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Abstract

Underrepresented populations are often excluded from genomic studies due in part to a lack of
resources supporting their analysis. The 1000 Genomes Project (1kGP) and Human Genome
Diversity Project (HGDP), which have recently been sequenced to high coverage, are valuable
genomic resources because of the global diversity they capture and their open data sharing
policies. Here, we harmonized a high quality set of 4,096 whole genomes from HGDP and 1kGP
with data from gnomAD and identified over 155 million high-quality SNVs, indels, and SVs. We
performed a detailed ancestry analysis of this cohort, characterizing population structure and
patterns of admixture across populations, analyzing site frequency spectra, and measuring
variant counts at global and subcontinental levels. We also demonstrate substantial added value
from this dataset compared to the prior versions of the component resources, typically
combined via liftover and variant intersection; for example, we catalog millions of new genetic
variants, mostly rare, compared to previous releases. In addition to unrestricted individual-level
public release, we provide detailed tutorials for conducting many of the most common quality
control steps and analyses with these data in a scalable cloud-computing environment and
publicly release this new phased joint callset for use as a haplotype resource in phasing and
imputation pipelines. This jointly called reference panel will serve as a key resource to support

research of diverse ancestry populations.
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Introduction

The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP) have been
among the most valuable genomic resources because of the breadth of global diversity they
capture and their open sharing policies with consent to release unrestricted individual-level data
5. Consequently, genetic data from these resources have been routinely generated using the
latest genomics technologies and serve as a ubiquitous resource of globally diverse populations
for a wide range of disease, evolutionary, and technical studies. These projects are
complementary; the 1000 Genomes Project is larger and has consisted of whole genome
sequencing (WGS) data for many years; as such, it has been the default population genetic
reference dataset, consisting of 3,202 genomes including related individuals that were recently
sequenced to high coverage . The 1000 Genomes Project has also been the most widely
used haplotype resource, serving as a reference panel for phasing and imputation of genotype
data for many genome-wide association studies (GWAS)®°. HGDP was founded three decades
ago by population geneticists to study human genetic variation and evolution and was designed
to span a greater breadth of diversity, though with fewer individuals from each component
population '*™. Originally assayed using only GWAS array data, the 948 individuals have
recently undergone deep WGS and fill some major geographic gaps not represented in the
1000 Genomes Project, for example in the Middle East, sub-Saharan Africa, parts of the

Americas, and Oceania .

The 1kGP and HGDP datasets have been invaluable separately, but far larger genomic data
aggregation efforts, such as gnomAD '? and TOPMed '3, have clearly demonstrated the utility of
harmonizing such datasets through the broad uptake of their publicly released summaries of
large numbers of high-quality whole genomes. For example, the gnomAD browser of allele

frequencies has vastly improved clinical interpretation of rare disease patients worldwide ™.
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Additionally, the TOPMed Imputation Server facilitates statistical genetic analyses of complex
traits by improving phasing and imputation accuracy compared to existing resources *. Yet,
without individual-level data access from these larger resources due to more restrictive
permissions, the 1kGP and HGDP genomes remain the most uniquely valuable resources for
many of the most common genetic analyses. These include genetic simulations, ancestry
analysis including local ancestry inference '°, genotype refinement of low-coverage genomes ',
granular allele frequency comparisons at the subcontinental level, investigations of

individual-level sequencing quality metrics, and many more.

Previously, researchers wishing to combine HGDP and 1kGP into a merged dataset were left
with suboptimal solutions. Specifically, the sequenced datasets had been called separately,
requiring intersection of previously called sites rather than a harmonized joint-callset.
Additionally, they were on different reference builds, requiring lifting over of a large dataset prior
to merging, which introduces errors and inconsistencies. Here, we have created a best-in-class
publicly released harmonized and jointly called resource of HGDP+1kGP on GRCh38 that will
facilitate analyses of diverse cohorts. This globally-representative haplotype resource better
captures the breadth of genetic variation across diverse geographical regions than previous
component studies. Specifically, we aggregated these genomes into gnomAD and then jointly
processed these 4,096 high-coverage whole genomes; jointly called variants consisting of single
nucleotide variants (SNVs), insertions/deletions (indels), and structural variants (SVs);
conducted harmonized sample and variant QC; and separately released these individual-level
genomes to facilitate a wide breadth of analyses. We quantify the number of variants identified
in this new callset compared to existing releases and identify more variants as a result of joint
variant calling; construct a resource of haplotypes for use as a phasing and imputation panel;

examine the ancestry composition of this diverse set of populations; and publicly release these
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data without restriction alongside detailed tutorials illustrating how to conduct many of the most

common genomic analyses.

Results

A harmonized resource of high-quality, high coverage diverse whole
genomes

Here, we have developed a high-quality resource of diverse human genomes for full
individual-level public release along with a guide for conducting the most common genetic
analyses. To this end, we first harmonized project meta-data and jointly called variants from
4,150 whole genomes recently sequenced to high coverage from the 1kGP and HGDP into
gnomAD (Table S1) "7, the latter of which are new to gnomAD. Figure 1A shows the locations
and sample sizes of populations included in this harmonized resource. After sample and variant
QC " including ancestry outlier removal (Table S$2, Methods), we identified 159,795,273
high-quality variants across 4,096 individuals, 3,378 of whom are inferred to be unrelated
(Methods, Table S3). We computed the mean coverage within each population and project
(Figure S1-2) as well as the mean number of SNVs per individual within each population to
better understand data quality and population genetic variation (Table S4). While coverage was
more variable among samples in HGDP (u=34, 0=6, range=23-75X) than in 1kGP (u=32, 0=3,
range=26-66X), consistent with older samples and more variable data generation strategies ',
all genomes had sufficient coverage to perform population genetic analysis. Consistent with
human population history and as seen before *, African populations had the most genetic
variation with 6.1M SNVs per individual, while out-of-Africa populations had an average of 5.3M
SNVs SNVs (Table S4, Figure 1B). The San had the most genetic variants as well as

singletons per genome on average overall (Table S4).
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We generated a jointly genotyped structural variants (SVs) callset with the HGDP genomes and
high-coverage 1kGP genomes 7 using the ensemble SV detection tool, GATK-SV '® (Figure S3).
In total, we identified 196,173 SV loci across all 4,150 HGDP and 1kGP samples. We detected a
median of 8,123 SVs in each genome consisting primarily of deletions, duplications, and
insertions (Figure 1). As expected, the frequencies of SVs were consistent with
Hardy-Weinberg Equilibrium (Figure S$4), and distributions matched expectations from previous
cohorts with the vast majority of SVs being rare (84.2% SVs are <1% allele frequency among
population). Additionally, SV size is inversely correlated with frequency "'®', with notable
exceptions of peaks consistent with known mobile elements, including ALU, LINE1, and SVA
(Figure 1). Consistent with shorter genetic variation, we observed a higher frequency of SVs in
African populations. The quality of our variant call sets have been evaluated using both the
short-read and long-read WGS data generated by the 1kGP and the human genome structural
variation consortium (HGSVC, ). High precision was observed in the SV call set-among the
34 overlapping samples, 91.9% of the SVs were overlapped by either a short-read or long-read
variant in the matched genome; the highest precision (97.6%) was observed for deletions
followed by insertions (91.4%) and duplications (89.3%) (Table S6). We observed some
differences in number SVs across samples from HGDP and 1kGP due to technical data

generation differences, such as PCR status (Figure S6).
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Figure 1 | Geographical locations and genetic variants across populations.
A) Global map indicating approximate geographical locations where samples were collected.

Coordinates were included for each population originating from the Geography of Genetic
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Variants browser as well as meta-data from the HGDP '2'. B) Mean number of SNVs versus
SVs per individual within each population. Colors are consistent with geographical/genetic
regions in A-B), as follows: AFR=African, AMR=admixed American, CSA=Central/South Asian,
EAS=East Asian, EUR=European, MID=Middle Eastern, OCE=0Oceanian. C) Sizes of SVs
decay in frequency with increasing size overall with notable exceptions of mobile elements,
including Alu, SVA, and LINE1. Abbreviations are deletion (DEL), duplication (DUP), copy

number variant (CNV), insertion (INS), inversion (INV), or complex rearrangement (CPX).

We examined global population genetic variation using principal component analysis (PCA) of
the harmonized HGDP and 1kGP resource (Figure 2). As expected, we find PC1 differentiates
AFR and non-AFR populations, PC2 differentiates EUR and EAS populations, and PC3-4
differentiate AMR and CSA populations. Subcontinental structure is also apparent in later PCs
and within genetic regions, which we define as group meta-data labels in HGDP+1kGP (Table
S1, Figure S7) roughly according to continental region. These results are recapitulated with the
likelihood model implemented in ADMIXTURE, where K=2 identifies similar structure in PC1,
K=3 identifies similar structure in PC2, and so on (Figure S7). The best fit value of K=6 shown

in Figure 2 was chosen based on 5-fold cross-validation error (Figure S8).
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Figure 2 | Global ancestry analysis of genetic structure in the HGDP and 1kGP resource.
Regional abbreviations are as follows: AFR=African, AMR=admixed American,
CSA=Central/South Asian, EAS=East Asian, EUR=European, MID=Middle Eastern,
OCE=0ceanian. A-B) Principal components analysis (PCA) plots for A) PC1 versus PC2 and B)
PC3 versus PC4 showing global ancestry structure across HGDP+1kGP. Subsequent PCs
separated structure within geographical/genetic regions (Figure $9). C) ADMIXTURE analysis

at the best fit value of K=6.

Population genetic variation within and between subcontinental populations

We investigated the ancestry composition of populations within harmonized meta-data labels
(AFR, AMR, CSA, EAS, EUR, MID, and OCE; Table $1) using principal component analysis
(PCA) and ADMIXTURE analysis. Subcontinental PCA highlights finer scale structure within

geographical/genetic regions (Figure S9). For example, within the AFR, the first several PCs

differentiate populations from South and Central African hunter-gatherer groups from others,
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then differentiate populations from East and West Africa. For AFR and AMR populations,
individuals cluster similarly to the global PCA, reflecting some global admixture present in these
populations. The MID and OCE populations are only made up of samples from the HGDP

dataset, as 1kGP did not contain samples from these regions.

We measured population genetic differentiation using common variants with Wright’s fixation
index, Fsr (Figure 3). When populations are clustered according to pairwise Fs; between
groups, they largely cluster by geographical/genetic region labels with a few exceptions. For
example, AMR populations are interspersed with other populations, consistent with having
variable ancestry proportions that span multiple continents. Additionally, the MID populations are
interspersed among the EUR populations. We also compared Fs; versus geographical distance,
recapitulating previous work showing a linear relationship %, but also showing that there are
differences by project; specifically, HGDP has a steeper slope relating distance to Fg;

(Figure 3), likely reflecting the anthropological design intended to capture more divergent

populations compared to the samples in 1kGP that reflect some of the largest populations.

Fsr measurements require group comparisons and are only based on common variants, which
typically arose early in human history. We also compared rare variant sharing via pairwise
doubleton counts (f, analyses, Figure 3). On average, pairs of individuals within a population
share 51.83 doubletons, although this varies considerably as a function of demography. For
example, due to the elevated number of variants in individuals of African descent (Figure 1),
pairs of individuals within AFR populations share on average 76.38 doubletons, whereas pairs
of individuals within out-of-Africa populations share 43.74 doubletons. Very few doubletons are
shared among pairs of individuals across populations within a geographical/genetic region

(mu=6.79, sd=18.31), and even fewer are shared among pairs of individuals across populations

11
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from different genetic regions (mu=0.8, sd=1.78). f, clustering tends to follow project meta-data

labels by geographical/genetic region, with a few exceptions.
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Figure 3 | Genetic differentiation measured using common variants with Fs; and rare
variants via f, analysis and relationship with geography.

A) Fsr heatmap illustrating genetic divergence between pairs of populations. B) Genetic
differentiation measured by Fg; versus geographical distance in meters. C) Heatmap of £,
comparisons of doubleton counts between pairs of individuals. Column colors at the leaves of
the dendrogram show colors corresponding to meta-data genetic region, while row colors
correspond to population. Color bar indicates the number of doubletons shared across pairs of
individuals, with more doubletons shared among individuals within the same population and

genetic region versus across populations and genetic regions.

A catalog of known versus novel genomic variation compared to existing

datasets

To demonstrate the added benéefit of jointly calling these two datasets, we have compiled
metrics that compare our harmonized dataset with each individual dataset comprising it ', the
previous phase 3 1kGP dataset sequenced to lower coverage *, and the widely used gnomAD
dataset '. This jointly called HGDP+1kGP dataset contains 159,795,273 SNVs and indels that
pass QC, whereas phase 3 1kGP has 73,257,633, high-coverage WGS of 1kGP (referred to
here as NYGC 1kGP based on where they were sequenced) has 119,895,186, and
high-coverage WGS of HGDP (referred to here as Bergstrom HGDP based on the publication)
has 75,310,370. As reported previously, gnomAD has 644,267,978 high-quality SNVs and indels
7. Because gnomAD now contains both HGDP and 1kGP, we built a synthetic subset of
gnomAD that removes allele counts contributed by HGDP and 1kGP. When comparing the
HGDP+1kGP dataset to this synthetic version of gnomAD that excludes HGDP+1kGP, we show

that variants unique to gnomAD are disproportionately rare (Figure 4). In contrast, compared to
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the comprising datasets of HGDP only, the NYGC 1kGP only, and phase 3 1kGP, the
HGDP+1kGP dataset uniquely contributes a sizable fraction and number of variants spanning
the full allele frequency spectrum, including both rare and common variants (Figure 4).
However, rare variants are particularly enriched; in all of the comparison datasets aside from
gnomAD, the HGDP+1kGP dataset contains the largest proportion of rare variants. Few variants
in the phase3 1kGP dataset were not in the HGDP+1kGP dataset or NYGC 1kGP because

samples are entirely overlapping, as reported previously ”.

Bergstrom HGDP gnomAD

1,000,000,000

10,000,000

100,000

1,000

NYGC 1kGP Phase3 1kGP

1,000,000,000
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Minor Allele Frequency in HGDP+1kGP Dataset

B In comparison dataset only [l In both HGDP+1kGP and comparison dataset [ll In HGDP+1kGP only

Figure 4 | Number of variants identified in this dataset compared to commonly used
existing datasets as a function of allele frequency.

The number of variants on a log scale is plotted by minor allele frequency bin within the
harmonized HGDP+1kGP dataset. We show variants found in the harmonized HGDP+1kGP
dataset only (red), variants shared between the harmonized dataset and each comparison

dataset (purple), and variants that are only found in each comparison dataset (blue).
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Facilitating broad uptake of HGDP+1kGP as a public resource via
development of detailed tutorials

In an effort to increase accessibility of this dataset, we have made publicly available tutorials of
our analyses implemented primarily in Hail (https://hail.is/). Hail is an open source,
Python-based, scalable tool for genomics that enables large-scale genetic analyses on the
cloud. Tutorials can be accessed through Github via iPython notebooks

(https://github.com/atgu/hgdp tgp/tree/master/tutorials), and all underlying datasets are publicly

available in requester-pays Google Cloud Platform buckets.

These tutorials cover various aspects of quality control (QC) and analysis, including sample and
variant QC; visualizing distributions of QC statistics by metadata labels across diverse
populations; filtering variants using LD, allele frequency, and missingness information; inferring
relatedness; running PCA to infer ancestry; computing descriptive statistics including variant
counts and coverage metrics; conducting population genetic analyses; and intersecting external
datasets with HGDP+1kGP as a reference panel to apply ancestry models and infer metadata
labels (Figure 5). For example, we intersected the publicly available Gambian Genome
Variation (GGV) Project sequenced to low coverage with the HGDP+1kGP resource, trained a
random forest on HGDP+1kGP geographical/genetic region meta-data labels, then applied this
model to the GGV data to determine ancestry labels, which were all inferred to be AFR (Figure
$10). When intersecting external datasets to apply ancestry labels, an important consideration
is how many variants must overlap and how much missingness is tolerated to project external
samples into the same PCA space as the reference panel and assign metadata labels given
PCA shrinkage . We find that < 5% missingness is typically required to accurately assign
ancestry labels (Figure S12 and Table S7). In addition to all these analyses, we anticipate that

there will be additional uses of this resource not documented in these tutorials, such as for
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phasing and imputation. To facilitate these uses, we have phased the HGDP+1kGP dataset and
released these phased haplotypes that others can use to support phasing and imputation in
their own datasets. We have also developed computational pipelines implemented in GWASpy
that use these phased reference haplotypes, and tested these tools by applying phasing and

imputation to diverse samples genotyped as part of other ongoing work.

— B ~ e — TN B ~
{ Notebaok1 \ (2 Notebook 2 \ (" Notebook 3 o  Notabook 4 \ /Notebook 5 A
Sample, variant, and LD pruning, relatedness Calculate coverage and FST and f: population Intersect external
genotype QC filtering inference, PCA variant statistics by genetic analyses dataset, apply ancestry
population models to infer

metadata labels

Figure 5 | Overview of tutorials that use cloud computing to conduct common genetic
data analyses. We have developed five iPython notebooks with tutorials for conducting many of
the most common genetic analyses, including QC of sequencing data, relatedness inference
and PCA, calculating statistics by population, analyzing genetic divergence, and applying

ancestry analysis to a new dataset using HGDP+1kGP as a reference panel.

Discussion

The 1000 Genomes Project and Human Genome Diversity Project were landmark efforts to
increase the unrestricted public availability of genomic data from a geographically and
ancestrally diverse set of individuals. These resources have been widely used across research
efforts for decades, including as reference panels for ancestry inference, phasing, imputation,

genotype refinement, and investigations into population history and demography. However,
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these datasets have historically been discrete, leading to suboptimal intersections when a

combined analysis of all samples is required.

The harmonized variant processing, quality control, and improved coverage of variants across
the allele frequency spectrum in this jointly called resource will facilitate the improved study of
diverse populations. Due to our rapid release of the data pre-publication, the callset formally
released here has already been used as a resource of global diversity in the Genome
Aggregation Database (gnomAD) "7, the Pan-UK Biobank Project %, the Global Biobank
Meta-analysis Initiative (GBMI) °, and the Covid-19 Host Genetics Initiative ?°. A primary use of
this data is as a global reference for principal components analysis (PCA)--SNV loadings are
freely shared so that user cohorts can be aligned to the same PC space as this optimized
reference panel. In GBMI, harmonizing ancestry analysis with this resource served as a quality
control measure to ensure that ancestral groupings are being applied consistently and that
control for population stratification is being performed adequately %. Building on this approach
and given the critical need for greater diversity in genomic studies, sequencing centers can use
this resource in variant calling production pipelines to build dashboards that continuously

monitor the diversity of samples being sequenced in real time.

This callset is also phased for use as a haplotype resource, potentially providing higher phasing
and imputation accuracy particularly for underrepresented populations. While resources such as
the Haplotype Reference Consortium (HRC) and TOPMed Imputation Panel are already helpful
2128 they either provide individual-level data but lack diversity (HRC) or are very large with
significant diversity but do not share individual-level data (TOPMed). This limits the application
of new methods, such as those needed to support low-coverage sequencing, which is receiving
growing interest as it is comparable in cost to many genotype arrays and is especially beneficial

to underrepresented populations ?°. Combinations of high-coverage exome and low-coverage
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genome sequencing are also of growing interest and could be uniquely supported by this
resource. This resource will also be critical for developing computational and analytical tools for
genotype refinement, imputation, conducting data QC particularly across varying depths of
coverage, and evaluating technical biases. For example, we observed fewer SVs in the HGDP
genomes than 1kGP genomes among similar ancestry groups, which was primarily explained by

PCR+ and PCR-free sequencing libraries.

This resource also provides a more complete and granular capture of the full spectrum of
variation across the world that would be missed by intersecting the component datasets.
Because a variant’s frequency is one of its most informative features of its deleteriousness, the
globally diverse allele frequencies that we have released on the gnomAD browser ™ provides
additional scientific benefits by facilitating clinical variant interpretation across diverse
populations. This GRCh38 release of this resource along with detailed tutorials for many of the
most common genomic data analyses will also reduce barriers acknowledged by the vast
majority of clinical labs which have not yet migrated to the latest genome build, citing that they
do not feel the benefits outweigh the time and monetary costs and/or lack sufficient personnel to

do so *°.

While this resource is more globally representative than many existing public datasets, certain
geographic areas and ancestries are still underrepresented; for example, most genomic
resources are enriched for participants in high-income countries *' and there is particularly
sparse coverage in central and southern Africa where genetic diversity is among the highest in
the world. Some efforts that are already significantly underway, such as the H3Africa Initiative,
will be critical for increasing representation from some of these ancestries. Other ongoing
massive-scale efforts such as All of Us are also increasing representation from minority

populations in the United States in genomics research.
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As genetically diverse datasets continue to grow to massive scales, it will be invaluable for
researchers to be equipped with tools and resources that facilitate scalable and efficient
analysis. In the service of this goal, we concurrently release a series of detailed tutorials
designed to be easily accessible in iPython notebooks demonstrating many common genomic
analytic techniques as implemented in the cloud-native Hail software framework, which allows
for flexible, computationally efficient, and parallelized analysis of big data. These tutorials lower
the barrier for adoption of this resource and provide a code bank for researchers to conduct a
variety of analyses, including conducting quality control of whole genome sequencing data,
calculating variant and sample statistics within groups, analyzing population genetic variation,
and applying ancestry labels from a reference panel to their own data. Overall, resources like

this are essential for empowering genetic studies in diverse populations.

Methods

Genetic datasets

Human Genome Diversity Project (HGDP)

HGDP genomes sequenced and described previously ' were downloaded from
http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGDP/. Because the publicly
available gVCFs were not the output of GATK HaplotypeCaller and were incompatible with joint
calling, we reprocessed these genomes and conducted joint variant calling as part of gnomAD
v3 7. Most HGDP genomes were PCR-free (N=760), but some included PCR prior to

sequencing (N=161). They were also sequenced at different times, for example as part of the
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Simons Genome Diversity Project (SGDP, N=120) or later at the Sanger Institute (N=801). More

details are available from previous studies 32,

1000 Genomes Project (1kGP)

1kGP genomes have been sequenced as part of multiple efforts, first to mid-coverage as phase
3 of the 1kGP * and more recently to high-coverage (=30X) at the New York Genome Center
(NYGC) . We used the phase 3 1kGP genomes only for comparison to previous releases. The
high-coverage 1kGP genomes sequenced at the NYGC were downloaded from
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504 high_coverage/working/
20201028 _3202_raw_GT_with_annot/, which were harmonized with HGDP genomes to

generate the HGDP+1kGP call set.

Human Genome Structural Variation Consortium (HGSVC)

The HGSVC generated high-coverage long-read WGS data and genomic variant calls from 34
samples in the 1kGP project (Ebert et al. 2021). We have evaluated precision of the SV callset
by comparing against the long-read SV calls using these 34 genomes. The long-read SV calls

were collected from (will add 1kGP ftp here)

Genome Aggregation Database (gnomAD)

We compared the HGDP+1kGP resource to gnomAD v3.1.2, which includes both HGDP and
1kGP high-coverage whole genomes, to quantify the extent of novel variation across the allele
frequency spectrum contributed by these genomes. To generate allele counts and numbers in
gnomAD that would be consistent with a fully non-overlapping set of genomes, we subtracted
allele counts and allele numbers in the gnomAD variant call set that were contributed
specifically by the 1TkGP and HGDP genomes, effectively creating a synthetic version of

gnomAD without these genomes.
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Gambian Genome Variation Project (GGVP)

As part of tutorials that demonstrate how we can intersect an external dataset with HGDP+1kGP
and assign metadata labels, we intersected the HGDP+1kGP genomes with 394 Gambian
Genome Variation Project genomes which are publicly available through the IGSR
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/gambian_genome_variation_project/d
ata), as described previously *. Briefly, we first downloaded GGVP CRAM files. We then used
GATK HaplotypeCaller to run variant calling in GVCF mode on the 394 Gambian genomes BAM
files and generated per-sample gVCFs. The single-sample gVCFs were then combined into a
multi-sample Hail Sparse MatrixTable (MT) using Hail’s run_combiner() function. The GGV
Sparse MT was then combined using Hail’s vcf_combiner, with the HGDP+1kGP Sparse MT to
create a unique Sparse MT. Note that the Hail Sparse MatrixTable has since been replaced by

the Hail VariantDataset.

Dataset Comparisons

All of the comparison datasets used GRCh38 as their reference genome aside from phase 3
1kGP, which was on hg19 prior to liftover. The comparison datasets consisted of phase 3 of
1kGP 4, gnomAD v3.1.2 ', high coverage HGDP whole genome sequences ', and the New York
Genome Center (NYGC) 1000 Genomes Project 7. All of these datasets were sequenced to high
coverage (30X+) aside from the phase 3 1000 Genomes Project, which was sequenced to 4-8X
coverage. The NYGC dataset includes all of the original 2,504 samples from phase3 1kGP as

well as an additional 698 related samples.

Sample and variant QC

Quality control of samples was conducted according to procedures used in gnomAD ** but was

then modified to relax some gnomAD sample QC filters new to v3 in especially diverse or
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unique genomes. Specifically, the filters starting with ‘fail_’ indicate whether samples are outliers
in number of variants after regressing out principal components, which can indicate a sample
issue. However, we identified whole continental groups and populations that were removed due
solely to SNV and indel residual filters, especially those that were most genetically unique (i.e.,
San, Mbuti Pygmy, Biaka Pygmy, Bougainville, and Papuan). Additional individuals from the
LWK, Bantu Kenya, and Bantu South Africa populations were also removed solely on the basis

of the fail_n_snp_residual filter.

Before running any quality control filters, there were 211,358,784 variants and 4,151 samples.
We then applied gnomAD sample QC filters (excluding the filters starting with ‘fail_’), which
removed 31 samples. Next, we identified 22 ancestry outliers by conducting global and
subcontinental PCA within metadata genetic region labels (AFR, AMR, CSA, EAS, EUR, MID,
and OCE), and removed individuals who deviated substantially in PC space from others with the
same metadata label along the first 10 PCs. We also removed a duplicate sample. Lastly, we
subset to only variants which were flagged as passing the gnomAD QC pipeline, as described
previously 4. After filtering, there were 155,648,020 variants and 4,096 individuals included in

the dataset.

The number of SNVs was calculated using Hail's sample_qc() method. Because singletons are
especially sensitive to variation in sample size per population which is substantial across HGDP
and 1kGP, we compared singleton counts by randomly downsampling to 6 unrelated samples,
the minimum number of individuals per population, then removed monomorphic variants.
Coverage data was computed in gnomAD from the bam metrics field. We then calculated the

mean of these metrics per individual within a population using Hail’s hl.agg.stats() method .
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Relatedness

We computed relatedness using the PC-Relate algorithm *¢ implemented in Hail. Specifically, we
considered SNVs with a minor allele frequency of 0.05, 20 PCs, and allowed kinship coefficients
up to 0.05 using the min_individual_maf=0.05, min_kinship=0.05, statistics='kin', k=20

arguments.

PCA

We computed 20 PCs across global populations as well as within each continental ancestry
group according to the Genetic.region project metadata harmonized across HGDP and 1kGP as
shown in Table S1. We first filtered to samples and variants that passed QC. We required that
SNVs have MAF > 0.05 and missingness < 0.1%. We then performed LD pruning within a 500kb
window, restricting to variants with r? < 0.1, leaving 255,666 variants for analysis. Finally, we
computed relatedness as described above and restricted to a maximally independent set of

unrelated individuals.

Using this filtered dataset, we ran PCA both globally and within metadata labels (AFR, AMR,
CSA, EAS, EUR, MID, and OCE) in unrelated individuals using Hail's hwe_normalized_pca()
function, then projected related individuals into that PC space using a pc_project() function used

in gnomAD and implemented in Hail.

Structural variants

Initial SV discovery and pruning
We applied GATK-SV ' to integrate and genotype SVs from the HGDP and 1kGP samples.

Briefly, the HGDP samples were split into batches, each consisting of ~190 samples, based on
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their initial cohort, PCR status, sex, and sequencing depth of the libraries (Figure S3). Raw
Initial SVs were detected per sample by Manta ", Wham *, cnMOPs *°, and GATK-gCNV “° and
then were clustered across each batch and filtered through an initial random forest machine
learning model to remove potential false positive SVs. We then jointly genotyped SVs across all
batches using a non-redundant union of SVs. Partially overlapping SVs were either re-clustered
into a unique SV or resolved into complex events. We observed mosaicism resulting from gain
or loss of X and Y chromosomes for several samples (Table S5), likely due to a cell line artifact
from passaging. While mosaic loss of the Y chromosome is the most common form of clonal
mosaicism *', the non-canonical sex chromosome ploidies observed are not unique to these

samples and have been previously observed in other datasets 78,

SV refinement and annotation

A series of refinements have been applied to improve the precision of SV calls while maintaining
high sensitivity. First, two machine learning models have been developed and applied to prune
false positive SVs. A lightGBM model has been trained on the 9 1kGP samples that have been
deep sequenced with long-read WGS data by the HGSVC %42, and applied to all SVs except for
large bi-allelic CNVs (>5Kb). Details of the lightGBM model can be found in ’. Meanwhile, a
minGQ model has been trained using the inheritance information among trio families to filter
bi-allelic CNVs that are 5Kb and above. Details of this model can be found in '®. Genomes that
failed the machine learning models were assigned a null genotype, and the proportion of null
genotypes among all samples were calculated as an “no call rate” (NCR) score. SV sites that
have a 10% or higher NCR were labeled as low quality variants and removed from further
analyses. Then, we examined the distribution of SVs per genome to identify potential outlier
samples that carry significantly more SVs than average, and also compared the frequency of
SVs across each batch to identify SVs that showed significant bias (i.e. batch effects). The

resulting SV callset were annotated with their frequency by their ancestry.
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Phased haplotypes

The haplotype phasing was split into three steps: (1) scatter; (2) phasing; (3) concatenation.
Firstly, the data was split into chunks of window size 10.0cM with 2.0cM overlap between each
chunk. SHAPEIT4 was then used to phase each chunk. The phased chunks were then
concatenated into chromosomes using bcftools. For the chunk in the
chr1:120246522-149637342 region, SHAPEIT4 always failed after the second main iteration
step of MCMC when the default 5b,1p, 1b,1p, 1b, 1p,5m sequence was used. As a workaround,

we lowered the number of main iterations in the chunk to 2 from 5 (56b,1p,1b,1p,1b,1p,2m).

Code

https://qithub.com/atgu/hgdp tap

Data availability

All data are freely available and described more completely here:

https://gnomad.broadinstitute.org/news/2020-10-gnomad-v3-1-new-content-methods-annotation

s-and-data-availability/#the-gnomad-hgdp-and-1000-genomes-callset. Phased haplotypes are

available in BCFs here: gs://gcp-public-data--gnomad/resources/hgdp_1kg/phased_haplotypes/.
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