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Abstract

Underrepresented populations are often excluded from genomic studies due in part to a lack of

resources supporting their analysis. The 1000 Genomes Project (1kGP) and Human Genome

Diversity Project (HGDP), which have recently been sequenced to high coverage, are valuable

genomic resources because of the global diversity they capture and their open data sharing

policies. Here, we harmonized a high quality set of 4,096 whole genomes from HGDP and 1kGP

with data from gnomAD and identified over 155 million high-quality SNVs, indels, and SVs. We

performed a detailed ancestry analysis of this cohort, characterizing population structure and

patterns of admixture across populations, analyzing site frequency spectra, and measuring

variant counts at global and subcontinental levels. We also demonstrate substantial added value

from this dataset compared to the prior versions of the component resources, typically

combined via liftover and variant intersection; for example, we catalog millions of new genetic

variants, mostly rare, compared to previous releases. In addition to unrestricted individual-level

public release, we provide detailed tutorials for conducting many of the most common quality

control steps and analyses with these data in a scalable cloud-computing environment and

publicly release this new phased joint callset for use as a haplotype resource in phasing and

imputation pipelines. This jointly called reference panel will serve as a key resource to support

research of diverse ancestry populations.
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Introduction

The 1000 Genomes Project (1kGP) and Human Genome Diversity Project (HGDP) have been

among the most valuable genomic resources because of the breadth of global diversity they

capture and their open sharing policies with consent to release unrestricted individual-level data

1–5. Consequently, genetic data from these resources have been routinely generated using the

latest genomics technologies and serve as a ubiquitous resource of globally diverse populations

for a wide range of disease, evolutionary, and technical studies. These projects are

complementary; the 1000 Genomes Project is larger and has consisted of whole genome

sequencing (WGS) data for many years; as such, it has been the default population genetic

reference dataset, consisting of 3,202 genomes including related individuals that were recently

sequenced to high coverage 6,7. The 1000 Genomes Project has also been the most widely

used haplotype resource, serving as a reference panel for phasing and imputation of genotype

data for many genome-wide association studies (GWAS)8,9. HGDP was founded three decades

ago by population geneticists to study human genetic variation and evolution and was designed

to span a greater breadth of diversity, though with fewer individuals from each component

population 10,11. Originally assayed using only GWAS array data, the 948 individuals have

recently undergone deep WGS and fill some major geographic gaps not represented in the

1000 Genomes Project, for example in the Middle East, sub-Saharan Africa, parts of the

Americas, and Oceania 1.

The 1kGP and HGDP datasets have been invaluable separately, but far larger genomic data

aggregation efforts, such as gnomAD 12 and TOPMed 13, have clearly demonstrated the utility of

harmonizing such datasets through the broad uptake of their publicly released summaries of

large numbers of high-quality whole genomes. For example, the gnomAD browser of allele

frequencies has vastly improved clinical interpretation of rare disease patients worldwide 14.
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Additionally, the TOPMed Imputation Server facilitates statistical genetic analyses of complex

traits by improving phasing and imputation accuracy compared to existing resources 13. Yet,

without individual-level data access from these larger resources due to more restrictive

permissions, the 1kGP and HGDP genomes remain the most uniquely valuable resources for

many of the most common genetic analyses. These include genetic simulations, ancestry

analysis including local ancestry inference 15, genotype refinement of low-coverage genomes 16,

granular allele frequency comparisons at the subcontinental level, investigations of

individual-level sequencing quality metrics, and many more.

Previously, researchers wishing to combine HGDP and 1kGP into a merged dataset were left

with suboptimal solutions. Specifically, the sequenced datasets had been called separately,

requiring intersection of previously called sites rather than a harmonized joint-callset.

Additionally, they were on different reference builds, requiring lifting over of a large dataset prior

to merging, which introduces errors and inconsistencies. Here, we have created a best-in-class

publicly released harmonized and jointly called resource of HGDP+1kGP on GRCh38 that will

facilitate analyses of diverse cohorts. This globally-representative haplotype resource better

captures the breadth of genetic variation across diverse geographical regions than previous

component studies. Specifically, we aggregated these genomes into gnomAD and then jointly

processed these 4,096 high-coverage whole genomes; jointly called variants consisting of single

nucleotide variants (SNVs), insertions/deletions (indels), and structural variants (SVs);

conducted harmonized sample and variant QC; and separately released these individual-level

genomes to facilitate a wide breadth of analyses. We quantify the number of variants identified

in this new callset compared to existing releases and identify more variants as a result of joint

variant calling; construct a resource of haplotypes for use as a phasing and imputation panel;

examine the ancestry composition of this diverse set of populations; and publicly release these
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data without restriction alongside detailed tutorials illustrating how to conduct many of the most

common genomic analyses.

Results

A harmonized resource of high-quality, high coverage diverse whole

genomes

Here, we have developed a high-quality resource of diverse human genomes for full

individual-level public release along with a guide for conducting the most common genetic

analyses. To this end, we first harmonized project meta-data and jointly called variants from

4,150 whole genomes recently sequenced to high coverage from the 1kGP and HGDP into

gnomAD (Table S1) 1,7, the latter of which are new to gnomAD. Figure 1A shows the locations

and sample sizes of populations included in this harmonized resource. After sample and variant

QC 17 including ancestry outlier removal (Table S2, Methods), we identified 159,795,273

high-quality variants across 4,096 individuals, 3,378 of whom are inferred to be unrelated

(Methods, Table S3). We computed the mean coverage within each population and project

(Figure S1-2) as well as the mean number of SNVs per individual within each population to

better understand data quality and population genetic variation (Table S4). While coverage was

more variable among samples in HGDP (μ=34, σ=6, range=23-75X) than in 1kGP (μ=32, σ=3,

range=26-66X), consistent with older samples and more variable data generation strategies 1,

all genomes had sufficient coverage to perform population genetic analysis. Consistent with

human population history and as seen before 4, African populations had the most genetic

variation with 6.1M SNVs per individual, while out-of-Africa populations had an average of 5.3M

SNVs SNVs (Table S4, Figure 1B). The San had the most genetic variants as well as

singletons per genome on average overall (Table S4).
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We generated a jointly genotyped structural variants (SVs) callset with the HGDP genomes and

high-coverage 1kGP genomes 7 using the ensemble SV detection tool, GATK-SV 18 (Figure S3).

In total, we identified 196,173 SV loci across all 4,150 HGDP and 1kGP samples. We detected a

median of 8,123 SVs in each genome consisting primarily of deletions, duplications, and

insertions (Figure 1). As expected, the frequencies of SVs were consistent with

Hardy-Weinberg Equilibrium (Figure S4), and distributions matched expectations from previous

cohorts with the vast majority of SVs being rare (84.2% SVs are <1% allele frequency among

population). Additionally, SV size is inversely correlated with frequency 7,18,19, with notable

exceptions of peaks consistent with known mobile elements, including ALU, LINE1, and SVA

(Figure 1). Consistent with shorter genetic variation, we observed a higher frequency of SVs in

African populations. The quality of our variant call sets have been evaluated using both the

short-read and long-read WGS data generated by the 1kGP and the human genome structural

variation consortium (HGSVC, 7,20). High precision was observed in the SV call set–among the

34 overlapping samples, 91.9% of the SVs were overlapped by either a short-read or long-read

variant in the matched genome; the highest precision (97.6%) was observed for deletions

followed by insertions (91.4%) and duplications (89.3%) (Table S6). We observed some

differences in number SVs across samples from HGDP and 1kGP due to technical data

generation differences, such as PCR status (Figure S6).

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.23.525248doi: bioRxiv preprint 

https://paperpile.com/c/dM2Jf7/DOHC
https://paperpile.com/c/dM2Jf7/3RhM
https://paperpile.com/c/dM2Jf7/NkZr+DOHC+3RhM
https://paperpile.com/c/dM2Jf7/hoOs+DOHC
https://doi.org/10.1101/2023.01.23.525248
http://creativecommons.org/licenses/by/4.0/


Figure 1 | Geographical locations and genetic variants across populations.

A) Global map indicating approximate geographical locations where samples were collected.

Coordinates were included for each population originating from the Geography of Genetic
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Variants browser as well as meta-data from the HGDP 1,21. B) Mean number of SNVs versus

SVs per individual within each population. Colors are consistent with geographical/genetic

regions in A-B), as follows: AFR=African, AMR=admixed American, CSA=Central/South Asian,

EAS=East Asian, EUR=European, MID=Middle Eastern, OCE=Oceanian. C) Sizes of SVs

decay in frequency with increasing size overall with notable exceptions of mobile elements,

including Alu, SVA, and LINE1. Abbreviations are deletion (DEL), duplication (DUP), copy

number variant (CNV), insertion (INS), inversion (INV), or complex rearrangement (CPX).

We examined global population genetic variation using principal component analysis (PCA) of

the harmonized HGDP and 1kGP resource (Figure 2). As expected, we find PC1 differentiates

AFR and non-AFR populations, PC2 differentiates EUR and EAS populations, and PC3-4

differentiate AMR and CSA populations. Subcontinental structure is also apparent in later PCs

and within genetic regions, which we define as group meta-data labels in HGDP+1kGP (Table

S1, Figure S7) roughly according to continental region. These results are recapitulated with the

likelihood model implemented in ADMIXTURE, where K=2 identifies similar structure in PC1,

K=3 identifies similar structure in PC2, and so on (Figure S7). The best fit value of K=6 shown

in Figure 2 was chosen based on 5-fold cross-validation error (Figure S8).
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Figure 2 | Global ancestry analysis of genetic structure in the HGDP and 1kGP resource.

Regional abbreviations are as follows: AFR=African, AMR=admixed American,

CSA=Central/South Asian, EAS=East Asian, EUR=European, MID=Middle Eastern,

OCE=Oceanian. A-B) Principal components analysis (PCA) plots for A) PC1 versus PC2 and B)

PC3 versus PC4 showing global ancestry structure across HGDP+1kGP. Subsequent PCs

separated structure within geographical/genetic regions (Figure S9). C) ADMIXTURE analysis

at the best fit value of K=6.

Population genetic variation within and between subcontinental populations

We investigated the ancestry composition of populations within harmonized meta-data labels

(AFR, AMR, CSA, EAS, EUR, MID, and OCE; Table S1) using principal component analysis

(PCA) and ADMIXTURE analysis. Subcontinental PCA highlights finer scale structure within

geographical/genetic regions (Figure S9). For example, within the AFR, the first several PCs

differentiate populations from South and Central African hunter-gatherer groups from others,
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then differentiate populations from East and West Africa. For AFR and AMR populations,

individuals cluster similarly to the global PCA, reflecting some global admixture present in these

populations. The MID and OCE populations are only made up of samples from the HGDP

dataset, as 1kGP did not contain samples from these regions.

We measured population genetic differentiation using common variants with Wright9s fixation

index, FST (Figure 3). When populations are clustered according to pairwise FST between

groups, they largely cluster by geographical/genetic region labels with a few exceptions. For

example, AMR populations are interspersed with other populations, consistent with having

variable ancestry proportions that span multiple continents. Additionally, the MID populations are

interspersed among the EUR populations. We also compared FST versus geographical distance,

recapitulating previous work showing a linear relationship 22, but also showing that there are

differences by project; specifically, HGDP has a steeper slope relating distance to FST

(Figure 3), likely reflecting the anthropological design intended to capture more divergent

populations compared to the samples in 1kGP that reflect some of the largest populations.

FST measurements require group comparisons and are only based on common variants, which

typically arose early in human history. We also compared rare variant sharing via pairwise

doubleton counts (f2 analyses, Figure 3). On average, pairs of individuals within a population

share 51.83 doubletons, although this varies considerably as a function of demography. For

example, due to the elevated number of variants in individuals of African descent (Figure 1),

pairs of individuals within AFR populations share on average 76.38 doubletons, whereas pairs

of individuals within out-of-Africa populations share 43.74 doubletons. Very few doubletons are

shared among pairs of individuals across populations within a geographical/genetic region

(mu=6.79, sd=18.31), and even fewer are shared among pairs of individuals across populations

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.23.525248doi: bioRxiv preprint 

https://paperpile.com/c/dM2Jf7/JNxT
https://doi.org/10.1101/2023.01.23.525248
http://creativecommons.org/licenses/by/4.0/


from different genetic regions (mu=0.8, sd=1.78). f2 clustering tends to follow project meta-data

labels by geographical/genetic region, with a few exceptions.
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Figure 3 | Genetic differentiation measured using common variants with FST and rare

variants via f2 analysis and relationship with geography.

A) FST heatmap illustrating genetic divergence between pairs of populations. B) Genetic

differentiation measured by FST versus geographical distance in meters. C) Heatmap of f2

comparisons of doubleton counts between pairs of individuals. Column colors at the leaves of

the dendrogram show colors corresponding to meta-data genetic region, while row colors

correspond to population. Color bar indicates the number of doubletons shared across pairs of

individuals, with more doubletons shared among individuals within the same population and

genetic region versus across populations and genetic regions.

A catalog of known versus novel genomic variation compared to existing

datasets

To demonstrate the added benefit of jointly calling these two datasets, we have compiled

metrics that compare our harmonized dataset with each individual dataset comprising it 1,7, the

previous phase 3 1kGP dataset sequenced to lower coverage 4, and the widely used gnomAD

dataset 17. This jointly called HGDP+1kGP dataset contains 159,795,273 SNVs and indels that

pass QC, whereas phase 3 1kGP has 73,257,633, high-coverage WGS of 1kGP (referred to

here as NYGC 1kGP based on where they were sequenced) has 119,895,186, and

high-coverage WGS of HGDP (referred to here as Bergstrom HGDP based on the publication)

has 75,310,370. As reported previously, gnomAD has 644,267,978 high-quality SNVs and indels

17. Because gnomAD now contains both HGDP and 1kGP, we built a synthetic subset of

gnomAD that removes allele counts contributed by HGDP and 1kGP. When comparing the

HGDP+1kGP dataset to this synthetic version of gnomAD that excludes HGDP+1kGP, we show

that variants unique to gnomAD are disproportionately rare (Figure 4). In contrast, compared to
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the comprising datasets of HGDP only, the NYGC 1kGP only, and phase 3 1kGP, the

HGDP+1kGP dataset uniquely contributes a sizable fraction and number of variants spanning

the full allele frequency spectrum, including both rare and common variants (Figure 4).

However, rare variants are particularly enriched; in all of the comparison datasets aside from

gnomAD, the HGDP+1kGP dataset contains the largest proportion of rare variants. Few variants

in the phase3 1kGP dataset were not in the HGDP+1kGP dataset or NYGC 1kGP because

samples are entirely overlapping, as reported previously 7.

Figure 4 | Number of variants identified in this dataset compared to commonly used

existing datasets as a function of allele frequency.

The number of variants on a log scale is plotted by minor allele frequency bin within the

harmonized HGDP+1kGP dataset. We show variants found in the harmonized HGDP+1kGP

dataset only (red), variants shared between the harmonized dataset and each comparison

dataset (purple), and variants that are only found in each comparison dataset (blue).
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Facilitating broad uptake of HGDP+1kGP as a public resource via

development of detailed tutorials

In an effort to increase accessibility of this dataset, we have made publicly available tutorials of

our analyses implemented primarily in Hail (https://hail.is/). Hail is an open source,

Python-based, scalable tool for genomics that enables large-scale genetic analyses on the

cloud. Tutorials can be accessed through Github via iPython notebooks

(https://github.com/atgu/hgdp_tgp/tree/master/tutorials), and all underlying datasets are publicly

available in requester-pays Google Cloud Platform buckets.

These tutorials cover various aspects of quality control (QC) and analysis, including sample and

variant QC; visualizing distributions of QC statistics by metadata labels across diverse

populations; filtering variants using LD, allele frequency, and missingness information; inferring

relatedness; running PCA to infer ancestry; computing descriptive statistics including variant

counts and coverage metrics; conducting population genetic analyses; and intersecting external

datasets with HGDP+1kGP as a reference panel to apply ancestry models and infer metadata

labels (Figure 5). For example, we intersected the publicly available Gambian Genome

Variation (GGV) Project sequenced to low coverage with the HGDP+1kGP resource, trained a

random forest on HGDP+1kGP geographical/genetic region meta-data labels, then applied this

model to the GGV data to determine ancestry labels, which were all inferred to be AFR (Figure

S10). When intersecting external datasets to apply ancestry labels, an important consideration

is how many variants must overlap and how much missingness is tolerated to project external

samples into the same PCA space as the reference panel and assign metadata labels given

PCA shrinkage 23. We find that < 5% missingness is typically required to accurately assign

ancestry labels (Figure S12 and Table S7). In addition to all these analyses, we anticipate that

there will be additional uses of this resource not documented in these tutorials, such as for
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phasing and imputation. To facilitate these uses, we have phased the HGDP+1kGP dataset and

released these phased haplotypes that others can use to support phasing and imputation in

their own datasets. We have also developed computational pipelines implemented in GWASpy

that use these phased reference haplotypes, and tested these tools by applying phasing and

imputation to diverse samples genotyped as part of other ongoing work.

Figure 5 | Overview of tutorials that use cloud computing to conduct common genetic

data analyses. We have developed five iPython notebooks with tutorials for conducting many of

the most common genetic analyses, including QC of sequencing data, relatedness inference

and PCA, calculating statistics by population, analyzing genetic divergence, and applying

ancestry analysis to a new dataset using HGDP+1kGP as a reference panel.

Discussion

The 1000 Genomes Project and Human Genome Diversity Project were landmark efforts to

increase the unrestricted public availability of genomic data from a geographically and

ancestrally diverse set of individuals. These resources have been widely used across research

efforts for decades, including as reference panels for ancestry inference, phasing, imputation,

genotype refinement, and investigations into population history and demography. However,

17

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.23.525248doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.23.525248
http://creativecommons.org/licenses/by/4.0/


these datasets have historically been discrete, leading to suboptimal intersections when a

combined analysis of all samples is required.

The harmonized variant processing, quality control, and improved coverage of variants across

the allele frequency spectrum in this jointly called resource will facilitate the improved study of

diverse populations. Due to our rapid release of the data pre-publication, the callset formally

released here has already been used as a resource of global diversity in the Genome

Aggregation Database (gnomAD) 17, the Pan-UK Biobank Project 24, the Global Biobank

Meta-analysis Initiative (GBMI) 25, and the Covid-19 Host Genetics Initiative 26. A primary use of

this data is as a global reference for principal components analysis (PCA)--SNV loadings are

freely shared so that user cohorts can be aligned to the same PC space as this optimized

reference panel. In GBMI, harmonizing ancestry analysis with this resource served as a quality

control measure to ensure that ancestral groupings are being applied consistently and that

control for population stratification is being performed adequately 25. Building on this approach

and given the critical need for greater diversity in genomic studies, sequencing centers can use

this resource in variant calling production pipelines to build dashboards that continuously

monitor the diversity of samples being sequenced in real time.

This callset is also phased for use as a haplotype resource, potentially providing higher phasing

and imputation accuracy particularly for underrepresented populations. While resources such as

the Haplotype Reference Consortium (HRC) and TOPMed Imputation Panel are already helpful

27,28, they either provide individual-level data but lack diversity (HRC) or are very large with

significant diversity but do not share individual-level data (TOPMed). This limits the application

of new methods, such as those needed to support low-coverage sequencing, which is receiving

growing interest as it is comparable in cost to many genotype arrays and is especially beneficial

to underrepresented populations 29. Combinations of high-coverage exome and low-coverage
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genome sequencing are also of growing interest and could be uniquely supported by this

resource. This resource will also be critical for developing computational and analytical tools for

genotype refinement, imputation, conducting data QC particularly across varying depths of

coverage, and evaluating technical biases. For example, we observed fewer SVs in the HGDP

genomes than 1kGP genomes among similar ancestry groups, which was primarily explained by

PCR+ and PCR-free sequencing libraries.

This resource also provides a more complete and granular capture of the full spectrum of

variation across the world that would be missed by intersecting the component datasets.

Because a variant9s frequency is one of its most informative features of its deleteriousness, the

globally diverse allele frequencies that we have released on the gnomAD browser 14 provides

additional scientific benefits by facilitating clinical variant interpretation across diverse

populations. This GRCh38 release of this resource along with detailed tutorials for many of the

most common genomic data analyses will also reduce barriers acknowledged by the vast

majority of clinical labs which have not yet migrated to the latest genome build, citing that they

do not feel the benefits outweigh the time and monetary costs and/or lack sufficient personnel to

do so 30.

While this resource is more globally representative than many existing public datasets, certain

geographic areas and ancestries are still underrepresented; for example, most genomic

resources are enriched for participants in high-income countries 31 and there is particularly

sparse coverage in central and southern Africa where genetic diversity is among the highest in

the world. Some efforts that are already significantly underway, such as the H3Africa Initiative,

will be critical for increasing representation from some of these ancestries. Other ongoing

massive-scale efforts such as All of Us are also increasing representation from minority

populations in the United States in genomics research.
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As genetically diverse datasets continue to grow to massive scales, it will be invaluable for

researchers to be equipped with tools and resources that facilitate scalable and efficient

analysis. In the service of this goal, we concurrently release a series of detailed tutorials

designed to be easily accessible in iPython notebooks demonstrating many common genomic

analytic techniques as implemented in the cloud-native Hail software framework, which allows

for flexible, computationally efficient, and parallelized analysis of big data. These tutorials lower

the barrier for adoption of this resource and provide a code bank for researchers to conduct a

variety of analyses, including conducting quality control of whole genome sequencing data,

calculating variant and sample statistics within groups, analyzing population genetic variation,

and applying ancestry labels from a reference panel to their own data. Overall, resources like

this are essential for empowering genetic studies in diverse populations.

Methods

Genetic datasets

Human Genome Diversity Project (HGDP)

HGDP genomes sequenced and described previously 1 were downloaded from

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/HGDP/. Because the publicly

available gVCFs were not the output of GATK HaplotypeCaller and were incompatible with joint

calling, we reprocessed these genomes and conducted joint variant calling as part of gnomAD

v3 17. Most HGDP genomes were PCR-free (N=760), but some included PCR prior to

sequencing (N=161). They were also sequenced at different times, for example as part of the
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Simons Genome Diversity Project (SGDP, N=120) or later at the Sanger Institute (N=801). More

details are available from previous studies 1,32.

1000 Genomes Project (1kGP)

1kGP genomes have been sequenced as part of multiple efforts, first to mid-coverage as phase

3 of the 1kGP 4 and more recently to high-coverage (≥30X) at the New York Genome Center

(NYGC) 7. We used the phase 3 1kGP genomes only for comparison to previous releases. The

high-coverage 1kGP genomes sequenced at the NYGC were downloaded from

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_2504_high_coverage/working/

20201028_3202_raw_GT_with_annot/, which were harmonized with HGDP genomes to

generate the HGDP+1kGP call set.

Human Genome Structural Variation Consortium (HGSVC)

The HGSVC generated high-coverage long-read WGS data and genomic variant calls from 34

samples in the 1kGP project (Ebert et al. 2021). We have evaluated precision of the SV callset

by comparing against the long-read SV calls using these 34 genomes. The long-read SV calls

were collected from (will add 1kGP ftp here)

Genome Aggregation Database (gnomAD)

We compared the HGDP+1kGP resource to gnomAD v3.1.2, which includes both HGDP and

1kGP high-coverage whole genomes, to quantify the extent of novel variation across the allele

frequency spectrum contributed by these genomes. To generate allele counts and numbers in

gnomAD that would be consistent with a fully non-overlapping set of genomes, we subtracted

allele counts and allele numbers in the gnomAD variant call set that were contributed

specifically by the 1kGP and HGDP genomes, effectively creating a synthetic version of

gnomAD without these genomes.
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Gambian Genome Variation Project (GGVP)

As part of tutorials that demonstrate how we can intersect an external dataset with HGDP+1kGP

and assign metadata labels, we intersected the HGDP+1kGP genomes with 394 Gambian

Genome Variation Project genomes which are publicly available through the IGSR

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/gambian_genome_variation_project/d

ata), as described previously 33. Briefly, we first downloaded GGVP CRAM files. We then used

GATK HaplotypeCaller to run variant calling in GVCF mode on the 394 Gambian genomes BAM

files and generated per-sample gVCFs. The single-sample gVCFs were then combined into a

multi-sample Hail Sparse MatrixTable (MT) using Hail9s run_combiner() function. The GGV

Sparse MT was then combined using Hail9s vcf_combiner, with the HGDP+1kGP Sparse MT to

create a unique Sparse MT. Note that the Hail Sparse MatrixTable has since been replaced by

the Hail VariantDataset.

Dataset Comparisons

All of the comparison datasets used GRCh38 as their reference genome aside from phase 3

1kGP, which was on hg19 prior to liftover. The comparison datasets consisted of phase 3 of

1kGP 4, gnomAD v3.1.2 17, high coverage HGDP whole genome sequences 1, and the New York

Genome Center (NYGC) 1000 Genomes Project 7. All of these datasets were sequenced to high

coverage (30X+) aside from the phase 3 1000 Genomes Project, which was sequenced to 4-8X

coverage. The NYGC dataset includes all of the original 2,504 samples from phase3 1kGP as

well as an additional 698 related samples.

Sample and variant QC

Quality control of samples was conducted according to procedures used in gnomAD 34 but was

then modified to relax some gnomAD sample QC filters new to v3 in especially diverse or
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unique genomes. Specifically, the filters starting with 8fail_9 indicate whether samples are outliers

in number of variants after regressing out principal components, which can indicate a sample

issue. However, we identified whole continental groups and populations that were removed due

solely to SNV and indel residual filters, especially those that were most genetically unique (i.e.,

San, Mbuti Pygmy, Biaka Pygmy, Bougainville, and Papuan). Additional individuals from the

LWK, Bantu Kenya, and Bantu South Africa populations were also removed solely on the basis

of the fail_n_snp_residual filter.

Before running any quality control filters, there were 211,358,784 variants and 4,151 samples.

We then applied gnomAD sample QC filters (excluding the filters starting with 8fail_9), which

removed 31 samples. Next, we identified 22 ancestry outliers by conducting global and

subcontinental PCA within metadata genetic region labels (AFR, AMR, CSA, EAS, EUR, MID,

and OCE), and removed individuals who deviated substantially in PC space from others with the

same metadata label along the first 10 PCs. We also removed a duplicate sample. Lastly, we

subset to only variants which were flagged as passing the gnomAD QC pipeline, as described

previously 34. After filtering, there were 155,648,020 variants and 4,096 individuals included in

the dataset.

The number of SNVs was calculated using Hail9s sample_qc() method. Because singletons are

especially sensitive to variation in sample size per population which is substantial across HGDP

and 1kGP, we compared singleton counts by randomly downsampling to 6 unrelated samples,

the minimum number of individuals per population, then removed monomorphic variants.

Coverage data was computed in gnomAD from the bam metrics field. We then calculated the

mean of these metrics per individual within a population using Hail9s hl.agg.stats() method 35.
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Relatedness

We computed relatedness using the PC-Relate algorithm 36 implemented in Hail. Specifically, we

considered SNVs with a minor allele frequency of 0.05, 20 PCs, and allowed kinship coefficients

up to 0.05 using the min_individual_maf=0.05, min_kinship=0.05, statistics='kin', k=20

arguments.

PCA

We computed 20 PCs across global populations as well as within each continental ancestry

group according to the Genetic.region project metadata harmonized across HGDP and 1kGP as

shown in Table S1. We first filtered to samples and variants that passed QC. We required that

SNVs have MAF > 0.05 and missingness < 0.1%. We then performed LD pruning within a 500kb

window, restricting to variants with r2 < 0.1, leaving 255,666 variants for analysis. Finally, we

computed relatedness as described above and restricted to a maximally independent set of

unrelated individuals.

Using this filtered dataset, we ran PCA both globally and within metadata labels (AFR, AMR,

CSA, EAS, EUR, MID, and OCE) in unrelated individuals using Hail9s hwe_normalized_pca()

function, then projected related individuals into that PC space using a pc_project() function used

in gnomAD and implemented in Hail.

Structural variants

Initial SV discovery and pruning

We applied GATK-SV 18 to integrate and genotype SVs from the HGDP and 1kGP samples.

Briefly, the HGDP samples were split into batches, each consisting of ~190 samples, based on
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their initial cohort, PCR status, sex, and sequencing depth of the libraries (Figure S3). Raw

Initial SVs were detected per sample by Manta 37, Wham 38, cnMOPs 39, and GATK-gCNV 40 and

then were clustered across each batch and filtered through an initial random forest machine

learning model to remove potential false positive SVs. We then jointly genotyped SVs across all

batches using a non-redundant union of SVs. Partially overlapping SVs were either re-clustered

into a unique SV or resolved into complex events. We observed mosaicism resulting from gain

or loss of X and Y chromosomes for several samples (Table S5), likely due to a cell line artifact

from passaging. While mosaic loss of the Y chromosome is the most common form of clonal

mosaicism 41, the non-canonical sex chromosome ploidies observed are not unique to these

samples and have been previously observed in other datasets 7,18.

SV refinement and annotation

A series of refinements have been applied to improve the precision of SV calls while maintaining

high sensitivity. First, two machine learning models have been developed and applied to prune

false positive SVs. A lightGBM model has been trained on the 9 1kGP samples that have been

deep sequenced with long-read WGS data by the HGSVC 20,42, and applied to all SVs except for

large bi-allelic CNVs (>5Kb). Details of the lightGBM model can be found in 7. Meanwhile, a

minGQ model has been trained using the inheritance information among trio families to filter

bi-allelic CNVs that are 5Kb and above. Details of this model can be found in 18. Genomes that

failed the machine learning models were assigned a null genotype, and the proportion of null

genotypes among all samples were calculated as an <no call rate= (NCR) score. SV sites that

have a 10% or higher NCR were labeled as low quality variants and removed from further

analyses. Then, we examined the distribution of SVs per genome to identify potential outlier

samples that carry significantly more SVs than average, and also compared the frequency of

SVs across each batch to identify SVs that showed significant bias (i.e. batch effects). The

resulting SV callset were annotated with their frequency by their ancestry.

25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.23.525248doi: bioRxiv preprint 

https://paperpile.com/c/dM2Jf7/HLDm
https://paperpile.com/c/dM2Jf7/MAeJ
https://paperpile.com/c/dM2Jf7/QaiP
https://paperpile.com/c/dM2Jf7/6QJ6
https://paperpile.com/c/dM2Jf7/ptrl
https://paperpile.com/c/dM2Jf7/3RhM+DOHC
https://paperpile.com/c/dM2Jf7/W4m1+hoOs
https://paperpile.com/c/dM2Jf7/DOHC
https://paperpile.com/c/dM2Jf7/3RhM
https://doi.org/10.1101/2023.01.23.525248
http://creativecommons.org/licenses/by/4.0/


Phased haplotypes

The haplotype phasing was split into three steps: (1) scatter; (2) phasing; (3) concatenation.

Firstly, the data was split into chunks of window size 10.0cM with 2.0cM overlap between each

chunk. SHAPEIT4 was then used to phase each chunk. The phased chunks were then

concatenated into chromosomes using bcftools. For the chunk in the

chr1:120246522-149637342 region, SHAPEIT4 always failed after the second main iteration

step of MCMC when the default 5b,1p,1b,1p,1b,1p,5m sequence was used. As a workaround,

we lowered the number of main iterations in the chunk to 2 from 5 (5b,1p,1b,1p,1b,1p,2m).

Code

https://github.com/atgu/hgdp_tgp

Data availability

All data are freely available and described more completely here:

https://gnomad.broadinstitute.org/news/2020-10-gnomad-v3-1-new-content-methods-annotation

s-and-data-availability/#the-gnomad-hgdp-and-1000-genomes-callset. Phased haplotypes are

available in BCFs here: gs://gcp-public-data--gnomad/resources/hgdp_1kg/phased_haplotypes/.
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