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Abstract—Epilepsy is a common neurological disorder that sub-
stantially deteriorates patients’ safety and quality of life. Elec-
troencephalogram (EEG) has been the golden-standard technique
for diagnosing this brain disorder and has played an essential role
in epilepsy monitoring and disease management. It is extremely
laborious and challenging, if not practical, for physicians and
expert humans to annotate all recorded signals, particularly
in long-term monitoring. The annotation process often involves
identifying signal segments with suspected epileptic seizure fea-
tures or other abnormalities and/or known healthy features.
Therefore, automated epilepsy detection becomes a key clinical
need because it can greatly improve clinical practice’s efficiency
and free up human expert time to attend to other important
tasks. Current automated seizure detection algorithms generally
face two challenges: (1) models trained for specific patients,
but such models are patient-specific, hence fail to generalize to
other patients and real-world situations; (2) seizure detection
models trained on large EEG datasets have low sensitivity and/or
high false positive rates, often with an area under the receiver
operating characteristic (AUROC) that is not high enough for
potential clinical applicability.

This paper proposes Transformers for Seizure Detection, which
we refer to as TSD in this manuscript. A Transformer is a deep
learning architecture based on an encoder-decoder structure and
on attention mechanisms, which we apply to recorded brain
signals. The AUROC of our proposed model has achieved 92.1%,
tested with Temple University’s publically available electroen-
cephalogram (EEG) seizure corpus dataset (TUH). Additionally,
we highlight the impact of input domains on the model’s perfor-
mance. Specifically, TSD performs best in identifying epileptic
seizures when the input domain is a time-frequency. Finally, our
proposed model for seizure detection in inference-only mode with
EEG recordings shows outstanding performance in classifying
seizure types and superior model initialization.

Index Terms—Al, Transformer, Seizure detection, Epilepsy.

I. INTRODUCTION

PILEPSY is a common neurological disorder character-
ized by recurrent seizures. This neurological disorder
has profound social and economic influences on 50 million
people worldwide, including stigma, discrimination and the
expensive cost of epileptic diagnosis and treatment, with
about 70% of these patients lacking proper care [1, 2]. The
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lack of sophisticated equipment experienced specialists, and
unaffordable anti-seizure medicines have led to the “treatment
gap”, which means patients with limited access to world-class
neurological treatment facilities are not able to receive proper
and timely treatments [1]. Therefore, a method with a low cost
to detect or predict epileptic seizures is beneficial to improve
the life quality of people with epilepsy [3, 4].

Epilepsy severely affects the patient’s life quality. An epileptic
seizure is a sudden burst of abnormal electrical activity in the
brain that can cause various symptoms. Seizures can vary in
severity and duration, and the symptoms a person experiences
can depend on the type of seizure. Some common symptoms
of seizures include convulsions or muscle spasms, loss of
consciousness or awareness, uncontrollable movements of the
arms and legs, changes in behaviour or emotion, hallucinations
or altered senses, temporary confusion, and more. Although
widely unknown, some better-known seizure triggers include
sleep deprivation, high fever, stress and certain medications.
In people with epilepsy, seizures occur spontaneously and
are often recurrent; hence the golden standard in epilepsy
diagnosis is to this date around seizure detection [5, 6, 2].
The diagnosis of epilepsy is based on a thorough medical
evaluation, which may include a physical exam, neurologi-
cal exam, and brain imaging tests such as an MRI or CT
scan. Electroencephalogram (EEG) remains a core and widely
accepted technique in diagnosing and understanding epilepsy
which is used to record the brain’s electrical activity and help
identify the type of seizures a person is experiencing. The
presence of epileptiform abnormalities on an electroencephalo-
gram (EEG) may constitute detection of a seizure [7]. The
formal definition of epilepsy, as defined by the International
League Against Epilepsy (ILAE) [6], includes the following
situations: “(1) At least two unprovoked (or reflex) seizures
occurring >24h apart; (2) one unprovoked (or reflex) seizure
and a probability of further seizures similar to the general
recurrence risk (at least 60%) after two unprovoked seizures,
occurring over the next ten years.” EEG sometimes is used
alongside auxiliary data such as the electrocardiogram (ECG)
and audio and video (i.e. video-EEQG). It is difficult to deter-
mine the exact rate of epilepsy misdiagnosis worldwide, as it
can vary depending on various factors, such as the availability
of diagnostic resources and the expertise of the healthcare
professionals involved. However, misdiagnosis of epilepsy is
considered relatively common and significantly consequential
for the individual. Literature reported misdiagnosis rates vastly
vary with low estimates of 2% and high estimates of over
70%, but a more cited rate is between 20-30% [8]. EEG
signal annotation for seizure detection by human experts and
specialists is a laborious and time-consuming task; hence, a
machine learning tool as an assistant with a human-in-the-loop
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for final review could achieve outstanding improvements over
time and dedicated resources [9].

In this paper, we aim to improve the accuracy of seizure
annotation to be used in clinical settings for seizure detection
and recognition. The time efficiency of these techniques within
an expert-in-the-loop system can be more than ten times
relative to manual detection and annotation, as reported in
our previous work [9]. Many studies have been conducted by
designing an automatic EEG annotation system with machine
learning; however, current machine learning algorithms have
limitations, including low sensitivity, a high rate of false
positives, and strong patient-specificity. We propose a Seizure
Detection Transformer (TSD) model. This model was trained
and validated on Temple University’s open-source electroen-
cephalogram (EEG) seizure corpus dataset (TUH). TUH is
the world’s largest public open-source EEG recordings from
a large cohort of people living with epilepsy. On this dataset,
we obtained an AUROC of 92.1%, which is 5.4% higher than
existing solutions and in this paper, we further elaborate on
this result and its significance.

A. Background

An EEG test is performed by recording electrical activities
generated by a high population of neurons (usually) non-
invasively and at the surface of the human head by attaching
multiple electrodes to the patient’s scalp [10]. EEG comes in
many non-invasive and invasive forms and is also a common
auxiliary means for experts to localise the epileptic foci (point
of origin for focal seizures) and identify the categories of
epilepsy, including focal, generalized and unknown [6, 2, 5].
Fisher et al. in 2017 revised the classification defined in 1981,
which categorized the focal onset into aware and impaired-
awareness seizures, the second level of focal onset, and the
third level of generalized and unknown onset into the motor
and non-motor seizures [5]. Among motor, seizures are au-
tomatisms, atonics, clonics, spasms of epilepsy, hyperkinetics,
myoclonics, and tonics. Non-motor seizures are also subdi-
vided into autonomic, behaviour arrest, cognitive, emotional,
and sensory seizures. In Table II, we summarized seizure types
used in this work, along with their profiles and corresponding
labels in the dataset.

Clinicians commonly combine long-term EEG monitoring
with clinical features of each seizure type to classify onsets and
may eventually provide treatment options. For example, focal
epilepsy has EEG with focal evolving rhythmic discharges and
experiences in the simultaneous or sequential onset of one
or more motor or non-motor symptoms [11, 12]. In contrast,
the EEG during generalized seizures is bilateral, synchronous,
symmetric, and generalized spike-wave complex, and its cor-
responding clinical characteristic is circadian variations [13].
On the one hand, developing a skilled specialist for EEG
reading tends to take several years of practical training,
exacerbating the challenge of treatment costs in epilepsy
and other neurological disorders. On average, an experienced
neurologist, skilled EEG technician, or nurse spends 90-120
minutes carefully reviewing a session of EEG recording, which
is usually a 12-hour recording [9]. Deep learning solutions

could provide profound benefits on this challenge in an expert-
in-the-loop style use.

Many recent studies have focused on EEG monitoring using
deep learning algorithms. They can be divided into seven types
of architecture: (1) convolutional neural networks (CNNs),
(2) recurrent neural networks (RNNs), (3) deep belief net-
works (DBNs), (4) autoencoders (AEs), (5) a new architec-
ture formed by combining CNN with the DBNs or AEs,
(6) transformer-based networks; among which 2D-CNNs are
the most popular neural network architecture for automated
seizure detection [14]. CNN was applied to EEG monitoring
and seizure detection diagnosis by transforming EEG signals
into one-dimensional or two-dimensional forms and feeding
the transformed signals to the CNN model [15, 16, 17, 18,
19, 20, 21]. RNN and its extended models, long short-term
memory (LSTM) and gated recurrent units (GRU), were used
when the signal has a variation in lengths [22, 23, 24, 25, 26].
AE is an unsupervised deep learning algorithm that combines
encoding and decoding blocks to extract features from sig-
nals [27, 28, 29, 30]. DBN is also an unsupervised deep learn-
ing algorithm that can be considered a generative graphical
model with multiple hidden units to reconstruct inputs prob-
abilistically [31, 32]. CNN-RNNs and CNN-AE architectures
were similar because they both coupled CNN with RNN or AE
modules to diagnose seizures [9, 33, 34, 35, 36, 37, 17, 38].
Transformer-based networks usually add a Transformer mod-
ule after the CNN convolution module to improve the model’s
accuracy [39, 40, 41].

Conventional seizure detection models are often patient-
specific and hence extremely difficult, if not impractical, to
be generalized [22, 9]. The performances of systems trained
on large datasets are often limited due to low area under
the receiver operating characteristic curve (AUROC) and high
rates of false positives with an acceptable sensitivity to clin-
icians [9, 42]. It is worth noting that the application of the
tool that we are developing plays a significant role in how
we will justify the right balance between false alarms and
sensitivity. We believe clinical applications that are not in need
of a real-time annotation and involve expert reviews based on
human psychology and perception tolerate a higher rate of
false alarms if it significantly helps sensitivity. We compare
our previous study with the state-of-the-art tools in the market
in [9].

B. Novelty

The goal of this work is to overcome the challenge de-
scribed above. We designed a TSD system to identify epilepsy
seizures using pre-recorded EEG signals by short-time Fourier
transform (STFT) on the most extensive publicly available
EEG dataset, TUH. This paper is part of a newly formed
set of papers analysing the use of Transformers on EEG
signals and seizure detection to locate and detect epilepsy
seizures [43, 41].

Unfortunately, separate Transformer architectures are rarely
adopted for signal processing due to the lack of inductive
biases, which contributes to the learning process [44, 45].
Thus, current research combined Transformers with convo-
lutional architectures to promote EEG-based diagnoses of
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seizures [40, 39, 38, 46]. These studies used CNNs to
generalize observations and engaged transformers to avoid
struggling with modelling context information. However, the
stochasticity and complexity of operating environments limit
a precise characterization of the inductive bias [47]. This
limitation leads to less usefulness of an inductive bias than
we imagined. Therefore, the negative impact of this issue can
be counterbalanced with a dataset with a large number of
data [44].

And compared to other transformer-based networks, our TSD
system has the following advantages: (1) the AUROC of
our proposed seizure detection model is 92.1%, which is
approximately 5% higher than other models that are trained on
this dataset, (2) the number of model parameters is small, (3)
simple and effective structure, our model combines the trans-
former with the visual features of EEG, not just processing
EEG signals like processing text.

II. PREREQUISITE
A. Montage

The EEG derivatives or channels are arranged logically to
form a montage that provides physicians with lateralized and
localised information by displaying activity across the whole
head [48]. The typical routine EEG recordings are bipolar
montages (BM) and referential montages. Our study adopts
17-channel bipolar longitudinal montages with conventional
10-20 placements. The channels are considered between two
adjacent electrodes longitudinally between Fp;, Fp,, F3, F4,
F7, Fg, Cg, C4, Cz, T3, T4, Pg, P4, 01, 02, T5, T6, and Pz
and F, as the reference electrodes.

B. Transformer

The transformer is a deep learning architecture that uses the
multi-head self-attention mechanism to increase the training
speed. This technique is commonly applied to parallelized
computation.

A transformer model consists of stacked encoders and de-
coders. An encoder includes a multi-head self-attention mod-
ule and a position-based fully connected feed-forward network
which are connected residually and then their outputs are
normalized [49]. Self-attention is shown in this formula:

T

Q
Z(Q, K = softmax

(Q, K, V) = softmax( N
where @, K,V are produced by multiplying the input vectors
by three weight matrices Wy, Ws and W3, and the dj, means
the dimension of the & vector.

Vaswani et al. (2017) proposed the multi-head attention
mechanism, which refines the self-attention mechanism. This
technique extends the model’s ability to focus on different
positions and generates multiple “representation subspaces”.
Hence these improvements enhance the performance of the
self-attention layer. The multi-head self-attention mechanism
employs multiple groups of Q/K/V to produce different
weight matrices Z, which are concatenated as the output of the
self-attention layer [49]. Then the model feeds this output into
the feed-forward neural network layer. Lastly, the shape of the

W

output matrix is adjusted by multiplying it with an additional
weight matrix. The pruned matrix is the input of the feed-
forward neural network.

The entire encoding part is formed by stacking multiple
encoders. Similarly, the same structure is used in the decoder,
which calculates the self-attention score for the output and
feeds the output to the forward network. The main difference
between an encoder and a decoder is that the decoder con-
sists of a sequence mask to obscure information for future
moments.

The final layer of the Transformer model is a fully connected
neural network layer and a softmax layer. The linear layer
projects the vectors generated by the decoders onto a higher-
dimensional vector (logits), where each dimension corresponds
to a unique word score. A subsequent softmax layer can
compute probabilities in terms of these scores showing in the
next equation [50]:

e*
0(z)j= ——— fori=1,....K
@)= s
andz:(zl,...,zK)ERK

where z is input vectors and K is its dimension. The word with
the highest probability in this dimension is the final output of
this time step.

In addition, the Transformer adds a vector with sequential
features to each word vector in the input called position vector
to save the position information, which is represented by the
following formula [49]:

. 0S

PE(pos,2i) = Sm(m)
POS

PE(pos2i+1) = c08(1550057a )

C. Vision Transformer

Vision Transformers (ViT) applies transformers to visual tasks
with a simple effective and strongly scalable model structure.
A previous study Dosovitskiy et al. (2020) proposed that ViT
with a small size of data usually performs worse than ResNets
due to lacking inductive bias. However, it also reported that
this could be offset by the increasing training data to improve
the performance of ViT which surpasses that of CNN since
ViT can obtain better transfer effect in downstream tasks.

III. METHODS

This paper uses the electrode locations and names assigned by
the International 10-20 System. When reading an EEG display,
we use a representation of a bipolar montage of EEG channels.
The next step is to preprocess the input data EEG signals and
remove the DC component by the STFT. After that, TSD is
established for EEG seizure detection based on the core idea
of ViT.

A. Data Preprocessing

In this paper, we processed EEG signals by the short-time
Fourier transform (STFT). Traditionally, the Fourier transform
is the most important method for analyzing and processing
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stationary signals. The temporal domain and frequency domain
are two ways to observe a signal. The Fourier transform and
its inverse transform convert the signals between the temporal
domain and frequency domain [51]. The basic Fourier trans-
form expression is [52]:

S(f) = / " s(t)e 27Tt gt
w = [ st

It can be seen that the Fourier transform decomposes the
signal into different components as a whole and lacks local
information. The Fourier transform cannot combine temporal
domain and frequency domain information, which plays an
important role in processing non-stationary signals [51].

The short-time Fourier transform (STFT) was proposed to
solve this issue. STFT is a widespread method to deal with
non-stationary signals, which divides the signal into many
small-time intervals (windows), and applies Fourier transform
to each one to extract the corresponding frequency [53].
The concatenation of these processed intervals represents the
overall temporal spectrum [53]. According to the basic idea,
it can be concluded that STFT is designed intuitively for
analyzing various processes with approximately the same
feature scale rather than multiscale signalling and mutational
processes due to the fixed time-frequency window size of
STFT [54] Therefore, STFT is suitable for processing raw
EEG signals. Here are the expressions of STFT and inverse
STFT [53]:

STFT,(t, f) = /

— 00

400 ) ,
[2(t)g" (¢ = )] 7>t

o0 +oo
z(t) = / / STFT, (', f')g(t — t')e? >t a' df’

where z(k) is the original signal, ¢ and g represent time shift
(overlapping part) and window size respectively, and the x
represents a complex conjugate. We discretize STFT, (¢, f)
calculated by continuous STFT in order to achieve it by
computer. This equation shows how to obtain the converted
signal F'(¢, f) [55]:

F’(t7 f) = STFTw(k)(t7 f) = Z l'(k)g(k _ t)efiwk

k=—o0

We also can reconstruct the original temporal spectrum by the
inverse STFT whose formula is as follows:

w(k)= > > F'(t flglk—t)e ™"

t=—00 f=—o00

B. Model structure

This paper uses ViT as the baseline model and adopts the
TUH dataset with long-term EEG signals of seizures to train
the model to achieve optimal results. We improved the baseline
model to apply it for signal processing whose idea is to apply
Transforms for Seizure Detection (TSD).

The architecture of TSD is shown in Fig 1. This model

divides the input signal into 200 patches, each with a size
of (50,7). The next step is to project each patch into a
fixed-length vector and enter the patch into the Transformer.
The subsequent operation of encoders keeps the same as the
original Transformer. However, we added a specific token
into the input sequence whose corresponding output predicts
epileptic seizures. The eventual model is the output module to
translate the specific token.
1) Patch embedding: We divided a signal segment into fixed-
size patches, which aims to transform a signal problem into a
sequence-to-sequence problem. The input signal size is 5000 x
14, which is split into patches with a resolution of 50 x 7.
Thus, each signal segment will generate 200 patches as the
input sequence length, and we flatted the 2D patches to a 1D
vector with 350 dimensions. The constant latent vector size
D = 16 is set as the dimension of the linear projection layer,
where we mapped the flattened patches to D-dimension space:
Eo = [eg]ags: ell,7 efﬂ ... ,eév] + PE,0s
e; c R(P1XP2XC)XD,PEPOS c R<N+1)XD

where [] represents the operation of concatenation, P; is 50,
Pyis 7, Cis 1, D is 16 and N is 200 and the way to add
PE,,; is described in the next section. The e is pended
to represent the classification y of signals.

class

y = LN(E})

where EY is the output of encoders, and LN is Layer Nor-
malization.

As a result, the dimension of sequential patches is 200 x 16
after passing through the linear projection layer, i.e., there are
a total of 200 tokens, and the dimension of each token is 16.
In addition, we added a ‘class’ token for outputting the final
predicted result. This operation increases the final dimension
to 201 x 16.

2) Positional embedding: The positional coding is a standard
learnable 1D position embedding that serves as input vector
localization records [44]. It can be considered a table with
N + 1 rows total, each representing a vector with the same
dimensions as the input sequence embedding. In this model,
we designed a I-channel and (201, 16) matrix as positional
embedding, with internal elements obeying a standard normal
distribution.

epu 6P12
P]'EpoS = €pa1  Cpao
ep; ~N(0,1) i,j€eN

Please note the formula given in the Patch Embedding section,
the operation of the positional embedding is a summation
rather than a concatenation. Therefore, the dimension of the
input embedding sequence remains unchanged, although the
position information is added.
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Fig. 1: The TSD architecture consists of an input module, encoders, and an output module. The input module converts signals
into sequences and embeds them. Encoders employ a multi-head attention mechanism to identify input embeddings. The output

module extracts the specific token and obtains predictions.

3) Encoders: The Encoder is stacked with a couple of single
encoder blocks, each of which in this work consists of a multi-
head self-attention layer (MSA) and a multi-layer perception
(MLP). This model applied the multi-head attention mecha-
nism to conduct linear projections to promote the performance
of the TSD model [49]. There are 4 heads in this work
leading to 4 groups of Q,K,V with resolution(201,4) and
concatenated the outputs of these groups.

E] = [SA'(LN(E(_1))), SA*(LN(E—
SAN#H (LN(E(lfl)))} + E(lfl) l=1...

)i
L NHEN*

where ELl is the output of last block and Ny is the number
of heads.

The next part will focus on explaining the structure of the
multi-layer perception (MLP). The MLP can be considered
as a forward-feed neural network whose learning method is
backpropagation [56]. It scales the x in terms of proportion.
In the proposed model, this block consists of two linear layers
(LL) and a non-linear layer with activation function GELU
(Gaussian Error Linear Units) [57]:

GELU(x) xP(X <)

z¢(x)
A [1 + erf(
xo (1.7023:)

7)]

where x is the input value of the current neuron and o function
is the sigmoid function because of its similarity with the
cumulative distribution of the normal distribution. According
to Hendrycks and Gimpel (2016), erf() is the Gauss error
function, which is defined as:

ke

erf(z

The GELU determines whether x is preserved or not. The
results of the multi-head attention layer are normalized by the
layer and employed in this module:

E; = LL(GELU(LL(LN(E))))) + E, I=1...L

After each part, the present output is layer normalized. At the
same time, we added dropout layers to avoid overfitting, whose
essence is the achievement of regularization by randomly
ignoring half of the neurons.

4) Classification: Furthermore, we did not set decoders after
encoders, and the classification results in the output vector
will be extracted directly. The output z¢ corresponding to the
special character ‘class’ will be used as the eventual output of
the encoder, representing the signal classification.

C. Evaluation metrics

In this work, we apply an evaluation metric: Area Under The
Curve Receiver Operating Characteristics (AUC-ROC).

1) Area Under The Curve Receiver Operating Characteristics
(AUC-ROC): AUC measures the separability of models and
ROC is a probability curve, which reports the ability to the
classification of the model [58]. A high AUC means that
the model tends to classify correctly. In contrast, a model
with an AUC close to 0 shows it reverses the two classes
of predictions. An AUC of 0.5 represents the failure of the
classification of the model. The AUC-ROC curve shows the
change in the ratio of the true-positive rate (TPR) to the
false-positive rate (FPR) with the typical and widely known
confusion matrix [59].

We take advantage of these indicators to compute TPR and
FPR.

TPR = TP
TP+FN
FP
FPR =

TN+FP
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TABLE I: The summary of TUH dataset

Dataset attribute [ Train [ Dev | Eva [ Tot
Files 4664 1832 831 7377
Sessions 1174 342 126 1642
Patients 579 53 43 675
Files with seizures 872 324 195 1391
Sessions with seizures 352 113 63 582
Patients with seizures 208 45 34 287
Number of seizures 2474 1086 469 4029
Total duration (hours) 910.3 435.5 129.9 1475.7

absz total duration(hours) 3.0 0.8 1.6 5.5

cpsz total duration(hours) 594 0.2 10.0 69.6
fnsz total duration(hours) 188.4 71.2 31.2 290.8
gnsz total duration(hours) 242.5 222.4 41.3 506.1
mysz total duration(hours) 79 0 0 7.9
spsz total duration(hours) 8.9 0 0 8.9
tesz total duration(hours) 10.6 4.5 2.6 17.7
tnsz total duration(hours) 2.2 0.9 0.1 3.2

IV. EXPERIMENTS

This experiment was conducted on the TUH dataset which
was split into a training, a validation and a test set. The
data in these subsets were screened for EEG signals from
nineteen sensors and the recordings were divided into 12-
second segments. Next, these fragments are extracted with
time-frequency information using STFT. The model reads
the time-frequency graphs in the training set to train and
learn the characteristics of EEG signals of epileptic seizures,
validates and tests model’s hyperparameters on the validation
set, finally evaluates the model predictions on the test set.
At the same time, we differentiated the ability of the TSD
model to detect various types of seizures. In addition, we
illustrated the superiority of the TSD model by comparison
of the AUROC between the TSD model and other existing
techniques with the same window size and on TUH dataset.

A. Dataset

We use the Temple University Hospital (TUH) seizure corpus
v1.5.4 in our experiments to test the performance of the TSD
model. It is the most extensive open-source corpus of the
world’s EEG recordings of people with epilepsy. Shah et al.
in 2018 described that Temple University Hospital collected,
curated and organized clinical EEG data for 14 years. The
public can apply this corpus for medical experiments and it can
be downloaded from the Neural Engineering Data Consortium.
It provides three datasets: a training set, a development set and
an evaluation set. In the experiments, we used the training set
to train the model. In addition, the dataset mixed by the de-
velopment set and the evaluation set is divided into two parts,
one half is used to verify the efficiency of hyperparameters,
and the remaining is used as a test set to test the performance
of the model. The detailed subsets of data are summarised in
Table 1.

In Table I, it can be seen that the proportion of normal EEG
signals in the training set is the largest, while the proportion of
EEG signals containing epileptic features in the development
set and evaluation set is more than that in the training set.
This is especially evident in the patient-related data because
it is shown that only 36% of patients in the training set were

Fig. 2: Visualizations of TUH dataset in terms of the dis-
tribution of different seizure types in three subsets. Seizure
types are explained in Table II. There are in total 7377 files
(of 1642 sessions for 675 patients) that we split into training
(63%, Train), development (25%, Dev), and evaluation (12%,
Eval), of which 18.7% of Train, 17.7% of Dev and 22.1% of
Eval are files that contain recorded and documented epileptic
seizures.

diagnosed with epilepsy, while in the development set and
evaluation set, it was as high as 84% and 79% respectively.
Such distribution difference indicates that the TSD architecture
has strong domain adaptability.

In addition, we conducted data analysis on the TUH dataset in
order to explain the feasibility of the TSD model in monitoring
EEG signals to detect seizures.

In Fig 2, we counted the proportions of different types of
seizure durations in the three data subsets. It can be observed
that in each subset, GNSZ has the largest proportion, followed
by FNSZ, and other rare epilepsy types have a small pro-
portion. Whereas in the training set and evaluation set, the
distribution of GNSZ and FNSZ is similar, accounting for
about 47% and 36%, respectively. In the development set, 74%
of epilepsy is GNSZ, and only 24% of epilepsy is FNSZ. In
addition, we noted that only the training set contains MYSZ
and SPSZ, while the development set and evaluation set do
not have data on these two types of epilepsy. Therefore, our
experiments could not verify the effectiveness of the TSD
model on identifying MYSZ and SPSZ.

In Table II, we described the seizure types we classified in this
work and which labels were used to annotate their abnormal
EEG segments.

B. Results

We adopted the AUROC as the main evaluation indicator
for epileptic detection. The trend of loss and AUROC in the
training and validation sets is shown in Fig 3 during the TSD
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TABLE II: The summary of classified types of seizures.

Annotated Seizure type Description
labels yp P
Focal - . . . . .
. The origination of Focal seizures is only one hemisphere, and it prefers to propagate the ipsilateral and/or
fnsz nonspecific .
. contra-lateral hemisphere [6].
seizure.
NSz Generalized The origination of Generalized seizure is at a certain point in both hemispheres, and it engages rapidly
g seizure. bilaterally distributed networks [6].
SpSZ Simple partial Simple partial seizure is defined that awareness is preserved during the seizure onsets, and it was revised as
P seizure. aware seizure in 2014 by [6].
epsz Complex Complex partial seizure is defined as impaired at any point when the seizure onsets, and it was revised as
P partial seizure. impaired awareness seizure in 2014 by [6].
Absen . . . . o
absz seli)zsl(jr:e Absence seizure refers to brief, sudden lapses in attention provoked by hyperventilation [6].
. . A tonic seizure causes unawareness and muscle contractions of the limbs, which are ongoing from 3 seconds
tnsz Tonic seizure. . . .
to 2 minutes and a more severe one may include a vibratory component [6].
. . A tonic-clonic seizure occurs in unconscious patients with tonic (increased tone) and a clonic (sustained
tesz Tonic-clonic rhythmic jerking) [6]
seizure. ’
Mvoclonic A myoclonic seizure causes brief muscle contractions lasting more than 30 minutes and with partial
mysz Y awareness [6].
seizure.

model training with the best results. At the same time, we
also conducted other ablation experiments to demonstrate the
necessity of various methods in data preprocessing (Appendix
A).

Table III shows the performance of the TSD model and a
comparison with the previous studies on the same public
dataset with the same window size.

According to Table III, the previous studies performed poorly
on large datasets, with a low AUROC, only reached 86.6% at
the highest, which is the Dist-DCRNN with Pre-training. Our
model achieved an AUCROC of 92.1%. The AUROC of our
model for identifying epileptic onset with 12s clip is 5.5%
higher than previous state-of-the-art results and we did not
pre-train the TSD model. In addition, the improvement in the
original model boosted the model performance by 8.3%. We
attempted to transfer the input domain to enhance the ability
to identify seizures in long-term EEG signals, illustrating that
the input domain plays a significant role in seizure detection
accuracy. At the same time, the utility of bipolar montages just
slightly promotes the AUROC by 0.7%, which is not a obvious
performance progress. However, it facilitates the interpretation
of the TSD model for seizure detection.

1) Sensitivity to different types of epilepsy: In this section,
we examined the sensitivity of the TSD model to different
types of epilepsy on the development and evaluation sets to
compare the performance of the TSD model for classifying
EEG signals. It can be observed in Table IV that for common
epilepsy types, the TSD model can detect 96.3% of CPSZ and
91.5% of FNSZ. However, the sensitivity of the GNSZ is only
80.9%. In addition, the model can also sensitively identify rare
epilepsy, such as the recall rates of TCSZ and TNSZ are 87.6%
and 92.2%, respectively. It is worth noting that although the
sensitivity to ABSZ is as high as 100%, considering the short
duration of ABSZ in the development and evaluation set, the
statistical result about ABSZ has low credibility.

2) Impacts of STFT: In this section, we showed how tuning
parameters of STFT affect the accuracy of seizure identifi-
cation in Fig 4. In the experiments, we refined the window

overlap with fixed window size and frequency resolution. In
Fig 4, the AUCROC of the proposed TSD model fluctuates
with the change of window overlap until reaching the optimal
value of 92.1% when the overlap rate is 20%.

3) Impacts of input domain: We compared the effect of differ-
ent input domains on seizure detection results. We applied the
Fast Fourier Transform (FFT) for the extraction of frequency
information. FFT is a common method to process signals. The
results show that the extraction of temporal domain informa-
tion is more critical for the model to learn the EEG features
of epileptic patients than the frequency domain information
since the change in the input domain of the model from
the temporal domain to the frequency domain decreased the
AUROC of the model from 84.5% to 70.2%. However, when
we simultaneously extracted the time-frequency information
of the input EEG signal and fed it as the model input,
the model performance for seizure detection increased to
92.1%. Such advances suggest that connection in the time-
frequency domain promotes the model’s effectiveness, which
is consistent with the conclusion of [22].

4) Superiority: The AUROC of our baseline model without
preprocessing the data is only 2.8% lower than the previous
state-of-the-art. Notably, Tang et al. in 2021 used a self-
supervised pre-training approach to improve model accuracy.
At the same time, Tang et al. also used GNN technology to
deal with the non-Euclidean structure of nodes to optimize
the model performance, which consumes a lot of time and
resources. Yang et al. in 2022 post-processed the output
results. The output results of the Conv-LSTM algorithm is sent
to a postprocessing algorithm to review the results in real-time
and make a decision. Our model improves on the previously
published model, indicating the superior model initialization
and strong large-scale learning ability of TSD. Therefore, we
consider that our model can scale and, upon application to
clinics, reduce the economic and human burden of long-term
EEG monitoring.
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(a) The trend of loss in TSD with BM and STFT (b) The trend of AUC in TSD with BM and STFT
Fig. 3: The training process of the proposed model with BM and STFT.
TABLE III: The comparisons of the proposed model with other current models on TUH dataset.
. Seizure Detection
Model Reference Input Domain AUROC (12s windows)%
Dist-DCRNN w/o Pre-training [22] Frequency 82.4
Dist-DCRNN w/ Pre-training [22] Frequency 86.6
Conv-LSTM [9] Frequency 84.7
TSD w/o BM & STFT This work Time 83.8
TSD w/ BM & w/o STFT This work Time 84.5
TSD w/ BM & FFT This work Frequency 70.2
TSD w/ BM & STFT w/o Pre-training This work Time & Frequency 92.1
—e— nperseg noverlap freq_resolution
0.920 1 1 1
0.918 4 1 1
0.916 1 1 1
[®)
=)
< 0.914 1 ] 1
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0.910 4 1 1
0.908 - T T T T T S T T T T T T S T T T T
240 245 250 255 260 20 40 60 80 100 120 140 1.0 1.5 2.0 2.5 3.0
nperseg noverlap freq_resolution
(a) The length of segment (b) The overlap between segments (c) Sampling frequency

Fig. 4: Results with different STFT parameters. Fig (a) shows the changing trend of AUC with the length of a segment. Fig
(b) shows the trend of AUC with the increase in overlap rate. Fig (c) documents the AUC of the proposed model with different
frequency resolutions.
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TABLE IV: Sensitivity to different types of seizure.

Seizure type [ Sensitivity (%)

ABSZ 100
CPSZ 96.3
FNSZ 91.5
GNSZ 80.9
TCSZ 87.6
TNSZ 92.2

V. CONCLUSION

In conclusion, we proposed a TSD algorithm for learning EEG
recordings and monitoring epilepsy. We also validated the
ability of the TSD model to detect epilepsy on a large corpus
of public EEG recordings TUH. We significantly improved
the performance of state-of-the-art Al algorithms for seizure
detection and classification and compared the impact of the
data-preprocessing methods and the input domain on the
model’s ability to identify seizures. In addition, we demon-
strated that our model has excellent model initialization and
is more conducive to overcoming the patient-specific problems
of existing seizure detection instruments.

In the future, it is worth using the proposed model for EEG-
based epilepsy classification to locate the lesion location of
epileptic seizures. This attempt can facilitate clinicians’ current
dilemma in the seizure onset area. Furthermore, Our model did
not distinguish between patient age groups to verify whether
the TSD model has the same effect on different age groups. In
fact, real-world seizure detection in neonates and children is
a more challenging limitation. Therefore, our future direction
will focus on improving the model for application in neonatal
and childhood epilepsy screening.
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APPENDIX A
SETUP IN ABLATION EXPERIMENTS

We conducted three ablation experiments on TSD with dif-
ferent data-processing methods. (1) We split the raw EEG
signals in the dataset into 12s clips. Then these segments are
directly used as the input of the TSD model. (2) We built a
bipolar montage with the original signal after we segmented
the original signal. (3) On the basis of bipolar montage, we
used FFT to convert the information in each 12s segment from
the time domain to the frequency domain. We demonstrated
the trend of AUC during training for these three ablation
experiments in Fig 5.
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Fig. 5: The training process of the proposed model in all ablation experiments
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