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 35 

Abstract  36 

Species utilizing the same resources often fail to coexist for extended periods of time. Such 37 

competitive exclusion mechanisms potentially underly microbiome dynamics, causing 38 

breakdowns of communities composed of species with similar genetic backgrounds of 39 

resource utilization. Although genes responsible for competitive exclusion among a small 40 

number of species have been investigated in pioneering studies, it remains a major challenge 41 

to integrate genomics and ecology for understanding stable coexistence in species-rich 42 

communities. Here, we show that community-scale analyses of functional gene redundancy 43 

can provide a useful platform for interpreting and predicting collapse of bacterial 44 

communities. Through 110-day time-series of experimental microbiome dynamics, we 45 

analyzed the metagenome-assembled genomes of co-occurring bacterial species. We then 46 

inferred ecological niche space based on the multivariate analysis of the genome 47 

compositions. The analysis allowed us to evaluate potential shifts in the level of niche overlap 48 

between species through time. We hypothesized that community-scale pressure of competitive 49 

exclusion could be evaluated by quantifying overlap of genetically determined resource-use 50 

profiles (metabolic pathway profiles) among coexisting species. We found that the degree of 51 

community compositional changes observed in the experimental microbiome was explained 52 

by the magnitude of gene-repertoire overlaps among bacterial species. The metagenome-53 

based analysis of genetic potential for competitive exclusion will help us forecast major 54 

events in microbiome dynamics such as sudden community collapse (i.e., dysbiosis).   55 

 56 

INTRODUCTION 57 

Classic niche theory predicts that coexistence of species requires interspecific difference in 58 

resource use patterns [136]. Although some specific mechanisms can promote stable 59 

coexistence even with complete resource overlap (e.g., spatial structure of habitats and 60 

temporal variability in resource availability), similarity/dissimilarity in basic resource 61 

dependency among species is the basic factor determining the occurrence of competitive 62 

exclusion [739]. Therefore, evaluating the overlap of <fundamental niches=, which are defined 63 

by species9 fundamental resource requirements and resource-use capabilities [10, 11], is an 64 

essential step for understanding and predicting community-level dynamics. 65 
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 Insights into fundamental niches are encrypted in species9 genomes [12314]: as species9 66 

traits are encoded in their DNA, genomic information provides the ultimate basis for 67 

evaluating target species9 fundamental niches [15, 16]. Thus, potential strength of competitive 68 

interactions within ecological guilds or communities could be evaluated based on the 69 

distribution of species9 gene repertoires within ecological niche space inferred with 70 

metagenomic data [12, 15, 16], also referred to as <metagenomic niche space=. Although 71 

overlap of niches does not always cause competitive exclusion [739], higher levels of gene 72 

repertoire overlap within a community may impose greater impacts on population dynamics 73 

of constituent species.  74 

  In considering coexistence of microbial species, it is essential to examine whether such 75 

competition-driven population-level phenomena underly drastic ecological events observed at 76 

the community level. Microbial communities sometimes show sudden and substantial changes 77 

in species and/or taxonomic compositions [17320]. Human gut microbiomes, for example, 78 

have been reported to show drastic shifts from species-rich states to <imbalanced= states with 79 

low a-diversity and overrepresentation of pathogenic species [21324] (e.g., Clostridium 80 

difficile). Elucidating the ecological mechanisms causing such drastic community-level events 81 

provide fundamental insights into microbiome dynamics [24326]. In this respect, an important 82 

challenge is to test the hypothesis that high levels of gene-repertoire overlap are observable 83 

prior to drastic community compositional changes. However, this hypothesis, to our 84 

knowledge, has not yet been tested presumably due to the paucity of time-series observations 85 

of microbiomes with substantial compositional changes. Even if such microbiome time-series 86 

data are available, analyses of potential niche (gene repertoire) overlap require another line of 87 

information. Specifically, we need data of respective species9 genomes at multiple time points. 88 

Therefore, developing research systems that can overcome these constrains will deepen our 89 

understanding of microbiome ecological processes. 90 

 In this study, we test the degree to which gene-repertoire overlap changes through 91 

dynamics of species-rich microbial communities. By targeting an experimental microbial 92 

system showing rapid and substantial changes in taxonomic compositions [19], we infer niche 93 

space depicting species9 gene repertoires. Work in this system using a metabolic modeling 94 

analysis demonstrated that interactions between species were keys to understand the drastic 95 

microbiome dynamics [27]. Now, by compiling the shotgun metagenomic data collected at 13 96 

time points across the 110-day time-series of the experiment, we reveal temporal shifts in the 97 

magnitude of gene repertoire overlap among microbial species. We then examine whether a 98 
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high level of fundamental-niche overlap is observed prior to drastic changes in community 99 

structure. Overall, we explore how signs of drastic shifts in community structure are detected 100 

by inferring community-scale degree of fundamental niche overlap with the aid of genomic 101 

information.  102 

 103 

RESULTS 104 

Functional dynamics of microbiomes 105 

We focused on the experimental microbiome showing drastic shifts in taxonomic 106 

compositions [19]. In a previous study [19], a 110-day monitoring of microbiomes was 107 

performed with six experimental settings. To set up experimental microbiomes with high 108 

diversity of bacterial species/taxa, we used natural microbial communities derived from soil 109 

or pond-water ecosystems as source inocula, rather than <synthetic= communities with pre-110 

defined diversity. Specifically, microbiomes were set up with combinations of two source 111 

inoculum types (soil- or pond-water-derived inoculum microbiomes) and three medium types 112 

(oatmeal, oatmeal-peptone, or peptone broth medium) with eight replications (2 ´ 3 ´ 8 = 48 113 

microbiomes; see Materials and Methods for details). From each of the 48 microbiomes, a 114 

fraction of each replicate community was sampled every 24 hours. The collected samples 115 

were subjected to the amplicon sequencing of the 16S rRNA region and the temporal changes 116 

in community compositions were monitored throughout the time-series [19]. By calculating 117 

the magnitude of time-series changes in community compositions [19] (Fig. 1A), we focused 118 

on a water-inoculum/oatmeal-medium replicate community showing the most abrupt (rapid 119 

and substantial) changes in community compositions among the 48 microbiomes examined as 120 

described in a study on metabolic interactions between species [27] (Fig. S1).  121 

 By targeting the replicate community mentioned above, we compiled shotgun 122 

metagenomic data at 13 time points across the time-series [27]. In total, 32 high-quality (> 123 

80 % completeness and < 5 % contamination) metagenome-assembled genomes (MAGs) 124 

belonging to 20 genera (16 families; 12 orders) were detected [27] (Figs. 1B-C and 2; Fig. S2; 125 

Table S1). As indicated in the amplicon sequencing analysis [19] (Fig. 1A), drastic shifts from 126 

taxon-rich community states to oligopolistic states was observed around Day 20 in the 127 

shotgun sequencing analysis (Fig. 1B).  128 

 After the drastic community compositional change, the system reached a quasi-stable 129 

state represented by the dominance of a Hydrotalea (Chitinophagaceae) bacterium (Fig. 1B). 130 
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The MAG of the Hydrotalea was characterized by relatively low GC content (38 %) and 131 

relatively small genome size within the community (ca. 3.1 Mb; Fig. 2A). In contrast, the two 132 

bacterial MAGs consistently coexisted with the dominant Hydrotalea through the time-series 133 

(i.e., Terracidiphilus and Mangrovibacter) had larger genome size (4.2 and 5.4 Mb, 134 

respectively; Fig. 1C), characterized by various genes absent from the Hydrotalea genome 135 

(Fig. 2; Fig. S3). Specifically, the Terracidiphilus MAG showed metabolic 136 

pathways/processes for degrading plant-derived biopolymers (e.g., cellulose; Fig. 2), 137 

potentially surviving as a primary user of polymer compounds within the plant-derived 138 

(oatmeal) medium. Meanwhile, the Mangrovibacter MAG had pathways/processes related to 139 

starch degradation (e.g., amylase) and vitamin-B12 transportation, which were absent from the 140 

genomes of Hydrotalea, Terracidiphilus, and the other MAG (Rhizomicrobium) detected on 141 

Day 40-60 (Fig. 2).  142 

 143 

Multivariate analysis of gene repertoires 144 

Next, we used the shotgun metagenomic data to evaluate how the level of gene repertoire 145 

overlap among microbes shifted through time. We anticipated that microbial species with 146 

similar resource-use abilities or restrictions have similar genomic structure. Therefore, it is 147 

expected that species competing for the same resource tend to form clusters within the space 148 

defined based on the principal coordinate analysis (PCoA) of dissimilarity in gene repertoires. 149 

For each pair of the 32 MAGs, dissimilarity (Jaccard distance) of gene repertoires was 150 

calculated based on the matrix representing the presence/absence of the 6,999 genes annotated 151 

with the program Prokka [28]. A PCoA was then performed using the b-diversity information 152 

(Fig. 3A). At each of the 13 time points, detected MAGs were plotted on the PCoA space. 153 

Since we did not have a priori knowledge of specific metabolic pathways keys to the 154 

microbe-to-microbe competition within the experimental microbiome, all datasets were 155 

included in this multivariate analysis. Given general characteristics of multivariate analysis 156 

based on b-diversity metrics, the multivariate reconstruction of ecological niche space 157 

depends greatly on the genes whose presence/absence profiles vary among species, while 158 

housekeeping genes possessed by most species are expected to contribute little to the 159 

multivariate analysis. 160 

 We found that alphaproteobacterial and gammaproteobacterial MAGs respectively 161 

constituted some clusters within the niche space reconstructed based on the multivariate 162 
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analysis early in the microbiome dynamics (Day 1-20; Fig. 3B). This state with high niche 163 

overlap and potential within-guild competition for resources then collapsed into a simpler 164 

community state represented by Hydrotalea, Mangrovibacter, Terracidiphilus, and 165 

Rhizomicrobium as detailed above (Fig. 3B). The space once occupied by many 166 

alphaproteobacterial and gammaproteobacterial MAGs remained unoccupied or sparsely 167 

occupied after the community compositional collapse. Even when the number of MAGs 168 

detectable with our shotgun-metagenomic sequencing increased again late in the time-series, 169 

dense aggregations of microbes with similar genomic compositions remained unobserved 170 

(Fig. 3B). 171 

 172 

Metagenomic niche overlap 173 

We next quantitatively evaluated dynamics in the magnitude of community-scale niche 174 

overlap within the multivariate space (Fig. 3). We developed two types of simple indices for 175 

evaluating community-scale niche overlap. The one is defined as the overall mean of gene-176 

repertoire similarity between pairs of MAGs within a community. For a time point, the niche 177 

overlap index is calculated as: 178 

niche	overlap	score	(overall	mean) = 1 2
3 "!"!*$,"*$,!&"

#$(#$%&)
, 179 

where T is the set of MAGs detected on a focal day (relative abundance > 0.1 %), �() is the 180 

Jaccard metric of dissimilarity [29] in gene compositions, and �* is the number of MAGs 181 

detected on the day. By definition, this niche overlap value based on Jaccard dissimilarity 182 

varies from 0 (completely different repertoires of genes in all pairs of MAGs) and 1 183 

(completely identical gene repertoires in all pairs of MAGs), allowing us to evaluate niche 184 

overlap levels of target communities within the standardized ranges. The other index is 185 

defined as mean value of gene-repertoire similarity with nearest neighbors. The alternative is 186 

calculated as:    187 

niche	overlap	score	(nearest	mean) = 1 2
3 +,-

"*$
("!")!*$,!	&"

#$
. 188 

This index can be modified by incorporating the information of the relative abundance of 189 

MAGs (�() as follows: 190 
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niche	overlap	score	(weighted	nearest	mean) = 1 2 3 �( min
)**

(�())(**,(0)	 . 191 

 The results indicated that the level of niche overlap was the highest on Day 1 or Day 10 192 

and that it decreased until Day 30 (Fig. 4A). Although the niche overlap score remained low 193 

between Day 40 and 60, it increased again late in the microbiome time-series (Fig. 4B). Note 194 

that a-diversity of the community showed similar temporal shifts and it was significantly 195 

associated with the niche overlap indices (Fig. 4B-C). Through the time-series, the estimated 196 

niche overlap level was significantly associated with the magnitude of the observed 197 

community compositional changes (Fig. 5)  198 

 199 

DISCUSSION 200 

By developing simple metrics of among-species overlap of gene repertoires, we examined 201 

potential relationship between community-scale niche overlap and drastic changes in 202 

community structure. Early in the experimental microbiome dynamics, alphaproteobacterial 203 

and gammaproteobacterial species were present, resulting in relatively high niche-overlap 204 

scores at the community level (Figs. 3 and 4). The quasi-equilibrium state of microbial 205 

compositions then collapsed into another quasi-equilibrium represented by a small number of 206 

bacteria varying in genome size and metabolic capabilities. Throughout the time-series, 207 

higher niche overlap levels entailed greater changes in microbial community compositions 208 

(Fig. 5). These findings lead to the working hypothesis that collapse of microbiome structure 209 

is predicted by the level of potential niche overlap within multivariate metagenomic space. In 210 

light of the <limiting similarity= rule of ecological niches [30], microbial species that exceed a 211 

critical limit of genome compositional similarity are expected to compete for the same 212 

resources intensively, eventually driving competitive exclusion processes. Thus, as examined 213 

in this study, similarity/dissimilarity in genetically determined resource-use properties (i.e., 214 

fundamental niches) sets baselines for consequences of interspecific interactions. 215 

 The results also indicated that niche overlap level does not necessarily show monotonic 216 

decrease through microbial community processes. Although gene-repertoire overlap level and 217 

detectable species richness sharply declined early in the microbiome dynamics, both variables 218 

gradually increased again around Day 80 (Figs. 1A and 4B). In the resurgence process, 219 

however, the dense clusters of alphaproteobacterial or gammaproteobacterial species detected 220 

until Day 20 did not appear again within the niche space (Fig. 3B). These observations 221 
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suggest that once collapsed, microbial communities may not return to previous states with 222 

highest levels of niche overlap, but refilling of poorly-used niches can occur under the 223 

constraint of limiting similarity within niche space. Although these insights are useful, our 224 

present analysis is based only on 13 time points of a microbiome experiment. Due to the 225 

limitation, it remained difficult to separate effects of a-diversity from those of gene-repertoire 226 

overlap (Fig. 4B-C). Thus, the statistical analysis proposed in this study need to be expanded 227 

by reducing the cost of metagenomic sequencing as well as by developing more efficient 228 

pipelines for the computationally intensive analyses of metagenomic datasets.  229 

 The approach of systematically evaluating potential overlap of ecological niches have 230 

been previously explored in <community phylogenetics=, in which phylogenetic 231 

overdispersion/clustering is evaluated based on null model analysis of random assembly from 232 

species pools [5, 31, 32]. In those studies based on phylogenetic analyses, similarity of niches 233 

has been inferred based on the assumption that phylogenetically similar species have similar 234 

ecological properties (e.g., resource requirements). Nonetheless, given that convergent 235 

evolution of ecologically important traits is ubiquitous in the history of life [33335], the 236 

assumption of phylogenetic niche conservatism is not always met [36]. Therefore, because 237 

gene repertoires are more direct proxies of species traits than phylogeny, metagenome-based 238 

analyses will deepen our understanding of community processes driven by competitive 239 

exclusion. Meanwhile, in the present analyses of gene repertoire overlap, we included whole 240 

metagenomic datasets of the examined microbes due to the lack of a priori insights into the 241 

metabolic pathways/processes playing essential roles in interspecific competition for 242 

resources. In this respect, our analysis is a preliminary conceptual step for evaluating potential 243 

overlap of fundamental niches at the community level. In future studies, analyses excluding 244 

housekeeping genes [37, 38] or those focusing on specific functional groups of genes (e.g., 245 

carbohydrate degrading genes [39]) may provide more reliable inference of niche overlap. 246 

Because such selection of genes can critically influence threshold niche-overlap values for 247 

anticipating abrupt community compositional changes, setting a commonly applicable 248 

criterion of choosing target gene sets will help us perform comparative analyses across a wide 249 

range of microbial communities.  250 

 The simple framework for evaluating overlap of fundamental niches is applicable to 251 

diverse types of microbiomes. Given that our Jaccard-dissimilarity-based indices are 252 

standardized within the range from 0 to 1, the next crucial step is to examine how threshold 253 

niche overlap values for anticipating microbial community collapse vary among different 254 
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types of ecosystems. Such threshold values can vary among ecosystems depending on their 255 

basic levels of sustainable functional redundancy. In our laboratory microbiome, for example, 256 

the lack of spatial structure (e.g., refuges for inferior species) and environmental fluctuations 257 

(e.g., temperature fluctuations) might have severely limited coexistence of functionally 258 

similar species (species with similar metabolic capabilities). In contrast, in human gut 259 

microbiomes, spatial complexity [40, 41] and temporally fluctuating environmental 260 

conditions [22] may reduce the risk of competitive exclusion, allowing higher levels of niche 261 

overlap within communities. Thus, extension of time-series metagenomic analyses to diverse 262 

types of ecosystems [42345] will enhance our knowledge of relationship among ecosystem 263 

properties, functional redundancy, and community stability.  264 

 While genomic information provides an ultimate platform for inferring fundamental 265 

niches [12314], overlap of gene repertoires may not always result in competitive exclusion of 266 

species within communities. Even in a pair of species with similar gene repertoires, 267 

differentiation in gene expression patterns may occur to avoid overlap of resource-use 268 

patterns between species, allowing coexistence of the two species in an environment. Such 269 

differentiation of <realized niches [10]< through phenotypic plasticity is potentially evaluated 270 

by transcriptomic or metabolomic analyses [46, 47]. Consequently, integration of 271 

(meta)transcriptome and (meta)metabolome analyses [48350] with metagenome-based 272 

analyses will reorganize our understanding of deterministic processes in microbiome 273 

dynamics.  274 

 275 

  276 
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MATERIALS AND METHODS 277 

Time-series data of experimental microbiomes 278 

We used the experimental system of the microbiome time-series monitoring described in a 279 

previous study [19]. In the experiment, microbiomes differing in the magnitude of community 280 

compositional shifts were constructed across the six treatments defined by the combinations 281 

of two inoculum sources and three types of media. One of the source microbiomes derived 282 

from the soil collected from the A layer (0-10 cm in depth) in the research forest of Center for 283 

Ecological Research, Kyoto University, Otsu, Japan (34.972 ºN; 135.958 ºE). The other 284 

source inoculum was prepared by collecting water from a pond (<Shoubuike=) near Center for 285 

Ecological Research (34.974 ºN, 135.966 ºE). Each of the source inocula was introduced into 286 

oatmeal (Medium-A), oatmeal-peptone (Medium-B), or peptone (Medium-C) broth media 287 

with eight replicates. Thus, in total, 48 experimental microcosms (two source microbiomes ´ 288 

three media ´ eight replicates) were constructed in a deep-well plate (1000-¿L-scale culture in 289 

each well). The plate was kept shaken at 1,000 rpm at 23 ºC. After five-day pre-incubation, 290 

200 ¿L out of the 1,000-¿L culture medium was sampled from each well every 24 hours for 291 

110 days. In each sampling event, 200 ¿L of fresh medium was added to each well so that the 292 

total culture volume was kept constant. In total, 5,280 samples (48 communities/day ´ 110 293 

days) were collected through the time-series experiment. After DNA extraction, the samples 294 

were subjected to the amplicon sequencing analysis of the 16S rRNA region [19]. To quantify 295 

the speed and magnitude of community shifts through time, the <abruptness= index was 296 

calculated through the time-series of each replicate microcosm in each experimental treatment 297 

[19]. Specifically, an estimate of the abruptness index for time point t was obtained as the 298 

Bray-Curtis b-diversity between average community compositions from time points t 3 4 to t 299 

and those from t + 1 to t + 5 (i.e., dissimilarity between 5-day time-windows). The Bray-300 

Curtis b-diversity [51] was calculated as 
3 23!"%3!(2
)
!*+

3 43!"53!(6
)
!*+

, where �() and �(7 denoted relative 301 

abundance of microbial amplicon sequence variant (ASV) i in the compared time windows (j, 302 

from t 3 4 to t; k, from t + 1 to t + 5). An abruptness score larger than 0.5 indicates that 303 

turnover of more than 50 % of community compositions occurred between the time-windows 304 

[19].  305 

  306 

Shotgun metagenomics 307 
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Focusing on a replicate microcosm in which the most rapid and substantial turnover of 308 

community compositions was observed (replicate no. 5 of Water/Medium-A treatment; Fig. 309 

S1), shotgun metagenomic sequencing was conducted by targeting 13 samples (Day 1, 10, 20, 310 

24, 30, 40, 50, 60, 70, 80, 90, 100, and 110) as described elsewhere [27]. Specifically, each 311 

DNA sample was processed with Nextera XT DNA Library Preparation Kit (Illumina) and 312 

sequenced with the DNBSEQ-G400 (BGI; 200-bp paired-end sequencing). From the output 313 

data, sequencing adaptors were removed using Cutadapt [52] 2.5 and quality filtering was 314 

performed with Fastp [53] 0.21.0: ca. 10 Gb/sample was subjected to the analysis [in total, 315 

159.96 Gb (1000.301 M reads)]. The sequences of each sample were assembled with 316 

metaSPAdes [54] 3.15.2. Binning was then performed with MetaWRAP [55] 1.3.2, followed 317 

by quality assessing with CheckM [56] 1.1.3. The identity between MAGs were calculated 318 

using FastANI [57] 1.33 and MAGs with > 99 % identity were dereplicated through the time-319 

series (Table S1). In the dereplication, the MAGs with the highest completeness and N50 320 

statistics were selected as representative MAGs. Read-coverage was then calculated with 321 

CoverM [58] 0.6.0, followed by taxonomic annotation was performed using GTDB-Tk [59, 322 

60] 1.6. Only the MAGs with > 80 % completeness and < 5 % contamination were used in the 323 

downstream analyses. Gene annotation was performed with Prokka [28] 1.14.6, yielding 324 

6,999 annotated genes (Data S1). To conduct additional functional annotation of genes, the 325 

orthology numbers of Kyoto Encyclopedia of Genomes (KEGG) were retrieved using 326 

GhostKOALA [61] 2.2. For respective microbial MAGs (bins), completeness of metabolic 327 

pathways was estimated with KEGG decoder [62] 1.3. Based on the matrix representing 328 

KEGG metabolic pathway/process profiles of respective MAGs (Data S2), a heatmap 329 

showing pathway/process completeness was drawn (Fig. S3). 330 

 331 

Background environmental conditions 332 

For the 13 samples subjected to the shotgun metagenomic analysis, concentrations of 333 

ammonium (NH4
+) and nitrate (NO3

2) were measured to obtain supplementary information of 334 

background environmental conditions. Colorimetric methods with a modified indophenol 335 

reaction [63, 64] and the VCl3/Griess assay were applied for the measurements of NH4
+ and 336 

NO3
2, respectively. Samples were run in triplicates via a standard addition method to account 337 

for individual matrix effects [65]. 338 

 339 
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Multivariate analysis of the metagenomic space 340 

Based on the whole matrix representing the profiles of the 6,999 genes (Data S1), the Jaccard 341 

metric of distance was calculated for each pair of the 32 microbial MAGs (�(), where i and j 342 

represent MAGs). The Jaccard-distance estimates were then used to perform a principal 343 

coordinate analysis (PCoA). Using the obtained principal coordinate scores, all the microbial 344 

MAGs detected through the time-series were plotted on a multivariate space consisting of the 345 

first three PCoA axes (PCoA 1, PCoA 2, and PCoA 3). At each time point, the MAGs detected 346 

with the shotgun metagenomic sequencing (defined as the MAGs whose relative abundance is 347 

greater than 0.1 %) was plotted on the three-dimensional space defined with the PCoA axes.  348 

 349 

Evaluation of niche overlap level 350 

The community-scale magnitude of potential niche overlap among species was evaluated 351 

based on the shogun metagenomic sequencing dataset. We developed two types of simple 352 

indices for evaluating community-scale niche overlap as detailed in the Results section. To 353 

test whether a high level of fundamental-niche overlap is observed prior to drastic changes in 354 

microbial community structure, we examined relationship between the above niche overlap 355 

index and time-series shifts in community structure (Bray-Curtis b-diversity between present 356 

and next time points through the time-series of the shotgun metagenomic data). 357 

 358 
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 546 

Fig. 1 Community and ecosystem dynamics. A Time-series data of community structure. 547 

For the replicate microcosm that showed the most abrupt community compositional changes 548 

through the 110-day microbiome experiment [19] (Fig. S1), family-level taxonomic 549 

compositions inferred with 16S rRNA sequencing are shown. The blue line represents the 550 

speed and magnitude of community compositional changes around each time point 551 

(<abruptness= index [19]; see Materials and Methods). The red line indicates a-diversity 552 

(Shannon9s H9) of microbial ASVs [19]. Note that a value larger than 0.5 represents turnover 553 

of more than 50 % of microbial ASV compositions. See Fig. S1 for color profiles of bacterial 554 

families. Reproduced from the data of a previous study [19]. B Taxonomic compositions 555 

inferred with shotgun metagenomic sequencing. At each of the 13 time points through the 556 

time-series of the target microcosm, the relative abundance of each MAG was estimated 557 

based on the normalized read coverage value (reads per kilobase of genome per million reads 558 

mapped). C Genome size and GC nucleotide content of the MAGs detected in the target 559 

microcosm. See panel A for colors and symbols.  560 
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 562 

Fig. 2 Metabolic pathway/process profiles of the MAGs. KEGG metabolic 563 

pathways/profiles of the reconstructed bacterial genomes (MAGs) are shown. The detection 564 

(relative abundance > 0.1 %) of each microbial MAG on each day within the shotgun 565 

metagenomic data is indicated in the panel below. Only the microbial MAGs with > 80 % 566 

completeness and < 5 % contamination were included (Table S1). The five MAGs that co-567 

occurred from Day 40 to 60 and metabolic pathways/processes mentioned in the main text are 568 

highlighted. Only the metabolic pathways/processes with highly heterogeneous patterns 569 

across microbial MAGs are shown. See Fig. S3 for detailed profiles of the metabolic 570 
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pathways/processes. 571 
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 573 

Fig. 3 Metagenomic niche space. A Distributions of MAGs within metagenomic niche 574 

space. Based on dissimilarity in gene repertoires, microbial MAGs that appeared in the time-575 

series of the target microcosm were plotted on the three-dimensional space defined by the 576 

principal coordinate analysis (PCoA) of 6,999 genes. B Changes in the distributions of 577 

microbial MAGs within niche space. At each time point, detected MAGs (relative abundance 578 

> 0.1 %) were plotted on the space defined in the multivariate analysis in the in the panel A.  579 
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 581 

 582 

Fig. 4 Dynamics of niche-overlap level. A Community-level profiles of metabolic 583 

pathways/processes and niche overlap index. The niche overlap indices were defined based on 584 

the Jaccard similarity/dissimilarity of gene compositions between pairs of the microbial 585 

MAGs detected at a target time point. Three types of niche overlap indices are shown on a 586 

PCoA surface representing community-level compositions of genes. On the PCoA surface, 587 

time points are distributed based on the sum of the gene repertoires of the detected MAGs. B 588 

Dynamics of niche-overlap levels. Niche overlap scores are shown across the time-series. The 589 

magnitude of community compositional changes (Bray-Curtis b-diversity between present 590 

and next time points through the time-series of the shotgun metagenomic data) and a-591 

diversity indices of the communities are shown as well. C Relationship between a-diversity 592 

and niche overlap scores. The lines represent linear regressions (with 95 % confidence 593 

intervals).  594 

 595 
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 597 

Fig. 5 Niche overlap level and community compositional shifts. The magnitude of 598 

community compositional changes observed in the microbiome was regressed on each niche 599 

overlap index obtained based on the shotgun metagenomic analysis. Niche overlap index at 600 

each time point and time-series shifts in community structure (Bray-Curtis b-diversity 601 

between present and next time points through the time-series of the shotgun metagenomic 602 

data) are shown along horizontal and vertical axes, respectively. The regression lines are 603 

shown with 95 % confidence intervals.  604 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2023. ; https://doi.org/10.1101/2023.01.17.524457doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.17.524457
http://creativecommons.org/licenses/by/4.0/

