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Abstract—Epilepsy is a common neurological disorder that sub-
stantially deteriorates patients’ safety and quality of life. Elec-
troencephalogram (EEG) has been the golden-standard technique
for diagnosing this brain disorder and has played an essential role
in epilepsy monitoring and disease management. It is extremely
laborious and challenging, if not practical, for physicians and
expert humans to annotate all recorded signals, particularly
in long-term monitoring. The annotation process often involves
identifying signal segments with suspected epileptic seizure fea-
tures or other abnormalities and/or known healthy features.
Therefore, automated epilepsy detection becomes a key clinical
need because it can greatly improve clinical practice’s efficiency
and free up human expert time to attend to other important
tasks. Current automated seizure detection algorithms generally
face two challenges: (1) models trained for specific patients,
but such models are patient-specific, hence fail to generalize to
other patients and real-world situations; (2) seizure detection
models trained on large EEG datasets have low sensitivity and/or
high false positive rates, often with an area under the receiver
operating characteristic (AUROC) that is not high enough for
potential clinical applicability.

This paper proposes Transformers for Seizure Detection, which
we refer to as TSD in this manuscript. A Transformer is a deep
learning architecture based on an encoder-decoder structure and
on attention mechanisms, which we apply to recorded brain
signals. The AUROC of our proposed model has achieved 92.1%,
tested with Temple University’s publically available electroen-
cephalogram (EEG) seizure corpus dataset (TUH). Additionally,
we highlight the impact of input domains on the model’s perfor-
mance. Specifically, TSD performs best in identifying epileptic
seizures when the input domain is a time-frequency. Finally, our
proposed model for seizure detection in inference-only mode with
EEG recordings shows outstanding performance in classifying
seizure types and superior model initialization.

Index Terms—AI, Transformer, Seizure detection, Epilepsy.

I. INTRODUCTION

EPILEPSY is a common neurological disorder character-

ized by recurrent seizures. This neurological disorder

has profound social and economic influences on 50 million

people worldwide, including stigma, discrimination and the

expensive cost of epileptic diagnosis and treatment, with

about 70% of these patients lacking proper care [1, 2]. The
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lack of sophisticated equipment experienced specialists, and

unaffordable anti-seizure medicines have led to the “treatment

gap”, which means patients with limited access to world-class

neurological treatment facilities are not able to receive proper

and timely treatments [1]. Therefore, a method with a low cost

to detect or predict epileptic seizures is beneficial to improve

the life quality of people with epilepsy [3, 4].

Epilepsy severely affects the patient’s life quality. An epileptic

seizure is a sudden burst of abnormal electrical activity in the

brain that can cause various symptoms. Seizures can vary in

severity and duration, and the symptoms a person experiences

can depend on the type of seizure. Some common symptoms

of seizures include convulsions or muscle spasms, loss of

consciousness or awareness, uncontrollable movements of the

arms and legs, changes in behaviour or emotion, hallucinations

or altered senses, temporary confusion, and more. Although

widely unknown, some better-known seizure triggers include

sleep deprivation, high fever, stress and certain medications.

In people with epilepsy, seizures occur spontaneously and

are often recurrent; hence the golden standard in epilepsy

diagnosis is to this date around seizure detection [5, 6, 2].

The diagnosis of epilepsy is based on a thorough medical

evaluation, which may include a physical exam, neurologi-

cal exam, and brain imaging tests such as an MRI or CT

scan. Electroencephalogram (EEG) remains a core and widely

accepted technique in diagnosing and understanding epilepsy

which is used to record the brain’s electrical activity and help

identify the type of seizures a person is experiencing. The

presence of epileptiform abnormalities on an electroencephalo-

gram (EEG) may constitute detection of a seizure [7]. The

formal definition of epilepsy, as defined by the International

League Against Epilepsy (ILAE) [6], includes the following

situations: “(1) At least two unprovoked (or reflex) seizures

occurring >24h apart; (2) one unprovoked (or reflex) seizure

and a probability of further seizures similar to the general

recurrence risk (at least 60%) after two unprovoked seizures,

occurring over the next ten years.” EEG sometimes is used

alongside auxiliary data such as the electrocardiogram (ECG)

and audio and video (i.e. video-EEG). It is difficult to deter-

mine the exact rate of epilepsy misdiagnosis worldwide, as it

can vary depending on various factors, such as the availability

of diagnostic resources and the expertise of the healthcare

professionals involved. However, misdiagnosis of epilepsy is

considered relatively common and significantly consequential

for the individual. Literature reported misdiagnosis rates vastly

vary with low estimates of 2% and high estimates of over

70%, but a more cited rate is between 20–30% [8]. EEG

signal annotation for seizure detection by human experts and

specialists is a laborious and time-consuming task; hence, a

machine learning tool as an assistant with a human-in-the-loop
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for final review could achieve outstanding improvements over

time and dedicated resources [9].

In this paper, we aim to improve the accuracy of seizure

annotation to be used in clinical settings for seizure detection

and recognition. The time efficiency of these techniques within

an expert-in-the-loop system can be more than ten times

relative to manual detection and annotation, as reported in

our previous work [9]. Many studies have been conducted by

designing an automatic EEG annotation system with machine

learning; however, current machine learning algorithms have

limitations, including low sensitivity, a high rate of false

positives, and strong patient-specificity. We propose a Seizure

Detection Transformer (TSD) model. This model was trained

and validated on Temple University’s open-source electroen-

cephalogram (EEG) seizure corpus dataset (TUH). TUH is

the world’s largest public open-source EEG recordings from

a large cohort of people living with epilepsy. On this dataset,

we obtained an AUROC of 92.1%, which is 5.4% higher than

existing solutions and in this paper, we further elaborate on

this result and its significance.

A. Background

An EEG test is performed by recording electrical activities

generated by a high population of neurons (usually) non-

invasively and at the surface of the human head by attaching

multiple electrodes to the patient’s scalp [10]. EEG comes in

many non-invasive and invasive forms and is also a common

auxiliary means for experts to localise the epileptic foci (point

of origin for focal seizures) and identify the categories of

epilepsy, including focal, generalized and unknown [6, 2, 5].

Fisher et al. in 2017 revised the classification defined in 1981,

which categorized the focal onset into aware and impaired-

awareness seizures, the second level of focal onset, and the

third level of generalized and unknown onset into the motor

and non-motor seizures [5]. Among motor, seizures are au-

tomatisms, atonics, clonics, spasms of epilepsy, hyperkinetics,

myoclonics, and tonics. Non-motor seizures are also subdi-

vided into autonomic, behaviour arrest, cognitive, emotional,

and sensory seizures. In Table II, we summarized seizure types

used in this work, along with their profiles and corresponding

labels in the dataset.

Clinicians commonly combine long-term EEG monitoring

with clinical features of each seizure type to classify onsets and

may eventually provide treatment options. For example, focal

epilepsy has EEG with focal evolving rhythmic discharges and

experiences in the simultaneous or sequential onset of one

or more motor or non-motor symptoms [11, 12]. In contrast,

the EEG during generalized seizures is bilateral, synchronous,

symmetric, and generalized spike-wave complex, and its cor-

responding clinical characteristic is circadian variations [13].

On the one hand, developing a skilled specialist for EEG

reading tends to take several years of practical training,

exacerbating the challenge of treatment costs in epilepsy

and other neurological disorders. On average, an experienced

neurologist, skilled EEG technician, or nurse spends 90-120

minutes carefully reviewing a session of EEG recording, which

is usually a 12-hour recording [9]. Deep learning solutions

could provide profound benefits on this challenge in an expert-

in-the-loop style use.

Many recent studies have focused on EEG monitoring using

deep learning algorithms. They can be divided into seven types

of architecture: (1) convolutional neural networks (CNNs),

(2) recurrent neural networks (RNNs), (3) deep belief net-

works (DBNs), (4) autoencoders (AEs), (5) a new architec-

ture formed by combining CNN with the DBNs or AEs,

(6) transformer-based networks; among which 2D-CNNs are

the most popular neural network architecture for automated

seizure detection [14]. CNN was applied to EEG monitoring

and seizure detection diagnosis by transforming EEG signals

into one-dimensional or two-dimensional forms and feeding

the transformed signals to the CNN model [15, 16, 17, 18,

19, 20, 21]. RNN and its extended models, long short-term

memory (LSTM) and gated recurrent units (GRU), were used

when the signal has a variation in lengths [22, 23, 24, 25, 26].

AE is an unsupervised deep learning algorithm that combines

encoding and decoding blocks to extract features from sig-

nals [27, 28, 29, 30]. DBN is also an unsupervised deep learn-

ing algorithm that can be considered a generative graphical

model with multiple hidden units to reconstruct inputs prob-

abilistically [31, 32]. CNN-RNNs and CNN-AE architectures

were similar because they both coupled CNN with RNN or AE

modules to diagnose seizures [9, 33, 34, 35, 36, 37, 17, 38].

Transformer-based networks usually add a Transformer mod-

ule after the CNN convolution module to improve the model’s

accuracy [39, 40, 41].

Conventional seizure detection models are often patient-

specific and hence extremely difficult, if not impractical, to

be generalized [22, 9]. The performances of systems trained

on large datasets are often limited due to low area under

the receiver operating characteristic curve (AUROC) and high

rates of false positives with an acceptable sensitivity to clin-

icians [9, 42]. It is worth noting that the application of the

tool that we are developing plays a significant role in how

we will justify the right balance between false alarms and

sensitivity. We believe clinical applications that are not in need

of a real-time annotation and involve expert reviews based on

human psychology and perception tolerate a higher rate of

false alarms if it significantly helps sensitivity. We compare

our previous study with the state-of-the-art tools in the market

in [9].

B. Novelty

The goal of this work is to overcome the challenge de-

scribed above. We designed a TSD system to identify epilepsy

seizures using pre-recorded EEG signals by short-time Fourier

transform (STFT) on the most extensive publicly available

EEG dataset, TUH. This paper is part of a newly formed

set of papers analysing the use of Transformers on EEG

signals and seizure detection to locate and detect epilepsy

seizures [43, 41].

Unfortunately, separate Transformer architectures are rarely

adopted for signal processing due to the lack of inductive

biases, which contributes to the learning process [44, 45].

Thus, current research combined Transformers with convo-

lutional architectures to promote EEG-based diagnoses of

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.24.525308doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525308
http://creativecommons.org/licenses/by/4.0/


3

seizures [40, 39, 38, 46]. These studies used CNNs to

generalize observations and engaged transformers to avoid

struggling with modelling context information. However, the

stochasticity and complexity of operating environments limit

a precise characterization of the inductive bias [47]. This

limitation leads to less usefulness of an inductive bias than

we imagined. Therefore, the negative impact of this issue can

be counterbalanced with a dataset with a large number of

data [44].

And compared to other transformer-based networks, our TSD

system has the following advantages: (1) the AUROC of

our proposed seizure detection model is 92.1%, which is

approximately 5% higher than other models that are trained on

this dataset, (2) the number of model parameters is small, (3)

simple and effective structure, our model combines the trans-

former with the visual features of EEG, not just processing

EEG signals like processing text.

II. PREREQUISITE

A. Montage

The EEG derivatives or channels are arranged logically to

form a montage that provides physicians with lateralized and

localised information by displaying activity across the whole

head [48]. The typical routine EEG recordings are bipolar

montages (BM) and referential montages. Our study adopts

17-channel bipolar longitudinal montages with conventional

10-20 placements. The channels are considered between two

adjacent electrodes longitudinally between Fp1, Fp2, F3, F4,

F7, F8, C3, C4, Cz , T3, T4, P3, P4, O1, O2, T5, T6, and Pz

and Fz as the reference electrodes.

B. Transformer

The transformer is a deep learning architecture that uses the

multi-head self-attention mechanism to increase the training

speed. This technique is commonly applied to parallelized

computation.

A transformer model consists of stacked encoders and de-

coders. An encoder includes a multi-head self-attention mod-

ule and a position-based fully connected feed-forward network

which are connected residually and then their outputs are

normalized [49]. Self-attention is shown in this formula:

Z(Q,K, V ) = softmax(
QKT

√
dk

)V

where Q,K, V are produced by multiplying the input vectors

by three weight matrices W1,W2 and W3, and the dk means

the dimension of the kth vector.

Vaswani et al. (2017) proposed the multi-head attention

mechanism, which refines the self-attention mechanism. This

technique extends the model’s ability to focus on different

positions and generates multiple ”representation subspaces”.

Hence these improvements enhance the performance of the

self-attention layer. The multi-head self-attention mechanism

employs multiple groups of Q/K/V to produce different

weight matrices Z, which are concatenated as the output of the

self-attention layer [49]. Then the model feeds this output into

the feed-forward neural network layer. Lastly, the shape of the

output matrix is adjusted by multiplying it with an additional

weight matrix. The pruned matrix is the input of the feed-

forward neural network.

The entire encoding part is formed by stacking multiple

encoders. Similarly, the same structure is used in the decoder,

which calculates the self-attention score for the output and

feeds the output to the forward network. The main difference

between an encoder and a decoder is that the decoder con-

sists of a sequence mask to obscure information for future

moments.

The final layer of the Transformer model is a fully connected

neural network layer and a softmax layer. The linear layer

projects the vectors generated by the decoders onto a higher-

dimensional vector (logits), where each dimension corresponds

to a unique word score. A subsequent softmax layer can

compute probabilities in terms of these scores showing in the

next equation [50]:

σ(z)i =
ezi

∑K
j=1 e

zj
for i = 1, . . . ,K

and z = (z1, . . . , zK) ∈ R
K

where z is input vectors and K is its dimension. The word with

the highest probability in this dimension is the final output of

this time step.

In addition, the Transformer adds a vector with sequential

features to each word vector in the input called position vector

to save the position information, which is represented by the

following formula [49]:

PE(pos,2i) = sin(
pos

100002i/dK
)

PE(pos,2i+1) = cos(
pos

100002i/dK
)

C. Vision Transformer

Vision Transformers (ViT) applies transformers to visual tasks

with a simple effective and strongly scalable model structure.

A previous study Dosovitskiy et al. (2020) proposed that ViT

with a small size of data usually performs worse than ResNets

due to lacking inductive bias. However, it also reported that

this could be offset by the increasing training data to improve

the performance of ViT which surpasses that of CNN since

ViT can obtain better transfer effect in downstream tasks.

III. METHODS

This paper uses the electrode locations and names assigned by

the International 10-20 System. When reading an EEG display,

we use a representation of a bipolar montage of EEG channels.

The next step is to preprocess the input data EEG signals and

remove the DC component by the STFT. After that, TSD is

established for EEG seizure detection based on the core idea

of ViT.

A. Data Preprocessing

In this paper, we processed EEG signals by the short-time

Fourier transform (STFT). Traditionally, the Fourier transform

is the most important method for analyzing and processing
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stationary signals. The temporal domain and frequency domain

are two ways to observe a signal. The Fourier transform and

its inverse transform convert the signals between the temporal

domain and frequency domain [51]. The basic Fourier trans-

form expression is [52]:

S(f) =

∫ +∞

−∞

s(t)e−j2πftdt

s(t) =

∫ +∞

−∞

S(f)ej2πtfdf

It can be seen that the Fourier transform decomposes the

signal into different components as a whole and lacks local

information. The Fourier transform cannot combine temporal

domain and frequency domain information, which plays an

important role in processing non-stationary signals [51].

The short-time Fourier transform (STFT) was proposed to

solve this issue. STFT is a widespread method to deal with

non-stationary signals, which divides the signal into many

small-time intervals (windows), and applies Fourier transform

to each one to extract the corresponding frequency [53].

The concatenation of these processed intervals represents the

overall temporal spectrum [53]. According to the basic idea,

it can be concluded that STFT is designed intuitively for

analyzing various processes with approximately the same

feature scale rather than multiscale signalling and mutational

processes due to the fixed time-frequency window size of

STFT [54] Therefore, STFT is suitable for processing raw

EEG signals. Here are the expressions of STFT and inverse

STFT [53]:

STFTx(t, f) =

∫ +∞

−∞

[x(t′)g∗(t′ − t)]e−j2πft′dt′

x(t) =

∫ +∞

−∞

∫ +∞

−∞

STFTx(t
′, f ′)g(t− t′)ej2πf

′t′dt′df ′

where x(k) is the original signal, t and g represent time shift

(overlapping part) and window size respectively, and the ∗
represents a complex conjugate. We discretize STFTx(t, f)
calculated by continuous STFT in order to achieve it by

computer. This equation shows how to obtain the converted

signal F (t, f) [55]:

F (t, f) = STFTx(k)(t, f) =
∞
∑

k=−∞

x(k)g(k − t)e−iωk

We also can reconstruct the original temporal spectrum by the

inverse STFT whose formula is as follows:

x(k) =
∞
∑

t=−∞

∞
∑

f=−∞

F ′(t, f)g(k − t)e−iωk

B. Model structure

This paper uses ViT as the baseline model and adopts the

TUH dataset with long-term EEG signals of seizures to train

the model to achieve optimal results. We improved the baseline

model to apply it for signal processing whose idea is to apply

Transforms for Seizure Detection (TSD).

The architecture of TSD is shown in Fig 1. This model

divides the input signal into 200 patches, each with a size

of (50, 7). The next step is to project each patch into a

fixed-length vector and enter the patch into the Transformer.

The subsequent operation of encoders keeps the same as the

original Transformer. However, we added a specific token

into the input sequence whose corresponding output predicts

epileptic seizures. The eventual model is the output module to

translate the specific token.

1) Patch embedding: We divided a signal segment into fixed-

size patches, which aims to transform a signal problem into a

sequence-to-sequence problem. The input signal size is 5000×
14, which is split into patches with a resolution of 50 × 7.

Thus, each signal segment will generate 200 patches as the

input sequence length, and we flatted the 2D patches to a 1D

vector with 350 dimensions. The constant latent vector size

D = 16 is set as the dimension of the linear projection layer,

where we mapped the flattened patches to D-dimension space:

E0 = [eclass; e
1
p, e

2
p, . . . , e

N
p ] +PEpos

eip ∈ R
(P1×P2×C)×D,PEpos ∈ R

(N+1)×D

where [] represents the operation of concatenation, P1 is 50,

P2 is 7, C is 1, D is 16 and N is 200 and the way to add

PEpos is described in the next section. The eclass is pended

to represent the classification y of signals.

y = LN(E0
L)

where E0
L is the output of encoders, and LN is Layer Nor-

malization.

As a result, the dimension of sequential patches is 200 × 16
after passing through the linear projection layer, i.e., there are

a total of 200 tokens, and the dimension of each token is 16.

In addition, we added a ‘class’ token for outputting the final

predicted result. This operation increases the final dimension

to 201× 16.

2) Positional embedding: The positional coding is a standard

learnable 1D position embedding that serves as input vector

localization records [44]. It can be considered a table with

N + 1 rows total, each representing a vector with the same

dimensions as the input sequence embedding. In this model,

we designed a 1-channel and (201, 16) matrix as positional

embedding, with internal elements obeying a standard normal

distribution.

PEpos =







ep11
ep12

. . .
ep21

ep22
. . .

...
...

. . .







epij
∼ N(0, 1) i, j ∈ N

Please note the formula given in the Patch Embedding section,

the operation of the positional embedding is a summation

rather than a concatenation. Therefore, the dimension of the

input embedding sequence remains unchanged, although the

position information is added.
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Fig. 1: The TSD architecture consists of an input module, encoders, and an output module. The input module converts signals

into sequences and embeds them. Encoders employ a multi-head attention mechanism to identify input embeddings. The output

module extracts the specific token and obtains predictions.

3) Encoders: The Encoder is stacked with a couple of single

encoder blocks, each of which in this work consists of a multi-

head self-attention layer (MSA) and a multi-layer perception

(MLP). This model applied the multi-head attention mecha-

nism to conduct linear projections to promote the performance

of the TSD model [49]. There are 4 heads in this work

leading to 4 groups of Q,K,V with resolution(201, 4) and

concatenated the outputs of these groups.

E′

l = [SA1(LN(E(l−1))), SA2(LN(E(l−1))), . . . ,

SANH (LN(E(l−1)))] +E(l−1) l = 1 . . . L NH ∈ N
∗

where E′

l−1 is the output of last block and NH is the number

of heads.

The next part will focus on explaining the structure of the

multi-layer perception (MLP). The MLP can be considered

as a forward-feed neural network whose learning method is

backpropagation [56]. It scales the x in terms of proportion.

In the proposed model, this block consists of two linear layers

(LL) and a non-linear layer with activation function GELU

(Gaussian Error Linear Units) [57]:

GELU(x) = xP (X ≤ x)

= xφ(x)

= x ·
1

2
[1 + erf(

x
√
2
)]

≈ xσ(1.702x)

where x is the input value of the current neuron and σ function

is the sigmoid function because of its similarity with the

cumulative distribution of the normal distribution. According

to Hendrycks and Gimpel (2016), erf() is the Gauss error

function, which is defined as:

erf(x) =
2
√
π

∫ x

0

e−t2dt

The GELU determines whether x is preserved or not. The

results of the multi-head attention layer are normalized by the

layer and employed in this module:

El = LL(GELU(LL(LN(E′

l)))) +E′

l l = 1 . . . L

After each part, the present output is layer normalized. At the

same time, we added dropout layers to avoid overfitting, whose

essence is the achievement of regularization by randomly

ignoring half of the neurons.

4) Classification: Furthermore, we did not set decoders after

encoders, and the classification results in the output vector

will be extracted directly. The output z0L corresponding to the

special character ‘class’ will be used as the eventual output of

the encoder, representing the signal classification.

C. Evaluation metrics

In this work, we apply an evaluation metric: Area Under The

Curve Receiver Operating Characteristics (AUC-ROC).

1) Area Under The Curve Receiver Operating Characteristics

(AUC-ROC): AUC measures the separability of models and

ROC is a probability curve, which reports the ability to the

classification of the model [58]. A high AUC means that

the model tends to classify correctly. In contrast, a model

with an AUC close to 0 shows it reverses the two classes

of predictions. An AUC of 0.5 represents the failure of the

classification of the model. The AUC-ROC curve shows the

change in the ratio of the true-positive rate (TPR) to the

false-positive rate (FPR) with the typical and widely known

confusion matrix [59].

We take advantage of these indicators to compute TPR and

FPR.

TPR =
TP

TP+FN

FPR =
FP

TN+FP
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TABLE I: The summary of TUH dataset

Dataset attribute Train Dev Eva Tot

Files 4664 1832 881 7377

Sessions 1174 342 126 1642

Patients 579 53 43 675

Files with seizures 872 324 195 1391

Sessions with seizures 352 113 63 582

Patients with seizures 208 45 34 287

Number of seizures 2474 1086 469 4029

Total duration (hours) 910.3 435.5 129.9 1475.7

absz total duration(hours) 3.0 0.8 1.6 5.5

cpsz total duration(hours) 59.4 0.2 10.0 69.6

fnsz total duration(hours) 188.4 71.2 31.2 290.8

gnsz total duration(hours) 242.5 222.4 41.3 506.1

mysz total duration(hours) 7.9 0 0 7.9

spsz total duration(hours) 8.9 0 0 8.9

tcsz total duration(hours) 10.6 4.5 2.6 17.7

tnsz total duration(hours) 2.2 0.9 0.1 3.2

IV. EXPERIMENTS

This experiment was conducted on the TUH dataset which

was split into a training, a validation and a test set. The

data in these subsets were screened for EEG signals from

nineteen sensors and the recordings were divided into 12-

second segments. Next, these fragments are extracted with

time-frequency information using STFT. The model reads

the time-frequency graphs in the training set to train and

learn the characteristics of EEG signals of epileptic seizures,

validates and tests model’s hyperparameters on the validation

set, finally evaluates the model predictions on the test set.

At the same time, we differentiated the ability of the TSD

model to detect various types of seizures. In addition, we

illustrated the superiority of the TSD model by comparison

of the AUROC between the TSD model and other existing

techniques with the same window size and on TUH dataset.

A. Dataset

We use the Temple University Hospital (TUH) seizure corpus

v1.5.4 in our experiments to test the performance of the TSD

model. It is the most extensive open-source corpus of the

world’s EEG recordings of people with epilepsy. Shah et al.

in 2018 described that Temple University Hospital collected,

curated and organized clinical EEG data for 14 years. The

public can apply this corpus for medical experiments and it can

be downloaded from the Neural Engineering Data Consortium.

It provides three datasets: a training set, a development set and

an evaluation set. In the experiments, we used the training set

to train the model. In addition, the dataset mixed by the de-

velopment set and the evaluation set is divided into two parts,

one half is used to verify the efficiency of hyperparameters,

and the remaining is used as a test set to test the performance

of the model. The detailed subsets of data are summarised in

Table I.

In Table I, it can be seen that the proportion of normal EEG

signals in the training set is the largest, while the proportion of

EEG signals containing epileptic features in the development

set and evaluation set is more than that in the training set.

This is especially evident in the patient-related data because

it is shown that only 36% of patients in the training set were

Fig. 2: Visualizations of TUH dataset in terms of the dis-

tribution of different seizure types in three subsets. Seizure

types are explained in Table II. There are in total 7377 files

(of 1642 sessions for 675 patients) that we split into training

(63%, Train), development (25%, Dev), and evaluation (12%,

Eval), of which 18.7% of Train, 17.7% of Dev and 22.1% of

Eval are files that contain recorded and documented epileptic

seizures.

diagnosed with epilepsy, while in the development set and

evaluation set, it was as high as 84% and 79% respectively.

Such distribution difference indicates that the TSD architecture

has strong domain adaptability.

In addition, we conducted data analysis on the TUH dataset in

order to explain the feasibility of the TSD model in monitoring

EEG signals to detect seizures.

In Fig 2, we counted the proportions of different types of

seizure durations in the three data subsets. It can be observed

that in each subset, GNSZ has the largest proportion, followed

by FNSZ, and other rare epilepsy types have a small pro-

portion. Whereas in the training set and evaluation set, the

distribution of GNSZ and FNSZ is similar, accounting for

about 47% and 36%, respectively. In the development set, 74%

of epilepsy is GNSZ, and only 24% of epilepsy is FNSZ. In

addition, we noted that only the training set contains MYSZ

and SPSZ, while the development set and evaluation set do

not have data on these two types of epilepsy. Therefore, our

experiments could not verify the effectiveness of the TSD

model on identifying MYSZ and SPSZ.

In Table II, we described the seizure types we classified in this

work and which labels were used to annotate their abnormal

EEG segments.

B. Results

We adopted the AUROC as the main evaluation indicator

for epileptic detection. The trend of loss and AUROC in the

training and validation sets is shown in Fig 3 during the TSD
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TABLE II: The summary of classified types of seizures.

Annotated

labels
Seizure type Description

fnsz

Focal
nonspecific
seizure.

The origination of Focal seizures is only one hemisphere, and it prefers to propagate the ipsilateral and/or
contra-lateral hemisphere [6].

gnsz
Generalized
seizure.

The origination of Generalized seizure is at a certain point in both hemispheres, and it engages rapidly
bilaterally distributed networks [6].

spsz
Simple partial
seizure.

Simple partial seizure is defined that awareness is preserved during the seizure onsets, and it was revised as
aware seizure in 2014 by [6].

cpsz
Complex
partial seizure.

Complex partial seizure is defined as impaired at any point when the seizure onsets, and it was revised as
impaired awareness seizure in 2014 by [6].

absz
Absence
seizure.

Absence seizure refers to brief, sudden lapses in attention provoked by hyperventilation [6].

tnsz Tonic seizure.
A tonic seizure causes unawareness and muscle contractions of the limbs, which are ongoing from 3 seconds
to 2 minutes and a more severe one may include a vibratory component [6].

tcsz
Tonic-clonic
seizure.

A tonic-clonic seizure occurs in unconscious patients with tonic (increased tone) and a clonic (sustained
rhythmic jerking) [6].

mysz
Myoclonic
seizure.

A myoclonic seizure causes brief muscle contractions lasting more than 30 minutes and with partial
awareness [6].

model training with the best results. At the same time, we

also conducted other ablation experiments to demonstrate the

necessity of various methods in data preprocessing (Appendix

A).

Table III shows the performance of the TSD model and a

comparison with the previous studies on the same public

dataset with the same window size.

According to Table III, the previous studies performed poorly

on large datasets, with a low AUROC, only reached 86.6% at

the highest, which is the Dist-DCRNN with Pre-training. Our

model achieved an AUCROC of 92.1%. The AUROC of our

model for identifying epileptic onset with 12s clip is 5.5%

higher than previous state-of-the-art results and we did not

pre-train the TSD model. In addition, the improvement in the

original model boosted the model performance by 8.3%. We

attempted to transfer the input domain to enhance the ability

to identify seizures in long-term EEG signals, illustrating that

the input domain plays a significant role in seizure detection

accuracy. At the same time, the utility of bipolar montages just

slightly promotes the AUROC by 0.7%, which is not a obvious

performance progress. However, it facilitates the interpretation

of the TSD model for seizure detection.

1) Sensitivity to different types of epilepsy: In this section,

we examined the sensitivity of the TSD model to different

types of epilepsy on the development and evaluation sets to

compare the performance of the TSD model for classifying

EEG signals. It can be observed in Table IV that for common

epilepsy types, the TSD model can detect 96.3% of CPSZ and

91.5% of FNSZ. However, the sensitivity of the GNSZ is only

80.9%. In addition, the model can also sensitively identify rare

epilepsy, such as the recall rates of TCSZ and TNSZ are 87.6%

and 92.2%, respectively. It is worth noting that although the

sensitivity to ABSZ is as high as 100%, considering the short

duration of ABSZ in the development and evaluation set, the

statistical result about ABSZ has low credibility.

2) Impacts of STFT: In this section, we showed how tuning

parameters of STFT affect the accuracy of seizure identifi-

cation in Fig 4. In the experiments, we refined the window

overlap with fixed window size and frequency resolution. In

Fig 4, the AUCROC of the proposed TSD model fluctuates

with the change of window overlap until reaching the optimal

value of 92.1% when the overlap rate is 20%.

3) Impacts of input domain: We compared the effect of differ-

ent input domains on seizure detection results. We applied the

Fast Fourier Transform (FFT) for the extraction of frequency

information. FFT is a common method to process signals. The

results show that the extraction of temporal domain informa-

tion is more critical for the model to learn the EEG features

of epileptic patients than the frequency domain information

since the change in the input domain of the model from

the temporal domain to the frequency domain decreased the

AUROC of the model from 84.5% to 70.2%. However, when

we simultaneously extracted the time-frequency information

of the input EEG signal and fed it as the model input,

the model performance for seizure detection increased to

92.1%. Such advances suggest that connection in the time-

frequency domain promotes the model’s effectiveness, which

is consistent with the conclusion of [22].

4) Superiority: The AUROC of our baseline model without

preprocessing the data is only 2.8% lower than the previous

state-of-the-art. Notably, Tang et al. in 2021 used a self-

supervised pre-training approach to improve model accuracy.

At the same time, Tang et al. also used GNN technology to

deal with the non-Euclidean structure of nodes to optimize

the model performance, which consumes a lot of time and

resources. Yang et al. in 2022 post-processed the output

results. The output results of the Conv-LSTM algorithm is sent

to a postprocessing algorithm to review the results in real-time

and make a decision. Our model improves on the previously

published model, indicating the superior model initialization

and strong large-scale learning ability of TSD. Therefore, we

consider that our model can scale and, upon application to

clinics, reduce the economic and human burden of long-term

EEG monitoring.
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Fig. 3: The training process of the proposed model with BM and STFT.

TABLE III: The comparisons of the proposed model with other current models on TUH dataset.

Model Reference Input Domain
Seizure Detection

AUROC (12s windows)%

Dist-DCRNN w/o Pre-training [22] Frequency 82.4

Dist-DCRNN w/ Pre-training [22] Frequency 86.6

Conv-LSTM [9] Frequency 84.7

TSD w/o BM & STFT This work Time 83.8

TSD w/ BM & w/o STFT This work Time 84.5

TSD w/ BM & FFT This work Frequency 70.2

TSD w/ BM & STFT w/o Pre-training This work Time & Frequency 92.1

Fig. 4: Results with different STFT parameters. Fig (a) shows the changing trend of AUC with the length of a segment. Fig

(b) shows the trend of AUC with the increase in overlap rate. Fig (c) documents the AUC of the proposed model with different

frequency resolutions.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 25, 2023. ; https://doi.org/10.1101/2023.01.24.525308doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.24.525308
http://creativecommons.org/licenses/by/4.0/


9

TABLE IV: Sensitivity to different types of seizure.

Seizure type Sensitivity (%)

ABSZ 100

CPSZ 96.3

FNSZ 91.5

GNSZ 80.9

TCSZ 87.6

TNSZ 92.2

V. CONCLUSION

In conclusion, we proposed a TSD algorithm for learning EEG

recordings and monitoring epilepsy. We also validated the

ability of the TSD model to detect epilepsy on a large corpus

of public EEG recordings TUH. We significantly improved

the performance of state-of-the-art AI algorithms for seizure

detection and classification and compared the impact of the

data-preprocessing methods and the input domain on the

model’s ability to identify seizures. In addition, we demon-

strated that our model has excellent model initialization and

is more conducive to overcoming the patient-specific problems

of existing seizure detection instruments.

In the future, it is worth using the proposed model for EEG-

based epilepsy classification to locate the lesion location of

epileptic seizures. This attempt can facilitate clinicians’ current

dilemma in the seizure onset area. Furthermore, Our model did

not distinguish between patient age groups to verify whether

the TSD model has the same effect on different age groups. In

fact, real-world seizure detection in neonates and children is

a more challenging limitation. Therefore, our future direction

will focus on improving the model for application in neonatal

and childhood epilepsy screening.
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APPENDIX A

SETUP IN ABLATION EXPERIMENTS

We conducted three ablation experiments on TSD with dif-

ferent data-processing methods. (1) We split the raw EEG

signals in the dataset into 12s clips. Then these segments are

directly used as the input of the TSD model. (2) We built a

bipolar montage with the original signal after we segmented

the original signal. (3) On the basis of bipolar montage, we

used FFT to convert the information in each 12s segment from

the time domain to the frequency domain. We demonstrated

the trend of AUC during training for these three ablation

experiments in Fig 5.
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Fig. 5: The training process of the proposed model in all ablation experiments
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