementing a fine granular task-based parallelism in which individual threads that are
processing expensive queries can make use of a work-stealing task scheduler to redistribute
extension tasks among the thread pool.

Gapped alignment computation

We produced a novel vectorized Smith Waterman implementation based on a modified SWIPE?®
approach that was originally developed for the first DIAMOND version?’, but dropped out of its
code base soon after the initial release. While SWIPE vectorized the Smith Waterman algorithm
by computing alignments of the same query against multiple targets, we generalize this approach
to computing alignments of multiple independent query/target pairs. This is accomplished by using
score profiles for the queries that store alignment scores along the sequence for each of the amino
acid residues. For computing one column of the DP matrix, we maintain pointers into these profiles
for each SWIPE channel and apply an AVX2-optimized matrix transposition to interleave the
query/target scores for each DP cell into the same register, then compute the cell updates
according to the standard SWIPE logic. Contrary to the original SWIPE design, this approach
permits the computation of banded and anchored alignments, which in turn also enable
optimizations such as the cheap determination of alignment start and end coordinates as well as
X-drop termination. Compared to our implementation of the original SWIPE algorithm, we have
measured ~20% computational overhead for this approach on the Intel Ice Lake architecture.

Ungapped alignment heuristics

When clustering highly similar sequences at >90% identity, most ungapped segment pairs that
make up their alignments can already be found during the seeding stage. We exploit this by
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clustering sequences without full Smith Waterman extension if one of the ungapped alignments
emerging from the seed hits already satisfies the clustering criterion. Conversely, we exclude a
target from gapped extension if the sum of identities or sequence coverage of these ungapped
segment pairs fails a relaxed clustering criterion based on empirically derived thresholds. The first
heuristic for accepting alignments without full extension was also used for the clustering runs at
50% sequence identity. Together, this ungapped alignment strategy allows to reduce the
computational burden when dealing with highly similar sequences without the loss of clustering
sensitivity.

Memory optimization

Next to speed, sensitivity and user-friendliness, feedback from DIAMOND users identified
memory efficiency of the search procedure as one the main advantages compared to alternative
aligners. This memory optimization feature of DIAMOND allows users to perform large scale
searches on their laptops and scale their parallelization efforts seamlessly into an HPC or cloud
infrastructure through its distributed memory and parallelization library. Our aim for DIAMOND
DeepClust was therefore to continue this memory efficiency streak by designing a memory
efficient cascaded clustering to unlock the clustering of large input datasets on a laptop or
massively parallel virtual machines when aiming to scale distributed computing in the cloud. In
detail, the double indexing approach with runtime-generated and partitioned indexes allows the
aligner to operate memory-efficiently without the need to store large index data structures on disk
or maintain them in memory. For clustering large datasets with limited memory, DIAMOND wiill
automatically use an incremental procedure on a length-sorted and partitioned database as
described under Experimental Study/Clustering, which effectively limits both the use of temporary
storage space and main memory to a user-defined maximum (command line option -M). For
clustering on HPC systems, the design of the cascaded clustering algorithm as chained rounds
of all-vs-all alignments at increasing sensitivity also allows decomposition of this computation into
arbitrarily many work packages that can be processed independently on a distributed
infrastructure. This process can be automated using the multiprocessing feature introduced in
DIAMOND v28,
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Cluster extension

Sensitively clustering billions of sequences across the tree of life is a computationally heavy task.
However, this procedure has to be performed only once and the resulting cluster database can
be made publicly available (Data availability). To accommodate the future growth of sequenced
species within this decade, we designed a cluster extension workflow to allow users to add new
query sequences to existing clusters to extend the initial cluster database without the need of re-
clustering all sequences together. In particular, new sequences can be searched against the
existing representative set using DIAMOND in iterative search mode (option --iterate). This mode
identifies all sequences that can be assigned to an existing cluster. The remaining unaligned
sequences can then be clustered independently, and the resulting representatives can be added
to the existing clustering.

Benchmarks
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Supplementary fig. 1 | Benchmark of the clustering performance of DIAMOND DeepClust, MMseqs2
and CD-HIT using a broader variety of max-seqs parameters. To cover a broader range of parameter
settings, we benchmarked various alternative settings of the MMseqs2 max-seqs parameter against
DIAMOND DeepClust and CD-HIT. a, Run times for clustering the NCBI NR database on a 64-core server
are shown in hours b, An illustration of the cluster counts resulting from clustering the NCBI NR database
with the respective clustering criteria.

Design

Our clustering benchmark is based on the NCBI NR database downloaded in November 2022,
containing 513,991,389 sequences and 200,929,118,620 total residues. We hard-masked this
database using tantan?® with default settings and removed all sequences that were masked over
>10% of their range, resulting in a reduced database of 445,610,930 sequences. This choice is
motivated by the fact that stringent filtering of false positives is important for deep clustering, which
is normally handled by DIAMOND and MMseqs2 by applying soft-masking and composition-
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based score correction. For the purpose of our benchmark, we did not want to rely on the tools’
internal masking and score correction procedures however, as this would impair the comparability
of results. We therefore disabled these features for our benchmarking runs and instead relied on
the precomputed hard masking. Removing sequences that are masked over a substantial part of
their range is necessary for this design since otherwise they would remain as unclusterable
singletons throughout the computation due to the coverage criterion, needlessly inflating the
runtime. For each of the benchmarked tools, we report the wall clock time for clustering this
database and the resulting number of clusters. We conducted separate runs with a clustering
criterion of 90% and 50% sequence identity, as well as no restriction of the sequence identity,
while setting a coverage cutoff of 80% of the co-clustered sequence for all runs. The deep
clustering runs without restriction of the sequence identity were executed three times using the -
-sensitive, --very-sensitive and --ultra-sensitive modes of DIAMOND, as well as the -s6.0 and -
s7.5 sensitivity settings of MMseqs2, which we chose to roughly correspond to the first two
DIAMOND modes?®. The --max-seqgs parameter of MMsegs2 needs to be manually set by the user,
so we decided to try a set of possible values whereby further increases were limited by the amount
of disk space available on the benchmark system (Supplementary fig. 1). We selected the run
that was most comparable to the corresponding DIAMOND run based on the sensitivity error
metric (Supplementary fig. 2) for creating (Fig. 1). We limited the evaluation of CD-HIT to
clustering at 90% identity since deeper clusterings at lower sequence identity levels cannot be
computed with this tool in practical time. For DIAMOND and MMseqgs2, we conducted additional
runs labeled as distance error correction, designed to correct errors where sequences do not
satisfy the clustering criterion against their assigned representative. These runs correspond to the
recluster workflow in DIAMOND and the --cluster-reassign option of MMseqs2. For DIAMOND
and MMseqs2, we conducted additional runs labeled as assignment error correction, designed to
reassign each non-representative sequence to the cluster of the closest representative (as
measured by the e-value of the local alignment) that satisfies the clustering criterion. The actual
computations were distributed on a compute cluster and the runtimes converted to the equivalent
of a single 64-core server. The benchmarks for clustering at 90% identity were run based on an
older version of the NR database downloaded in September 2021 containing 425,032,034 protein
sequences and 155,806,124,097 total residues. The database was not hardmasked and no
sequences were excluded.

Environment

All runs were conducted on a pair of 64-core dedicated virtual cloud nodes with 1 TB RAM and a
2 TB SSD on the HPC Cloud at the Max Planck Computing and Data Facility in Garching. The
hypervisors used were dual Intel IceLake-based (Xeon Platinum 8360Y @ 2.4 GHz) compute
nodes with a total of 72 cores, 2 TB of RAM and 10 TB SSD storage in RAID 6 configuration. The
HPC Cloud is based on OpenStack and CEPH and offers standard cloud computing “building
blocks”, including virtual machines based on common Linux operating systems, software-defined
networks, routers, firewalls, and load balancers, as well as integrated block and S3-compatible
object storage services. Analogous infrastructures are currently employed by centralized
commercial cloud computing providers such as Google Cloud, Amazon Web Services, and
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Microsoft Azure, thereby allowing native adoption of DIAMOND DeepClust on these systems as
well.
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Supplementary fig. 2 | Benchmark of the sensitivity errors with DIAMOND DeepClust and MMseqs2
using various clustering criteria. Shown is the fraction of cluster representative sequences that satisfy
the clustering criterion against another representative. Error rates below 0.05 indicate that most
representatives are unique in the clustered set and do not correspond to other representatives.
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Supplementary fig. 3 | Benchmark of distance errors when clustering with DIAMOND DeepClust and
MMsegs2 using various clustering criteria. Shown is the fraction of cluster member sequences that do
not satisfy the clustering criterion against any representative sequence.
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Supplementary fig. 4 | Benchmark of distance errors (relaxed) when clustering with DIAMOND
DeepClust and MMseqs2 using various clustering criteria. Shown is the fraction of cluster member
sequences that do not satisfy a relaxed clustering criterion against any representative sequence, defined
as 60% coverage and a sequence identity threshold lowered by 10 percentage points.
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Supplementary fig. 6 | Benchmarking of distance errors (relaxed) when clustering with DIAMOND
DeepClust and MMseqs2 using various clustering criteria. Shown is the fraction of cluster member
sequences that do not satisfy a relaxed clustering criterion against their assigned representative sequence,
defined as 60% coverage and a sequence identity threshold lowered by 10 percentage points.
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Supplementary fig. 7 | Benchmark of assignment errors when clustering with DIAMOND DeepClust
and MMseqs2 using various clustering criteria. Shown is the fraction of cluster member sequences that
are not assigned to the closest representative that satisfies the clustering criterion, defined by the e-value
of the local alignment. Smaller error rates indicate that most cluster members are indeed sufficiently
assigned to their closest representative and do not match other (closer) representatives better than the
assigned representative.
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Clustering evaluation

We show four different metrics to measure errors in the computed clusterings. First, we show the
fraction of representative sequences that fulfill the clustering criterion against another
representative and represent false clusters that could have been merged into one unifying cluster
but were missed due to limited alignment sensitivity (Supplementary fig. 2). Second, we show the
fraction of cluster member sequences that do not satisfy the clustering criterion against their
assigned representative, errors that are caused by the cascaded clustering algorithm (see
distance error correction)(Supplementary fig. 5-6). Third, as a relaxed version of the second
metric, we show the fraction of cluster member sequences that do not satisfy the clustering
criterion against any representative and therefore constitute information that is potentially lost in
the representative set (Supplementary fig. 3-4). Fourth, we report the fraction of cluster member
sequences that are not assigned to the closest representative that satisfies the clustering criterion,
as measured by the e-value of the local pairwise alignment (Supplementary fig. 7). The cascaded
clustering algorithm as well as the incremental algorithm used by CD-HIT may both produce such
suboptimal assignments by design, causing errors in the clustering that could be undesirable
depending on the application (see assignment error correction).

We established the ground truth for these evaluations by computing a full Smith Waterman
alignment of the evaluated representative or cluster member sequences against all representative
sequences using DIAMOND in --swipe mode which guarantees perfect pairwise alignment
sensitivity. Due to the much larger representative set, we used DIAMOND in default mode for the
90% identity runs. On account of the expense of computing the exhaustive Smith Waterman
alignments, we evaluated these error metrics on random samples of 3,000 representative and
cluster member sequences respectively. We sampled 3,000 clusters for each run from the set of
clusters containing at least 5 sequences, and additionally sampled one member sequence out of
each of these clusters. Since this evaluation is based on comparing raw alignment output, we
added an option to DIAMOND to mimic the alignment score computations of MMseqs2
(Supplementary Information). We computed 95%-confidence intervals for the error metrics based
on the procedure of Clopper and Pearson?® (source data for Supplementary fig. 2-7).
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Supplementary Fig. 8 | Eukaryotic protein clusters generated with DIAMOND DeepClust. Shown is
the number of clusters resulting from clustering all 77.3 million protein sequences derived from up to 5,155
eukaryotic assemblies. The monotonically increasing graph illustrates that the eukaryotic sequence
diversity space is not fully saturated yet, suggesting that the efforts of the Earth BioGenome Project have
the potential to add a sufficient proportion of eukaryotic protein diversity to the existing protein universe.
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Supplementary Fig. 9 | Cluster representation for eukaryotic proteins from clusters generated with
DIAMOND DeepClust. Shown is the number of clusters against the fraction of the 77.3 million eukaryotic
proteins that are covered by the clustering. The vertical line illustrates that eukaryotic sequences cluster in
similar proportions between non-singletons (93%) vs singletons (7%) as the full protein universe (~19 billion
sequences; 94% non-singleton vs 6% singleton) which is currently dominated by protein sequences derived
from microbial samples.

Projection for Earth BioGenome Era

Clustering the protein universe of our earth’s biosphere allows us to quantify and understand the
complexities and degrees of divergence when aiming to apply the comparative method across
the tree of life and harness insights of relatedness for downstream analyses. To estimate the
future applicability of DIAMOND DeepClust, we projected the computational effort of running it on
a future dataset that would cover all protein sequences retrieved from the ~1.8 million eukaryotic
species expected to be sequenced by the Earth BioGenome Project. To this end, we downloaded
the protein sequences of 5,155 eukaryotic assemblies with annotated genes that were available
in GenBank as of July 2022 and randomly partitioned them into groups of 200 assemblies. We
clustered the protein sequences of the first group using DIAMOND DeepClust in very-sensitive
mode at a 75% coverage cutoff and no identity cutoff and kept adding the sequences of another
group to the clustering as described above under Cluster extension, until all assemblies were
added. We observed a linear growth of the cluster count in the number of species with no apparent
saturation (Supplementary fig. 8). Based on a number of 8,080,544 clusters for this dataset, we
could project a linear growth of the cluster count as an upper bound estimate, resulting in 2.82
billion clusters for 1.8 million species. The clustering computation is dominated by all-vs-all
alignment in the most sensitive clustering round and can thus be assumed to scale roughly
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quadratically in the number of clusters. On the basis of this projection assumption and a
DIAMOND v2 runtime of 2.07h on a 72-core server for the given computation, we project a
computation time of 18.1 million CPU hours for processing the full Earth BioGenome dataset with
DIAMOND DeepClust. Such a computation is already feasible on HPC systems hosted by the
Max Planck Society today and illustrates that the scalability of DIAMOND DeepClust will enable
users to learn from the protein sequences of millions of species once they are available. We note
that the actual cluster count and run time will likely be lower due to saturation effects. While the
nature of prokaryotic versus eukaryotic gene expression and regulation is fairly different, our
clustering of all available eukaryotic proteins shows that after clustering the ratio between
singletons (66%) vs non-singletons (34%) is comparable to our microbes dominated dataset of
19 billion sequences in that non-singleton clusters capture 93% of all eukaryotic proteins
(Supplementary Figure 9).
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Supplementary fig. 10 | Cluster representation for the experimental study. Shown is the number of
clusters generated with DIAMOND DeepClust against the fraction of the 19.4 billion input proteins that are
covered by the clustering. The vertical lines indicate the start of clusters of size two and one (from left to
right). The result illustrates that ~335 million representatives can capture 92%(~17.48 billion sequences)
of the protein universe that comprises 19 billion sequences.
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Experimental study

Recently, we introduced DIAMOND v2 to unlock the familiar functionality of a BLASTP search for
tree-of-life scale applications in the Earth BioGenome era. To mimic protein alignments at this
scale, we aligned ~280 million sequences from the NCBI NR database against ~39 million
sequences of the UniRef50 database which resulted in ~32 billion pairwise alignments which
could be performed in less than 6h on a HPC (compared to several months with BLASTP) while
matching the sensitivity of BLASTP2. While this speedup allowed us to introduce DIAMOND v2
as biosphere-ready protein aligner, searching protein sequences against millions of species and
yielding trillions of pairwise alignments remains a computational challenge. Overcoming this
bottleneck requires extensive dimensionality reduction of protein sequence space into sequence
clusters to perform pairwise alignments only on the set of representative sequences rather than
all sequences.

Using DIAMOND DeepClust, we performed an experimental study to showcase the power of
dimensionality reduction through sequence clustering when the Earth BioGenome project will
have successfully sequenced and assembled all ~1.8 million species. For this purpose, we
collected ~22 billion protein sequences across all kingdoms of life (currently mostly comprising of
microbes) to match the order of magnitude and sequence diversity space of the estimated ~27
billion eukaryotic protein sequences planned to be generated as part of the Earth BioGenome
project (assuming ~1.8 million species times an average of ~15,000 genes per species). We note
that compared to our collection of ~22 billion sequences (~19.4 billion deduplicated sequences),
the Earth BioGenome set will include a much broader sequence diversity space derived from
eukaryotes (while our current dataset is enriched in proteins mostly derived from microbial
metagenomic samples).
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Supplementary fig. 11 | Characterization of the 1.7 billion clusters generated by DIAMOND
DeepClust. lllustrated are sequence length and Shannon entropy for cluster representatives. The length
and Shannon entropy (sequence randomness) were computed for the representatives of clusters with at
least five members compared with the singletons. IQR outlier cutoff was determined based on the
distribution computed for clusters with at least five members, denoted as dashed lines. a. Sequence length
distribution of non-singleton versus singleton clusters, b. Shannon entropy distribution of non-singletons
versus singleton clusters. ¢. Sequence length distributions shown in a, now grouped by the public database
the respective sequence originated from. d. Shannon entropy distributions shown in b now grouped by the
public database the respective sequence originated from.
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As a result of clustering ~19 billion deduplicated sequences with 30% sequence identity and 90%
coverage thresholds across the tree of life, we determined ~1.70 billion clusters with 32% of
clusters yielding more than one element, 12% of clusters holding more than five elements, and
68% of clusters with only one element (singletons)(Supplementary fig. 10). This striking result
shows that while 68% of clusters contain unique sequences, these ~1.16 billion singletons
represent only 6% of the 19 billion sequences defining our current protein universe which begs
the question whether these distinct proteins are derived from novel orphan genes or whether they
represent assembly and annotation artifacts. To inform ongoing mega-assembly consortia about
the proportion of novelty versus assembly artifact we compare the sequence and protein
properties of singletons vs non-singletons. First, we filtered out obvious artifacts and poorly
annotated sequences by running the repeat masking software tantan?® with default settings on a
random sample of 1,000,000 singletons vs non-singletons to evaluate the proportion of low-
complexity sequences among putatively novel proteins. Interestingly only 10.5% of proteins were
masked over >25% of their range by tantan compared to 9.41% for non-singletons. Next, we
compare the length distributions of sequences derived from singleton clusters vs non-singleton
clusters, since a well-studied feature of novel proteins is their short average length compared to
evolutionarily conserved proteins®. As a result, we find that singletons are indeed significantly
shorter than non-singleton protein sequences with singletons comprising a median length of 62
amino acids and non-singletons 174 amino acids (Supplementary fig. 11). In addition to sequence
length, the entropy in the protein sequence is also known to vary between novel and evolutionarily
established proteins®. Therefore, we calculated the Shannon entropy for all singletons vs non-
singletons and observed that singletons indeed show significantly higher entropy values than non-
singletons, thereby illustrating the uneven nature of these unique novel proteins (orphan
polypeptides) (Supplementary fig. 11). Furthermore, we aligned random samples of 1,000,000
singletons vs 1,000,000 non-singletons (from clusters containing 25 members) against the ECOD
database? using DIAMOND in ultra-sensitive mode and found that 11,601 sequences (~1.16%)
generated alignments with e-value < 0.001, while 180,421 non-singleton sequences (~18%)
generated alignments with the same alignment settings. This fact further establishes that the
~1.16 billion singletons we report in this study require further attention to assess their biological
relevance. Since these singletons show signatures previously assigned to novel orphan proteins
they encourage further studies. For example, the clustering run used in creating the AlphaFold2
Big Fantastic Database used only 18% of all clusters and constrained the cluster size to at least
three elements, while removing 82% of singleton clusters. If, however, further research would
reveal that they are the product of poor mega-assembly efforts, our current representation of the
protein universe would turn out to be heavily biased by assembly quality, particularly when derived
from metagenomic assemblies. Together, our experimental study reveals an unprecedented
quantification of the protein universe and will enable future efforts to test whether more high quality
genome assemblies based on long-read technologies will yield smaller numbers of singleton
clusters when joining the tree of life or whether this unique diversity is an intrinsic feature of life
itself.
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Supplementary fig. 12 | DIAMOND protein search of DIAMOND DeepClust generated
representative sequences against public databases. Shown is the sequence identity
distribution when aligning a randomly drawn sample of one million representative sequences from
clusters of size =5 from our experimental study against the combined BFD+MGnify databases.

To quantify the relatedness of our clusters to existing protein databases, we sampled one million
representative sequences from the clusters containing five or more sequences and aligned them
against the combined MGnify?' and BFD® databases using DIAMOND in ultra-sensitive mode. We
selected the best hit for each query and show the quantity of identities in the alignment divided
by the length of the query as a histogram (Supplementary fig. 12) (queries with no hit are assigned
zero identities). These results hint toward the possibility that the known protein sequence diversity
space of microbes is already fairly saturated today. For the same representative sample, we
computed ProtT5'® embeddings (using the ProtT5-XL-UniRef50 model) for all sequences of
length below 1024 and used mean-pooling of these embeddings as the basis for computing a
UMAP3" projection (Fig. 2). We labeled sequences according to whether (a) they could be
annotated over 260% of their range against the combined SCOP'*+ECOD?°+CATH'’ databases
using DIAMOND in ultra-sensitive mode, (b) they could be annotated over 260% of their range
against the Pfam-A database'® using HMMER?? at an e-value threshold of 0.001, (c) an alignment
against UniProt was found using DIAMOND ultra-sensitive that satisfied an e-value threshold of
0.001, a query coverage threshold of 90% and a sequence identity threshold of 30%,
corresponding to the clustering criterions of our clustering and the BFD, (d) an alignment against
BFD+MGnify was found satisfying the same criteria, (e) none of the above. If multiple conditions
were true, we chose the label according to the order in the previous sentence.
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Data retrieval of the protein biosphere

A total of 22,788,215,153 publically accessible protein sequences were retrieved from JGI IMG3?,
SRC and MERC34, MGnify??, Metaclust!®>, NCBI NR3>, AGNOSTOS3¢, MetaEuk3’, SMAGs38, TOPAZ?,
GPD*, NovelFams*'and MGV?!? databases during March-April 2022 (additional details are
provided in supplementary table 1).

Data pre-processing and filtering

We first sorted each downloaded FASTA file individually in memory by the length of the sequence
in descending order, followed by a global disk-based merge sort on all files using GNU sort,
resulting in a combined file of 22,788,215,153 protein sequences. Next, we computed hashes for
all sequences which resulted in a deduplicated set of 19,387,935,704 unique sequences.

Clustering

We clustered the combined input file using a cascaded clustering approach in four rounds at
increasing sensitivity employing the DIAMOND modes --faster, --fast, default and --sensitive, also
using the option to linearize the comparison in the first round as described in the cascaded
clustering section. The clustering criterion was 90% coverage of the cluster member sequence
and 30% approximate sequence identity, corresponding to the parameters used to generate the
Alphafold2 BFD®. To limit the use of resources and create checkpoints that could be reverted to
in case of an error, we conducted the clustering rounds as an incremental procedure as follows.
First, we split the input sequence file into chunks that we process in sequential steps. Each chunk
was first aligned against the current working set of representatives that resulted from the previous
steps. Sequences that align against a representative were assigned to its respective cluster. Next,
we subjected the remaining sequences that failed to map against an existing representative to
all-vs-all alignment at the current round’s sensitivity level and determined new representatives
using the greedy vertex cover algorithm, which were then added to the working set. The clustering
computation of the unclustered input sequences ran for 6.38 days on a single high-memory 72-
core node for the first round, 36.8 hours on 16 nodes for the second round, 20.1 hours on 16
nodes for the third round, and 9.63 days on up to 27 nodes for the fourth round. In total, the
computation consumed ~255,000 CPU hours. The resulting output of DIAMOND DeepClust
generated 1,697,446,279 clusters, where 68% of clusters denote singletons and 20% of clusters
had three or more members.

Code availability

DIAMOND DeepClust is available as Open Source Software under the GPL3 license from

https://qgithub.com/bbuchfink/diamond.
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Data availability

We will make the Experimental Study dataset freely available upon journal publication. All source

datasets that were used are publicly available.
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