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20 Abstract

21 Drought stress is a key factor limiting plant growth and the colonization of arid habitats by
22 plants. Here, we study the evolution of gene expression response to drought stress in a wild
23 tomato, Solanum chilense naturally occurring around the Atacama Desert in South America.
24 We conduct a transcriptome analysis of plants under standard and drought experimental
25 conditions to understand the evolution of drought-response gene networks. We identify two
26 main regulatory networks corresponding to two typical drought-responsive strategies: cell
27 cycle and fundamental metabolic processes. We estimate the age of the genes in these
28 networks and the age of the gene expression network, revealing that the metabolic network
29 has a younger origin and more variable transcriptome than the cell-cycle network. Combining
30 with analyses of population genetics, we found that a higher proportion of the metabolic
31 network genes show signatures of recent positive selection underlying recent adaptation
32 within S. chilense, while the cell-cycle network appears of ancient origin and is more
33 conserved. For both networks, however, we find that genes showing older age of selective
34 sweeps are the more connected in the network. Adaptation to southern arid habitats over the
35 last 50,000 years occurred in S. chilense by adaptive changes core genes with substantial

36 network rewiring and subsequently by smaller changes at peripheral genes.

37
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39 Introduction

40 Drought stress is one of the major environmental constraints negatively influencing plant
41 development and preventing plant growth, resulting in decreased yield in agriculture and as a
42 constraining factor for colonization of arid or hyper-arid habitats (Ciais et al. 2005; Juenger
43 2013). Plants respond to water-insufficiency through multiple strategies underpinned by
44  various physiological and developmental processes, such as storage of internal water to
45 avoid tissue damage and tolerance (endurance) to drought stress to maintain the growth
46 process (Basu et al. 2016). These strategies involve many biological functions such as
47 increasing the metabolic activity of some tissues, i.e. root water uptake and closing stomata,
48 or activation of metabolic pathways including phytohormone signaling, antioxidant and
49 metabolite production in order to regulate osmotic processes (Rodrigues et al. 2019).
50 Drought response involves numerous guantitative and polygenic traits acting in (complex)
51 gene co-expression networks (GCN). To improve crops and predict the evolutionary
52 responses of plant species under the current and predicted global water deficits, it is thus of
53 interest to pinpoint and decipher the evolutionary history of the relevant GCNs underpinning

54 the adaptation of wild plants to arid or hyper-arid habitats (Gehan et al. 2015).

55 Comparative transcriptomics involving the inference of gene co-expression patterns
56 show that many GCNs are conserved through the tree of life (Stuart et al. 2003; Gerstein et
57 al. 2014; Zarrineh et al. 2014; Crow et al. 2022). Moreover, phylogenetic and developmental
58 studies have demonstrated that many physiological, structural, and regulatory innovations to
59 cope drought stress have arisen throughout the history of plants, many of them even
60 predating the emergence of land plants (Jill Harrison 2017; de Vries et al. 2018; de Vries and
61 Archibald 2018; Mustafin et al. 2019; Wang et al. 2020; Bowles et al. 2021). Several
62 conserved GCNs can be observed in fundamental biological processes such as protein
63 metabolism, cell cycle, and photosynthesis and well as key traits such wood formation

64 (Stuart et al. 2003; Ficklin and Feltus 2011; Zinkgraf et al. 2020).
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65 A key question in functional and evolutionary genomics is thus to link GCN evolution
66 and (relatively) short-scale evolutionary processes such as adaptation and
67 population/species divergence in order to assess the relative importance of contingency,
68 exaptation and evolution of novel genes (duplication, neofunctionalization) allowing
69 colonization of novel habitats. Two main hypotheses are formulated. First, highly conserved
70 sub-networks (so-called hubs or kernels) evolve under strong purifying selection to ensure
71 the functionality of the GCNs (Papakostas et al. 2014; Josephs et al. 2017; Mahler et al.
72 2017; Masalia et al. 2017), so that genetic variation is only found at (less connected) genes
73 at the periphery of the GCNs that may be the target of positive natural selection (Flowers et
74 al. 2007; Kim et al. 2007; Luisi et al. 2015; Erwin 2020). However, this argument is likely
75 because the novel habitats may not differ much from the original one, so that only minor
76 adjustments in the GCNs are enough to provide adaptation. This is also in line with so-called
77 developmental systems drift (DSD; True and Haag 2001), that predicts GCN rewiring only
78 occurs in ‘flexible’ (sub-)modules with the accumulation of neutral variation that keep the
79 network function intact until a new viable function (phenotype or developmental pathway)
80 appears. Second, despite the general belief that genes with higher connectivity evolve at a
81 slower rate, there is also evidence that changes at central genes (with higher connectivity)
82 can be responsible for the short-term response to selection (Jovelin and Phillips 2009; Luisi
83 et al. 2015) and promote rewiring of the GCN (Koubkova-Yu et al. 2018). Thus, highly
84 connected genes may be targets of positive selection during environmental change, e.g.
85 adaptation to novel habitats, even though these genes experience purifying selection in
86 stable environments (Hamala et al. 2020). Indeed, if the second hypothesis is correct, we
87 expect a correlation between the age of positive selection and the connectivity of a gene in a

88 network, but no correlation under the first hypothesis.

89 To test these hypotheses, we reveal the selective forces (positive versus purifying
90 selection) acting on different components of the networks (hub vs peripheral genes) across

91 species/lineages adapted to contrasting conditions, and correlate the signals of positive
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92 selection with gene connectivity in the wild tomato species Solanum chilense. Wild tomatoes
93 are a model of interest as their diversification is accompanied by the exploration of wide
94 environmental gradients along the Pacific coast of South America (from tropical to subtropical,
95 coastal to high mountain, and wet to extremely dry regions; Nakazato et al. 2010; Haak et al.
96 2014). In addition, the infra-specific diversification within S. chilense resulted in several
97 lineages with strong environmental differentiation (Raduski and Igi¢ 2021; Wei et al. 2023).
98 Populations of S. chilense are challenged by prolonged drought, with the most severe
99 drought conditions occurring in the southern part of the range. Wild relative tomato species
100 such S. chilense, S. sitiens and S. pennelli become well-established systems to study
101 tolerance strategies to survive in extreme environments (Bolger et al. 2014; Martinez et al.
102 2014, Tapia et al. 2016; Kashyap et al. 2020; Blanchard-Gros et al. 2021; Molitor et al. 2021;
103 Barrera-Ayala et al. 2023). In a previous study, we assayed for evidences of positive
104 selection in 30 fully sequenced genomes of S. chilense to identify candidate genes
105 underpinning adaptation along the species range. We found genes with putative functions
106 related to root hair development and cell homeostasis as being likely involved in drought
107 stress tolerance (Wei et al. 2023). However, to date, most research in S. chilense has
108 focused on the evolution of a few genes potentially involved in abiotic stress response
109 (Fischer et al. 2011; Mboup et al. 2012; Fischer et al. 2013; Bondel et al. 2015; Nosenko et al.
110 2016; Bondel et al. 2018), and we still lack information regarding the evolutionary

111 mechanisms driving drought tolerance in this species.

112 Our aim is to study the GCN evolution underpinning S. chilense adaptation to arid
113 habitats. We identify drought stress responsive gene regulatory networks combining multiple
114 analyses of transcriptome data of S. chilense and focus on two networks involved in cell-
115 cycle and metabolic processes. Furthermore, we infer the evolutionary processes at these
116 two networks across three different evolutionary levels (tree of life/plants, species and
117 population) by computation of transcriptome indices to explore the evolutionary age and

118 sequence divergence of the drought responsive transcriptome. We then analyze the
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119 emergence of adaptive variation in the identified drought-responsive genes of these networks

120 and the association to gene connectivity.
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121 Results

122 Drought experiments and transcriptome analyses

123 Plants of S. chilense growing either under well-watered or a moderate water stress regimes
124 (hereafter, control and drought) showed clear morphological differences by the time of tissue
125 collection. Plant growth and ramification was boosted in well-watered group while plants
126 under drought were smaller and slow-growing. Hence, on the day 12, newly expanded leaf
127 and shoot apices were collected for the expression analysis of stress-responsive genes and

128 four biological replicates were used for all RNA-Seq experiments from each tissue type.

129 We analyze short-read transcriptome data from 16 libraries aligned to the reference
130 genome of S. chilense (Dataset S1). A total of 27,832 genes are identified to be expressed in
131 the 16 libraries (Dataset S2), of which 1,536 genes are uniquely expressed in drought
132 condition and 1,767 genes in control condition (Dataset S2). A principal component analysis
133 (PCA) based on the gene expression profiles reveals consistent clustering primarily
134 associated with the experimental conditions (control and drought) and secondarily to the
135 developmental stages (leaf and shoot apex) (Figure 1A). PC1 accounts for 28.17% of the
136 expression variability and separates the libraries from the two experimental conditions,
137 indicating transcriptome remodeling between drought and control conditions. Libraries from
138 different developmental stages are separated along the PC2 axis (accounting for 18.24% of
139 the variance), supporting tissue age transcriptome specificity. Consistently, the transcriptome
140 similarity analysis between libraries reveals that the watering conditions explain the major
141 differences between treatments (Figure 1B). Hierarchical clustering also revealed that the
142 transcriptomes were grouped mainly according to water deficit intensity, rather than by tissue
143 type (Figure 1C), demonstrating the predominant effect of the stress response in
144 transcriptome remodeling. Therefore, we thereafter focus on comparing the transcriptome

145 profiles of the drought and control experimental conditions.

146 Identification of gene networks involved in drought stress
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147 We identified gene networks involved in drought response in S. chilense based on differential
148 expression analysis and weighted gene co-expression network analysis (WGCNA). First,
149 three sets of differential expression genes (DEGs) are identified from three drought/control
150 comparison groups (full data set, only leaf and only shoot apex tissues) (Figure 2A; Dataset
151 S3; log2FoldChange = 1, FDR P < 0.001). A total of 4,905 DEGs are obtained in three
152 comparison groups, of which 2,484 DEGs (1,235 up-regulated and 1,249 down-regulated in
153 drought transcriptome) are shared in three comparison groups (Figure 2B). We deduce that

154 these shared DEGs correspond to a core functionally drought-responsive network.

155 In construction of gene co-expression networks (GCNs), we do not directly used DEGs
156 in WGCNA as suggested by the developer of WGCNA, because DEGs are invalid for
157 assumption of the scale-free topology. Therefore, a set of 16,181 genes after filtering from all
158 expressed genes were used in WGCNA (see methods), and clustered into seven co-
159 expression modules named after different colors. The module sizes range from 183 up to
160 5,364 genes (Figure 2C, Dataset S4). Among the identified co-expression modules, the blue
161 module (3,852 genes) shows significantly positive correlation with control condition and
162 negative correlation with drought condition (Figure 2C, Kendall's test, P = 2.2e-11). In
163 contrast, the turquoise module (5,364 genes) is significantly positively correlated with drought
164 condition and negatively correlated with control condition (Figure 2C, Kendall's test, P =
165 2.34e-13). In addition, the genes within blue and turquoise modules are observed to show
166 higher connectivity than other modules (Figure S1, Kolmogorov-Smirnov test on connectivity
167 measure, P = 2.41e-17), indicating higher interaction and closer correspondence in biological

168 process among genes within each module in response to water deprivation.

169 We next check the overlap between 2,484 DEGs and co-expression modules to
170 confirm that blue and turquoise modules are associated with drought stress in S. chilense
171 (Table S1). DEGs share far more genes with the blue and turquoise modules than with other
172 co-expression modules. Almost all shared DEGs (2,302 genes out of 2,484) are found in the

173 blue and turquoise modules. This confirms that blue and turquoise modules are two sets of
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174 co-expressed drought stress responsive genes. The overlapping DEGs and module genes
175 are extracted to constitute the now refined two high-confidence subsets of the blue and

176 turquoise modules and comprising 1,223 and 1,079 genes, respectively.

177 To independently support regulatory relationships among genes identified in the two co-
178 expression networks, we identify transcription factors (TFs) and transcription factor binding
179 sites (TFBSs) for the two subsets of genes. Therefore, we extract the genes that can bind to
180 one another (Table S2) from the two high-confidence subsets, which we hereafter name as
181 sub-blue (686 genes) and sub-turquoise (948 genes), respectively (Dataset S5). These
182 results show that genes in the sub-blue and sub-turquoise networks not only show specific
183 co-expression patterns, but they show also predicted interact between the TFs and TFBSs.
184 Subsequently, the co-expression network is reconstructed using the same steps for the set of
185 genes of the sub-blue and sub-turquoise networks. Higher connectivity is observed in the
186 sub-turquoise network (Figure S2, Kolmogorov-Smirnov test on connectivity measure, P =
187 0.002), suggesting a closer regulatory relationship among genes in the sub-turquoise than in

188 the sub-blue network.

189 To verify the robustness of two drought-responsive network (sub-blue and sub-
190 turquoise) across different tomato species (and thus the generality of our results), we
191 employed also the same pipeline to construct GCNs combined to transcriptomic data of S.
192 pennelliii (PRJEB5809; Bolger et al. 2014) and S. lycopersicum (PRINA812356; Yang et al.
193 2022) (Dataset S1). Those transcriptomes also exhibit difference due to water conditions in
194 the analysis of PCA, correlations and hierarchical clustering (Figure S3). We first observe
195 that the 1,837 (74%) genes in the DEG sets based on only S. chilense overlap to the
196 combined DEG set of S. pennellii and S. lycopersicum (Figure S4A and S4B). The GCNs
197 from combined transcriptome profiles consistently show two networks as we find in S.
198 chilense alone (Figure 2C and S4C). We find that 576 (84%) and 778 (82%) genes overlap
199 to the sub-blue and sub-turquoise networks, respectively (Figure S4D and S4E). In addition,

200 our two drought-responsive networks (sub-blue and sub-turquoise) also overlap with
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201 previous study based on drought transcriptomes of S. lycopersicum (Nicolas et al. 2022).
202 Nearly 60% of drought-responsive genes in the two networks are observed as response to
203 water stress in S. lycopersicum. These overlap rates suggest that our two drought-
204 responsive networks are present and perform similar functions in different tomato species.
205 We therefore concentrate on these two networks: sub-blue (686 genes) and sub-turquoise

206 (948 genes).

207 Functional enrichment analysis of drought-responsive GCNs

208 We assess whether the two identified gene networks (sub-blue and sub-turquoise) show
209 functional differences. The gene ontology (GO) enrichment reveals that sub-blue network is
210 significantly enriched (P < 0.05) in cell cycle and regulation biological processes, including
211 replication and modification of genetic information, ribosome production and assembly,
212 cytoskeleton organization, among others (Figure 3A; Table S3). Conversely, the sub-
213 turquoise network is enriched in biological processes related to response of physiological
214 and metabolic processes to water shortage and heat, including some metabolic processes,
215 signal pathways, changes of stomata and cuticle, amongst other processes (Figure 3A; Table
216 S3). These functional differences suggest that genes in the two sub-networks are activated
217 and expressed in different cellular compartments. Consistent with the mentioned biological
218 process, the sub-blue network genes are mainly enriched in cellular components in the
219 nucleus, including nucleolus, chromosome, nuclear envelope, and ribosome (Figure 3B;
220 Table S4). These cellular components are at the center of cell division processes. On the
221 other hand, the sub-turquoise network is enriched in cellular components related to
222 metabolism processes, such as complexes and membrane structures in the cell (Figure 3B;
223 Table S4). Many studies have indicated that modulation in the cell cycle and fundamental
224 metabolism are two main strategies in response to drought stress (Gupta et al. 2020; Yang et
225 al. 2021; Nicolas et al. 2022). We focus, thereafter, on these two sub-networks and from now
226 on, the sub-blue network is referred to as the cell-cycle network and the sub-turquoise as the

227 metabolic network.
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228 Evolutionary age of drought-responsive transcriptome in S. chilense

229 To generate a comprehensive understanding of the emergence of the identified drought-
230 responsive GCNs, we estimate the transcriptome ages of the identified cell cycle and
231 fundamental metabolism networks. For that, we build phylostratigraphic profiles for all genes
232 of the two GCNs, summarizing the gene emergence in 18 stages of plant evolution or
233 phylostrata (PS): PS1 representing the emergence of oldest genes (at the time of the first
234 cellular organisms) to PS18 for the most recent genes (i.e. present only in S. chilense). The
235 PS18 shares no homologue genes with any other species in the nr (non-redundant protein)
236 databases of NCBI (Figure 4A and 4B, Dataset S6). Most genes in the two analyzed GCNs
237 (76.79% in metabolic network and 65.45% in cell-cycle network) are assigned to three main
238 PS: Cellular organisms (PS1), Land plants (Embryophyta; PS5) and Flowering plants
239 (Magnoliopsida; PS8) (Figure 4A). This suggests that the two drought-responsive GCNs we
240 identify have an ancient origin and the components are fairly conserved across the tree of
241 life/lplants. Therefore, many drought-responsive pathways likely emerged during the
242 colonization of land by plants (PS5), but many others could derive from exaptation processes
243 from GCNs involved in the core cell process (PS1) or reproductive organ differentiation of
244  flowering plants (PS8). Interestingly, the cell-cycle network shows older origin ages (with
245 more genes (43.73%) assigned to the PS1-3), while the metabolic network presents a larger
246 proportion (48.52%) of genes originating in PS8 (Figure 4A and 4B). Under drought
247 conditions, we also find that cell-cycle network genes of almost all PS ages are down-

248 regulated, while genes of the metabolic network are up-regulated (Figure S5).

249 Furthermore, we estimate the age of cell-cycle and metabolic GCNs using the
250 transcriptome age index (TAI). We do not find a significant difference of TAI between control
251 and drought samples based on 1,000 randomly selected genes from non-drought responsive
252 genes (Figure S6A; Kolmogorov-Smirnov test, P = 0.34), while in cell-cycle and metabolic
253 networks, the mean evolutionary ages of the transcriptomes are significantly different

254  between drought and control conditions (Figure 4C; Kolmogorov-Smirnov test, P = 0.03). The
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255 TAI profile would be expected to be a flat horizontal line if genes’ ages remain constant
256 across the transcriptomes. In addition, a higher TAI value implies that evolutionary younger
257 genes are preferentially expressed at the corresponding condition/developmental stage. We
258 observe higher TAl in drought samples, supporting that the drought-responsive genes exhibit
259 a younger transcriptome age than genes expressed under control conditions. Moreover, TAI
260 of the metabolic GCN is significantly higher than the cell-cycle (Figure 4C; Kolmogorov-
261 Smirnov test, P = 12.51e-7), supporting the previous result that transcriptome ages of the

262 genes in the cell-cycle are older than in the metabolic GCNs.

263 The contributions of the different PS to the TAI profiles also show notable patterns
264 between the cell-cycle and metabolic GCNs (Figure 4D and 4E). On one hand, early
265 divergent genes (PS1 to PS7) show more constant transcriptome age in all conditions and
266 the genes with ages in PS1, PS5 and PS8 appeared as remarkably important in two GCNs.
267 On the other hand, late-emerging genes (PS8 to PS18) contribute increasingly with their age
268 to the differential expression patterns between control and drought samples, indicating that
269 younger drought-responsive genes are differentially expressed under drought stress in both
270 GCNs (as observed in Domazet-LoSo and Tautz 2010; Piasecka et al. 2013). Remarkably,
271 the youngest genes in PS18 (only found in S. chilense), also present a higher contribution in
272 the metabolic GCN, suggesting that these genes are involved in either speciation or local
273 adaptation of S. chilense to drought conditions. Note that younger genes (PS9 to PS18) in

274  the cell-cycle GCN hardly contribute to the TAI profile (Figure 4D and 4E).

275 Divergence of the drought tolerance transcriptome in S. chilense

276 To drill down into the evaluation of the drought-response mechanisms at the species level,
277 we calculate the TDI index, which represents the mean sequence divergence of a
278 transcriptome. A total of 10 divergence strata (DS) are constructed based on the sequence
279 divergence between genes of S. chilense and S. pennellii by computing the Ka/Ks ratio

280 (Figure 5A; Figure S7; Dataset S6). The distributions of the Ka/Ks ratio per gene for both
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281 GCNs indicate the action of purifying selection, which confirms the conservation of most of
282 drought-responsive genes at the species level. Consistent with the phylostratigraphic
283 patterns, the purifying selection signals in the cell-cycle GCN (Ka/Ks = 0.279 + 0.333) are
284 higher than in the metabolic GCN (Ka/Ks = 0.329 * 0.331) (Kolmogorov-Smirnov test, P =
285 2.34e-11; Figure 5A; Table S5). In addition, higher TDI values are observed in the drought
286 samples (Figure 5B) suggesting that the expressed genes we identify in the two GCNs
287 exhibit a more conserved transcriptome profile under control condition compared to drought
288 condition (Kolmogorov-Smirnov test, P = 0.004). No significant difference is found between
289 control and drought samples based on 1,000 random genes (Kolmogorov-Smirnov test, P =
290 0.17; Figure S6B). This result supports that different selective pressures act on S. chilense
291 GCNs across conditions. In accordance with the TAI results, the transcriptome of the
292 metabolic GCN appears to exhibit a higher transcriptome divergence than the cell-cycle GCN
293 (Figure 5B; Kolmogorov-Smirnov test, P = 2.25e-7). Moreover, the low TDI in the cell-cycle
294 GCN and larger TDI differences between drought and control transcriptomes also suggest
295 that regulation of the cell-cycle is likely an ancestral (older) strategy of stress response, not
296 involved in the speciation process. The transcriptome of the cell-cycle GCN may have been
297 evolving and changing in older times, and reached a conserved structure in recent times.
298 Conversely, changes of metabolic pathways and rewiring of the metabolic GCN may appear

299 to be more pronounced and/or common in recent times.

300 The contributions of the low divergence DS classes (low Ka/Ks in DS1 to DS5) in the
301 cell-cycle GCN (~ 50% of the genes) are larger than in the metabolic GCN (DS1 to DS5
302 about 30%), especially in DS1 (lowest Ka/Ks ratio; Figure 5C and 5D). This indicates that
303 purifying selection is acting on genes of the cell-cycle GCN, possibly constraining further
304 changes. In contrast, the metabolic network genes show about 70% contributions in high DS
305 (higher Ka/Ks ratio in DS6 to DS10), especially in DS10 (highest Ka/Ks ratio), indicating that
306 genes in the metabolic network evolve under weaker purifying selection and that recent

307 evolutionary changes occurred.
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308 As a summary, from the deep phylogenetic to the species level, the TAI profile of the
309 cell-cycle network is mainly composed of older phylostrata (PS1 to PS8), while new genes
310 contribute about 20% to the TAI profile of the metabolic network (Figure 4D and 4E). This
311 indicates that the gene expression levels of the cell-cycle network have likely been optimized
312 and fixed early on during evolution, while being maybe also involved in other functional
313 pathways than drought response (Harrison et al. 2012). TDI profiles support this claim:
314 conserved genes do contribute more to the TDI profiles in cell-cycle networks and show
315 adaptive changes in expression for drought response (higher TDI difference between control
316 and drought transcriptomes in cell-cycle network, Figure 5B). In contrast, drought-responsive
317 genes in metabolism network appear more variable in their expression in response to
318 drought stress, because this strategy may be linked to an initial response to severe water

319 scarcity (Dubois and Inzé 2020).

320 Population genetics analysis of drought-responsive networks

321 We also study the selective forces acting on the identified drought-responsive gene networks
322 at the population level. Using full genome sequences of six S. chilense populations
323 (C_LA1963, C_LA3111, C_LA2931, SC_LA2932, SC_LA4107, and SH_LA4330; five plants
324  each) recently reported in Wei et al. (2023), aligned to the reference genome of S. chilense,
325 we identify 45,208,263 high-quality single-nucleotide variants (SNPs), in which 111,606 SNPs
326 are found in genes of the cell-cycle GCN and 167,334 SNPs in genes of the metabolic GCN.
327 We first compare population structure between the whole-genome data and drought-
328 responsive genes (Figure S8). The results corroborate the genetic structure revealed in Wei
329 et al. (2023) (Figure S8A and S8C). However, the structure exhibited by drought genes
330 shows stronger differentiation among populations than the WGS data (especially for
331 clustering of populations of the central region and SH_LA4330). Moreover, the strong
332 differences from WGS data between the two south coastal populations (SC_LA2932 and
333 SC_LA4107) is attenuated when analyzing SNPs from the drought-responsive genes (Figure

334 S8B and S8D).
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335 We find that the mean nucleotide diversity (1) per gene does not differ between the two
336 GCNs (Figure S9A; Table S5; Kolmogorov-Smirnov test, P = 0.15). In addition, the 1 values
337 of the promoter regions (here 2kb upstream of the transcription initiation site) are significantly
338 higher than those of the gene (coding) regions (Figure S9A; Table S5; Kolmogorov-Smirnov
339 test, P = 0.03). This result suggests that the selective constraints in promoter regions may be
340 more relaxed, which could in part explain why certain transcription factors are able to bind to
341 multiple genes in the GCNSs. (Table S2). TFs are indeed conserved at the coding sequence
342 level, especially at the functional domains, but higher amount of polymorphism of TF binding
343 sites in the promoter can be indicative of complex and diverse regulation, for example in
344 response to stressful conditions (Spivakov 2014; Sato et al. 2016). Albeit, there is no
345 difference in the nucleotide diversity at the promoter regions between the two GCNs (Figure
346 S9A; Table S5). Furthermore, the genes for the metabolic GCN show lower Tajima’s D values
347 than those of the cell-cycle GCN (Figure S9B; Table S5; Kolmogorov-Smirnov test, P = 0.04),
348 suggesting recent positive selection pressure in the metabolic GCN. We find weak correlation
349 between Tajima’s D and Ka/Ks ratio for the cell-cycle GCN and absence of correlation for the
350 metabolic GCN (Figure S10A and S10B). As a negative correlation between Tajima’'s D and
351 Ka/Ks ratio is indicative of recent positive selection, our results suggest the possibility of
352 recent positive selection acting on multiple genes within the metabolic GCN (Figure S9B;

353 Table S5).

354 We further find significant, but opposite, correlations between 1 or Tajima’s D and the
355 contributions of the different DS for the two GCNs (Figure S10A and S10B). In the cell-cycle
356 GCN, the contributions of different DS have significant positive correlation with T and
357 Tajima's D (Figure S10A and S10C). This indicates that DS of high contribution to TDI
358 profiles show high nucleotide diversity (and positive Tajima’s D), meaning that older genes
359 are under stronger purifying selection than younger genes in this network because the
360 sequence divergence of cell-cycle genes occurred at old time periods. In contrast, a negative

361 correlation is observed between the contribution of each DS and m or Tajima’s D in the
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362 metabolic network (Figure S10B and S10D). Hence, DS with high contribution show low
363 nucleotide diversity and low Tajima’s D, especially DS10. Therefore, it appears likely that the
364 metabolic genes, likely recently evolved, may be under positive selection underpinning the

365 recent evolution of the drought response transcriptome.

366 Drought-responsive genes under positive selection promote adaptive evolution in

367 response to drought stress

368 Genetic drift or changes in selective pressure is one of the main factors that contribute to
369 gene-expression variation (Koenig et al. 2013). To investigate drought-responsive genes that
370 have potentially undergone a shift in selection regime, we search for overlap between genes
371 of two drought-response GCNs studied here and our previously identified 799 candidate
372 genes under positive selection in six populations of S. chilense (Wei et al. 2023). We find 74
373 and 126 drought-responsive genes in the cell-cycle and metabolic networks, respectively in
374 the list of candidate genes under positive selection (Figure 6A; Table S6). These genes
375 exhibit the typical characteristics of positively selected genes with low T and Tajima's D
376 (Table S5). This indicates that drought stress is likely an important driver of adaptation and
377 these drought-response genes may play key roles for colonization of new arid habitats.
378 Similar numbers of drought-responsive genes likely under positive selection are observed
379 across different populations of S. chilense encompassing different parts of the range, except
380 for SH_LA4330 (Wei et al. 2023). The number of candidate genes belonging to the metabolic
381 or cell-cycle GCNs is similar in the three central populations (C_LA1963, C_LA3111 and
382 C_LA2931) (Figure 6A; Table S6). The most recent diverged highland population
383 (SH_LAA4330) contains the largest number of positively selected drought-responsive genes
384 (Figure 6A; Table S6) with a similar proportion of genes from both networks. Noticeably, in
385 the two south-coast populations (SC_LA2932 and SC_LA4107) a large majority of genes
386 under positive selection belong to the metabolic GCN (showing absence of cell-cycle genes

387 in population SC_LA2932, Figure 6A; Table S6).
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388 Previous studies have demonstrated that adaptive genes are pleiotropic and proposed
389 functional connectivity between networks related to different quantitative traits (Wagner et al.
390 2007; Erwin and Davidson 2009; Hamala et al. 2020). To address the role that (putatively)
391 positively selected genes may play within the drought-responsive networks, we compare the
392 connectivity of these genes in the two networks (Figure 6B; Table S7). In the metabolic
393 network, the connectivity of positively selected genes (0.55 + 0.10) is significantly higher than
394 other drought-responsive genes (0.44 + 0.12) (Figure S11A; Kolmogorov-Smirnov test, P =
395 0.017), but we do not observe such significant difference for the cell-cycle network (Figure
396 S11A; Kolmogorov-Smirnov test, P = 0.43). Furthermore, the connectivity of positively
397 selected genes of the metabolic network is much higher than those from the cell-cycle
398 network in six populations (Figure 6B; Table S7; Kolmogorov-Smirnov test, P = 0.007). These
399 results suggest that highly connected (likely more pleiotropic) genes in the metabolic GCN
400 may have facilitated the recent colonization of new habitats (Hamala et al. 2020) during the
401 divergence process of S. chilense. In contrast, the connectivity of positively selected genes in
402 the cell-cycle network is significantly lower (Figure S11A). Therefore, we suggest that the two
403 networks underwent different evolutionary selective pressures during the range expansion of

404 S. chilense.

405 Finally, we compare the age of the selective sweep at the candidate genes of the two
406 GCNs based on the results in Wei et al. (2022). We find that sweep ages at the cell-cycle
407 genes are slightly younger than at those of the metabolic network, especially in the three
408 highland populations (C_LA2931, C_LA3111 and SH_LA4330; Figure S11B and S11C; Table
409 S7). This supports that drought adaptation is an important mechanism underlying the recent
410 (re)colonization of highland habitats (Raduski and Igi¢ 2021; Wei et al. 2023). Interestingly,
411 we find significantly positive correlation between the age of the sweep and gene connectivity
412 for both GCNs and across all six populations (Figure 6C). Figure 6D and 6E provide the
413 visualizations of two networks and exhibit the relationship between sweep age and

414 connectivity (depicting weighted connection strength greater than 0.65 between any two
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415 genes). In other words, it appears that selective sweeps occur first at more connected genes
416 and, subsequently at less connected genes, during the history of colonization/adaptation of
417 new arid habitats. To our knowledge, this is the first report of a correlation between the age of
418 a selective sweep and the connectivity of genes in a network. To obtain more evidence to
419 support this inference, we also calculate the tMRCA (time to most recent common ancestor)
420 to estimate the age of drought-responsive genes based on allele frequency of SNPs. The
421 positive correlation between tMRCA of drought-responsive genes under the positive selection
422 and connectivity is also supported (Pearson’s cor=0.69, P = 2.47e-5), consistent with the
423 correlation with sweep age. Moreover, the low correlation (Pearson’s cor=0.31, P = 0.14) is
424  observed between tMRCA of other (outside of sweep regions) drought-responsive genes and
425 connectivity. This supports the hypothesis of polygenic adaptation in GCNs where the
426 positive selection acts first on core genes (with high connectivity and more pleiotropic) of
427 networks, and subsequently on the peripheral genes (less connectivity and less pleiotropic).
428 These positively selected genes ultimately regulate the expression of other genes in the

429 network.

430

431 Discussion

432 In this study, we identify two drought-responsive GCNs by analyzing gene expression profiles
433 of plants growing under control and drought conditions. Two GCNs involved in cell-cycle and
434 metabolic biological processes are detected and their structural relevance are supported by
435 TF/TFBS predictions. These networks represent two different strategies for drought response
436 (Farooq et al. 2009; Danilevskaya et al. 2019). We then demonstrate that the cell-cycle
437 network is evolutionary older and more conserved than the metabolic network. Despite the
438 ancient history of these two GCNs, we further show that both GCNs also contribute to
439 different extents to contemporary processes of adaptation to drought conditions when S.

440 chilense colonizes new arid habitats around the Atacama desert. The joint analyses of
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441 genomic and transcriptomic data indicates that 1) at the transcriptome level, metabolic GCN
442 present a higher evolvability especially with younger selection events linked to response to
443 new environments, 2) cell-cycle GCN is less evolvable, and 3) both networks still present
444  signals of evolution under positive selection in core elements of the GCN, while peripheral
445 genes of the network can be involved in adaptation at later stages of the colonization

446 processes.

447 Drought tolerance is mediated by regulation in cell proliferation and metabolism

448 When roughly defining the organ development into cell proliferation and differentiation,
449 water deficit appears to be a limiting factor for both processes (Alves and Setter 2004;
450 Verelst et al. 2013). Drought stress reduces the activity of the cell cycle and thus slows down
451 the growth and development of plants. The down-regulated genes we find in the cell-cycle
452 network also indicate that genes related to cell cycle are suppressed by drought stress
453 possibly to restrict the cell division in S.chilense. Reduction of cell number due to mild
454  drought stress is also found in A. thaliana (Skirycz and Inzé 2010). This means that the cell-
455 cycle response to drought may be very general and indirect. However, our speculations are
456 mainly based on the aboveground tissues of S. chilense. Conversely, the changes of
457 fundamental metabolic activity may be a faster and a flexible drought-responsive strategy
458 presumably related to acclimation (Harb et al. 2010). Plant water shortage is first reflected in
459 changes in metabolic processes, such as accelerating the catabolism of macromolecules in
460 order to regulate the penetration of tissues, to maintain physiological water balance, or
461 slowing down metabolism to reduce energy and water consumption (Reddy et al. 2004;
462 Gupta et al. 2020). In addition, the signaling pathways related to the metabolic gene network
463 are also demonstrated to be a response to drought stress, for example, the abscisic acid
464 (ABA) signaling pathway regulates the response to dehydration and optimizes water
465 utilization (Harb et al. 2010; Wilkinson and Davies 2010). Although these two GCNs
466 correspond to two different strategies of drought response, they are not isolated, but interact

467 with one another in a time-dependent manner. Water deprivation and heat first change the


https://doi.org/10.1101/2023.01.18.524537
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.18.524537; this version posted April 5, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

468 metabolic processes leading to stomata closure, which leads then to cell cycle network to be
469 affected under long-term lack of water. In return, the increased or decreased cell cycle gene
470 expression affects the further physiology and metabolism of the plant (Gupta et al. 2020).
471 Indeed, drought-responsive strategies regulating the cell cycle appear to be activated later
472 than metabolism processes, as glucose metabolism rapidly follows drought stress, whereas
473 the accumulation of amino acids which is a crucial part of the cell cycle response starts at a

474 later time in response to drought (Fabregas and Fernie 2019).

475 Rewiring of ancient GCNs drives recent adaptation to dry environments

476 The phylostratigraphic analysis supports that the majority of drought-responsive genes in S.
477 chilense evolved during the early to middle stages of plant evolutionary history, which is in
478 agreement with the time of origin of multiple abiotic response genes in Arabidopsis thaliana
479 (Mustafin et al. 2019). This reinforces that the emergence of drought-responsive genes
480 coincides with the time periods of divergence among major plant groups (land- and flowering
481 plants), which are marked by frequent whole genome duplication events that trigger gene
482 family expansions, gene neo- and sub-functionalization, and genome reorganization
483 processes (Wang et al. 2012; Clark and Donoghue 2018). These genomic processes likely
484  contributed to the enrichment of drought-responsive GCNs. For instance, fundamental
485 morphological traits involved in drought responses, such as stomata, are present in the
486 ancestral land plants. However, stomatal genes existed prior to the divergence of land plants
487 and underwent multiple duplications during the course of evolution. Additionally, their
488 response to environmental cues, such as humidity, light, CO2, and ABA, is widely distributed
489 and may be ancestral to land plants (Clark et al. 2022). Therefore, we propose that our two
490 drought-responsive networks were primarily established during or shortly after the
491 divergence of land plants and have subsequently undergone expansion. This highlights the
492 crucial role of ancestral genomic processes in shaping the genetic mechanisms that underlie

493 plant adaptation to drought.
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494 Previous studies show that TAI and TDI profiles across embryogenesis, seed
495 germination and transition to flowering in A. thaliana exhibit a ‘hourglass pattern’ (older and
496 conserved transcriptomes are preferentially active at the mid-development stages; Quint et al.
497 2012; Drost et al. 2016). However, our TAI/TDI profiles for the two developmental stages
498 remain stable under the same conditions (Figures 4C and 5B). The similar TAI/TDI between
499 developmental stages (Figure 4C and 5B) that we obtained is certainly because our analyses
500 focused on two modules (co-expressed genes) highly correlated to the differential expression
501 between drought and control conditions (Figure 2D; Table S1). Therefore, developmental
502 stage-specific response genes are underrepresented in the two analyzed networks. However,
503 increased TAI/TDI values under drought conditions suggest that stress response
504 transcriptomes are composed of relatively more recently diverged genes, and therefore are
505 more evolvable. We suggest that this inference needs to be verified in other stress
506 responsive transcriptomes (salt, heat, cold, etc.). We then speculate, that although abiotic
507 stress response regulatory networks are mostly composed of highly ancient and conserved
508 elements across species (Chen and Zhu 2004), networks retain the ability to change
509 expression patterns to respond rapidly to environmental changes or to explore new
510 ecological niches. Moreover, given the pleiotropic nature of the abiotic stress-response ftraits,
511 we can expect shared patterns of evolution (at the constitutive and expression components)
512 of the networks for different stress conditions (and possible trade-offs between traits and

513 GCNSs).

514 Extensive network rewiring in relatively recent and short time-frames have been found
515 in maize and tomato in response to domestication (Swanson-Wagner et al. 2012; Koenig et
516 al. 2013). It is therefore not surprising to find signs of adaptive variation in core elements of
517 rather conserved regulatory networks related to the colonization processes of new (here arid)
518 habitats. The genetic (and morphological) divergence of the S. chilense marginal southern
519 populations, southern coastal and highland, is recent but strong (Raduski and Igi¢ 2021). It is

520 congruent with theoretical results showing that gene networks with higher mutation sensitivity
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521 can facilitate local adaptation, present increasing variance in gene expression and underlie
522 accelerated range expansion processes across abiotic environmental gradients (Deshpande
523 and Fronhofer 2022). Complementarily, our empirical approach shows the existence of two
524  regulatory networks with different evolutionary trends, one being more conserved than the
525 other and exhibiting different gene expression responses. One GCN would exhibit a faster
526 and more variable response (metabolic), while the other a later (delayed) but more
527 constitutive response (cell-cycle) to drought. Despite the differences in gene age and
528 variation between the networks, our results show that both GCNs have undergone sufficient
529 changes leading to their rewiring during the divergent process of colonization of S. chilense
530 around the Atacama. Nevertheless, genes in the metabolic network show more recent
531 evolution, with new genes members appearing in S. chilense, concomitantly with more

532 variable expression in the drought transcriptome.

533 These drought-responsive genes to S. chilense likely facilitated the adaptation of this
534 species to unique arid (up to hyper-arid) habitats, especially when colonizing the southern
535 part of the range. Indeed, population structure based on SNPs indicates that drought-
536 responsive genes reflected adaptation/colonization to arid habitats in S. chilense (Figure S8).
537 Importantly, we found about 200 drought-responsive genes previously identified as candidate
538 genes under positive selection (i.e. located within sweep regions in Wei et al. 2023). This
539 confirms that drought stress is an important driver of ecological divergence in S. chilense. We
540 finally provide some indirect evidence that changes at central genes (with higher connectivity)
541 can be responsible for the short-term response to selection (Jovelin and Phillips 2009; Luisi
542 et al. 2015) and promote rewiring of the gene network (Koubkova-Yu et al. 2018). Thus,
543 highly connected genes may be targets of positive selection during the first phase of the
544  environmental change or colonization to contrasting environments, and may be keys for
545 ‘piggybacking’, defined as the change in gene expression of a focal gene driving phenotypic
546 change. Altogether, our results on the age-dependent adaptive role of genes with different

547 network connectivity (and possible pleiotropic effects) provide another line of evidence
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548 supporting the view that molecular evolution follows an adaptive walk and are

549 complementary to the recent study by (Moutinho et al. 2022).

550

551 Limitations and further work

552 A limitation of our gene expression study is that our transcriptomic analyses are based on
553 individuals from a single location (near the putative region of origin of the species; Wei et al.
554 2022), while variability in gene expression and phenotypic response has been observed
555 between different populations (Mboup et al. 2012; Fischer et al. 2013; Nosenko et al. 2016).
556 Further expression studies including plants from multiple locations would be useful to verify
557 that the identified GCNs are also present and expressed in other populations and study the
558 possible variation in the most southern populations. More evidence based on multiple
559 populations is needed to confirm the ‘piggybacking’ phenomenon of gene expression in S.
560 chilense. Additional support on the variability of transcriptome evolution across populations
561 as well as long read sequencing of more genomes will be beneficial in assessing the role of
562 gene duplication and gene deletion yielding the evolution of the gene networks. Such studies
563 would also allow the analysis of evolution of adaptive gene networks and polygenic selection
564 occurring for complex traits such as drought tolerance. Finally, more detailed studies with a
565 larger sample size from the field will help to discover other gene networks and their
566 interactions related to abiotic stress and the evolution of the species. A detailed discussion of
567 the potential biases associated with the use of multiplied accessions at TGRC (Tomato
568 Genetics Resource Center, UC Davis, USA) compared to samples from natural populations
569 s found in Wei et al. (2022). Sampling and experimental work in the field would improve the
570 resolution of transcriptome and genomic studies, in order to assess phenotypic differences
571 between organs and stages of development and thus extend the knowledge to other relevant
572 characteristics such as secondary metabolism, which is known to have relevant influence on

573 biotic and abiotic interactions (Mes et al. 2008; Bolger et al. 2014; Tapia et al. 2022).
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574

575 Material and methods

576 Plant material and drought stress experiment

577 Seeds of S. chilense accession LA1963 were acquired from Tomato Genetics Resource
578 Center (TGRC), University of California at Davis. Seeds were soaked in 50% household
579 bleach (2.7% sodium hypochlorite) for 30 minutes and rinsed thoroughly with water
580 according to instructions provided by TGRC. The rinsed seeds were sown into pots
581 containing sterilized soil with perlite and sand (1:2) and grown under controlled conditions
582 (22C day/20C night, 16h light/8h dark photoperiod). On the 24th day after sowing, all plants
583 were randomly distributed into two groups and watered with a sufficient volume to reach the
584 bottom of containers (30-40 ml). The first group of plants were maintained under normal
585 watering condition, watered with a sufficient volume of water (50-55 ml) on 4, 7 and 11 days
586 after start of the experiment (day 24). A moderate water stress regime was imposed to
587 second group of plants by stopping irrigation for 7 days followed by re-watering with 25 ml of
588 water. On day 12, newly expanded leaf (1-1.5 cm length) and shoot apices with immediately
589 surrounding leaf primordia (shoot apices and P1-P5 leaf primordia) from each group were
590 dissected carefully using razor blades and immediately grounded into fine powder in liquid
591 nitrogen for RNA extraction. Four biological replicates were used for all RNA-Seq
592 experiments from each tissue type. Each replicate of leaf and shoot apex samples included

593 the pooled tissues from five and six plants, respectively.

594 RNA extraction and cDNA library construction

595 Libraries were constructed and named as follows: leaves under control (optimal watering)
596 condition (CL-A to D), shoot apices under control condition (CSA-E to H), leaves under
597 drought condition (DL-I to L), and shoot apices under drought condition (DSA-M to P).

598 Tissues were lysed using zircon beads in Lysate Binding Buffer containing Sodium Dodecyl
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599 Sulfate. mMRNA was isolated from 200 pl of lysate per sample with streptavidin coated
600 magnetic beads for indexed non-strand specific RNA-Seq library preparation according to the
601 method described by (Kumar et al. 2012). 1 ul of 12.5 uM of 5-prime biotinylated polyT
602 oligonucleotide and streptavidin-coated magnetic beads were used to capture mRNA and
603 isolate captured mRNAs from the lysate, respectively. Equal amount of mRNA of each
604 experimental group were used to construct 16 libraries. For library construction the rapid
605 version of Kumar et al. (2012) RNA-sequencing method (Townsley et al. 2015) was used.
606 Each sample was barcoded using standard lllumina adaptors 1-16 to allow up to 16 samples
607 to be pooled in one lane of sequencing on lllumina HiSeq4000. The libraries were eluted
608 from the pellet with 10 pl 10 mM Tris pH 8.0 and pooled as described by Kumar et al. (2012).
609 Quantification and quality assessment of resulting libraries were performed on Fragment
610 Analyzer (FGL_DNF-474-2- HS NGS Fragment 1-6000bp.mthds) and sequenced using the
611 Illumina HiSeq 4000 platform to generate 100 bp single-end reads at the Vincent J. Coates

612 Genomic Sequencing Facility at UC Berkeley.

613 Transcriptome and genome data processing and mapping

614 For transcriptome data, the adapters were removed from raw reads by two consecutive
615 rounds using BBDuk in BBTools v38.90 (Bushnell 2014). Two sets of parameters were used
616 in two rounds respectively: first round ‘ktrim=r k=21 mink=11 hdist=2 tpe tbo minlength=21
617 trimpolya=4’; second round ‘ktrim=r k=19 mink=9 hdist=1 tpe tbo minlength=21 trimpolya=4'.
618 Then Low-quality reads were also removed with BBDuk using parameters ‘k=31 hdist=1
619 qgtrim=Ir trimg=10 mag=12 minlength=21 maxns=5 ziplevel=5'. The clean reads of each
620 sample were mapped to the S. chilense reference genome (Silva-Arias et al. submited) using
621 BBMap in BBTools. The SAM files were then converted and sorted to BAM files using
622 Samtools v1.11 (Wysoker et al. 2009). The number of reads were mapped to each gene
623 were counted via featureCounts v2.0.1 in each sample (Liao et al. 2014). To eliminate the
624 differences between samples, the gene expression level was normalized using the TPM

625 (Transcripts Per Kilobase Million) method (Wagner et al. 2012).
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626 The relationships among transcriptome samples were evaluated using the TPM values.
627 The correlation coefficient between two samples was calculated to evaluate repeatability
628 between samples using Pearson’s test. Principal component analysis (PCA) was performed

629 using the prcomp() function in R (R Core Team 2020) based on TPM values .

630 Identification of differentially expressed genes and gene co-expression analysis

631 Differential expression analysis of groups among the different conditions and tissues was
632 performed using the DESeq2 R package (Love et al. 2014). The raw read counts were
633 inputted to detect Differential Expressed Genes (DEGs). The P-value < 0.001, the absolute
634 value of log2FoldChange = 1 and a false discovery rate (FDR) adjusted P < 0.001 were

635 classified as differentially expressed genes.

636 To identify the gene co-expression networks, weighted gene correlation network
637 analysis (WGCNA) was constructed using TPM values to identify specific modules of co-
638 expressed genes associated with drought stress (Langfelder and Horvath 2008). We first
639 checked for genes and samples with too many missing values using goodSamplesGenes()
640 function in WGCNA R package. We then removed the offending genes (the last statement
641 returns ‘FALSE’). To construct an approximate scale-free network, a soft thresholding power
642 of five was used to calculate adjacency matrix for a signed co-expression network.
643 Topological overlap matrix (TOM) and dynamic-cut tree algorithm were used to extract
644 network modules. We used a minimum module size of 30 genes for the initial network
645 construction and merged similar modules exhibiting > 75% similarity. To discover modules of
646 significantly drought-related, module eigengenes were used to calculate correlation with
647 samples with different conditions. The visualization of networks were created using

648 Cytoscape v3.8.2 (Su et al. 2014).

649 Identification of transcript factor families and transcript factor binding sites

650 The protein sequences were obtained from the reference genome and annotation ‘gff’ file
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651 with GffRead (Pertea and Pertea 2020), and were used to identify TF families using online
652 tool PlantTFDB v5.0 (Guo et al. 2007). Furthermore, the upstream 2000 bp sequences of the
653 transcription start sites (TSS) were extracted as the gene promoter from the reference
654 genome to detect TFBS. The TFBS dataset of relative species S. pennelli was also
655 downloaded from Plant Transcriptional Regulatory Map (PlantRegMap,

656 http://plantregmap.gao-lab.org/) as background of TFBS identification (Tian et al. 2020).

657 Then, the TFBS of S. chilense was identified using FIMO program in motif-based sequence
658 analysis tools MEME Suit v5.3.2 (Bailey et al. 2015). The TFBS was extracted with p < 1e-5

659 andg<0.01.

660 Gene ontology (GO) analysis

661 We first constructed the dataset of assigned GO terms for all genes used protein sequence
662 by PANTHER v16.0 (Mi et al. 2021). Then, the GO enrichment analysis of drought-
663 responsive genes was performed using clusterProfilter v3.14.2 (Yu et al. 2012). Benjamini—
664 Hochberg method was used to calibrate P value, and the significant GO terms were selected

665 with P-value below to 0.05.

666 Construction of phylostratigraphic map

667 We performed phylostratigraphic analysis based on the following steps. First, the phylostrata
668 (PS) was defined according to the full linkage of S. chilense from NCBI taxonomy database.
669 The similar PS was merged and finally 18 PS were generated (Figure 4A). Second, the
670 protein sequences were blast to a database of non-redundant (nr) proteins downloaded from

671 NCBI (https:/ftp.ncbi.nlm.nih.gov/blast/db/) with a minimum length of 30 amino acids and an

672 E-value below 10° using blastp v2.9.0 (Camacho et al. 2009). Third, each gene was
673 assigned to its PS by the following criterion: if no blast hitor only one hit of S. chilense with
674 an E-value below 10° was identified, we assigned the gene to the youngest PS18. When
675 multiple blast hits were identified, we computed lowest common ancestor (LCA) for multiple

676 hits using TaxonKit v0.8.0 (Shen and Ren 2021) and then assigned LCA to specific PS.
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677 Construction of divergence map

678 We performed divergence stratigraphy analysis to construct sequence divergence map of S.
679 chilense using function divergence_stratigraphy() of R package ‘orthologr’ (Drost et al. 2015)
680 following four steps: 1) the coding sequences for each gene of S. chilense and S. pennellii
681 (NCBI assembly SPENNV200) were extracted from their reference and annotation files. 2)
682 We identified orthologous gene pairs of both species by choosing the best blast hit for each
683 gene using blastp. We only considered a gene pair orthologous when the best hit has an E-
684 value below 10°, the gene pair is considered orthologous; otherwise, it is discarded. 3)
685 Codon alignments of the orthologous gene pairs were performed using PAL2NAL (Suyama et
686 al. 2006). Then, Ka/Ks values of the codon alignments were calculated using Comeron’s
687 method (Comeron 1995). And 4) all genes were sorted according to Ka/Ks values into

688 discrete deciles, which are called divergence stratum (DS).
689 Estimation of transcriptome age index and transcriptome divergence index

690 The TAl is computed based on phylostratigraphy and expression profile, which assign each
691 gene to different phylogenetic ages by identification of homologous sequences in other
692 species (Domazet-LoSo et al. 2007). The evolutionary age of each gene was quantified
693 combining its PS and expression level to obtain weighted evolutionary age. Finally, weighted
694 ages of all genes are averaged to yield TAI, which is defined as the mean evolutionary age of
695 a transcriptome (Domazet-LoSo and Tautz 2010). A lower value of TAl describes an older
696 mean evolutionary age, whereas a higher value of TAl denotes a younger mean evolutionary
697 age and implies that evolutionary younger genes are preferentially expressed in the
698 corresponding sample or condition (Domazet-LoSo and Tautz 2010; Piasecka et al. 2013).
699 The TDI represents the mean sequence divergence of a transcriptome quantified by
700 divergence strata (DS) and gene expression profile (Quint et al. 2012). The genes are
701 assigned to different DS and then weighted by their expression level to yield the TDI. A lower

702 value of TDI describes a more conserved transcriptome (in terms of sequence dissimilarity),
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703 whereas a higher value of TDI denotes a more variable transcriptome. Here, we calculate TAI

704 and TDI profiles in different samples using PlotSignature() function of the myTAl R package.

705 Population genetics analysis and detection of positive selection on drought-

706 responsive genes

707 Whole-genome sequence data from six populations S. chilense (five individuals each)
708 previously analyzed in (Wei et al. 2022; BioProject PRJIEB47577) were used to calculate
709 population genetics statistics for coding and promoter region sequences for all genes
710 identified in the GCNSs. Single nucleotide variants (SNPs) based on the short-read alignment
711 to the new reference genome for S. chilense (Silva-Arias et al. submitted) using the same
712 methods in Wei et al. (2022). Population genetics statistics namely, nucleotide diversity ()
713 and Tajima’s D were calculated with ANGSD v0.937 (Korneliussen et al. 2014) over gene and
714 promoter regions. These statistics first were calculated at per site in gene and promoter
715 regions, and then we used a R script (https://gitlab.Irz.de/population_genetics/s.chilense-
716 drought-transcriptome) to obtain statistics in each gene and promoter regions. PCA on SNP
717 data from 30 whole genomes was also performed using GCTA (v1.91.4; Yang et al. 2011).
718 The genetic structure inference was performed using ADMIXTURE v1.3.0 (Alexander et al.

719  2009).

720 Drought-responsive genes under positive selection were extracted by blast (e-value <
721 1e-6) between drought-responsive genes identified in this study and the genes located inside
722 sweep regions in our previous study using S. pennellii as the reference genome. We also

723 use the sweep ages obtained in Wei et al. (2022).

724 Estimation of allele age

725 We implemented in GEVA (Genealogical Estimation of Variant Age; Albers and McVean 2020)
726 to dating genomic variants in the drought-responsive genes. We generated input for GEVA

727 based on the recombination rate 3.24 x 10 per site per generation (based on the overall
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728 recombination density in S. lycopersicum [1.41 cM/Mb] Anderson and Stack 2002; Nieri et al.
729 2017, and within the possible range of rates used in Wei et al. 2022). We used population
730 size (N) 20,000 and mutation rate 5.1 x 10 (Roselius et al. 2005; Wei et al. 2023), and then

731 relied on the recombination clock to estimate the age of alleles (tMRCA).

732

733 Supplementary material

734 Supplementary data are available at Molecular Biology and Evolution online.
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The raw sequencing RNA data is available in PRIDB15063 (S. chilense), PRJEB5809 (S.
pennellii) and PRINA812356 (S. lycopersicum). The raw pair-end whole-genome sequencing
data can be accessed at the European Nucleotide Archive (ENA) project accession
PRJEB47577. All codes used in this study and other previously published genomic data are
available at the sources referenced. The code for implementing the analyses used in this
paper can be found on our GitLab repository:

https://qitlab.lrz.de/population _genetics/s.chilense-drought-transcriptome
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