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Abstract 

 

Investigating task- and stimulus-dependent connectivity is key to understanding how brain regions interact 

to perform complex cognitive processes. Most existing connectivity analysis methods reduce activity 

within brain regions to unidimensional measures, resulting in a loss of information. While recent studies 

have introduced new functional connectivity methods that exploit multidimensional information, i.e., 

pattern-to-pattern relationships across regions, they have so far mostly been applied to fMRI data and 

therefore lack temporal information. We recently developed Time-Lagged Multidimensional Pattern 

Connectivity for EEG/MEG data, which detects linear dependencies between patterns for pairs of brain 

regions and latencies in event-related experimental designs (Rahimi et al., 2022b). Due to the linearity of 

this method, it may miss important nonlinear relationships between activity patterns. Thus, we here 

introduce nonlinear Time-Lagged Multidimensional Pattern Connectivity (nTL-MDPC) as a novel 

bivariate functional connectivity metric for event-related EEG/MEG applications. nTL-MDPC describes 

how well patterns in ROI ÿ at time point �ý can predict patterns of ROI Ā at time point �þ using artificial 

neural networks (ANNs). We evaluated this method on simulated data as well as on an existing EEG/MEG 

dataset of semantic word processing, and compared it to its linear counterpart (TL-MDPC). We found that 

nTL-MDPC indeed detected nonlinear relationships more reliably than TL-MDPC in simulations with 

moderate to high numbers of trials. However, in real brain data the differences were subtle, with 

identification of some connections over greater time lags but no change in the connections identified. The 

simulations and EEG/MEG results demonstrate that differences between the two methods are not 

dramatic, i.e. the linear method can approximate linear and nonlinear dependencies well. 

 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.19.524690doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.524690
http://creativecommons.org/licenses/by/4.0/


4 

 

Highlights 

1) nTL-MDPC is a bivariate functional connectivity method for event-related EEG/MEG 

2) nTL-MDPC detects linear and nonlinear connectivity at zero and non-zero lags 

3) nTL-MDPC revealed connectivity between ATL hub and semantic control regions 

4) Differences between linear and nonlinear TL-MDPC were small 
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1 Introduction 

Cognitive processes originate from dynamic interactions among multiple brain regions (Bullmore and 

Sporns, 2009; Passingham et al., 2002). Connectivity methods are key to understand how brain regions 

interplay to generate these processes. The most common connectivity methods are unidimensional 

functional connectivity methods, which summarise information in a brain area by collapsing the pattern 

of activity across voxels or vertices. These methods may neglect valuable information in the brain response 

patterns (Anzellotti et al., 2017b, 2017a; Basti et al., 2019, 2018), as animal research has shown that inter-

regional brain interactions are most likely multidimensional (DiCarlo et al., 2012). Thus, 

multidimensional connectivity methods have recently been proposed that make use of time courses for 

multiple voxels/vertices per region (Anzellotti and Coutanche, 2018; Basti et al., 2020; Rahimi et al., 

2022b). Note that the terms <multivariate= and <multidimensional= on the one hand and <univariate= and 

<unidimensional= on the other have been used interchangeably in the field. As in our prior paper (Rahimi 

et al., 2022b) and similar to Basti et al. (2020), we here use <multidimensional= to refer to cases in which 

multiple time courses per brain region are explicitly considered. <Unidimensional= refers to scenarios in 

which a region9s time courses are summarised into one time course. Furthermore, in the computation of 

connectivity between two regions, we refer to <bivariate= and <multivariate= as cases where effects of two 

or multiple regions are being taken into account, respectively. These multidimensional connectivity 

methods are different from approaches that assess activity patterns per region but still estimate 

connectivity based on unidimensional time courses, e.g. using Representational Connectivity or 

Informational Connectivity Analysis (Karimi-Rouzbahani et al., 2022; Kriegeskorte et al., 2008; Laakso 

and Cottrell, 2000).  

Recently, linear and nonlinear Multivariate Pattern Dependence (MVPD, NL-MVPD) (Anzellotti et al., 

2017a, 2017b) were introduced to characterise statistical relationships between the multidimensional 

activity patterns of two ROIs in resting state functional magnetic resonance imaging (fMRI) data. In this 

approach, the dimensionalities of the data in each ROI are first reduced through principal component 

analysis (PCA). Then, the statistical relationship between the resulting factor loadings is tested either via 

linear regression or using a nonlinear artificial neural network (ANN). However, this dimensionality 

reduction prevents estimation of the original individual voxel-to-voxel relationships between patterns 

across regions. This issue has been addressed by Basti et al. (2019) for fMRI data, who used ridge 

regression to estimate the voxel-to-voxel transformations between pairs of ROIs and applied their method 
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to event-related fMRI data. However, comparable methods for EEG/MEG data that can track 

multidimensional event-related connectivity over time are still emerging. 

A few multidimensional connectivity approaches have been proposed specifically for 

electroencephalography and magnetoencephalography (EEG and MEG): the multivariate interaction 

measure (MIM, Ewald et al., 2012), multivariate lagged coherence (MVLagCoh, Pascual-Marqui, 2007), 

and multivariate phase-slope-index (MPSI, Basti et al., 2018). However, these are frequency-domain 

methods that require interpretation of effects in separate frequency bands. While some brain processes 

may indeed be reflected in specific frequency bands (Fries, 2015; Siegel et al., 2012), this does not 

necessarily hold for all brain processes, such as those reflected in early short-lived brain responses in 

event-related experimental paradigms. Also, the estimation of connectivity metrics in frequency bands 

results in a loss of temporal resolution, and does not allow the estimation of pattern relationships across 

different time lags. Thus, we require methods that estimate the time course of connectivity time sample-

by-time sample. 

Recently, Rahimi et al. (2022b) applied a similar approach to Basti et al. (2019) to EEG/MEG data in 

source space. Time-Lagged Multidimensional Pattern Connectivity (TL-MDPC) estimates the linear 

transformation between patterns for pairs of brain regions and pairs of time lags using cross-validated 

ridge regression. The explained variance (EV) of these linear transformations is used as a metric for 

connectivity strength. High EV suggests a strong relationship between pairs of ROIs across different time 

lags. EVs for different time lags for a given pair of ROIs can be presented in a time-time matrix, called a 

temporal transformation matrix (TTM) (a matrix plotting time in ROI X by time in ROI Y). The authors 

showed that TL-MDPC indeed captures multidimensional relationships between patterns that its 

unidimensional counterpart is insensitive to, in both simulated data and real EEG/MEG data contrasting 

two tasks with different semantic demands. TL-MDPC produced richer connectivity than unidimensional 

methods and distinguished between sub-networks reflecting meaningful divisions. 

While the linear approach is computationally efficient and yields an easily interpretable transformation 

matrix, it may miss important nonlinear relationships between patterns. This is particularly important, as 

animal studies have shown that nonlinear relationships can be important (DiCarlo et al., 2012). Anzellotti 

et al. (2017b) showed that a nonlinear artificial neural network (ANN) identified more significant pattern 

dependencies between brain regions than a linear regression approach on resting-state fMRI data. Thus, 

in the present study we extended the linear approach of Rahimi et al. (2022) to create nonlinear Time-
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Lagged Multidimensional Pattern Connectivity (nTL-MDPC) by replacing ridge regression with an ANN 

as a method of finding the linear as well as nonlinear relationships between multidimensional patterns of 

activity in pairs of brain regions and across latencies. 

Like TL-MDPC, nTL-MDPC is a bivariate undirected functional connectivity method suitable for event-

related datasets. In contrast to similar methods that have previously been applied to fMRI data (as in 

Anzellotti et al., 2017a, 2017b; Basti et al., 2019), it characterises pattern connectivity over time, i.e. for 

different time lags, as well as over space. It does this by estimating how well patterns in ROI ÿ at time 

point �ý can predict patterns in ROI Ā at time point �þ through a nonlinear mapping. nTL-MDPC can 

estimate the full vertex-to-vertex transformations between ROIs. However, EEG/MEG source estimates 

have inherently limited spatial resolution which depends on source location, orientation, signal-to-noise 

ratio, etc. (Hauk et al., 2019; Molins et al., 2008; Samuelsson et al., 2021). Consequently, source signals 

in different voxels within an ROI carry redundant information (<leakage=). To address this issue, as in 

TL-MDPC, we employed a k-means clustering approach as a <feature selection= method to select the most 

informative vertices within the ROIs (Rahimi et al., 2022b). Unlike <feature extraction= methods such as 

PCA, here we do not transform features to create new ones, instead we simply select the most informative 

features (Khalid et al., 2014).  We then estimate the nonlinear mappings between the sub-sampled patterns 

using a cross-validated ANN regression method, employing 10-fold cross validation and regularisation to 

avoid overfitting. As in TL-MDPC, the resulting cross-validated explained variance (EV) served as our 

connectivity metric.  

As in our previous study, we assessed the performance of our model in both simulations and a real 

EEG/MEG dataset. In our simulations we tested to what degree nTL-MDPC is sensitive to 1) false positive 

errors for independent random patterns, 2) linear multidimensional patterns, and 3) nonlinear 

multidimensional patterns..  We evaluated the method for typical numbers of trials and vertices across a 

broad range of SNRs. In our real data analysis we contrasted dynamic semantic network connectivity 

between two word-based decision tasks with nTL-MDPC as we have previously done with coherence 

analysis (Rahimi et al., 2022a) and TL-MDPC (Rahimi et al., 2022b). Previously, we demonstrated limited 

connectivity between semantic ROIs when using spectral coherence as a unidimensional connectivity 

method (Rahimi et al., 2022a). TL-MDPC provided richer connectivity across a network of semantic 

representation and control regions. Here, we will use nTL-MPDC to test whether a nonlinear 

multidimensional connectivity method can corroborate and extend these findings.  
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2 Materials and Methods 

We investigated whether the nonlinear nTL-MDPC method detects more connectivity than the linear TL-

MDPC method in both simulated data and a real EEG/MEG dataset. We first introduce the rationale and 

procedures that are shared between both methods. In both cases, we first need to 1) prepare the patterns at 

each time in each region, 2) attempt to find a mapping/transformation between two patterns at two time 

points, 3) predict the target ROI9s output, 4) and finally measure the explained variance (EV) between the 

real and predicted output, as the connectivity metric.  

Both methods have the same aim. Let us consider that ÿ and Ā are activity pattern matrices of ROI X and 

ROI Y at time point �ý  and �þ of size �ā ×  �ÿ and �ā ×  �Ā, respectively, where �ā is the number of trials, 

and �ÿ and �Ā are the number of vertices in the two regions. Figure 1a represents activity patterns in ROI X and ROI Y across time. We intend to find out whether there is an all-to-all mapping between the patterns 

of responses in the two ROIs at different latencies. Simply put, we are interested to see how well the 

patterns in ROI Y at time point �þ can be predicted from the patterns in ROI X at time point �ý, and the 

other way around, through a transformation (in each direction). 

To do so, we first need to address the spatial resolution of EEG/MEG. These signals are inherently smooth 

and have limited spatial resolution (Hauk et al., 2019; Palva et al., 2018). As a result, not all vertices are 

independent. To deal with this issue, unsupervised k-means clustering is employed as a <feature selection= 

approach, to sub-sample the most informative vertices within each ROI (Rahimi et al., 2022b). Using this 

approach, vertices serve as samples/observations and trials serve as features. Thus, we group all vertices 

into k clusters, so that all vertices with similar activation profiles across trials are within one cluster. To 

find out the optimum number of clusters, the elbow method (Ng, 2012) was used. There are several ways 

one could pick a representative vertex within each cluster, including computing the mean of all vertices, 

the centroid of the cluster, or the vertex with the highest variance.  We pick the vertex with the highest 

variance as this allows us to keep the patterns in the genuine pattern space while estimating the 

transformations between regions. As a result of clustering, the patterns ÿ and Ā at time points �ý and �þ  
are now of size �ā × �ý  and  �ā ×  �þ, where �ý and  �þ are the number of clusters in ROI X and Y.   

We are then able to estimate the transformations between regions. Using the dimensionality-reduced 

patterns in ROI X and Y at two specific time points (ÿ and Ā) we can extract the transformation matrix 
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�, allowing us to predict the patterns in ROI Y (Ā̂ā�Āā) through T and test subset ÿā�Āā. We can then 

measure the explained variance (EV) between the real output, Āā�Āā  and the predicted output, and use this 

as a measure of connectivity. The highest score would be 1, suggesting a very strong relationship (either 

linear or nonlinear) between patterns, while close to zero values reflect very weak (or no) connectivity. In 

the following, we replace negative values of EV by zero since they indicate that the data could not fit by 

the model at all, and a variation in negative EVs is not meaningful. Additionally, due to the fact that our 

measurements are not directional, but a reflection of statistical dependencies between each pair, we 

predicted ÿ from Ā and Ā from ÿ, and reported the average of resulting EVs. 

For ROI X and Y, we repeat the whole procedure above for all possible pairs of time points, and the 

resulting EVs constitute the Temporal Transformation Matrix (TTM) for ROI pair X and Y. Thus, 

different areas in this matrix reflect connectivity at different time lags; the diagonal entries of TTMs show 

simultaneous connectivity between ROI X and Y patterns, the upper diagonal represents connectivity 

where Ā is ahead, and lower diagonal shows connectivity where ÿ is ahead. 

2.1 The nTL-MDPC method 

Although these methods share many steps, they differ in one critical aspect, the estimation of the 

transformations. While the linear TL-MDPC uses cross-validated regularised ridge regression (Hoerl and 

Kennard, 1970) (Figure 1b), the nonlinear method employs ANNs to extract the mapping between ÿ and Ā (Figure 1c). Artificial neural networks (ANNs) can estimate the relationship between linear and 

nonlinear multidimensional time courses (Singh et al., 2003). ANNs learn to map from a given input to a 

target output, in this case from the multidimensional activity patterns in one ROI at one time point to those 

in another ROI at one time point. As shown in Figure 1c, the activation in each unit in the ANN (other 

than input units) is generated through the weighted sum of the activity of connected units in the prior layer. 

In the hidden layer (i.e., the units which do not directly receive input or give output), unit activity is further 

determined with an additional step whereby every node passes the weighted sum of the inputs to that unit 

through a nonlinear function.  In cases where the unknown coefficients outnumber the observation samples 

(an ill-posed or underdetermined problem), a regularisation procedure is needed. For this purpose, we 

used a cross-validated regularised ANN to avoid overfitting. As in the linear method, the explained 

variance of the transformations will serve as the connectivity metric.  
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Figure 1-Illustration of linear and nonlinear time-lagged multidimensional pattern connectivity approaches. a) The principle of 

TL-MDPC is displayed. We assess the relationship between activity patterns in ROI X and ROI Y at different time lags. Each 

matrix indicates activity patterns in one ROI at one time point, with rows in each matrix indicating activation across different 

trials, and columns representing activation over different vertices in the ROI. Bidirectional arrows represent possible 

transformations and dependencies between patterns. b) Illustration of using TL-MDPC to detect the linear transformations � 

between patterns using ridge regression (as in Rahimi et al., 2022b). c) Illustration of the novel nTL-MDPC method to detect 

nonlinear (and linear) transformations between patterns using an artificial neural network.  

 

2.1.1 Organisation of the ANN 

Figure 1c illustrates the general framework of a feedforward ANN (Venkatesan and Anitha, 2006) with 

one hidden layer. We used a nonlinear regression implemented in Python1 using ANN. We utilised a 

tangent hyperbolic function as the activation function as this is widely used (Sharma et al., 2017). The 

number of units in the hidden layer was set to be the average of the number of nodes in input and output .   

 
1 https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.ANNRegressor.html 
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The network is trained using a standard back-propagation learning algorithm (Rojas, 1996). The solver 

for weight optimisation was set to <LBFGS= (Limited-memory Broyden–Fletcher–Goldfarb–Shanno), an 

unconstrained nonlinear optimisation algorithm in the family of quasi-Newton methods. In general, 

LBFGS can have better performance than other available algorithms for small datasets1. Each pattern was 

standardised before being input into the ANN by subtracting the mean and dividing by the standard 

deviation of the pattern. 

2.1.2 Modelling statistical dependence using ANN 

A general mapping between X and Y can be defined as follows: Ā = ÿ(ÿ) + �āÿ�ÿ�, (1) 

 

where ÿ(. ) could be a linear or nonlinear function, and � is a zero-mean Gaussian matrix. For nTL-

MDPC, we use an ANN to have a more general estimation of ÿ(. ) than a linear regression allows. Using 

the train subset, for any ROIs X and Y, and a set of time points �ý and �þ, we have:  

Āāÿ�ÿ� = ÿ(ÿāÿ�ÿ�) + �āÿ�ÿ� (2) 

  

where ÿ is the input of the ANN which is used to predict Ā during training. Below, is a step-by-step 

description of how ÿ and Ā are related.  

The input of the hth node in the hidden layer, ă/ ,is obtained as follows: 

ă/ =  ∑ āÿ�ý
ÿ=1 Āÿ/ , ℎ = 1, & , ��  (3) 

 

where āÿ is the ith input, Āÿ/ is the weight between the ith node in the input and the hth node in the hidden 

layer, �ý is the number of nodes in the input layer, and �� is the number of nodes in the hidden layer. 

The output of the hth node in the hidden layer, is as follows: Ā/(ă/) =  ÿ/tanh (Ā/ă/) 

 

(4) 
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where ÿ/ and Ā/ are scaling parameters of the tangent hyperbolic function. 

Finally, the output of the jth node in the output layer is obtained as: 

 

ĂĀ  =  ∑ Ā/(ă/)ÿ/Ā�/
/=1 =  ∑ ÿ/tanh (Ā/ ∑ āÿ�ý

ÿ=1 Āÿ/)ÿ/Ā�/
/=1  , � = 1, & , �þ 

 

(5) 

where ÿ/Ā is the weight between hth node in the hidden and jth node in the output layer, and �þ is the 

number of nodes in the output layer. 

After estimating the above parameters and function ÿ(. ), the predicted patterns in ROI Ā can be obtained 

using the test subset as follows: 

 Ā̂ā�Āā = ÿ(ÿā�Āā) (6) 

 

where Ā̂ā�Āā is the predicted pattern in ROI Y at time point �þ. Explained variance (EV) is then computed 

for each vertex k=1,…, �þ: 

��(Āā�Āāā , Ā̂ā�Āāā )  = 1 2 ÿÿ�(Āā�Āāā 2 Ā̂ā�Āāā )ÿÿ�(Āā�Āāā )   (7) 

 

 

Finally, to quantify the multidimensional connectivity metric for each pair of ROIs at each pair of time 

points, we summarise the above EVs by averaging across all of the vertices in ROI Y: 

��(Āā�Āā, Ā̂ā�Āā)  = ∑ ��(Āā�Āāā , Ā̂ā�Āāā ) �þā=1 �þ   (8) 
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2.2 Simulations: Performance of linear and nonlinear TL-MDPC for different relationships 

between patterns 

In this section, we compare the TL-MDPC and nTL-MDPC on simulated data for reasonable and practical 

choices of number of trials, vertices, and signal-to-noise ratios (SNR), to find out whether the nonlinear 

model can capture more connectivity than the linear one. TL-MDPC should be optimal when patterns are 

only linearly connected, i.e., when no nonlinearities are present. The nonlinear method should still be able 

to capture linear connectivity, but it is not clear whether this will be at the same level as the linear method 

and whether it can capture additional nonlinearities with the available training data. To this end, we created 

three different scenarios: 1) no relationship between the activity patterns, 2) linear multidimensional 

relationships and 3) nonlinear multidimensional relationships. As the estimation of transformations can 

be done time sample-by-time sample and does not rely on the precise time points of ÿ and Ā, we here 

assess the performance of our method without simulating time courses. Thus, we use the shorter terms 

MDPC and nMDPC to refer to the two methods in this section. Figure 2a shows the first scenario, 

representing two independent patterns with no connectivity, so that there is no f(.). e.g., Ā b ÿ(ÿ).  

Figure 2b shows the second scenario where patterns are associated through linear multidimensional 

relationships, with vertices in ROI X being uncorrelated to each other but transformed to ROI Y through 

a matrix T, so that Ā = ÿ� + �, where � is of size �ý ×  �þ. Scenario 3 in Figure 2c illustrates patterns 

associated through nonlinear multidimensional relationships, with patterns in ROI X first being 

transformed through �ÿ, as a linear mapping, then the resulting output entries passed through a nonlinear 

function, in this case sigmoid or tangent hyperbolic functions (these activation functions are widely used 

in NNs and may better reflect how neurons summarise information than unbounded activation functions 

(Sharma et al., 2017)). The resulting patterns are then transformed through �Ā to produce patterns in ROI 

Y, so that Ā = Ā1�1 + �, ĂÿĀ1 = ( 11+�−þÿĀ� ) , or ĂÿĀ1 = tanh (ĂÿĀ0 ), Ā0 =  ÿ�0, where E is a zero-mean 

Gaussian noise of size �ā ×  �þ. To avoid bias due to the particular nonlinear function employed in our 

simulations, we used two nonlinear functions to create the nonlinearity between the patterns (tanh, which 

is also used in the ANN, and a different function, sigmoid).  
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2.2.1 Simulation Parameters 

To assess the performance of nTL-MDPC, we varied the critical parameters, namely the number of trials, 

vertices, and signal-to-noise ratios (SNR), within realistic ranges. The numbers of vertices used were 

either 5 or 15, being matched with the minimum and maximum number of vertices obtained from the 

implementation of our clustering approach on our EEG/MEG dataset (Rahimi et al., 2022b). To report the 

final connectivity values, the average of 100 simulations was calculated for every set of parameters. 

  

 

Figure 2- Representation of our simulation scenarios with different types of connectivity. The matrices (ÿ and Ā) show patterns 

of responses in ROI X and ROI Y, respectively, with rows indicating different trials and columns indicating vertices. a) ÿ and Ā are independent patterns with no reliable transformation between the regions and as a result no connectivity. b) There is a 

linear multidimensional relationship between ÿ and Ā through matrix �. c) Nonlinear multidimensional relationships between ÿ and Ā are simulated through a neural network transformation. Patterns in ROI X are first being transformed through �0 as a 

linear mapping, then the resulting output passed through a nonlinear (sigmoid or tangent hyperbolic) function ÿ(. ), and the 

resulting patterns again transformed through �1 to produce the patterns in ROI Y.  

 

2.2.2 Scenario 1:  Checking for spurious connectivity between two independent patterns 

To contrast TL-MDPC and nTL-MDPC on their likelihood to detect false positives, we computed the 

connectivity between patterns with no relationship (as in Figure 2a). To do so, two pattern matrices with 

random noise were generated independently using normal distributions (mean=0 and std=1) across 30, 50, 

100, 150, and 300 trials.  

2.2.3 Scenario 2: Testing the methods9 ability to capture linear multidimensional dependency between 

two patterns  

We then compared TL-MDPC and nTL-MDPC on their ability to detect multidimensional linear 

relationships, as shown in Figure 2b. To do so, we produced patterns X through a normal distribution 

(mean=0, and std=1). For the transformation matrix, we generated matrices using a normal distribution 
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(mean=0, and std=1) with different degrees of sparsity (varying from 10% of the matrix size to 100%, 

with 10% as the step size).  Ā was computed through multiplying ÿ and �. Different levels of noise were 

then introduced from a zero-mean normal distribution with a varying standard deviation (std=10std_pow, 

where std_pow ∈[-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2]). We used 50, 150, and 300 as the number of trials. 

2.2.4 Scenario 3: Testing the ability of each method to capture nonlinear multidimensional dependency 

between two patterns 

Constructing nonlinear relationships to compare the methods is not as straightforward as making the 

patterns in the two previous scenarios, as there are infinitely many ways to simulate a nonlinear function. 

Here, we chose a method that is easily tractable yet inspired by our knowledge of neuronal interactions. 

The creation of ANNs was inspired by how neurons function in the brain and how they learn through 

neural plasticity (Hebb, 2005; McCulloch and Pitts, 1943). In this framework, a unit or node reflects a 

neuron (or populations of neurons), the synapses are represented as weighted connections between these 

nodes, and the firing of a neuron (or population of neurons) is determined by the weighted input from 

other neurons passed through a nonlinear transfer function (Hebb, 2005; McCulloch and Pitts, 1943). 

Thus, we mimicked this process to create activation patterns with a nonlinear relationship that could reflect 

the kinds of relationships found in the brain. First, we generated ÿ and �0 using a normal distribution 

(mean=0, and std=1). The output of the first layer is gained through multiplication of ÿ with �0. Second, 

this (linear) output is then fed through a nonlinear sigmoid or tangent hyperbolic function. Third, the 

resulting matrix again passes through another transformation matrix,  �1, yielding Y. We introduced zero-

mean noise from a normal distribution with a variable standard deviation (std=10std_pow, where std_pow ∈[-2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2])). The number of trials, vertices, and replications are the same as 

section 2.2.3. As in scenario 2, both �0 and �1 were generated with different degrees of sparsity. 

2.3 Comparing nTL-MDPC to TL-MDPC in a real EEG/MEG dataset  

We applied nTL-MDPC to an existing dataset (for more detail see S.-R. Farahibozorg, 2018; Rahimi et 

al., 2022a) to investigate the task modulation of semantic brain networks in visual word recognition, 

contrasting a semantic decision (SD) task requiring deep semantic information retrieval with a lexical 

decision (LD) task that only requires shallow semantic processing. We assessed whether nTL-MDPC 

captures different or more functional connections in the semantic network, as compared to TL-MDPC and 

coherence. 
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2.3.1 Participants 

Our EEG/MEG dataset contains recordings from 18 healthy native English speakers (mean age 

27.00±5.13, 12 female) with normal or corrected-to-normal vision. We used the same dataset as in our 

prior study to compare the outcome of the new method to the linear version of TL-MDPC (Rahimi et al., 

2022a). The experiment was approved by the Cambridge Psychology Research Ethics Committee and 

volunteers were paid for their time and effort.  

2.3.2 Stimuli and procedure 

The experiment included 250 words and 250 pseudowords. It comprised four blocks presented in a random 

sequence. One of the four blocks used a lexical decision (LD) task and the other three a semantic decision 

(SD) task. In the LD block, participants were asked to decide if the presented stimulus was referring to a 

word or pseudoword. In SD blocks, they were required to decide whether the presented word was referring 

to a certain category of words, namely <non-citrus fruits=, <something edible with a distinctive odour= and 

<food containing milk, flour or egg=. 10% of stimuli belonged to these target categories and required a 

button press response. As in our previous studies, we only analysed brain responses to real, non-target 

words. Each stimulus was presented for 150ms, with an average SOA of 2400ms. 

2.3.3 Data Acquisition and Pre-processing 

As we used the same dataset from (S.-R. Farahibozorg, 2018; Rahimi et al., 2022b, 2022a) and intended 

to directly compare the results of the two methods, data acquisition and pre-processing steps are exactly 

the same. MEG/EEG recordings were collected simultaneously using a Neuromag Vectorview system 

(Elekta AB, Stockholm, Sweden) and MEG-compatible EEG cap (EasyCap GmbH, Herrsching, 

Germany) at the MRC Cognition and Brain Sciences Unit, University of Cambridge, UK. MEG was 

acquired via a 306-channel system consisting of 204 planar gradiometers and 102 magnetometers. EEG 

was collected via a 70-electrode system with an extended 10-10% electrode layout. Data sampling rate 

was 1000Hz.  

We used MEGIN Maxwell-Filter software to apply signal source separation (SSS) with its spatiotemporal 

extension to remove noise from spatially distant sources and to compensate for small head movements 

(Taulu and Kajola, 2005). We used the MNE-Python software package (Gramfort et al., 2014, 2013) to 

perform the preprocessing and source reconstruction. The raw data from each participant was visually 

checked and bad EEG channels were selected for interpolation (max=9 channels per person, min=0, 

mean=2.85).  A finite-impulse-response (FIR) bandpass filter between 0.1 and 45 Hz was applied, as well 
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as FastICA algorithm to remove eye movement artefacts (Hyvarinen, 1999; Hyvärinen and Oja, 2000). 

Afterwards, epochs were created using the data from 300ms pre-stimulus to 600ms post-stimulus. 

2.3.4 Source Estimation 

L2-Minimum Norm Estimation (MNE) (Hämäläinen and Ilmoniemi, 1994; Hauk, 2004) was used for 

source estimation. We assembled inverse operators based on a 3-layer Boundary Element Model (BEM) 

of the head geometry, gained from structural MRI images. For this purpose, we assumed sources to be 

perpendicular to the cortical surface (<fixed= orientation constraint). We obtained the noise covariance 

matrices using 300ms-baseline periods and then selected the best choice from a group of methods included 

in MNE-Python ('shrunk', 'diagonal_fixed', 'empirical', 'factor_analysis') (Engemann and Gramfort, 2015). 

MNE-Python9s default SNR = 3.0 was used to regularise the inverse operator for evoked responses. The 

source signals from each participant were then morphed to the standard Freesurfer brain (fsaverage).  

2.3.5 Regions of Interest 

We used six regions of interest including left and right ATL, left IFG, left PTC, left AG and left PVA to 

study connectivity within the semantic network. These regions were identical to our prior studies and were 

constructed using the Human Connectome Project (HCP) parcellation (Glasser et al., 2016). For more 

details refer to our previous studies (Rahimi et al., 2022a, 2022b).  

2.3.6 Leakage 

Leakage is an issue for EEG/MEG source signals, leading to limited spatial resolution (Hauk et al., 2022). 

As introduced in Rahimi et al. (2022a), here we present leakage indices to explain leakage among our six 

regions. These leakage indices are identical to those presented in Rahimi et al.(2022b), and are simply 

displayed on a brain diagram here to help interpretation of the current results. Leakage between brain 

regions can be described by a linear vertex-to-vertex transformation, given by the corresponding sub-

matrix of the resolution matrix (Hauk et al., 2022). Figure 3a shows the different steps taken to obtain the 

leakage index. First, the resolution matrix is computed and then the  relevant point spread functions (PSFs) 

(Hauk et al., 2011; Liu et al., 2002) are extracted. Second, non-homogenous activation patterns are 

generated for each ROI, to be used at each vertex to weigh their corresponding PSFs. The weighted sum 

of the PSFs are then computed. Third, the leakage is summarised by taking the absolute values and 

summed across vertices per ROI. Fourth, the leakage index is calculated by dividing the summed leakage 

of an ROI to itself by the summed leakage from another ROI. This stage was replicated 100 times for each 

PSF and participant, and the results were averaged to create the final leakage indices. Figure 3b represents 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 20, 2023. ; https://doi.org/10.1101/2023.01.19.524690doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.19.524690
http://creativecommons.org/licenses/by/4.0/


18 

 

our leakage matrix. The ith column shows how much all other ROIs leak into the ith ROI relative to the 

ith ROI9s leakage into itself. To have a better understanding of the matrix, we considered leakage values 

between 0-0.2/0.2–0.4/0.4–0.6/0.6–0.8/0.8–1 to reflect low/low-medium/medium/medium-high/high 

leakage.  

The leakage matrix indicated that all region pairings except for lATL to PTC, have medium or lower 

leakage. The highest leakage is between two nearby areas, lATL and PTC. Note that high leakage is likely 

for any study investigating connectivity between these regions, and that we combined EEG and MEG to 

minimise the leakage. Figure 3c represents the strength of the directed leakage indices between all pairs, 

reflected in the width of the arrows. We will compare the networks obtained from our real data analysis 

with the pattern of leakage across the semantic network to consider the possible confounding effect of 

leakage on our results.  

 

Figure 3 – Leakage indices for multidimensional activation patterns. a) Schematic description of how to compute the non-

homogeneous leakage from ROI X into ROI Y using the resolution matrix and point-spread-functions (PSFs) as well as non-

homogeneous activation vectors. b) The leakage matrix for our six ROIs. c) The pattern of leakage across the semantic network. 

The width of the arrows reflects the leakage indices in b)(obtained from Rahimi et al., 2022b). 
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2.3.7 Application of nTL-MDPC to real EEG/MEG data 

We performed nTL-MDPC to predict ÿ from Ā and Ā from ÿ at every 25ms from 100ms pre-stimulus to 

500ms post-stimulus, using an ANN with a tangent hyperbolic activation function, and reported the EVs 

(averaged across the two directions) as the final metric. EVs for every pair of ROIs and across latencies 

are presented in TTMs (Rahimi et al., 2022b). In any TTM, each row indicates statistical relationships 

between Ā at a specific time point and ÿ over the whole time period, while columns show statistical 

relationships between ÿ at a certain time point and Ā across the whole time period, enabling us to display 

connectivity at different time lags. 

To avoid any potential bias due to the different number of trials between SD and LD tasks (Bastos and 

Schoffelen, 2016), the TTMs of the three SD blocks were computed independently and then averaged for 

a better comparison with LD. SD and LD connectivity were then contrasted using cluster-based 

permutation tests, implemented in MNE python (Maris and Oostenveld, 2007). We implemented two-

sided t-tests with the alpha-level of 0.05 and 5000 randomised repetitions. To avoid spurious or small 

clusters, we only presented clusters whose size were greater than 2% of the TTMs total size, i.e., with 

more than 12 elements. 

3 Results 

3.1 Simulation results 

3.1.1 Scenario 1: Independent patterns 

demonstrates connectivity scores (EV, y-axis) for the case where there is no true relationship between 

two patterns (as in Figure 2a), with the x-axis showing different numbers of trials and different curves 

representing different numbers of vertices for both panels. Figure 4a shows the connectivity results of 

MDPC, while Figure 4b indicates the nMDPC outcomes. For both methods, all values are close to zero, 

suggesting that neither method is prone to false positive errors when no relationship exists. 

3.1.2 Scenario 2: Linear multidimensional dependency between two patterns 

We then tested how well the MDPC and nMDPC methods perform in the case where multidimensional 

patterns are only linearly related. Figure 5 demonstrates the connectivity (EV, y-axis) identified in this 

scenario, with the x-axis representing different SNRs, different curves indicating different trials, and three 

panels showing different numbers of vertices. Red curves show the result of the MDPC method and blue 

curves represent the nMDPC results. For both methods and in all cases, EV reaches values between 0.8 to 
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1 for SNRs above 25db and is close to zero for SNRs smaller than -10db. For intermediate SNRs the two 

methods perform similarly, with EV rising for increasing numbers of trials. Thus, both linear and nonlinear 

MDPC similarly capture true linear relationships between patterns to a similar degree, with MDPC 

producing slightly greater EV values. 

 

Figure 4- Connectivity values (explained variance, y-axis) for two independent patterns. a) Connectivity for (linear) MDPC as 

a function of different numbers of trials, with different curves representing different combinations of numbers of vertices in 

ROI X and ROI Y. b) Similar to a), but for nMDPC. The values are close to zero indicating that neither MDPC nor nMDPC 

methods are prone to false positive errors for random patterns. Note that while all EVs and their means were positive (as 

negative EVs were replaced by zeros), error bars based on standard deviations can still extend below zero. 
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Figure 5- Connectivity metrics for linear multidimensional effects assessed using MDPC and nMDPC. All panels show 

connectivity scores (explained variance, y-axis) between patterns that have a true linear multidimensional dependency, for 

different SNRs (x-axis), three different numbers of trials (MDPC approach: red curves, nMDPC approach: blue curves) and 

different number of vertices (three panels). All cases show that EV (explained variance) reaches value above 0.8 for SNRs 

above 25db, and is close to zero for SNRs smaller than -10db. In all panels, both linear and nonlinear MDPC show similar 

results, with MDPC producing greater EV.  

 

3.1.3 Scenario 3: Nonlinear multidimensional dependency between two patterns 

Figure 6 shows the connectivity (EV, y-axis) between pairs of multidimensional patterns with a nonlinear 

relationship (see section 2.2.4), for different SNRs (x-axis), different trials (indicated by line type), and 

different numbers of vertices (three panels). We used two different functions to generate nonlinear 

dependencies, sigmoid (shown in Figure 6a, c, and e) and tangent hyperbolic (shown in Figure 6Figure 

6b, d, and f). EV is zero for all cases at very low SNRs (<-10dB). Unlike for linear dependencies above, 

the EV does not approach 1 at high SNRs. For a given number of trials, nonlinear MDPC generally 

outperforms its linear counterpart. However, the difference between methods is not large and is around 

0.1.  Figure 6e and 5f show that the worst performance for both methods is obtained for the largest number 

of vertices and the lowest number of trials. Interestingly, in this case the linear method outperforms the 

nonlinear one. This is likely due to the known requirement of ANNs for a lot of training data (Hagan and 

Demuth, 1999). Thus, while linear MDPC provides a good approximation to the nonlinear 

multidimensional relationships when a large number of parameters needs to be estimated from a small 

number of trials, in general, nMDPC captures more variance. This improved ability of nMDPC to detect 

additional nonlinear relationships, could allow the identification of additional functional connections in 

brain data, including connectivity between more regions or across additional time lags. 
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Figure 6- Connectivity metrics for nonlinear multidimensional effects using MDPC and nMDPC. a, c, e) Connectivity scores 

(explained variance, y-axis) between patterns with nonlinear multidimensional dependency, for different SNRs (x-axis), three 

different numbers of trials (MDPC approach: red curves, nMDPC approach: green curves) and different number of vertices 

(three panels). b, d, f) Same as a, c, e) but with a tangent hyperbolic activation function. Linear MDPC provides a good 

approximation to these nonlinear scenarios in most cases, and even performs slightly better than nMDPC for low numbers of 

trials and large numbers of vertices. However, nMDPC generally explains more variance particularly for larger numbers of 

trials. 
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3.2 Comparison of nTL-MDPC and TL-MDPC in a real EEG/MEG dataset 

To test whether nTL-MDPC can confirm and extend our previous neural functional connectivity results, 

we applied nTL-MDPC to data from an EEG/MEG experiment contrasting a semantic decision and lexical 

decision task (R. Farahibozorg, 2018; Rahimi et al., 2022a). We compared the results of nTL-MDPC to 

TL-MDPC analyses of this dataset, previously presented in Rahimi et al.(2022b). Specifically, we asked 

whether and how the connectivity of semantic network is modulated by task demands, and if nTL-MDPC 

detects more or different dynamic connectivity compared to TL-MDPC.  

Figure 7 illustrates the interpretation of nTL-MDPC and TL-MDPC results, in the form of TTMs for one 

pair of ROIs, in this case PTC and IFG, two regions putatively involved in semantic control (Rahimi et 

al., 2022b). Figure 7a and 7b show results for TL-MDPC and nTL-MDPC, respectively, separately for the 

semantic decision task (SD) and lexical decision (LD) task, as well as their statistical comparison (using 

cluster-based permutation tests). An element of the TTM at coordinate (x,y) describes the relationship 

between patterns in IFG at latency x and PTC at latency y. Note that these statistical relationships do not 

imply a directionality of the corresponding connectivity, even at non-zero time lags. As expected, we 

found greater connectivity with both approaches for the more semantically demanding SD task compared 

to the LD task. The separate TTMs for SD and LD have a similar shape, with the largest values 

concentrated around the diagonal. However, the statistical comparison between the tasks highlights the 

more reliable identification of connectivity for nTL-MDPC along the diagonal, as well as at larger time 

lags, particularly at later latencies. Interestingly, the area of significant differences appears to <fan out= 

over time, i.e., connectivity persists over longer time lags at later latencies in both upper and lower 

diagonal parts, possibly reflecting bidirectional or recurrent information flow (Clarke et al., 2015, 2011; 

Kietzmann et al., 2019; McClelland and Rumelhart, 1989; Rogers et al., 2021; Rogers and McClelland, 

2014). In this example, the nonlinear method also showed modulation of connectivity during the baseline 

interval, which is confined to near the diagonal (i.e., close to zero-lag). Effects during the baseline were 

previously identified between some ROI pairs using the linear method. These may reflect a modulation of 

baseline activity due to differences in expectation and preparation when using tasks with different 

demands in a blocked experimental design. 
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Figure 7- An example of TTMs showing the connectivity between PTC (y-axis) and IFG (x-axis), for the semantic decision 

(SD) task (the left column), the lexical decision (LD) task (the middle column), and their comparison (i.e., connectivity that is 

greater when there are greater semantic demands; right column). a) TTMs for TL-MDPC, b) TTMs for nTL-MDPC. Colorbars 

show connectivity scores (explained variance) for the first two left columns. For the third column, the hot and cold color bar 

highlights significant effects obtained from the cluster-based permutation test, whereas the gray-scale color bar shows non-

significant t-values (this color bar is the same across all Figures). With both methods, the greatest connectivity accurs around 

the diagonal, however, the statistical comparison between the tasks reveals more reliable modulation of connectivity using 

nTL-MDPC along the diagonal as well as at larger time lags, particularly at later latencies. 

 

3.2.1 Detecting connectivity within the semantic network across time with nTL-MDPC 

We computed the functional connectivity of all possible pairs of the six semantic ROIs using nTL-MDPC 

and TL-MDPC. Figure 8 represents the inter-regional connectivity matrix (ICM) (Rahimi et al., 2022b), 

a summary of the semantic decision versus lexical decision TTMs for all ROI comparisons, with the upper 

diagonal (green area) showing the nTL-MDPC results, and the lower diagonal (blue area) displaying the 

TL-MDPC results. Generally, both methods found greater connectivity in the SD compared to the LD task 

for the same pairs of regions. Specifically, eleven pairs were modulated by task differences: lATL-rATL, 

lATL-PTC, lATL-IFG, rATL-PTC, rATL-IFG, rATL-AG, rATL-PVA, PTC-IFG, PTC-AG, PTC-PVA, 

and AG-PVA. The connectivity between core semantic regions including lATL-rATL, lATL-PTC, lATL-
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IFG, rATL-PTC, PTC-IFG, as well as AG-PVA, fans out from the diagonal from early time points. 

Connectivity for rATL-IFG was mostly confined around the diagonal, and rATL-AG along with rATL-

PVA revealed late effects. However, nTL-MDPC captured more connectivity in some cases. For instance,  

 

 

Figure 8- Inter-regional Connectivity Matrix (ICM) for semantic network modulations in the brain – the upper diagonal (grey 

shaded area) shows nTL-MDPC TTMs and the and lower diagonal (blue shaded area) shows TL-MDPC TTMs. Each TTM 

reflects EVs for a pair of region, ROI X and ROI Y, and across times. All modulations with both methods showed greater 

connectivity for SD than LD. Cluster size was thresholded at 2% of TTMs size (24*24). Using both methods, we found rich 

modulations between semantic control and representation regions. The hot and cold color bar highlights significant effects 

obtained from the cluster-based permutation test, whereas the gray-scale color bar shows non-significant t-values. The color 

bars are the same across all Figures. 
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for some pairs it revealed more modulations across more time lags, e.g., between lATL-rATL, lATL-PTC, 

rATL-PTC, PTC-IFG. However, these differences were subtle and when the two methods were contrasted 

directly, there were no significant differences.   

As multiple different methods have now been used to assess connectivity within the same dataset, we 

summarised the networks extracted using these different methods in Figure 9. This demonstrates the 

results from: 1) coherence (Rahimi et al., 2022a), 2) TL-UDC (Rahimi et al., 2022b), 3) TL-MDPC 

(Rahimi et al., 2022b), and 4) nTL-MDPC analyses, for early (50-250ms) and late (250-500ms) time 

windows. TL-UDC is the unidimensional counterpart of TL-MDPC (Rahimi et al., 2022b), in which all 

the time courses of the vertices within each ROI are collapsed into one. The ccoherence (Rahimi et al., 

2022a) between each pair of ROIs was computed for each time window in four frequency bands, namely 

theta (4-8Hz), alpha (8-16Hz), beta (16-26Hz), and gamma (26-36Hz).  

In this figure, we represent the connections specific to the gamma band in blue (i.e., rATL-PTC, IFG-AG 

at the first time window, and PTC-AG at the second time window), and connections consistent across the 

three frequency bands (i.e. alpha, beta, and gamma) in yellow (i.e., lATL-rATL, at the first time window, 

and lATL-IFG at the later time window). To summarise the ICM results across time lags for TL-UDC, 

TL-MDPC, and nTL-MDPC, we summed the significant t-values in each time window as a metric of 

connection intensity. This reflects the strength of the connections found and the identification of 

significant connectivity across longer time lags, indicating more reliable identification of connections with 

higher values, as well as greater reliability across participants. We then represented these values using 

arrows with different widths (with the weakest connectivity reflected by the thinnest lines, as in rATL-

IFG using nTL-MDPC at the earlier time window, and the strongest connectivity represented by the 

thickest line, as in AG-PVA using nTL-MDPC at the later time window).  

In general, the two unidimensional connectivity methods revealed fewer and weaker task modulations of 

connectivity, while both multidimensional methods detected richer connectivity across the whole semantic 

network across the whole latency range. Both multidimensional methods can identify rich interactions 

between the four core semantic representation and control regions (lATL, rATL, PTC, and IFG) starting 

at early time points (around the onset of the stimulus) and becoming stronger across the time window. 

Even with methods designed to identify nonlinear relationships, the connectivity of AG is relatively 

sparse. It only shows connectivity with PVA and PTC from earlier time points, and with rATL at later 

latencies. The general pattern of results was similar for TL-MDPC and nTL-MDPC, with both 
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distinguishing a core semantic network comprising lATL, rATL, PTC and IFG from a posterior visual 

attention network consisting of AG, PVA and PTC, with overlap of these two sub-networks in PTC.  

While the contrast between our linear and nonlinear results did not yield any significant effects, visual 

inspection of  Figure 9 reveals some subtle but noteworthy differences between the two approaches. For 

instance, nTL-MDPC finds more connections across more time lags. Using nTL-MDPC, we found slightly 

stronger connectivity for lATL-rATL and PTC-IFG at early time points, and for lATL-PTC, PTC-IFG, 

and rATL-PVA at the later time points. However, connectivity was slightly stronger for lATL-IFG and 

PTC-AG when using the linear TL-MDPC method at late time window. The finding of a greater number 

of numerically stronger connections for the nonlinear method could suggest some subtle benefits for this 

method in the overall reliability in the evidence of connectivity between the regions of the semantic 

network for the two methods. However, this did not result in a significant difference between these 

methods in our statistical analysis.  

 

Figure 9- Summary of our cortical functional connectivity analyses of EEG/MEG data using four different connectivity 

approaches. a) Networks extracted for an early time window (0-250ms), through 1) coherence (Rahimi et al., 2022a), 2) the 
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UDC method (Rahimi et al., 2022b), 3) MDPC (Rahimi et al., 2022b), and 4) nMDPC. b) Same as a), but for a late time window 

(250-500ms). For coherence, the blue connections represent dependencies specific to the gamma band, and yellow ones show 

the connections consistant across the alpha, beta and gamma bands. For the other three methods, arrows represent the summed 

significant t-values in each time window as a metric of connection intensity, with thicker arrows reflecting more intense 

connections (higher summed t-values) and vice versa. Overall, TL-MDPC reveals more connections compared to the two 

unidimensional methods, but TL-MDPC and nTL-MDPC produced the same pattern of connectivity with only a few 

differences. Despite this similarity in the areas found to be connected, nTLMDPC finds connections more reliably across more 

time lags. Using nTL-MDPC, we found a connection intensity in a higher band for lATL-rATL and PTC-IFG connections at 

the early time points, and for lATL-PTC, PTC-IFG, and rATL-PVA at the later time points. However, lATL-IFG and PTC-

AG had a connection intensity in a higher band in the later time window for the linear TL-MDPC method.  

 

4 Discussion 

We introduced a novel multidimensional functional connectivity method, nTL-MDPC, to capture the 

nonlinear dependencies between event-related EEG/MEG activation patterns across different brain 

regions and at different time lags. Our simulations revealed that nTL-MDPC is not prone to false positive 

errors for independent and uncorrelated patterns and is able to capture true linear multidimensional effects 

between patterns, although in this case the linear method performed slightly better. For true nonlinear 

dependencies, it it generally outperforming the linear method except for low numbers of trials and high 

number of vertices.  However, this was not the case in the real data analysis, where the linear and nonlinear 

methods showed similar performance.  The results of our new nonlinear approach were generally in line 

with our previous findings with TL-MDPC, indicating that linear TL-MDPC may provide a good and 

efficient approximation to nonlinear multidimensional relationships between brain regions in our real 

EEG/MEG data.  

As with TL-MPDC, nTL-MDPC identified two sub-networks in our data, namely a semantic network 

comprised of four semantic representation and control regions (left and right ATL, PTC, and IFG), and a 

visual-attention network consisting of PVA and AG.  These sub-networks are connected through PTC. 

These results are in concordance with the controlled semantic cognition (CSC) framework, which 

emphasises the need for a bilateral semantic hub (ATLs) as well as the interaction between representation 

and control regions for the task-relevant processing of conceptual information (Lambon Ralph et al., 

2016). Across our analyses, the ATLs show early activation and rich connectivity within the semantic 

network that are modulated by semantic task demands. In contrast, another putative hub region, AG, only 
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showed relative sparse connectivity with posterior brain areas. This supports the findings of Farahibozorg 

et al. (2022), who used Dynamic Causal Modelling to study word concreteness effects and identified ATL 

as a connectivity hub in an early (0-250ms) and AG only in a prolonged (0-450ms) time interval. These 

results suggest a role of AG for example in context integration, episodic memory or attentional processes 

(Cabeza, 2008; Cabeza et al., 2012; Chambers et al., 2004; Humphreys et al., 2021; Humphreys and 

Lambon Ralph, 2015; Noonan et al., 2012; Shimamura, 2011; Vilberg and Rugg, 2008; Wagner et al., 

2005)  

Notably, different methods have different assumptions, and therefore it is useful to look at what is 

consistent across methods. Across our  unidimensional (Rahimi et al., 2022a) and multidimensional 

(Rahimi et al., 2022b) analyses we revealed early connectivity between left and right ATLs. All analyses 

showed stronger connectivity between left and right ATLs with stronger semantic demands. Interestingly, 

both the linear and nonlinear multidimensional methods found rATL connectivity with IFG and PTC in 

the left hemisphere. This result was not seen with the unidimensional methods, and this cross-hemisphere 

connectivity is unlikely to be due to leakage. While previous studies have usually observed a left-

lateralisation of ATL activation for verbal compared to non-verbal stimuli, right-hemispheric ATL 

activation is commonly observed in semantic tasks as well (Jackson, 2021; Rice et al., 2015; Visser et al., 

2010), in particular in EEG/MEG studies (Dhond et al., 2007; Farahibozorg et al., 2022; Rahimi et al., 

2022a). Our results confirm that both left and right ATL are critical for semantic cognition and contribute 

more in semantically more demanding tasks (Rahimi et al., 2022a; Stefaniak et al., 2022). Some previous 

studies suggested that rATL might be involved in more semantically demanding tasks (Jung et al., 2019; 

Stefaniak et al., 2020), which would explain why we observed stronger rATL connectivity with the left 

hemisphere in the later time window with our multidimensional analyses. 

Most of our temporal transformation matrices showed symmetrical patterns with significant effects around 

the diagonal, which fanned out at later latencies. This suggests that some brain areas might be activated 

during overlapping time intervals, interacting near-simultaneously over sustained periods of time. Where 

there is a pattern of sustained symmetrical relationship between regions this may suggest that there is a 

period of time with a bidirectional information flow between these regions, as shown in prior 

electrophysiological data (Clarke et al., 2015, 2011; Rogers et al., 2021), possibly reflecting recurrent 

information flow (Kietzmann et al., 2019; McClelland and Rumelhart, 1989; Rogers et al., 2021; Rogers 

and McClelland, 2014).  
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Using both linear (Rahimi et al., 2022b) and nonlinear TL-MDPC, we observed connectivity modulations 

during the baseline period for some region pairs (e.g., lATL-rATL, PTC-IFG, rATL-PTC). This could be 

due to the fact that our EEG/MEG data was recorded in a blocked design, affecting brain activity in 

anticipation of the stimulus and in preparation of a particular type of decision. However, it is important to 

note that the temporal and spatial extents, and in particular the onsets and offsets, of significant effects 

from cluster-based permutation tests cannot be determined with precision (Sassenhagen and Draschkow, 

2019). The functional significance of these early baseline effects should be investigated in more detail in 

future studies. 

Source leakage is a consequence of the non-uniqueness of the EEG/MEG inverse problem, and therefore 

affects any processing steps following source estimation, in particular connectivity analysis (Colclough et 

al., 2015; Farahibozorg et al., 2022; Hauk et al., 2022; Palva et al., 2018). This is a possible confound for 

all unidimensional (homogenous activation patterns) and multidimensional (non-homogenous patterns) 

methods. Leakage occurs instantaneously, and therefore methods have been suggested that remove zero-

lag dependencies between activation time series to reduce its confounding effect (Colclough et al., 2015; 

e.g. Nolte et al., 2004). However, if two point sources show true zero-lag connectivity then all vertices 

that receive leakage from any of the two sources (i.e. where their point-spread functions are not zero) will 

also show non-zero-lag connectivity, i.e. leakage can still affect non-zero-lag connectivity estimates 

(Colclough et al., 2015; Farahibozorg et al., 2018; Palva et al., 2018; Rahimi et al., 2022a). In addition, 

zero-lag connectivity can still be of interest, e.g., for homologous areas in the two brain hemispheres. Both 

TL-MDPC and nTL-MDPC estimate zero-lag as well as non-zero-lag connectivity (diagonal and off-

diagonal elements of the temporal transformation matrix, respectively).  

In the present study, we used combined EEG and MEG to gain the optimum spatial resolution and thus 

minimise leakage (Hauk et al., 2019; Henson et al., 2009; Molins et al., 2008). Furthermore, we represent 

a quantitative assessment of leakage for our ROIs. While in our previous study we computed leakage 

indices for the unidimensional case, i.e., homogenous activation patterns, we here extended this approach 

to the multidimensional case, i.e., non-homogenous activation patterns. The resulting leakage matrix 

suggests that the highest leakage would be between lATL-PTC, lATL-IFG and PTC-AG. However, the 

connectivity network shows that the strongest connectivity occurs between 1) AG-PVA, 2) lATL-IFG, 

rATL-PTC, and PTC-PVA. In particular, we observed reliable connections of rATL with regions in the 
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left hemisphere. Thus, while we cannot rule out that some of our results are affected by leakage as in other 

similar studies, the overall pattern of our results cannot be explained by leakage alone.  

Our approach is a step towards characterising the full dynamic multidimensional information in vertex-

to-vertex relationships across brain regions. Both TL-MDPC (Rahimi et al., 2022b) and our new nTL-

MDPC applied to dynamic EEG/MEG data allowed more detailed investigation of the semantic network 

across space and time, compared to previous studies on this network using fMRI (Chiou et al., 2018; 

Jackson et al., 2016; Jung and Lambon Ralph, 2016) and unidimensional analyses with EEG/MEG 

(Rahimi et al., 2022a; Sormaz et al., 2017). Our main findings are that 1) in the simulations both methods 

could identify some linear and nonlinear relationships, with the nonlinear method performing slightly 

better, and 2) we did not observe significant differences between our methods in our real data analysis. 

Thus, we cannot report a significant advantage of using a computationally more demanding nonlinear over 

a simpler linear method, in contrast to the fMRI analyses by Anzellotti et al. (Anzellotti et al., 2017a, 

2017b). There are two possible explanations of these results. First, there may be no nonlinear relationships 

in EEG/MEG data or, second, there may be nonlinear relationships in EEG/MEG data and our linear 

method may be able to approximate them well enough within the noise level. Future studies should 

investigate whether this is a general property of EEG/MEG data or whether there are cases for which the 

nonlinear method is more suitable.  As there are many possible ways to perform functional connectivity 

analyses and we may not be able to take all factors into consideration, we need to know the most effective 

aspects. For instance, our findings suggest that moving from unidimensional to multidimensional 

information adds much, yet converting a linear method to a nonlinear version does not. This might help 

focus our aims on the important aspects for future methods development and applications. It is also 

possible to decompose nonlinear relationships into linear and nonlinear parts, as for example shown for 

multivariate connectivity methods (Talebi et al., 2019). This would allow the estimation of linear and 

nonlinear connectivity components separately within a dataset.  

In summary, our novel linear and nonlinear approaches to estimating multidimensional relationships 

between brain regions have allowed us to reveal novel insights into the dynamics of the semantic brain 

network, and open new avenues for a richer description of dynamic brain connectivity in the future. We 

cannot provide any strong evidence that the nonlinear method outperforms the linear one, yet this may not 

be the case for other datasets. While both methods allowed us to estimate statistical relationships between 

regions across time lags, they are not directional and therefore do not establish directionality or causality 
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of our observed effects. Furthermore, as for all bivariate methods we cannot determine whether an 

observed relationship is due to indirect connectivity, e.g., if it is mediated by a third source. In the future, 

this could be addressed by extending our methods to a multivariate as well multidimensional approach, 

i.e., considering the full patterns across multiple brain regions simultaneously. This would lead to 

multivariate autoregressive models which together with the principles of Granger causality could establish 

directional and even causal relationships between multidimensional time series (Seth, 2010).  
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Figure S1- Representation of all TTMs for semantic decision (SD) and lexical decision (LD) tasks, and their comparison, using 

TL-MDPC (left column) and nTL-MDPC (right column). TTMs for SD and LD are averaged TTMs across participants, and 

comparison was done using cluster-based permutation test with alpha-level=0.05. All significant contrasts show greater 

connectivity for SD using MD. 
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