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Abstract

Motivation: Millions of protein sequences have been generated by numerous genome and transcriptome
sequencing projects. However, experimentally determining the function of the proteins is still a time consuming, low-
throughput, and expensive process, leading to a large protein sequence-function gap. Therefore, it is important to
develop computational methods to accurately predict protein function to fill the gap. Even though many methods
have been developed to use protein sequences as input to predict function, much fewer methods leverage protein
structures in protein function prediction because there was lack of accurate protein structures for most proteins until
recently.

Results: We developed TransFun - a method using a transformer-based protein language model and 3D-
equivariant graph neural networks to distill information from both protein sequences and structures to predict protein
function. It extracts feature embeddings from protein sequences using a pre-trained protein language model (ESM)
via transfer learning and combines them with 3D structures of proteins predicted by AlphaFold2 through equivariant
graph neural networks. Benchmarked on the CAFAS3 test dataset and a new test dataset, TransFun outperforms
several state-of-the-art methods, indicating the language model and 3D-equivariant graph neural networks are
effective methods to leverage protein sequences and structures to improve protein function prediction. Combining
TransFun predictions and sequence similarity-based predictions can further increase prediction accuracy.
Availability: The source code of TransFun is available at https://github.com/jianlin-cheng/TransFun

Contact: chengji@missouri.edu

Given the sequence of a protein and/or other information as input,
protein function prediction methods aim to assign the protein to one or

1 Introduction
more function terms defined by Gene Ontology (GO)(Huntley et al.,

Proteins are essential macromolecules that carry out critical 2015). GO organizes function terms into three ontology categories:
Biological Process (BP), Molecular Function (MF) and Cellular
Component (CC). The terms in each of these ontology categories can be
represented as a directed acyclic graph, in which parent nodes denoting

broader (more general) function terms point to child nodes denoting more

functions such as catalyzing chemical reactions, regulating gene
expression, and passing molecular signals in living systems. It is critical
to elucidate the function of proteins. However, even though various next-
generation genome and transcriptome sequencing projects have generated
millions of protein sequences, the experimental determination of protein
function is still a low-throughput, expensive and time-consuming process.
Thus, there is a huge gap between the number of proteins with known

specific function terms.
Many protein function prediction methods use sequence or structure
similarity to predict function, assuming proteins with similar sequences

sequence and the number of proteins with known function, and this gap
keeps increasing. As a result, it is important to develop computational
methods to accurately predict the function of proteins.

and structures likely have similar function. For example, GOtcha,
Blast2GO (Conesa & Go6tz, 2008; Martin et al., 2004), PDCN (Wang et
al., 2013) and DIAMONDScore use sequence alignment methods such as
BLAST(Altschul et al., 1997) to search for homologous sequences with
known function for a target protein and then transfer their known function
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to the target. COFACTOR and ProFunc (Laskowski et al., 2005; Zhang et
al., 2017) use structure alignment to search for function-annotated proteins
whose structures are similar to the target protein to transfer the function
annotation. There are also some methods leveraging interactions between
proteins or co-expression between genes to predict function, assuming that
the proteins that interact or whose genes have similar expression patterns
may have similar function. For instance, NetGO (You et al., 2019)
transfers to a target protein the known function of the proteins that interact
with it. All these nearest neighbor-based methods depend on finding
related function-annotated proteins (or called templates) according to
sequence similarity, structure similarity, gene expression similarity, or
protein-protein interaction, which are often not available. Therefore, they
cannot generally achieve high-accuracy protein function prediction for
most proteins.

To improve the generalization capability of protein function
prediction, advanced machine learning-based methods such as FFPred and
labeler (Cozzetto et al., 2016; You et al., 2018) have been developed to
directly predict the function of a protein from its sequence. However, most
of these methods use hand-crafted features extracted from protein
sequences to make prediction. Recently, several deep learning methods
such as DeepGO (Kulmanov & Hoehndorf, 2020), DeepGOCNN (You et
al., 2021), TALE(Cao & Shen, 2021), and DeepFRI (Gligorijevi¢ et al.,
2021) were developed to predict protein function, leveraging deep
learning’s capability to automatically extract features from input data. For
instance, DeepFRI (Gligorijevi¢ et al., 2021) predicts the functions of
proteins with a graph convolutional network by leveraging sequence
features extracted by a long, short-term memory-based protein language
model and structural features extracted from protein structures. However,
DeepFRI uses either true protein structures from the Protein Data
Bank(Berman et al., 2000) or homology-based structural models built by
SWISS-MODEL as structure input. Because only a small portion of
proteins have true structures or high-quality homology-based structural
models, the method cannot be applied to most proteins. As
AlphaFold2(Jumper et al., 2021; Varadi et al., 2022) can predict high-
accuracy structures for most proteins, it is time to leverage AlphaFold2
predicted protein structures to advance protein function prediction.

In this work, we develop a method to use a pre-trained protein
language transformer model to create embeddings from protein sequences
and combine them with a graph representation constructed from
AlphaFold predicted 3D structures through equivariant graph neural
networks (EGNN) to predict protein function. We leverage the ESM
language model(Elnaggar et al., 2021; Rao et al., 2021; Rives et al., 2019,
2021) trained on millions of protein sequences to generate good feature
representations for protein sequences. The equivariant graph neural
networks can capture the essential features of protein structures that are
invariant to the rotation and translation of 3D protein structures to improve
protein function. Our experiment shows that combining protein sequences
and structures via the language transformer model and EGNN outperforms
several state-of-the-art methods.

2 Methods

2.1 Datasets

We collected protein sequences with function annotations from the
UniProt/Swiss-Prot database, released by February 23, 2022, amounting
to a total of 566,996 proteins. We gathered their functional annotations
from UniProt and the ontology graph data from the Open Biological and
Biomedical Ontology (OBO) Foundry data repository. We also collected
predicted structures of 542,380 proteins from the AlphaFold Protein

Structure Database (AlphaFoldDB) published on January 12, 2022. To
ensure consistency between the predicted structures from AlphaFoldDB
and the corresponding proteins from UniProt, we compare their sequences
and UniProt ID. All but 301 proteins have the same sequence. For the ones
with different sequences, they usually only differ in a few residues. To
make them consistent, we use the sequences extracted from the predicted
structures as the final sequences.

The protein function annotations are described in the Gene Ontology
(GO) terms. GO uses directed acyclic graphs (DAGs) to model the
relationship between GO terms. The nodes represent the GO terms, and
the links represent the relationship between the terms. GO provides three
separate directed acyclic graphs (DAG) for each of the three ontologies
(Biological Process (BP), Cellular Component (CC) and Molecular
Function (MF)). For each protein, the specific GO terms provided in the
UniProt function annotation file were first gathered. Then, their parent and
ancestor terms in the GO DAG were also collected. The terms with the
evidence codes (EXP, IDA, IPI, IMP, IGI, IEP, TAS, IC, HTP, HDA,
HMP, HGI, HEP) were used as the function label for the protein according
to the standard used in the Critical Assessment of Protein Function
Annotation (CAFA)(Zhou et al., 2019).

The entire dataset above was filtered to retain only proteins with
sequence length between 100 and 1022. We use a maximum length of
1022, because the pre-trained ESM model used in generating sequence
embeddings can accept a protein sequence with the maximum length of
1022 residues. To avoid rare GO terms, we use only GO terms that have
at least 60 proteins for training and test.

To compare our method with existing methods, we use the CAFA3
(Zhou et al., 2019) dataset as the independent test dataset because many
methods have been tested on it. We removed all 3328 CAFA3 test proteins
from our curated dataset and removed any protein in the dataset that has
>=50% sequence identity with any protein in the CAFA3 test dataset.
After the filtering, the curated dataset was used to train and validate
TransFun. The trained method was then blindly tested on the test datasets.

We collected the predicted structures for the proteins in the CAFA3
test dataset (CAFA3_test dataset) from AlphaFoldDB in the same way as
for our curated dataset. If no predicted structure was found for a protein,
we used AlphaFold2 to predict its structure. During the input feature
generation, for a protein sequence with length > 1022 in the CAFA3
benchmark dataset, we divided it into smaller chunks of 1022 residues
except for the last chunk for the language model to generate sequence
embeddings that were concatenated together as the sequence embeddings
for the entire protein sequence.

To investigate how sequence identity influence the accuracy of
protein function prediction, we used mm2seq(Steinegger & Soding, 2017)
to cluster the proteins in our curated dataset at the sequence identity
thresholds of 30%, 50%, 90%. Table 1 reports the total number of
proteins in each function category, the total number of GO terms, and the
number of protein clusters at each identity threshold.

Our final curated dataset was divided into training and validation
sets. We randomly selected 5000 proteins with GO terms in all three
ontology categories for validation.

We also collected new proteins released between March 2022 and
November 2022 in UniProt as our second test dataset (new_test dataset).
This dataset has 702, 705 and 1084 proteins in CC, MF and BP
respectively.

Given a set of proteins D; = {(py, 0,), (p1, 03), ... (Pn, 0,)}, where
p; is the iy, protein and O; is its true function annotation labels (i.e., a set
of GO terms). Our task is to predict O; as accurately as possible. The
function annotations are represented hierarchically with a general root
term at the top. If a GO term x is associated with protein p;, then all the
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ancestor terms of x in the GO graph are also associated with protein p;.
Therefore, the goal is to predict the sub-graph g in the GO graph G
consisting of all the GO terms associated with the protein (Clark &
Radivojac, 2013).

Table 1. The statistics of the curated protein function prediction dataset. The first 3
columns are the GO ontology category, the total number of proteins in each category
and the number of GO terms in each category. The remaining 4 columns list the

number of protein clusters at each sequence identity threshold (0.3, 0.5, 0.9, 0.95).

Sequence Identity Threshold
Ontology # # GO 0.3 0.5 0.9 0.95
Protein Terms
MF 35,507 600 14,667 | 19,512 | 26,876 | 28,067
CC 50,340 547 20,679 | 26,808 | 36,721 38,509
BP 50,320 3774 20,180 | 26,647 | 37,536 | 39,348

2.2 Protein Function Prediction Pipeline

We formulate the protein function task as a multi-label classification
problem, where each protein may be assigned to one or more labels (GO
terms). TransFun takes as input the sequence and predicted 3D structure
of a protein and predicts the probability of GO terms for it in each GO
category (Figure 1). TransFun consists of three main stages: (1)
extracting a protein graph from a predicted structure (PDB), (2) generating
the embeddings from a protein sequence, and (3) using a deep learning
model to predict protein functions from the input data, which are described
in Sections 2.3, 2.4, and 2.5.

2.3 Protein Graph Extraction from predicted structure

We construct a graph from the structure of a protein under
consideration, represented as a n x n adjacency matrix, where n is the
number of residues in the protein (Figure 2). The nodes in the graph
represent residues of the protein. Two types of edges are constructed
between residues, using a distance threshold and K-nearest neighbor
(KNN) approach. Given a protein graph G = (V,E,X), where V =
{vy, vy, ... v, } represents the vertex set and E is the set of edges. The first
condition for adding an edge to connect two nodes (u, v) is the Euclidean
distance between their carbon alpha atoms |u — v| < ¢, where ¢ is the
distance threshold. In this work, we tested 5 distance thresholds, 41&, GA,
8A, 10A & 12A and chose 10A as our final distance threshold as it
yielded the best result. The second condition is v € Ny, where N, is the
K nearest neighbors of node u. We set K to vn & /n, where n is the
number of residues. Since both thresholds produce similar results, we use
the latter to reduce computational cost. The graph constructed from a
protein structure is stored in a binary adjacency matrix, where 0 means no
edge and a 1 means there is an edge between two nodes. Self-loops (edges
from a node to itself) are not allowed.

We also consider the situation when no protein structure is provided. In
this case, a fully connected graph consisting of the edges between any two
different nodes (residues) is constructed, which allows the deep model to
infer appropriate edge weights during the training process, similar to the
work (Kipf et al., 2018). However, this approach is computationally
expensive, especially for large graphs.

2.4 Sequence Feature Extraction Using Transformer
Language Model

We generate embeddings for the sequence of a protein using the ESM-
Ib(Rives et al., 2019, 2021) pre-trained protein language model. Per-
residue embeddings are extracted for each residue (e.g., dimension: 21 x
1022) and per-sequence embedding for each whole sequence (e.g.,
dimension: 1022). The ESM-1b transformer takes as input the sequence
of a protein and generates feature embeddings at several layers. We collect
per-residue and per-sequence embeddings from the 33rd layer. The per-
residue embedding for all the residues of a protein is an R**¢ tensor, where
I is the sequence length and d is the embedding dimension. The per-
sequence embedding is an aggregation over the per-residue embeddings
and represents the features for the entire protein. We use the mean
aggregator to compute the per-sequence embedding.

ESM-1b was trained with the 1024 residue limit including start and
end tokens (i.e., 1022 real residues without counting the start/end tokens).
For a protein sequence with length > 1022, we divide the sequence into
n/1022 chunks of length 1022 except for the last chunk that has a length
of n % 1022, where n is the length of the sequence and generate an
embedding for each chuck. The embeddings for all the chunks are
concatenated as the embedding for the protein.

2.5 Rotation- and Translation-Equivariant Graph
Neural Network (EGNN) Model

The deep graph neural network architecture of TransFun is composed
of 4 blocks of rotation- and translation-equivariant graph neural networks
(Satorras et al., 2021) (Figure 1), labeled as EGNN1, EGNN2, EGNN3,
and EGNN4 respectively, each separated by a RELU activation function
and Batch-normalization layer. Each EGNN block is made up of 4
equivariant graph neural network layers.

Each EGNN layer accepts a graph as input to update its features. The
initial node features include the per-residue embeddings, and the (X, y, z)
coordinates of each residue. We tested two optional features for the edges:
(1) the distance between the two nodes of the edge; and (2) a binary
number 0/1 indicating if the two residues are two adjacent residues
connected by a peptide bond in the protein. However, the edge features do
not improve the prediction accuracy on top of the node features and
therefore are excluded in the final model of TransFun.

EGNNI1 has an input dimension of 1022, equal to the feature
embedding dimension for each node. It takes as input the protein graph
with the per-residue embedding to generate a new embedding of
dimension C and the refined coordinates of the nodes in the graph. C to set
to the number of GO classes to be predicted. EGNN2 takes as input the
protein graph with an output of dimension of C from EGNNI1 as node
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Figure 1. The protein function prediction pipeline of TransFun. The pipeline is divided into two main components, feature preprocessing(left) and neural network model
(right). The input is a protein sequence. The output is the predicted probability of the GO terms for the protein.

embeddings and produces an output dimension of C/2. EGNN3 takes in
as the initial per-sequence embedding of dimension 1022 for the protein
to generate the new per-sequence embedding of dimension C /2. The last
EGNN block (EGNN4) takes as input the output of dimension C/2 from
EGNN3 to generate a per-sequence output of dimension of C/4.

The output embeddings (features) from EGNNI1 and EGNN2 are
aggregated by using a global mean pooling on the node features of each
EGNN to obtain representative features for each protein. This is then
concatenated with the per-sequence outputs of EGNN3 and EGNN4,
resulting in a 2 * C + C/4 output features. The concatenated features
are then passed through two fully connected (FC) linear layers, separated
by batch normalization and RELU function to reduce the dimension to C.
A sigmoid layer is used in the output layer to take the output of the last
linear layer as input to predict the probability of each GO term.

Figure 2. Constructing a graph from a protein structure. A graph is constructed
from a protein structure using a distance threshold and K-nearest neighbor
approach. The graph is stored in a binary adjacency matrix.

2.6 Addressing Class Imbalanced Problems

The numbers of examples for different GO terms are very different. We
use class weights to scale the training loss for GO terms appropriately to
weigh less-represented GO terms (classes) more. The size of protein
clusters in the training dataset is also imbalanced, where some clusters are
very large, but some are very small. To reduce over the representation of
proteins in a large cluster during training, we randomly sample one
representative protein from each cluster for each training epoch. Although
the representative protein sampled is similar in sequence to all the other
proteins in the same cluster, their functional annotation may differ,

especially when the sequence similarity is low. Therefore, we recompute
the class weights per training epoch so that classes represented in the
epoch are weighed appropriately.

2.7 Combining TransFun predictions with sequence
similarity-based predictions

Several previous works (Cao & Shen, 2021; Kulmanov & Hoehndorf,
2020) combines an ab initio deep learning prediction method and a
homology sequence similarity-based method such as DIAMONDScore
(Buchfink et al., 2014, 2021) to improve protein function prediction.
DIAMONDScore uses BLAST to search for homologous proteins and
transfer their function annotations to a target protein under consideration.

In this work, we also designed such a composite (or meta) method to
combine the predictions from DIAMONDScore and the predictions of
TransFun, which is called TransFun+. The score that TransFun+ predicts
for a GO term is the weighted average of the score predicted by TransFun
and the score predicted by DIAMONDScore. The weights were optimized
on our curated validation dataset.

2.8 Evaluation Metrics

We use the two widely used metrics - Fmax and the Area Under the
Precision-Recall curve (AUPR) - to evaluate the performance of our
methods. The Fmax is the maximum F-measure computed over all the
prediction thresholds. The F-measure for each threshold is computed as
the harmonic mean of the precision (TP / (TP+FP)) and recall (TP / (TP
+ FN)), where TP is the number of true positives, FP the number of false
positives, and FN the number of false negatives. The AUPR is computed
by using the trapezoidal rule to approximate the region under the
precision-recall curve.

3 Results and Discussions
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After training and optimizing TransFun on our curated training and
validation datasets, we blindly evaluated it on the new test dataset
(new_test_dataset) and the CAFA3 test dataset (CAFA3_test_dataset)
together with other methods.

3.1 Performance on CAFA3 test dataset

We compare TransFun with a Naive method based on the frequency
of GO terms, a sequence similarity-based method DIAMONDScore
(Buchfink et al., 2014, 2021), and three recent deep learning methods
DeepGO (Kulmanov & Hoehndorf, 2020), DeepGOCNN(Kulmanov &
Hoehndorf, 2020), and TALE (Cao & Shen, 2021) on the CAFA3 test
dataset in three function prediction categories (MF: molecular function;
CC: cellular component, BP: biological process) in terms Fmax score and
AUPR (Table 2). According to Fmax, TransFun performs best in MF and
CC categories and second best in BP category. According to AUPR,
TransFun performs best in MF and BP categories and second best in CC
category. These results demonstrate that the sequence-based language
transformer and 3D-equivariant graph neural network in TransFun can use
protein sequence and structure together to improve function prediction
over the existing methods.

Table 2. The results of TransFun and several other methods on the CAFA3 test
dataset. TransFun was pretrained on the curated dataset whose proteins were

clustered at sequence identity threshold of 50%. Bold numbers denote the best

results.
Fmax AUPR

Method MF CcC BP MF CC BP
Naive 0.295 0.539  0.315 0.138 0.373 0.197
DIAMONDScore 0.532 0.523  0.382 0461 0.5 0.304
DeepGO 0.392 0.502  0.362 0312 0.446 0.213
DeepGOCNN 0.411 0.582  0.388 0.402 0.523 0.213
TALE 0.548 0.654 0.398 0.485 0.649 0.258
TransFun 0.551 0.659 0.395 0.489 0.634 0.333

3.2 Impact of sequence identity on functional annotation

We compare the performance of TransFun on our curated validation
datasets created using sequence identity thresholds of 30%, 50%, 90%
respectively. The results are reported in Table 3. There is a slight increase
of Fmax and AUPR when the sequence identify threshold is increased
from 30% to 50% for molecular function (MF) and cellular component
(CC), while the Fmax and AUPR for BP slightly decreases. This change
may be also partially due to the difference in the test datasets at the two
different sequence identity thresholds. However, the largely consistent
results show that TransFun can work well when the sequence identity
between the test protein and the training proteins is <= 30%. When the
sequence identity threshold is increased from 50% to 90%, the
performance is very similar, indicating when the sequence identity is
higher than 50%, further increase sequence identity may not have a
significant impact on the prediction accuracy.

Table 3. The results of TransFun on the test datasets having different identity

thresholds with respect to the training data.

30% 50% 90%
Score MF CC BP MF CC BP MF CC BP
Fmax 0.509 0.619 0.394 0.53 0.631 0.37 0.53 0.606 0.367
AUPR 0.461 0.599 0.333 0.489 0.614 0.327/0.487 0.61 0.3

33 Performance on the new test dataset

Table 4 reports the results of TransFun, Naive, DIAMONDScore,
two recent deep learning methods - DeepGOCNN and TALE, and three
composite (meta) methods - DIAMONDScore — DeepGOPlus, TALE+
and TransFun+ on the new test dataset in the three ontology categories
(MF, BP & CC) in terms of the Fmax score and AUPR score. Naive,
DIAMONDScore, DeepGOCNN, TALE, and TransFun are individual
methods. DeepGOPlus, TALE+ and TransFun+ are composite (or meta)
methods that combine the predictions of two individual methods (i.e.,
DeepGO + DIAMONDScore, TALE + DIAMONDScore, and TransFun
+ DIAMONDScore).

Among the four individual methods (Naive, DIAMONDScore,
DeepGOCNN, TALE, and TransFun), TrasnFun has the highest Fmax
score of 0.628, 0.608, and 0.413 for CC, MF and BP, the highest AUPR
score of 0.569 and 0.366 for MF and BP, and the second highest AUPR
score of 0.603 for CC. TALE has the highest AUPR score of 0.621 for
CC.

The three composite methods (DeepGOPlus, TALE+ and
TransFun+) generally performs better than their individual counterpart
(DeepGo, TALE and TransFun) in all the function categories in terms of
both Fmax and AUPR except that TransFun and TransFun+ has the same
Fmax score (i.e., 0.628) for CC. This indicates that combining the deep
learning methods and sequence-similarity based methods can improve
prediction accuracy. Among the three composite methods, TransFun+
performs best for CC and MF in terms of Fmax and for MF and BP in
terms of AUPR, while DeepGOPlus performs best for BP in terms of
Fmax and TALE+ performs best for CC in terms of AUPR.

The precision-recall curves of these methods on the new test dataset
are plotted in Figure 3. It is worth noting that the deep learning methods
such as TransFun, TALE and DeeoGOCNN perform much better than the
sequence similarity-based method — DIAMONDScore, particularly in
terms of AUPR. One reason is that DIAMONDScore has a much shorter
precision-recall curve spanning a smaller range of recall values compared
to the deep learning methods (see Figure 3 for details).

Table 4. The results on the new test dataset. Naive, Diamond, DeepGOCNN, TALE
and TransFun (green) are individual methods. DeepGOPlus, TALE+ and TransFun+
(blue) are composite methods. The best results of among the individual methods or

among the composite methods are bold.

Method Fmax AUPR
CC MF BP CC MF BP

Naive 0.560 | 0.275 | 0.283 | 0.404 | 0.135 | 0.173
Diamond 0.473 | 0.564 | 0.392 | 0.089 | 0.115 | 0.080
DeepGOCNN | 0.595 | 0.440 | 0.361 | 0.545 | 0.307 | 0.240
TALE 0.607 | 0.512 | 0.344 | 0.613 | 0.480 | 0.257
TransFun 0.628 | 0.608 | 0.413 | 0.603 | 0.569 | 0.366
DeepGOPlus 0.623 | 0.635 | 0.460 | 0.562 | 0.549 | 0.339
TALE+ 0.619 | 0.635 | 0.431 | 0.633 | 0.613 | 0.344
TransFun+ 0.628 | 0.638 | 0.452 | 0.627 | 0.638 | 0.410
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Figure 3. The precision-recall curves of the 8 methods on the new test dataset.
The dot on the curves indicates where the maximum F score is achieved. The
coverage is the percent proteins that a method makes predictions for.

We compare the performance of TransFun, TransFun+ and the other
methods on human proteins (Table 5) and mouse proteins (Table 6) in the
new test dataset. In the dataset, there are 70, 35 and 34 human proteins in
CC, MF and BP respectively, and there are 132, 87 and 158 mouse
proteins for CC, MF and BP respectively.

The similar results are observed on the human and mouse proteins.
Among the individual methods, TransFun performs better than the other
methods in almost all function categories in terms of Fmax and AUPR.

The composite methods generally performs better than their
corresponding individual methods. Among the three composite methods,
TransFun+ performs best in most situations. These results are consistent
with the results on all the proteins in the new test dataset (Table 4).

Table 5. The results of the eight methods on human proteins in the new test dataset.
Green denotes the individual methods and blue the composite methods. The best

results in each type of methods are highlighted bold.

Method Fmax AUPR
CC MF BP CC MF BP

Naive 0.620 | 0.292 | 0.28 0.538 | 0.135 | 0.163
Diamond 0.509 | 0.516 | 0.445 | 0.085 | 0.087 | 0.055
DeepGOCNN | 0.648 | 0.419 | 0.363 | 0.636 | 0.253 | 0.245
TALE 0.675 | 0.406 | 0.367 | 0.714 | 0.324 | 0.279
TransFun 0.686 | 0.538 | 0.468 | 0.694 | 0.471 | 0.445
DeepGOPlus | 0.657 | 0.554 | 0.523 | 0.631 | 0.417 | 0.366
TALE+ 0.689 | 0.569 | 0.497 | 0.724 | 0.539 | 0.415
TransFun+ 0.684 | 0.612 | 0.553 | 0.719 | 0.557 | 0.499

Table 6. The results of the eight methods on mouse proteins in the new test dataset.
Green denotes the individual methods and blue the composite methods. The best

results in each type of methods are highlighted bold.

Method Fmax AUPR
CC MF BP CC MF BP

Naive 0.503 | 0.235 | 0.280 | 0.333 | 0.100 | 0.163
Diamond 0.471 | 0.569 | 0.379 | 0.087 | 0.119 | 0.082
DeepGOCNN | 0.522 | 0.430 | 0.333 | 0.434 | 0.272 | 0.195
TALE 0.519 | 0.564 | 0.298 | 0.502 | 0.518 | 0.198
TransFun 0.558 | 0.576 | 0.355 | 0.517 | 0.532 | 0.289
DeepGOPlus | 0.559 | 0.615 | 0.427 | 0.472 | 0.535 | 0.286
TALE+ 0.533 | 0.625 | 0.408 | 0.516 | 0.596 | 0.293
TransFun+ 0.557 | 0.624 | 0.403 | 0.529 | 0.618 | 0.352

35 Performance on proteins longer than 1022 residues

Because TransFun and TransFun+ have to cut proteins longer than 1022
residues into pieces for the ESM-1b model to generate the sequence
embedding features, we evaluated them and the other methods on the
proteins longer than 1022 residues in the new test dataset. There are 49,
41 and 80 such proteins in CC, MF and BP respectively in the dataset. The
results in Table 7 show that TransFun yields the best performance in terms
of AUPR for all three GO function categories among the individual
methods and yields the best performance in terms of F,x, for MF and BP.
TransFun+ gives the best performance for CC and BP in terms of AUPR
and the best performance for BP in terms of F,,,. DeepGOPlus gives the
best results for CC in terms of Fn,, and TALE+ gives the best
performance for MF in terms of F,,,x. Compared with the results on all the
proteins in Table 4, the performance of all the methods on the long
proteins is generally lower than that on all the proteins with some
exceptions, indicating that it is harder to predict the function of long
proteins.

Table 7. The results on proteins longer than 1022 residues in the new test dataset.

Green denotes the individual methods and blue the composite methods.
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Method Fmax AUPR
CC MF BP CC MF BP
Naive 0.493 | 0.305 | 0.299 | 0.331 | 0.115 | 0.184

Diamond 0.560 | 0.583 | 0.427 | 0.060 | 0.093 | 0.086
DeepGOCNN | 0.551 | 0.478 | 0.329 | 0.478 | 0.299 | 0.209

TALE 0.500 | 0.435 | 0.297 | 0.456 | 0.349 | 0.185
TransFun 0.550 | 0.556 | 0.399 | 0.525 | 0.492 | 0.353
DeepGOPlus | 0.602 | 0.622 | 0.436 | 0.544 | 0.558 | 0.333
TALE+ 0.549 | 0.675 | 0.407 | 0.498 | 0.614 | 0.305

TransFun+ 0.564 | 0.593 | 0.443 | 0.563 | 0.610 | 0.396

3.6. A case study of protein function prediction

Table 8 reports top 20 GO terms of biological process (BP)
predicted for a protein (UniProt ID: AOASSOIMMKS) (length: 443; a
putative transcription factor involved in morphogenesis) by four
individual methods: Naive, DeepGOCNN, TALE and TransFun.
DIAMONDscore did not predict any result for this protein. All the top 20
GO terms predicted by TranFun are correct, while other methods made
some incorrect predictions (red ones).

Table 8. The GO terms for protein AOASSOMMKS by Naive,
DeepGOCNN, TALE, and TransFun. Black color denotes correct
predictions, while red color denotes incorrect predictions.
METHOD Predicted GO TERMS

Naive G0O:1901576,G0:0032502,G0O:0048856,G0:0034641
G0:0006807,G0:0032501,G0O:0046483,G0:0043170
G0:0044237,G0:0065007,G0O:0019222,G0O:0008152
G0:0044238,G0:0009987,G0O:0050789,G0O:1901564
G0:0071704,G0O:0009058,G0O:0050794,G0O:1901360
G0:0003674,G0O:0016020,G0O:0034641,G0O:0008150
G0:0006807,G0:0006139,GO:0110165,G0O:0010467
G0:0043227,G0:0046483,G0O:0043170,G0O:0090304
G0:0043231,G0:0044237,G0O:0005634,G0O:0008152
G0:0044238,G0:0043226,G0O:0009987,G0O:0005622
G0:0005575,G0:0071704,G0O:0043229,G0O:1901360
GO0:0051252,G0:1903506 ,GO:0009889,G0O:0031323
G0O:0008150,G0:0051171,G0O:0048522,G0O:0006355
G0:0019219,G0:0080090,G0:0010556,GO:0060255
G0:0031326,G0:0048518,G0:0065007,G0O:2001141
G0:0019222,G0:0009987,G0O:2000112,G0O:0010468
GO:1901576,G0:0051252,G0:0018130,GO:1903506
GO0:0006139,G0:0006355,G0:0010467,G0O:0097659
G0:0060255,G0:1901362,G0:0090304,G0O:0006351
G0:0065007,G0:0016070,G0O:0008152,G0O:0009987
G0:0010468,G0:0050789,G0:0034654,G0O:0032774

DeepGOCNN

TALE

TransFun

4 Conclusion and Future Work

In this work, we developed TransFun for protein function prediction,
using both protein structure and sequence information. TransFun uses
transfer learning with a protein language model to extract sequence
features and a graph representation to store structural features generated
from AlphaFold predicted structures. The features are used by

rotation/translation-equivariant graph neural networks to predict GO
function terms for any protein. The method performs better than the
sequence similarity-based and other deep learning methods on the two
benchmark datasets. Moreover, TransFun can be combined with sequence
similarity-based method to further improve prediction accuracy. In the
future, we plan to use the multiple sequence alignment (MSA) of a target
protein for the MSA-based language model (e.g., ESM-MSA) to generate
extra embedding features for TransFun to see if they can further improve
prediction accuracy. Another challenging issue facing protein function
prediction is the lower prediction accuracy for more specific GO terms
(the nodes at the lower levels of the gene ontology directed acyclic graph)
because these terms have much fewer proteins associated with them than
more general GO terms. More machine learning techniques and data
preparation techniques are needed to address this imbalance problem
because accurately predicting more specific GO terms is more useful for
biological research than more general GO terms.
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