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Abstract 20 

Drought stress is a key factor limiting plant growth and the colonization of arid habitats by 21 

plants. Here, we study the evolution of gene expression response to drought stress in a wild 22 

tomato, Solanum chilense naturally occurring around the Atacama Desert in South America. 23 

We conduct a transcriptome analysis of plants under standard and drought experimental 24 

conditions to understand the evolution of drought-response gene networks. We identify two 25 

main regulatory networks corresponding to two typical drought-responsive strategies: cell 26 

cycle and fundamental metabolic processes. We estimate the age of the genes in these 27 

networks and the age of the gene expression network, revealing that the metabolic network 28 

has a younger origin and more variable transcriptome than the cell-cycle network. Combining 29 

with analyses of population genetics, we found that a higher proportion of the metabolic 30 

network genes show signatures of recent positive selection underlying recent adaptation 31 

within S. chilense, while the cell-cycle network appears of ancient origin and is more 32 

conserved. For both networks, however, we find that genes showing older age of selective 33 

sweeps are the more connected in the network. Adaptation to southern arid habitats over the 34 

last 50,000 years occurred in S. chilense by adaptive changes core genes with substantial 35 

network rewiring and subsequently by smaller changes at peripheral genes. 36 

 37 
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Introduction 39 

Drought stress is one of the major environmental constraints negatively influencing plant 40 

development and preventing plant growth, resulting in decreased yield in agriculture and as a 41 

constraining factor for colonization of arid or hyper-arid habitats (Ciais et al. 2005; Juenger 42 

2013). Plants respond to water-insufficiency through multiple strategies underpinned by 43 

various physiological and developmental processes, such as storage of internal water to 44 

avoid tissue damage and tolerance (endurance) to drought stress to maintain the growth 45 

process (Basu et al. 2016). These strategies involve many biological functions such as 46 

increasing the metabolic activity of some tissues, i.e. root water uptake and closing stomata, 47 

or activation of metabolic pathways including phytohormone signaling, antioxidant and 48 

metabolite production in order to regulate osmotic processes (Rodrigues et al. 2019). 49 

Drought response involves numerous quantitative and polygenic traits acting in (complex) 50 

gene co-expression networks (GCN). To improve crops and predict the evolutionary 51 

responses of plant species under the current and predicted global water deficits, it is thus of 52 

interest to pinpoint and decipher the evolutionary history of the relevant GCNs underpinning 53 

the adaptation of wild plants to arid or hyper-arid habitats (Gehan et al. 2015). 54 

Comparative transcriptomics involving the inference of gene co-expression patterns 55 

show that many GCNs are conserved through the tree of life (Stuart et al. 2003; Gerstein et 56 

al. 2014; Zarrineh et al. 2014; Crow et al. 2022). Moreover, phylogenetic and developmental 57 

studies have demonstrated that many physiological, structural, and regulatory innovations to 58 

cope drought stress have arisen throughout the history of plants, many of them even 59 

predating the emergence of land plants (Jill Harrison 2017; de Vries et al. 2018; de Vries and 60 

Archibald 2018; Mustafin et al. 2019; Wang et al. 2020; Bowles et al. 2021). Several 61 

conserved GCNs can be observed in fundamental biological processes such as protein 62 

metabolism, cell cycle, and photosynthesis and well as key traits such wood formation 63 

(Stuart et al. 2003; Ficklin and Feltus 2011; Zinkgraf et al. 2020).  64 
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A key question in functional and evolutionary genomics is thus to link GCN evolution 65 

and (relatively) short-scale evolutionary processes such as adaptation and 66 

population/species divergence in order to assess the relative importance of contingency, 67 

exaptation and evolution of novel genes (duplication, neofunctionalization) allowing 68 

colonization of novel habitats. Two main hypotheses are formulated. First, highly conserved 69 

sub-networks (so-called hubs or kernels) evolve under strong purifying selection to ensure 70 

the functionality of the GCNs (Papakostas et al. 2014; Josephs et al. 2017; Mähler et al. 71 

2017; Masalia et al. 2017), so that genetic variation is only found  at (less connected) genes 72 

at the periphery of the GCNs that may be the target of positive natural selection (Flowers et 73 

al. 2007; Kim et al. 2007; Luisi et al. 2015; Erwin 2020). However, this argument is likely 74 

because the novel habitats may not differ much from the original one, so that only minor 75 

adjustments in the GCNs are enough to provide adaptation. This is also in line with so-called 76 

developmental systems drift (DSD; True and Haag 2001), that predicts GCN rewiring only 77 

occurs in ‘flexible’ (sub-)modules with the accumulation of neutral variation that keep the 78 

network function intact until a new viable function (phenotype or developmental pathway) 79 

appears. Second, despite the general belief that genes with higher connectivity evolve at a 80 

slower rate, there is also evidence that changes at central genes (with higher connectivity) 81 

can be responsible for the short-term response to selection (Jovelin and Phillips 2009; Luisi 82 

et al. 2015) and promote rewiring of the GCN (Koubkova-Yu et al. 2018). Thus, highly 83 

connected genes may be targets of positive selection during environmental change, e.g. 84 

adaptation to novel habitats, even though these genes experience purifying selection in 85 

stable environments (Hämälä et al. 2020). Indeed, if the second hypothesis is correct, we 86 

expect a correlation between the age of positive selection and the connectivity of a gene in a 87 

network, but no correlation under the first hypothesis.  88 

To test these hypotheses, we reveal the selective forces (positive versus purifying 89 

selection) acting on different components of the networks (hub vs peripheral genes) across 90 

species/lineages adapted to contrasting conditions, and correlate the signals of positive 91 
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selection with gene connectivity in the wild tomato species Solanum chilense. Wild tomatoes 92 

are a model of interest as their diversification is accompanied by the exploration of wide 93 

environmental gradients along the Pacific coast of South America (from tropical to subtropical, 94 

coastal to high mountain, and wet to extremely dry regions; Nakazato et al. 2010; Haak et al. 95 

2014). In addition, the infra-specific diversification within S. chilense resulted in several 96 

lineages with strong environmental differentiation (Raduski and Igić 2021; Wei et al. 2023). 97 

Populations of S. chilense are challenged by prolonged drought, with the most severe 98 

drought conditions occurring in the southern part of the range. Wild relative tomato species 99 

such S. chilense, S. sitiens and S. pennellii become well-established systems to study 100 

tolerance strategies to survive in extreme environments (Bolger et al. 2014; Martínez et al. 101 

2014; Tapia et al. 2016; Kashyap et al. 2020; Blanchard-Gros et al. 2021; Molitor et al. 2021; 102 

Barrera-Ayala et al. 2023). In a previous study, we assayed for evidences of positive 103 

selection in 30 fully sequenced genomes of S. chilense to identify candidate genes 104 

underpinning adaptation along the species range. We found genes with putative functions 105 

related to root hair development and cell homeostasis as being likely involved in drought 106 

stress tolerance (Wei et al. 2023). However, to date, most research in S. chilense has 107 

focused on the evolution of a few genes potentially involved in abiotic stress response 108 

(Fischer et al. 2011; Mboup et al. 2012; Fischer et al. 2013; Böndel et al. 2015; Nosenko et al. 109 

2016; Böndel et al. 2018), and we still lack information regarding the evolutionary 110 

mechanisms driving drought tolerance in this species. 111 

Our aim is to study the GCN evolution underpinning S. chilense adaptation to arid 112 

habitats. We identify drought stress responsive gene regulatory networks combining multiple 113 

analyses of transcriptome data of S. chilense and focus on two networks involved in cell-114 

cycle and metabolic processes. Furthermore, we infer the evolutionary processes at these 115 

two networks across three different evolutionary levels (tree of life/plants, species and 116 

population) by computation of transcriptome indices to explore the evolutionary age and 117 

sequence divergence of the drought responsive transcriptome. We then analyze the 118 
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emergence of adaptive variation in the identified drought-responsive genes of these networks 119 

and the association to gene connectivity.  120 
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Results 121 

Drought experiments and transcriptome analyses 122 

Plants of S. chilense growing either under well-watered or a moderate water stress regimes 123 

(hereafter, control and drought) showed clear morphological differences by the time of tissue 124 

collection. Plant growth and ramification was boosted in well-watered group while plants 125 

under drought were smaller and slow-growing. Hence, on the day 12, newly expanded leaf 126 

and shoot apices were collected for the expression analysis of stress-responsive genes and 127 

four biological replicates were used for all RNA-Seq experiments from each tissue type. 128 

We analyze short-read transcriptome data from 16 libraries aligned to the reference 129 

genome of S. chilense (Dataset S1). A total of 27,832 genes are identified to be expressed in 130 

the 16 libraries (Dataset S2), of which 1,536 genes are uniquely expressed in drought 131 

condition and 1,767 genes in control condition (Dataset S2). A principal component analysis 132 

(PCA) based on the gene expression profiles reveals consistent clustering primarily 133 

associated with the experimental conditions (control and drought) and secondarily to the 134 

developmental stages (leaf and shoot apex) (Figure 1A). PC1 accounts for 28.17% of the 135 

expression variability and separates the libraries from the two experimental conditions, 136 

indicating transcriptome remodeling between drought and control conditions. Libraries from 137 

different developmental stages are separated along the PC2 axis (accounting for 18.24% of 138 

the variance), supporting tissue age transcriptome specificity. Consistently, the transcriptome 139 

similarity analysis between libraries reveals that the watering conditions explain the major 140 

differences between treatments (Figure 1B). Hierarchical clustering also revealed that the 141 

transcriptomes were grouped mainly according to water deficit intensity, rather than by tissue 142 

type (Figure 1C), demonstrating the predominant effect of the stress response in 143 

transcriptome remodeling. Therefore, we thereafter focus on comparing the transcriptome 144 

profiles of the drought and control experimental conditions.  145 

Identification of gene networks involved in drought stress 146 
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We identified gene networks involved in drought response in S. chilense based on differential 147 

expression analysis and weighted gene co-expression network analysis (WGCNA). First, 148 

three sets of differential expression genes (DEGs) are identified from three drought/control 149 

comparison groups (full data set, only leaf and only shoot apex tissues) (Figure 2A; Dataset 150 

S3; log2FoldChange ≥ 1,  FDR P ≤ 0.001). A total of 4,905 DEGs are obtained in three 151 

comparison groups, of which 2,484 DEGs (1,235 up-regulated and 1,249 down-regulated in 152 

drought transcriptome) are shared in three comparison groups (Figure 2B). We deduce that 153 

these shared DEGs correspond to a core functionally drought-responsive network. 154 

In construction of gene co-expression networks (GCNs), we do not directly used DEGs 155 

in WGCNA as suggested by the developer of WGCNA, because DEGs are invalid for 156 

assumption of the scale-free topology. Therefore, a set of 16,181 genes after filtering from all 157 

expressed genes were used in WGCNA (see methods), and clustered into seven co-158 

expression modules named after different colors. The module sizes range from 183 up to 159 

5,364 genes (Figure 2C, Dataset S4).  Among the identified co-expression modules, the blue 160 

module (3,852 genes) shows significantly positive correlation with control condition and 161 

negative correlation with drought condition (Figure 2C, Kendall's test, P = 2.2e-11). In 162 

contrast, the turquoise module (5,364 genes) is significantly positively correlated with drought 163 

condition and negatively correlated with control condition (Figure 2C, Kendall's test, P = 164 

2.34e-13). In addition, the genes within blue and turquoise modules are observed to show 165 

higher connectivity than other modules (Figure S1, Kolmogorov-Smirnov test on connectivity 166 

measure, P = 2.41e-17), indicating higher interaction and closer correspondence in biological 167 

process among genes within each module in response to water deprivation.  168 

We next check the overlap between 2,484 DEGs and co-expression modules to 169 

confirm that blue and turquoise modules are associated with drought stress in S. chilense 170 

(Table S1). DEGs share far more genes with the blue and turquoise modules than with other 171 

co-expression modules. Almost all shared DEGs (2,302 genes out of 2,484) are found in the 172 

blue and turquoise modules. This confirms that blue and turquoise modules are two sets of 173 
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co-expressed drought stress responsive genes. The overlapping DEGs and module genes 174 

are extracted to constitute the now refined two high-confidence subsets of the blue and 175 

turquoise modules and comprising 1,223 and 1,079 genes, respectively.  176 

To independently support regulatory relationships among genes identified in the two co-177 

expression networks, we identify transcription factors (TFs) and transcription factor binding 178 

sites (TFBSs) for the two subsets of genes. Therefore, we extract the genes that can bind to 179 

one another (Table S2) from the two high-confidence subsets, which we hereafter name as 180 

sub-blue (686 genes) and sub-turquoise (948 genes), respectively (Dataset S5). These 181 

results show that genes in the sub-blue and sub-turquoise networks not only show specific 182 

co-expression patterns, but they show also predicted interact between the TFs and TFBSs. 183 

Subsequently, the co-expression network is reconstructed using the same steps for the set of 184 

genes of the sub-blue and sub-turquoise networks. Higher connectivity is observed in the 185 

sub-turquoise network (Figure S2, Kolmogorov-Smirnov test on connectivity measure, P = 186 

0.002), suggesting a closer regulatory relationship among genes in the sub-turquoise than in 187 

the sub-blue network. 188 

To verify the robustness of two drought-responsive network (sub-blue and sub-189 

turquoise) across different tomato species (and thus the generality of our results), we 190 

employed also the same pipeline to construct GCNs combined to transcriptomic data of S. 191 

pennelliii (PRJEB5809; Bolger et al. 2014) and S. lycopersicum (PRJNA812356; Yang et al. 192 

2022) (Dataset S1). Those transcriptomes also exhibit difference due to water conditions in 193 

the analysis of PCA, correlations and hierarchical clustering (Figure S3). We first observe 194 

that the 1,837 (74%) genes in the DEG sets based on only S. chilense overlap to the 195 

combined DEG set of S. pennellii and S. lycopersicum (Figure S4A and S4B). The GCNs 196 

from combined transcriptome profiles consistently show two networks as we find in S. 197 

chilense alone (Figure 2C and S4C). We find that 576 (84%) and 778 (82%) genes  overlap 198 

to the sub-blue and sub-turquoise networks, respectively (Figure S4D and S4E). In addition, 199 

our two drought-responsive networks (sub-blue and sub-turquoise) also overlap with 200 
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previous study based on drought transcriptomes of S. lycopersicum (Nicolas et al. 2022). 201 

Nearly 60% of drought-responsive genes in the two networks are observed as response to 202 

water stress in S. lycopersicum. These overlap rates suggest that our two drought-203 

responsive networks are present and perform similar functions in different tomato species. 204 

We therefore concentrate on these two networks: sub-blue (686 genes) and sub-turquoise 205 

(948 genes). 206 

Functional enrichment analysis of drought-responsive GCNs 207 

We assess whether the two identified gene networks (sub-blue and sub-turquoise) show 208 

functional differences. The gene ontology (GO) enrichment reveals that sub-blue network is 209 

significantly enriched (P < 0.05) in cell cycle and regulation biological processes, including 210 

replication and modification of genetic information, ribosome production and assembly, 211 

cytoskeleton organization, among others (Figure 3A; Table S3). Conversely, the sub-212 

turquoise network is enriched in biological processes related to response of physiological 213 

and metabolic processes to water shortage and heat, including some metabolic processes, 214 

signal pathways, changes of stomata and cuticle, amongst other processes (Figure 3A; Table 215 

S3). These functional differences suggest that genes in the two sub-networks are activated 216 

and expressed in different cellular compartments. Consistent with the mentioned biological 217 

process, the sub-blue network genes are mainly enriched in cellular components in the 218 

nucleus, including nucleolus, chromosome, nuclear envelope, and ribosome (Figure 3B; 219 

Table S4). These cellular components are at the center of cell division processes. On the 220 

other hand, the sub-turquoise network is enriched in cellular components related to 221 

metabolism processes, such as complexes and membrane structures in the cell (Figure 3B; 222 

Table S4). Many studies have indicated that modulation in the cell cycle and fundamental 223 

metabolism are two main strategies in response to drought stress (Gupta et al. 2020; Yang et 224 

al. 2021; Nicolas et al. 2022). We focus, thereafter, on these two sub-networks and from now 225 

on, the sub-blue network is referred to as the cell-cycle network and the sub-turquoise as the 226 

metabolic network. 227 
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Evolutionary age of drought-responsive transcriptome in S. chilense 228 

To generate a comprehensive understanding of the emergence of the identified drought-229 

responsive GCNs, we estimate the transcriptome ages of the identified cell cycle and 230 

fundamental metabolism networks. For that, we build phylostratigraphic profiles for all genes 231 

of the two GCNs, summarizing the gene emergence in 18 stages of plant evolution or 232 

phylostrata (PS): PS1 representing the emergence of oldest genes (at the time of the first 233 

cellular organisms) to PS18 for the most recent genes (i.e. present only in S. chilense). The 234 

PS18 shares no homologue genes with any other species in the nr (non-redundant protein) 235 

databases of NCBI (Figure 4A and 4B, Dataset S6). Most genes in the two analyzed GCNs 236 

(76.79% in metabolic network and 65.45% in cell-cycle network) are assigned to three main 237 

PS: Cellular organisms (PS1), Land plants (Embryophyta; PS5) and Flowering plants 238 

(Magnoliopsida; PS8) (Figure 4A). This suggests that the two drought-responsive GCNs we 239 

identify have an ancient origin and the components are fairly conserved across the tree of 240 

life/plants. Therefore, many drought-responsive pathways likely emerged during the 241 

colonization of land by plants (PS5), but many others could derive from exaptation processes 242 

from GCNs involved in the core cell process (PS1) or reproductive organ differentiation of 243 

flowering plants (PS8). Interestingly, the cell-cycle network shows older origin ages (with 244 

more genes (43.73%) assigned to the PS1-3), while the metabolic network presents a larger 245 

proportion (48.52%) of genes originating in PS8 (Figure 4A and 4B). Under drought 246 

conditions, we also find that cell-cycle network genes of almost all PS ages are down-247 

regulated, while genes of the metabolic network are up-regulated (Figure S5). 248 

Furthermore, we estimate the age of cell-cycle and metabolic GCNs using the 249 

transcriptome age index (TAI). We do not find a significant difference of TAI between control 250 

and drought samples based on 1,000 randomly selected genes from non-drought responsive 251 

genes (Figure S6A; Kolmogorov-Smirnov test, P = 0.34), while in cell-cycle and metabolic 252 

networks, the mean evolutionary ages of the transcriptomes are significantly different 253 

between drought and control conditions (Figure 4C; Kolmogorov-Smirnov test, P = 0.03). The 254 
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TAI profile would be expected to be a flat horizontal line if genes’ ages remain constant 255 

across the transcriptomes. In addition, a higher TAI value implies that evolutionary younger 256 

genes are preferentially expressed at the corresponding condition/developmental stage. We 257 

observe higher TAI in drought samples, supporting that the drought-responsive genes exhibit 258 

a younger transcriptome age than genes expressed under control conditions. Moreover, TAI 259 

of the metabolic GCN is significantly higher than the cell-cycle (Figure 4C; Kolmogorov-260 

Smirnov test, P = 12.51e-7), supporting the previous result that transcriptome ages of the 261 

genes in the cell-cycle are older than in the metabolic GCNs. 262 

The contributions of the different PS to the TAI profiles also show notable patterns 263 

between the cell-cycle and metabolic GCNs (Figure 4D and 4E). On one hand, early 264 

divergent genes (PS1 to PS7) show more constant transcriptome age in all conditions and 265 

the genes with ages in PS1, PS5 and PS8 appeared as remarkably important in two GCNs. 266 

On the other hand, late-emerging genes (PS8 to PS18) contribute increasingly with their age 267 

to the differential expression patterns between control and drought samples, indicating that 268 

younger drought-responsive genes are differentially expressed under drought stress in both 269 

GCNs (as observed in Domazet-Lošo and Tautz 2010; Piasecka et al. 2013). Remarkably, 270 

the youngest genes in PS18 (only found in S. chilense), also present a higher contribution in 271 

the metabolic GCN, suggesting that these genes are involved in either speciation or local 272 

adaptation of S. chilense to drought conditions. Note that younger genes (PS9 to PS18) in 273 

the cell-cycle GCN hardly contribute to the TAI profile (Figure 4D and 4E). 274 

Divergence of the drought tolerance transcriptome in S. chilense 275 

To drill down into the evaluation of the drought-response mechanisms at the species level, 276 

we calculate the TDI index, which represents the mean sequence divergence of a 277 

transcriptome. A total of 10 divergence strata (DS) are constructed based on the sequence 278 

divergence between genes of S. chilense and S. pennellii by computing the Ka/Ks ratio 279 

(Figure 5A; Figure S7; Dataset S6). The distributions of the Ka/Ks ratio per gene for both 280 
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GCNs indicate the action of purifying selection, which confirms the conservation of most of 281 

drought-responsive genes at the species level. Consistent with the phylostratigraphic 282 

patterns, the purifying selection signals in the cell-cycle GCN (Ka/Ks = 0.279 ± 0.333) are 283 

higher than in the metabolic GCN (Ka/Ks = 0.329 ± 0.331) (Kolmogorov-Smirnov test, P = 284 

2.34e-11; Figure 5A; Table S5). In addition, higher TDI values are observed in the drought 285 

samples (Figure 5B) suggesting that the expressed genes we identify in the two GCNs 286 

exhibit a more conserved transcriptome profile under control condition compared to drought 287 

condition (Kolmogorov-Smirnov test, P = 0.004). No significant difference is found between 288 

control and drought samples based on 1,000 random genes (Kolmogorov-Smirnov test, P = 289 

0.17; Figure S6B). This result supports that different selective pressures act on S. chilense 290 

GCNs across conditions. In accordance with the TAI results, the transcriptome of the 291 

metabolic GCN appears to exhibit a higher transcriptome divergence than the cell-cycle GCN 292 

(Figure 5B; Kolmogorov-Smirnov test, P = 2.25e-7). Moreover, the low TDI in the cell-cycle 293 

GCN and larger TDI differences between drought and control transcriptomes also suggest 294 

that regulation of the cell-cycle is likely an ancestral (older) strategy of stress response, not 295 

involved in the speciation process. The transcriptome of the cell-cycle GCN may have been 296 

evolving and changing in older times, and reached a conserved structure in recent times. 297 

Conversely, changes of metabolic pathways and rewiring of the metabolic GCN may appear 298 

to be more pronounced and/or common in recent times. 299 

The contributions of the low divergence DS classes (low Ka/Ks in DS1 to DS5) in the 300 

cell-cycle GCN (~ 50% of the genes) are larger than in the metabolic GCN (DS1 to DS5 301 

about 30%), especially in DS1 (lowest Ka/Ks ratio; Figure 5C and 5D). This indicates that 302 

purifying selection is acting on genes of the cell-cycle GCN, possibly constraining further 303 

changes. In contrast, the metabolic network genes show about 70% contributions in high DS 304 

(higher Ka/Ks ratio in DS6 to DS10), especially in DS10 (highest Ka/Ks ratio), indicating that 305 

genes in the metabolic network evolve under weaker purifying selection and that recent 306 

evolutionary changes occurred.  307 
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As a summary,  from the deep phylogenetic to the species level, the TAI profile of the 308 

cell-cycle network is mainly composed of older phylostrata (PS1 to PS8), while new genes 309 

contribute about 20% to the TAI profile of the metabolic network (Figure 4D and 4E). This 310 

indicates that the gene expression levels of the cell-cycle network have likely been optimized 311 

and fixed early on during evolution, while being maybe also involved in other functional 312 

pathways than drought response (Harrison et al. 2012). TDI profiles support this claim: 313 

conserved genes do contribute more to the TDI profiles in cell-cycle networks and show 314 

adaptive changes in expression for drought response (higher TDI difference between control 315 

and drought transcriptomes in cell-cycle network, Figure 5B). In contrast, drought-responsive 316 

genes in metabolism network appear more variable in their expression in response to 317 

drought stress, because this strategy may be linked to an initial response to severe water 318 

scarcity (Dubois and Inzé 2020). 319 

Population genetics analysis of drought-responsive networks 320 

We also study the selective forces acting on the identified drought-responsive gene networks 321 

at the population level. Using full genome sequences of six S. chilense populations 322 

(C_LA1963, C_LA3111, C_LA2931, SC_LA2932, SC_LA4107, and SH_LA4330; five plants 323 

each) recently reported in Wei et al. (2023), aligned to the reference genome of S. chilense, 324 

we identify 45,208,263 high-quality single-nucleotide variants (SNPs), in which 111,606 SNPs 325 

are found in genes of the cell-cycle GCN and 167,334 SNPs in genes of the metabolic GCN. 326 

We first compare population structure between the whole-genome data and drought-327 

responsive genes (Figure S8). The results corroborate the genetic structure revealed in Wei 328 

et al. (2023) (Figure S8A and S8C). However, the structure exhibited by drought genes 329 

shows stronger differentiation among populations than the WGS data (especially for 330 

clustering of populations of the central region and SH_LA4330). Moreover, the strong 331 

differences from WGS data between the two south coastal populations (SC_LA2932 and 332 

SC_LA4107) is attenuated when analyzing SNPs from the drought-responsive genes (Figure 333 

S8B and S8D). 334 
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We find that the mean nucleotide diversity (π) per gene does not differ between the two 335 

GCNs (Figure S9A; Table S5; Kolmogorov-Smirnov test, P = 0.15). In addition, the π values 336 

of the promoter regions (here 2kb upstream of the transcription initiation site) are significantly 337 

higher than those of the gene (coding) regions (Figure S9A; Table S5; Kolmogorov-Smirnov 338 

test, P = 0.03). This result suggests that the selective constraints in promoter regions may be 339 

more relaxed, which could in part explain why certain transcription factors are able to bind to 340 

multiple genes in the GCNs. (Table S2). TFs are indeed conserved at the coding sequence 341 

level, especially at the functional domains, but higher amount of polymorphism of TF binding 342 

sites in the promoter can be indicative of complex and diverse regulation, for example in 343 

response to stressful conditions (Spivakov 2014; Sato et al. 2016). Albeit, there is no 344 

difference in the nucleotide diversity at the promoter regions between the two GCNs (Figure 345 

S9A; Table S5). Furthermore, the genes for the metabolic GCN show lower Tajima’s D values 346 

than those of the cell-cycle GCN (Figure S9B; Table S5; Kolmogorov-Smirnov test, P = 0.04), 347 

suggesting recent positive selection pressure in the metabolic GCN. We find weak correlation 348 

between Tajima’s D and Ka/Ks ratio for the cell-cycle GCN and absence of correlation for the 349 

metabolic GCN (Figure S10A and S10B). As a negative correlation between Tajima’s D and 350 

Ka/Ks ratio is indicative of recent positive selection, our results suggest the possibility of 351 

recent positive selection acting on multiple genes within the metabolic GCN (Figure S9B; 352 

Table S5). 353 

We further find significant, but opposite, correlations between π or Tajima’s D and the 354 

contributions of the different DS for the two GCNs (Figure S10A and S10B). In the cell-cycle 355 

GCN, the contributions of different DS have significant positive correlation with π and 356 

Tajima’s D (Figure S10A and S10C). This indicates that DS of high contribution to TDI 357 

profiles show high nucleotide diversity (and positive Tajima’s D), meaning that older genes 358 

are under stronger purifying selection than younger genes in this network because the 359 

sequence divergence of cell-cycle genes occurred at old time periods. In contrast, a negative 360 

correlation is observed between the contribution of each DS and π or Tajima’s D in the 361 
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metabolic network (Figure S10B and S10D). Hence, DS with high contribution show low 362 

nucleotide diversity and low Tajima’s D, especially DS10. Therefore, it appears likely that the 363 

metabolic genes, likely recently evolved, may be under positive selection underpinning the 364 

recent evolution of the drought response transcriptome. 365 

Drought-responsive genes under positive selection promote adaptive evolution in 366 

response to drought stress 367 

Genetic drift or changes in selective pressure is one of the main factors that contribute to 368 

gene-expression variation (Koenig et al. 2013). To investigate drought-responsive genes that 369 

have potentially undergone a shift in selection regime, we search for overlap between genes 370 

of two drought-response GCNs studied here and our previously identified 799 candidate 371 

genes under positive selection in six populations of S. chilense (Wei et al. 2023). We find 74 372 

and 126 drought-responsive genes in the cell-cycle and metabolic networks, respectively in 373 

the list of candidate genes under positive selection (Figure 6A; Table S6). These genes 374 

exhibit the typical characteristics of positively selected genes with low π and Tajima’s D 375 

(Table S5). This indicates that drought stress is likely an important driver of adaptation and 376 

these drought-response genes may play key roles for colonization of new arid habitats. 377 

Similar numbers of drought-responsive genes likely under positive selection are observed 378 

across different populations of S. chilense encompassing different parts of the range, except 379 

for SH_LA4330 (Wei et al. 2023). The number of candidate genes belonging to the metabolic 380 

or cell-cycle GCNs is similar in the three central populations (C_LA1963, C_LA3111 and 381 

C_LA2931) (Figure 6A; Table S6). The most recent diverged highland population 382 

(SH_LA4330) contains the largest number of positively selected drought-responsive genes 383 

(Figure 6A; Table S6) with a similar proportion of genes from both networks. Noticeably, in 384 

the two south-coast populations (SC_LA2932 and SC_LA4107) a large majority of genes 385 

under positive selection belong to the metabolic GCN (showing absence of cell-cycle genes 386 

in population SC_LA2932, Figure 6A; Table S6). 387 
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Previous studies have demonstrated that adaptive genes are pleiotropic and proposed 388 

functional connectivity between networks related to different quantitative traits (Wagner et al. 389 

2007; Erwin and Davidson 2009; Hämälä et al. 2020). To address the role that (putatively) 390 

positively selected genes may play within the drought-responsive networks, we compare the 391 

connectivity of these genes in the two networks (Figure 6B; Table S7). In the metabolic 392 

network, the connectivity of positively selected genes (0.55 ± 0.10) is significantly higher than 393 

other drought-responsive genes (0.44 ± 0.12) (Figure S11A; Kolmogorov-Smirnov test, P = 394 

0.017), but we do not observe such significant difference for the cell-cycle network (Figure 395 

S11A; Kolmogorov-Smirnov test, P = 0.43). Furthermore, the connectivity of positively 396 

selected genes of the metabolic network is much higher than those from the cell-cycle 397 

network in six populations (Figure 6B; Table S7; Kolmogorov-Smirnov test, P = 0.007). These 398 

results suggest that highly connected (likely more pleiotropic) genes in the metabolic GCN 399 

may have facilitated the recent colonization of new habitats (Hämälä et al. 2020) during the 400 

divergence process of S. chilense. In contrast, the connectivity of positively selected genes in 401 

the cell-cycle network is significantly lower (Figure S11A). Therefore, we suggest that the two 402 

networks underwent different evolutionary selective pressures during the range expansion of 403 

S. chilense.  404 

Finally, we compare the age of the selective sweep at the candidate genes of the two 405 

GCNs based on the results in Wei et al. (2022). We find that sweep ages at the cell-cycle 406 

genes are slightly younger than at those of the metabolic network, especially in the three 407 

highland populations (C_LA2931, C_LA3111 and SH_LA4330; Figure S11B and S11C; Table 408 

S7). This supports that drought adaptation is an important mechanism underlying the recent 409 

(re)colonization of highland habitats (Raduski and Igić 2021; Wei et al. 2023). Interestingly, 410 

we find significantly positive correlation between the age of the sweep and gene connectivity 411 

for both GCNs and across all six populations (Figure 6C). Figure 6D and 6E provide the 412 

visualizations of two networks and exhibit the relationship between sweep age and 413 

connectivity (depicting weighted connection strength greater than 0.65 between any two 414 
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genes). In other words, it appears that selective sweeps occur first at more connected genes 415 

and, subsequently at less connected genes, during the history of colonization/adaptation of 416 

new arid habitats. To our knowledge, this is the first report of a correlation between the age of 417 

a selective sweep and the connectivity of genes in a network. To obtain more evidence to 418 

support this inference, we also calculate the tMRCA (time to most recent common ancestor) 419 

to estimate the age of drought-responsive genes based on allele frequency of SNPs. The 420 

positive correlation between tMRCA of drought-responsive genes under the positive selection 421 

and connectivity is also supported (Pearson’s cor=0.69, P = 2.47e-5), consistent with the 422 

correlation with sweep age. Moreover, the low correlation (Pearson’s cor=0.31, P = 0.14) is 423 

observed between tMRCA of other (outside of sweep regions) drought-responsive genes and 424 

connectivity. This supports the hypothesis of polygenic adaptation in GCNs where the 425 

positive selection acts first on core genes (with high connectivity and more pleiotropic) of 426 

networks, and subsequently on the peripheral genes (less connectivity and less pleiotropic). 427 

These positively selected genes ultimately regulate the expression of other genes in the 428 

network. 429 

 430 

Discussion 431 

In this study, we identify two drought-responsive GCNs by analyzing gene expression profiles 432 

of plants growing under control and drought conditions. Two GCNs involved in cell-cycle and 433 

metabolic biological processes are detected and their structural relevance are supported by 434 

TF/TFBS predictions. These networks represent two different strategies for drought response 435 

(Farooq et al. 2009; Danilevskaya et al. 2019). We then demonstrate that the cell-cycle 436 

network is evolutionary older and more conserved than the metabolic network. Despite the 437 

ancient history of these two GCNs, we further show that both GCNs also contribute to 438 

different extents to contemporary processes of adaptation to drought conditions when S. 439 

chilense colonizes new arid habitats around the Atacama desert. The joint analyses of 440 
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genomic and transcriptomic data indicates that 1) at the transcriptome level, metabolic GCN 441 

present a higher evolvability  especially with younger selection events linked to response to 442 

new environments, 2) cell-cycle GCN is less evolvable, and 3) both networks still present 443 

signals of evolution under positive selection in core elements of the GCN, while peripheral 444 

genes of the network can be involved in adaptation at later stages of the colonization 445 

processes. 446 

Drought tolerance is mediated by regulation in cell proliferation and metabolism 447 

When roughly defining the organ development  into cell proliferation and differentiation,  448 

water deficit appears to be a limiting factor for both processes (Alves and Setter 2004; 449 

Verelst et al. 2013). Drought stress reduces the activity of the cell cycle and thus slows down 450 

the growth and development of plants. The down-regulated genes we find in the cell-cycle 451 

network also indicate that genes related to cell cycle are suppressed by drought stress 452 

possibly to restrict the cell division in S.chilense. Reduction of cell number due to mild 453 

drought stress is also found in A. thaliana (Skirycz and Inzé 2010). This means that the cell-454 

cycle response to drought may be very general and indirect. However, our speculations are 455 

mainly based on the aboveground tissues of S. chilense. Conversely, the changes of 456 

fundamental metabolic activity may be a faster and a flexible drought-responsive strategy 457 

presumably related to acclimation  (Harb et al. 2010). Plant water shortage is first reflected in 458 

changes in metabolic processes, such as accelerating the catabolism of macromolecules in 459 

order to regulate the penetration of tissues, to maintain physiological water balance, or 460 

slowing down metabolism to reduce energy and water consumption (Reddy et al. 2004; 461 

Gupta et al. 2020). In addition, the signaling pathways related to the metabolic gene network 462 

are also demonstrated to be a response to drought stress, for example, the abscisic acid 463 

(ABA) signaling pathway regulates the response to dehydration and optimizes water 464 

utilization (Harb et al. 2010; Wilkinson and Davies 2010). Although these two GCNs 465 

correspond to two different strategies of drought response, they are not isolated, but interact 466 

with one another in a time-dependent manner. Water deprivation and heat first change the 467 
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metabolic processes leading to stomata closure, which leads then to cell cycle network to be 468 

affected under long-term lack of water. In return, the increased or decreased cell cycle gene 469 

expression affects the further physiology and metabolism of the plant (Gupta et al. 2020). 470 

Indeed, drought-responsive strategies regulating the cell cycle appear to be activated later 471 

than metabolism processes, as glucose metabolism rapidly follows drought stress, whereas 472 

the accumulation of amino acids which is a crucial part of the cell cycle response starts at a 473 

later time in response to drought (Fàbregas and Fernie 2019). 474 

Rewiring of ancient GCNs drives recent adaptation to dry environments 475 

The phylostratigraphic analysis supports that the majority of drought-responsive genes in S. 476 

chilense evolved during the early to middle stages of plant evolutionary history, which is in 477 

agreement with the time of origin of multiple abiotic response genes in Arabidopsis thaliana 478 

(Mustafin et al. 2019). This reinforces that the emergence of drought-responsive genes 479 

coincides with the time periods of divergence among major plant groups (land- and flowering 480 

plants), which are marked by frequent whole genome duplication events that trigger gene 481 

family expansions, gene neo- and sub-functionalization, and genome reorganization 482 

processes (Wang et al. 2012; Clark and Donoghue 2018). These genomic processes likely 483 

contributed to the enrichment of drought-responsive GCNs. For instance, fundamental 484 

morphological traits involved in drought responses, such as stomata, are present in the 485 

ancestral land plants. However, stomatal genes existed prior to the divergence of land plants 486 

and underwent multiple duplications during the course of evolution. Additionally, their 487 

response to environmental cues, such as humidity, light, CO2, and ABA, is widely distributed 488 

and may be ancestral to land plants (Clark et al. 2022). Therefore, we propose that our two 489 

drought-responsive networks were primarily established during or shortly after the 490 

divergence of land plants and have subsequently undergone expansion. This highlights the 491 

crucial role of ancestral genomic processes in shaping the genetic mechanisms that underlie 492 

plant adaptation to drought. 493 
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Previous studies show that TAI and TDI profiles across embryogenesis, seed 494 

germination and transition to flowering in A. thaliana exhibit a ‘hourglass pattern’ (older and 495 

conserved transcriptomes are preferentially active at the mid-development stages; Quint et al. 496 

2012; Drost et al. 2016). However, our TAI/TDI profiles for the two developmental stages 497 

remain stable under the same conditions (Figures 4C and 5B). The similar TAI/TDI between 498 

developmental stages (Figure 4C and 5B) that we obtained is certainly because our analyses 499 

focused on two modules (co-expressed genes) highly correlated to the differential expression 500 

between drought and control conditions (Figure 2D; Table S1). Therefore, developmental 501 

stage-specific response genes are underrepresented in the two analyzed networks. However, 502 

increased TAI/TDI values under drought conditions suggest that stress response 503 

transcriptomes are composed of relatively more recently diverged genes, and therefore are 504 

more evolvable. We  suggest that this inference needs to be verified in other stress 505 

responsive transcriptomes (salt, heat, cold, etc.). We then speculate, that although abiotic 506 

stress response regulatory networks are mostly composed of highly ancient and conserved 507 

elements across species (Chen and Zhu 2004), networks retain the ability to change 508 

expression patterns to respond rapidly to environmental changes or to explore new 509 

ecological niches. Moreover, given the pleiotropic nature of the abiotic stress-response traits, 510 

we can expect shared patterns of evolution (at the constitutive and expression components) 511 

of the networks for different stress conditions (and possible trade-offs between traits and 512 

GCNs). 513 

Extensive network rewiring in relatively recent and short time-frames have been found 514 

in maize and tomato in response to domestication (Swanson-Wagner et al. 2012; Koenig et 515 

al. 2013). It is therefore not surprising to find signs of adaptive variation in core elements of 516 

rather conserved regulatory networks related to the colonization processes of new (here arid) 517 

habitats. The genetic (and morphological) divergence of the S. chilense marginal southern 518 

populations, southern coastal and highland, is recent but strong (Raduski and Igić 2021). It is 519 

congruent with theoretical results showing that gene networks with higher mutation sensitivity 520 
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can facilitate local adaptation, present increasing variance in gene expression and underlie 521 

accelerated range expansion processes across abiotic environmental gradients (Deshpande 522 

and Fronhofer 2022). Complementarily, our empirical approach shows the existence of two 523 

regulatory networks with different evolutionary trends, one being more conserved than the 524 

other and exhibiting different gene expression responses. One GCN would exhibit a faster 525 

and more variable response (metabolic), while the other a later (delayed) but more 526 

constitutive response (cell-cycle) to drought. Despite the differences in gene age and 527 

variation between the networks, our results show that both GCNs have undergone sufficient 528 

changes leading to their rewiring during the divergent process of colonization of S. chilense 529 

around the Atacama. Nevertheless, genes in the metabolic network show more recent 530 

evolution, with new genes members appearing in S. chilense, concomitantly with more 531 

variable expression in the drought transcriptome. 532 

 These drought-responsive genes to S. chilense likely facilitated the adaptation of this 533 

species to unique arid (up to hyper-arid) habitats, especially when colonizing the southern 534 

part of the range. Indeed, population structure based on SNPs indicates that drought-535 

responsive genes reflected adaptation/colonization to arid habitats in S. chilense (Figure S8). 536 

Importantly, we found about 200 drought-responsive genes previously identified as candidate 537 

genes under positive selection (i.e. located within sweep regions in Wei et al. 2023). This 538 

confirms that drought stress is an important driver of ecological divergence in S. chilense. We 539 

finally provide some indirect evidence that changes at central genes (with higher connectivity) 540 

can be responsible for the short-term response to selection (Jovelin and Phillips 2009; Luisi 541 

et al. 2015) and promote rewiring of the gene network (Koubkova-Yu et al. 2018). Thus, 542 

highly connected genes may be targets of positive selection during the first phase of the 543 

environmental change or colonization to contrasting environments, and may be keys for 544 

‘piggybacking’, defined as the change in gene expression of a focal gene driving phenotypic 545 

change. Altogether, our results on the age-dependent adaptive role of genes with different 546 

network connectivity (and possible pleiotropic effects) provide another line of evidence 547 
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supporting the view that molecular evolution follows an adaptive walk and are 548 

complementary to the recent study by (Moutinho et al. 2022).  549 

 550 

Limitations and further work 551 

A limitation of our gene expression study is that our transcriptomic analyses are based on 552 

individuals from a single location (near the putative region of origin of the species; Wei et al. 553 

2022), while variability in gene expression and phenotypic response has been observed 554 

between different populations (Mboup et al. 2012; Fischer et al. 2013; Nosenko et al. 2016). 555 

Further expression studies including plants from multiple locations would be useful to verify 556 

that the identified GCNs are also present and expressed in other populations and study the 557 

possible variation in the most southern populations. More evidence based on multiple 558 

populations is needed to confirm the ‘piggybacking’ phenomenon of gene expression in S. 559 

chilense. Additional support on the variability of transcriptome evolution across populations 560 

as well as long read sequencing of more genomes will be beneficial in assessing the role of 561 

gene duplication and gene deletion yielding the evolution of the gene networks. Such studies 562 

would also allow the analysis of evolution of adaptive gene networks and polygenic selection 563 

occurring for complex traits such as drought tolerance. Finally, more detailed studies with a 564 

larger sample size from the field will help to discover other gene networks and their 565 

interactions related to abiotic stress and the evolution of the species. A detailed discussion of 566 

the potential biases associated with the use of multiplied accessions at TGRC (Tomato 567 

Genetics Resource Center, UC Davis, USA) compared to samples from natural populations 568 

is found in Wei et al. (2022). Sampling and experimental work in the field would improve the 569 

resolution of transcriptome and genomic studies, in order to assess phenotypic differences 570 

between organs and stages of development and thus extend the knowledge to other relevant 571 

characteristics such as secondary metabolism, which is known to have relevant influence on 572 

biotic and abiotic interactions (Mes et al. 2008; Bolger et al. 2014; Tapia et al. 2022). 573 
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 574 

Material and methods 575 

Plant material and drought stress experiment 576 

Seeds of S. chilense accession LA1963 were acquired from Tomato Genetics Resource 577 

Center (TGRC), University of California at Davis. Seeds were soaked in 50% household 578 

bleach (2.7% sodium hypochlorite) for 30 minutes and rinsed thoroughly with water 579 

according to instructions provided by TGRC. The rinsed seeds were sown into pots 580 

containing sterilized soil with perlite and sand (1:2) and grown under controlled conditions 581 

(22C day/20C night, 16h light/8h dark photoperiod). On the 24th day after sowing, all plants 582 

were randomly distributed into two groups and watered with a sufficient volume to reach the 583 

bottom of containers (30-40 ml). The first group of plants were maintained under normal 584 

watering condition, watered with a sufficient volume of water (50-55 ml) on 4, 7 and 11 days 585 

after start of the experiment (day 24). A moderate water stress regime was imposed to 586 

second group of plants by stopping irrigation for 7 days followed by re-watering with 25 ml of 587 

water. On day 12, newly expanded leaf (1-1.5 cm length) and shoot apices with immediately 588 

surrounding leaf primordia (shoot apices and P1-P5 leaf primordia) from each group were 589 

dissected carefully using razor blades and immediately grounded into fine powder in liquid 590 

nitrogen for RNA extraction. Four biological replicates were used for all RNA-Seq 591 

experiments from each tissue type. Each replicate of leaf and shoot apex samples included 592 

the pooled tissues from five and six plants, respectively. 593 

RNA extraction and cDNA library construction 594 

Libraries were constructed and named as follows: leaves under control (optimal watering) 595 

condition (CL-A to D), shoot apices under control condition (CSA-E to H), leaves under 596 

drought condition (DL-I to L), and shoot apices under drought condition (DSA-M to P). 597 

Tissues were lysed using zircon beads in Lysate Binding Buffer containing Sodium Dodecyl 598 
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Sulfate. mRNA was isolated from 200 μl of lysate per sample with streptavidin coated 599 

magnetic beads for indexed non-strand specific RNA-Seq library preparation according to the 600 

method described by (Kumar et al. 2012). 1 μl of 12.5 μM of 5-prime biotinylated polyT 601 

oligonucleotide and streptavidin-coated magnetic beads were used to capture mRNA and 602 

isolate captured mRNAs from the lysate, respectively. Equal amount of mRNA of each 603 

experimental group were used to construct 16 libraries. For library construction the rapid 604 

version of Kumar et al. (2012) RNA-sequencing method (Townsley et al. 2015) was used. 605 

Each sample was barcoded using standard Illumina adaptors 1-16 to allow up to 16 samples 606 

to be pooled in one lane of sequencing on Illumina HiSeq4000. The libraries were eluted 607 

from the pellet with 10 μl 10 mM Tris pH 8.0 and pooled as described by Kumar et al. (2012). 608 

Quantification and quality assessment of resulting libraries were performed on Fragment 609 

Analyzer (FGL_DNF-474-2- HS NGS Fragment 1-6000bp.mthds) and sequenced using the 610 

Illumina HiSeq 4000 platform to generate 100 bp single-end reads at the Vincent J. Coates 611 

Genomic Sequencing Facility at UC Berkeley.  612 

Transcriptome and genome data processing and mapping 613 

For transcriptome data, the adapters were removed from raw reads by two consecutive 614 

rounds using BBDuk in BBTools v38.90 (Bushnell 2014). Two sets of parameters were used 615 

in two rounds respectively: first round ‘ktrim=r k=21 mink=11 hdist=2 tpe tbo minlength=21 616 

trimpolya=4’; second round ‘ktrim=r k=19 mink=9 hdist=1 tpe tbo minlength=21 trimpolya=4’. 617 

Then Low-quality reads were also removed with BBDuk using parameters ‘k=31 hdist=1 618 

qtrim=lr trimq=10 maq=12 minlength=21 maxns=5 ziplevel=5’. The clean reads of each 619 

sample were mapped to the S. chilense reference genome (Silva-Arias et al. submited) using 620 

BBMap in BBTools. The SAM files were then converted and sorted to BAM files using 621 

Samtools v1.11 (Wysoker et al. 2009). The number of reads were mapped to each gene 622 

were counted via featureCounts v2.0.1 in each sample (Liao et al. 2014). To eliminate the 623 

differences between samples, the gene expression level was normalized using the TPM 624 

(Transcripts Per Kilobase Million) method (Wagner et al. 2012). 625 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 5, 2023. ; https://doi.org/10.1101/2023.01.18.524537doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.18.524537
http://creativecommons.org/licenses/by-nc-nd/4.0/


The relationships among transcriptome samples were evaluated using the TPM values. 626 

The correlation coefficient between two samples was calculated to evaluate repeatability 627 

between samples using Pearson’s test. Principal component analysis (PCA) was performed 628 

using the prcomp() function in R (R Core Team 2020) based on TPM values .  629 

Identification of differentially expressed genes and gene co-expression analysis 630 

Differential expression analysis of groups among the different conditions and tissues was 631 

performed using the DESeq2 R package (Love et al. 2014). The raw read counts were 632 

inputted to detect Differential Expressed Genes (DEGs). The P-value ≤ 0.001, the absolute 633 

value of log2FoldChange ≥ 1 and a false discovery rate (FDR) adjusted P ≤ 0.001 were 634 

classified as differentially expressed genes. 635 

To identify the gene co-expression networks, weighted gene correlation network 636 

analysis (WGCNA) was constructed using TPM values to identify specific modules of co-637 

expressed genes associated with drought stress (Langfelder and Horvath 2008). We first 638 

checked for genes and samples with too many missing values using goodSamplesGenes() 639 

function in WGCNA R package. We then removed the offending genes (the last statement 640 

returns ‘FALSE’). To construct an approximate scale-free network, a soft thresholding power 641 

of five was used to calculate adjacency matrix for a signed co-expression network. 642 

Topological overlap matrix (TOM) and dynamic-cut tree algorithm were used to extract 643 

network modules. We used a minimum module size of 30 genes for the initial network 644 

construction and merged similar modules exhibiting > 75% similarity. To discover modules of 645 

significantly drought-related, module eigengenes were used to calculate correlation with 646 

samples with different conditions. The visualization of networks were created using 647 

Cytoscape v3.8.2 (Su et al. 2014). 648 

Identification of transcript factor families and transcript factor binding sites 649 

The protein sequences were obtained from the reference genome and annotation ‘gff’ file 650 
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with GffRead (Pertea and Pertea 2020), and were used to identify TF families using online 651 

tool PlantTFDB v5.0 (Guo et al. 2007). Furthermore, the upstream 2000 bp sequences of the 652 

transcription start sites (TSS) were extracted as the gene promoter from the reference 653 

genome to detect TFBS. The TFBS dataset of relative species S. pennellii was also 654 

downloaded from Plant Transcriptional Regulatory Map (PlantRegMap, 655 

http://plantregmap.gao-lab.org/) as background of TFBS identification (Tian et al. 2020). 656 

Then, the TFBS of S. chilense was identified using FIMO program in motif-based sequence 657 

analysis tools MEME Suit v5.3.2 (Bailey et al. 2015). The TFBS was extracted with p < 1e-5 658 

and q < 0.01. 659 

Gene ontology (GO) analysis 660 

We first constructed the dataset of assigned GO terms for all genes used protein sequence 661 

by PANTHER v16.0 (Mi et al. 2021). Then, the GO enrichment analysis of drought-662 

responsive genes was performed using clusterProfilter v3.14.2 (Yu et al. 2012). Benjamini–663 

Hochberg method was used to calibrate P value, and the significant GO terms were selected 664 

with P-value below to 0.05. 665 

Construction of phylostratigraphic map 666 

We performed phylostratigraphic analysis based on the following steps. First, the phylostrata 667 

(PS) was defined according to the full linkage of S. chilense from NCBI taxonomy database. 668 

The similar PS was merged and finally 18 PS were generated (Figure 4A). Second, the 669 

protein sequences were blast to a database of non-redundant (nr) proteins downloaded from 670 

NCBI (https://ftp.ncbi.nlm.nih.gov/blast/db/) with a minimum length of 30 amino acids and an 671 

E-value below 10-6 using blastp v2.9.0 (Camacho et al. 2009). Third, each gene was 672 

assigned to its PS by the following criterion: if no blast hit or only one hit of S. chilense with 673 

an E-value below 10-6 was identified, we assigned the gene to the youngest PS18. When 674 

multiple blast hits were identified, we computed lowest common ancestor (LCA) for multiple 675 

hits using TaxonKit v0.8.0 (Shen and Ren 2021) and then assigned LCA to specific PS.  676 
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Construction of divergence map 677 

We performed divergence stratigraphy analysis to construct sequence divergence map of S. 678 

chilense using function divergence_stratigraphy() of R package ‘orthologr’ (Drost et al. 2015) 679 

following four steps: 1) the coding sequences for each gene of S. chilense and S. pennellii 680 

(NCBI assembly SPENNV200) were extracted from their reference and annotation files. 2) 681 

We identified orthologous gene pairs of both species by choosing the best blast hit for each 682 

gene using blastp. We only considered a gene pair orthologous when the best hit has an E-683 

value below 10-6, the gene pair is considered orthologous; otherwise, it is discarded. 3) 684 

Codon alignments of the orthologous gene pairs were performed using PAL2NAL (Suyama et 685 

al. 2006). Then, Ka/Ks values of the codon alignments were calculated using Comeron’s 686 

method (Comeron 1995). And 4) all genes were sorted according to Ka/Ks values into 687 

discrete deciles, which are called divergence stratum (DS).  688 

Estimation of transcriptome age index and transcriptome divergence index 689 

The TAI is computed based on phylostratigraphy and expression profile, which assign each 690 

gene to different phylogenetic ages by identification of homologous sequences in other 691 

species (Domazet-Lošo et al. 2007). The evolutionary age of each gene was quantified 692 

combining its PS and expression level to obtain weighted evolutionary age. Finally, weighted 693 

ages of all genes are averaged to yield TAI, which is defined as the mean evolutionary age of 694 

a transcriptome (Domazet-Lošo and Tautz 2010). A lower value of TAI describes an older 695 

mean evolutionary age, whereas a higher value of TAI denotes a younger mean evolutionary 696 

age and implies that evolutionary younger genes are preferentially expressed in the 697 

corresponding sample or condition (Domazet-Lošo and Tautz 2010; Piasecka et al. 2013). 698 

The TDI represents the mean sequence divergence of a transcriptome quantified by 699 

divergence strata (DS) and gene expression profile (Quint et al. 2012). The genes are 700 

assigned to different DS and then weighted by their expression level to yield the TDI. A lower 701 

value of TDI describes a more conserved transcriptome (in terms of sequence dissimilarity), 702 
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whereas a higher value of TDI denotes a more variable transcriptome. Here, we calculate TAI 703 

and TDI profiles in different samples using PlotSignature() function of the myTAI R package. 704 

Population genetics analysis and detection of positive selection on drought-705 

responsive genes 706 

Whole-genome sequence data from six populations S. chilense (five individuals each) 707 

previously analyzed in (Wei et al. 2022; BioProject PRJEB47577) were used to calculate 708 

population genetics statistics for coding and promoter region sequences for all genes 709 

identified in the GCNs. Single nucleotide variants (SNPs) based on the short-read alignment 710 

to the new reference genome for S. chilense (Silva-Arias et al. submitted) using the same 711 

methods in Wei et al. (2022). Population genetics statistics namely, nucleotide diversity (π) 712 

and Tajima’s D were calculated with ANGSD v0.937 (Korneliussen et al. 2014) over gene and 713 

promoter regions. These statistics first were calculated at per site in gene and promoter 714 

regions, and then we used a R script (https://gitlab.lrz.de/population_genetics/s.chilense-715 

drought-transcriptome) to obtain statistics in each gene and promoter regions. PCA on SNP 716 

data from 30 whole genomes was also performed using GCTA (v1.91.4; Yang et al. 2011). 717 

The genetic structure inference was performed using ADMIXTURE v1.3.0 (Alexander et al. 718 

2009). 719 

Drought-responsive genes under positive selection were extracted by blast (e-value < 720 

1e-6) between drought-responsive genes identified in this study and the genes located inside 721 

sweep regions in our previous study using S. pennellii as the reference genome. We also 722 

use the sweep ages obtained in Wei et al. (2022).  723 

Estimation of allele age  724 

We implemented in GEVA (Genealogical Estimation of Variant Age; Albers and McVean 2020) 725 

to dating genomic variants in the drought-responsive genes. We generated input for GEVA 726 

based on the recombination rate 3.24 x 10-9 per site per generation (based on the overall 727 
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recombination density in S. lycopersicum [1.41 cM/Mb] Anderson and Stack 2002; Nieri et al. 728 

2017; and within the possible range of rates used in Wei et al. 2022). We used population 729 

size (Ne) 20,000 and mutation rate 5.1 x 10-9 (Roselius et al. 2005; Wei et al. 2023), and then 730 

relied on the recombination clock to estimate the age of alleles (tMRCA). 731 

 732 

Supplementary material 733 

Supplementary data are available at Molecular Biology and Evolution online. 734 
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