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Abstract

Species utilizing the same resources often fail to coexist for extended periods of time. Such
competitive exclusion mechanisms potentially underly microbiome dynamics, causing
breakdowns of communities composed of species with similar genetic backgrounds of
resource utilization. Although genes responsible for competitive exclusion among a small
number of species have been investigated in pioneering studies, it remains a major challenge
to integrate genomics and ecology for understanding stable coexistence in species-rich
communities. Here, we show that community-scale analyses of functional gene redundancy
can provide a useful platform for interpreting and predicting collapse of bacterial
communities. Through 110-day time-series of experimental microbiome dynamics, we
analyzed the metagenome-assembled genomes of co-occurring bacterial species. We then
inferred ecological niche space based on the multivariate analysis of the genome
compositions. The analysis allowed us to evaluate potential shifts in the level of niche overlap
between species through time. We hypothesized that community-scale pressure of competitive
exclusion could be evaluated by quantifying overlap of genetically determined resource-use
profiles (metabolic pathway profiles) among coexisting species. We found that the degree of
community compositional changes observed in the experimental microbiome was explained
by the magnitude of gene-repertoire overlaps among bacterial species. The metagenome-
based analysis of genetic potential for competitive exclusion will help us forecast major

events in microbiome dynamics such as sudden community collapse (i.e., dysbiosis).

INTRODUCTION

Classic niche theory predicts that coexistence of species requires interspecific difference in
resource use patterns [1-6]. Although some specific mechanisms can promote stable
coexistence even with complete resource overlap (e.g., spatial structure of habitats and
temporal variability in resource availability), similarity/dissimilarity in basic resource
dependency among species is the basic factor determining the occurrence of competitive
exclusion [7-9]. Therefore, evaluating the overlap of “fundamental niches”, which are defined
by species’ fundamental resource requirements and resource-use capabilities [10, 11], is an

essential step for understanding and predicting community-level dynamics.
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Insights into fundamental niches are encrypted in species’ genomes [12—-14]: as species’
traits are encoded in their DNA, genomic information provides the ultimate basis for
evaluating target species’ fundamental niches [15, 16]. Thus, potential strength of competitive
interactions within ecological guilds or communities could be evaluated based on the
distribution of species’ gene repertoires within ecological niche space inferred with
metagenomic data [12, 15, 16], also referred to as “metagenomic niche space”. Although
overlap of niches does not always cause competitive exclusion [7-9], higher levels of gene
repertoire overlap within a community may impose greater impacts on population dynamics

of constituent species.

In considering coexistence of microbial species, it is essential to examine whether such
competition-driven population-level phenomena underly drastic ecological events observed at
the community level. Microbial communities sometimes show sudden and substantial changes
in species and/or taxonomic compositions [17-20]. Human gut microbiomes, for example,
have been reported to show drastic shifts from species-rich states to “imbalanced” states with
low a-diversity and overrepresentation of pathogenic species [21-24] (e.g., Clostridium
difficile). Elucidating the ecological mechanisms causing such drastic community-level events
provide fundamental insights into microbiome dynamics [24—26]. In this respect, an important
challenge is to test the hypothesis that high levels of gene-repertoire overlap are observable
prior to drastic community compositional changes. However, this hypothesis, to our
knowledge, has not yet been tested presumably due to the paucity of time-series observations
of microbiomes with substantial compositional changes. Even if such microbiome time-series
data are available, analyses of potential niche (gene repertoire) overlap require another line of
information. Specifically, we need data of respective species’ genomes at multiple time points.
Therefore, developing research systems that can overcome these constrains will deepen our

understanding of microbiome ecological processes.

In this study, we test the degree to which gene-repertoire overlap changes through
dynamics of species-rich microbial communities. By targeting an experimental microbial
system showing rapid and substantial changes in taxonomic compositions [19], we infer niche
space depicting species’ gene repertoires. Work in this system using a metabolic modeling
analysis demonstrated that interactions between species were keys to understand the drastic
microbiome dynamics [27]. Now, by compiling the shotgun metagenomic data collected at 13
time points across the 110-day time-series of the experiment, we reveal temporal shifts in the

magnitude of gene repertoire overlap among microbial species. We then examine whether a
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99  high level of fundamental-niche overlap is observed prior to drastic changes in community
100  structure. Overall, we explore how signs of drastic shifts in community structure are detected
101 by inferring community-scale degree of fundamental niche overlap with the aid of genomic

102  information.
103

104 RESULTS
105  Functional dynamics of microbiomes

106  We focused on the experimental microbiome showing drastic shifts in taxonomic

107  compositions [19]. In a previous study [19], a 110-day monitoring of microbiomes was

108  performed with six experimental settings. To set up experimental microbiomes with high

109  diversity of bacterial species/taxa, we used natural microbial communities derived from soil
110  or pond-water ecosystems as source inocula, rather than “synthetic” communities with pre-
111  defined diversity. Specifically, microbiomes were set up with combinations of two source

112 inoculum types (soil- or pond-water-derived inoculum microbiomes) and three medium types
113 (oatmeal, oatmeal-peptone, or peptone broth medium) with eight replications (2 x 3 x 8 =48
114  microbiomes; see Materials and Methods for details). From each of the 48 microbiomes, a
115  fraction of each replicate community was sampled every 24 hours. The collected samples

116  were subjected to the amplicon sequencing of the 16S rRNA region and the temporal changes
117  in community compositions were monitored throughout the time-series [19]. By calculating
118  the magnitude of time-series changes in community compositions [19] (Fig. 1A), we focused
119  on a water-inoculum/oatmeal-medium replicate community showing the most abrupt (rapid
120  and substantial) changes in community compositions among the 48 microbiomes examined as

121 described in a study on metabolic interactions between species [27] (Fig. S1).

122 By targeting the replicate community mentioned above, we compiled shotgun

123 metagenomic data at 13 time points across the time-series [27]. In total, 32 high-quality (>
124 80 % completeness and < 5 % contamination) metagenome-assembled genomes (MAGs)

125  belonging to 20 genera (16 families; 12 orders) were detected [27] (Figs. 1B-C and 2; Fig. S2;
126  Table S1). As indicated in the amplicon sequencing analysis [19] (Fig. 1A), drastic shifts from
127  taxon-rich community states to oligopolistic states was observed around Day 20 in the

128  shotgun sequencing analysis (Fig. 1B).

129 After the drastic community compositional change, the system reached a quasi-stable

130  state represented by the dominance of a Hydrotalea (Chitinophagaceae) bacterium (Fig. 1B).
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131  The MAG of the Hydrotalea was characterized by relatively low GC content (38 %) and

132 relatively small genome size within the community (ca. 3.1 Mb; Fig. 2A). In contrast, the two
133 bacterial MAGs consistently coexisted with the dominant Hydrotalea through the time-series
134  (i.e., Terracidiphilus and Mangrovibacter) had larger genome size (4.2 and 5.4 Mb,

135  respectively; Fig. 1C), characterized by various genes absent from the Hydrotalea genome
136 (Fig. 2; Fig. S3). Specifically, the Terracidiphilus MAG showed metabolic

137  pathways/processes for degrading plant-derived biopolymers (e.g., cellulose; Fig. 2),

138  potentially surviving as a primary user of polymer compounds within the plant-derived

139  (oatmeal) medium. Meanwhile, the Mangrovibacter MAG had pathways/processes related to
140  starch degradation (e.g., amylase) and vitamin-Bi, transportation, which were absent from the
141  genomes of Hydrotalea, Terracidiphilus, and the other MAG (Rhizomicrobium) detected on
142  Day 40-60 (Fig. 2).

143
144  Multivariate analysis of gene repertoires

145  Next, we used the shotgun metagenomic data to evaluate how the level of gene repertoire

146  overlap among microbes shifted through time. We anticipated that microbial species with

147  similar resource-use abilities or restrictions have similar genomic structure. Therefore, it is
148  expected that species competing for the same resource tend to form clusters within the space
149  defined based on the principal coordinate analysis (PCoA) of dissimilarity in gene repertoires.
150  For each pair of the 32 MAGs, dissimilarity (Jaccard distance) of gene repertoires was

151  calculated based on the matrix representing the presence/absence of the 6,999 genes annotated
152  with the program Prokka [28]. A PCoA was then performed using the f-diversity information
153  (Fig. 3A). At each of the 13 time points, detected MAGs were plotted on the PCoA space.

154  Since we did not have a priori knowledge of specific metabolic pathways keys to the

155  microbe-to-microbe competition within the experimental microbiome, all datasets were

156  included in this multivariate analysis. Given general characteristics of multivariate analysis
157  based on f-diversity metrics, the multivariate reconstruction of ecological niche space

158  depends greatly on the genes whose presence/absence profiles vary among species, while

159  housekeeping genes possessed by most species are expected to contribute little to the

160  multivariate analysis.

161 We found that alphaproteobacterial and gammaproteobacterial MAGs respectively

162  constituted some clusters within the niche space reconstructed based on the multivariate
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163 analysis early in the microbiome dynamics (Day 1-20; Fig. 3B). This state with high niche
164  overlap and potential within-guild competition for resources then collapsed into a simpler
165 community state represented by Hydrotalea, Mangrovibacter, Terracidiphilus, and

166  Rhizomicrobium as detailed above (Fig. 3B). The space once occupied by many

167  alphaproteobacterial and gammaproteobacterial MAGs remained unoccupied or sparsely
168  occupied after the community compositional collapse. Even when the number of MAGs

169  detectable with our shotgun-metagenomic sequencing increased again late in the time-series,
170  dense aggregations of microbes with similar genomic compositions remained unobserved

171 (Fig. 3B).

172
173~ Metagenomic niche overlap

174  We next quantitatively evaluated dynamics in the magnitude of community-scale niche

175  overlap within the multivariate space (Fig. 3). We developed two types of simple indices for
176  evaluating community-scale niche overlap. The one is defined as the overall mean of gene-
177  repertoire similarity between pairs of MAGs within a community. For a time point, the niche

178  overlap index is calculated as:

ZieT,jeT,i:tj Dij

179 niche overlap score (overall mean) = 1 — \
Np(NT-1)

180  where T'is the set of MAGs detected on a focal day (relative abundance > 0.1 %), D;; is the
181  Jaccard metric of dissimilarity [29] in gene compositions, and Ny is the number of MAGs
182  detected on the day. By definition, this niche overlap value based on Jaccard dissimilarity
183  wvaries from 0 (completely different repertoires of genes in all pairs of MAGs) and 1

184  (completely identical gene repertoires in all pairs of MAGs), allowing us to evaluate niche
185  overlap levels of target communities within the standardized ranges. The other index is

186  defined as mean value of gene-repertoire similarity with nearest neighbors. The alternative is
187  calculated as:

188 niche overlap score (nearest mean) = 1 — ZLET#;V—?F(DU)

189  This index can be modified by incorporating the information of the relative abundance of

190 MAGs (p;) as follows:
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191 niche overlap score (weighted nearest mean) = 1 — Y;cr i P; rrgp(DU).
j
192 The results indicated that the level of niche overlap was the highest on Day 1 or Day 10

193  and that it decreased until Day 30 (Fig. 4A). Although the niche overlap score remained low
194  between Day 40 and 60, it increased again late in the microbiome time-series (Fig. 4B). Note
195  that a-diversity of the community showed similar temporal shifts and it was significantly
196  associated with the niche overlap indices (Fig. 4B-C). Through the time-series, the estimated
197  niche overlap level was significantly associated with the magnitude of the observed

198  community compositional changes (Fig. 5)

199
200 DISCUSSION

201 By developing simple metrics of among-species overlap of gene repertoires, we examined
202  potential relationship between community-scale niche overlap and drastic changes in

203  community structure. Early in the experimental microbiome dynamics, alphaproteobacterial
204  and gammaproteobacterial species were present, resulting in relatively high niche-overlap
205  scores at the community level (Figs. 3 and 4). The quasi-equilibrium state of microbial

206  compositions then collapsed into another quasi-equilibrium represented by a small number of
207  bacteria varying in genome size and metabolic capabilities. Throughout the time-series,

208  higher niche overlap levels entailed greater changes in microbial community compositions
209  (Fig. 5). These findings lead to the working hypothesis that collapse of microbiome structure
210  is predicted by the level of potential niche overlap within multivariate metagenomic space. In
211  light of the “limiting similarity” rule of ecological niches [30], microbial species that exceed a
212 critical limit of genome compositional similarity are expected to compete for the same

213 resources intensively, eventually driving competitive exclusion processes. Thus, as examined
214 in this study, similarity/dissimilarity in genetically determined resource-use properties (i.e.,

215  fundamental niches) sets baselines for consequences of interspecific interactions.

216 The results also indicated that niche overlap level does not necessarily show monotonic
217  decrease through microbial community processes. Although gene-repertoire overlap level and
218  detectable species richness sharply declined early in the microbiome dynamics, both variables
219  gradually increased again around Day 80 (Figs. 1A and 4B). In the resurgence process,

220  however, the dense clusters of alphaproteobacterial or gammaproteobacterial species detected

221  until Day 20 did not appear again within the niche space (Fig. 3B). These observations
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222 suggest that once collapsed, microbial communities may not return to previous states with
223 highest levels of niche overlap, but refilling of poorly-used niches can occur under the

224 constraint of limiting similarity within niche space. Although these insights are useful, our
225  present analysis is based only on 13 time points of a microbiome experiment. Due to the

226  limitation, it remained difficult to separate effects of a-diversity from those of gene-repertoire
227  overlap (Fig. 4B-C). Thus, the statistical analysis proposed in this study need to be expanded
228 by reducing the cost of metagenomic sequencing as well as by developing more efficient

229  pipelines for the computationally intensive analyses of metagenomic datasets.

230 The approach of systematically evaluating potential overlap of ecological niches have
231  been previously explored in “community phylogenetics”, in which phylogenetic

232 overdispersion/clustering is evaluated based on null model analysis of random assembly from
233 species pools [5, 31, 32]. In those studies based on phylogenetic analyses, similarity of niches
234 has been inferred based on the assumption that phylogenetically similar species have similar
235  ecological properties (e.g., resource requirements). Nonetheless, given that convergent

236  evolution of ecologically important traits is ubiquitous in the history of life [33—-35], the

237  assumption of phylogenetic niche conservatism is not always met [36]. Therefore, because
238  gene repertoires are more direct proxies of species traits than phylogeny, metagenome-based
239  analyses will deepen our understanding of community processes driven by competitive

240  exclusion. Meanwhile, in the present analyses of gene repertoire overlap, we included whole
241  metagenomic datasets of the examined microbes due to the lack of a priori insights into the
242 metabolic pathways/processes playing essential roles in interspecific competition for

243 resources. In this respect, our analysis is a preliminary conceptual step for evaluating potential
244  overlap of fundamental niches at the community level. In future studies, analyses excluding
245  housekeeping genes [37, 38] or those focusing on specific functional groups of genes (e.g.,
246  carbohydrate degrading genes [39]) may provide more reliable inference of niche overlap.
247  Because such selection of genes can critically influence threshold niche-overlap values for
248  anticipating abrupt community compositional changes, setting a commonly applicable

249  criterion of choosing target gene sets will help us perform comparative analyses across a wide

250  range of microbial communities.

251 The simple framework for evaluating overlap of fundamental niches is applicable to
252 diverse types of microbiomes. Given that our Jaccard-dissimilarity-based indices are
253  standardized within the range from 0 to 1, the next crucial step is to examine how threshold

254  niche overlap values for anticipating microbial community collapse vary among different
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255  types of ecosystems. Such threshold values can vary among ecosystems depending on their
256  basic levels of sustainable functional redundancy. In our laboratory microbiome, for example,
257  the lack of spatial structure (e.g., refuges for inferior species) and environmental fluctuations
258  (e.g., temperature fluctuations) might have severely limited coexistence of functionally

259  similar species (species with similar metabolic capabilities). In contrast, in human gut

260  microbiomes, spatial complexity [40, 41] and temporally fluctuating environmental

261  conditions [22] may reduce the risk of competitive exclusion, allowing higher levels of niche
262  overlap within communities. Thus, extension of time-series metagenomic analyses to diverse
263  types of ecosystems [42—45] will enhance our knowledge of relationship among ecosystem

264  properties, functional redundancy, and community stability.

265 While genomic information provides an ultimate platform for inferring fundamental
266  niches [12—14], overlap of gene repertoires may not always result in competitive exclusion of
267  species within communities. Even in a pair of species with similar gene repertoires,

268  differentiation in gene expression patterns may occur to avoid overlap of resource-use

269  patterns between species, allowing coexistence of the two species in an environment. Such
270  differentiation of “realized niches [10]* through phenotypic plasticity is potentially evaluated
271 by transcriptomic or metabolomic analyses [46, 47]. Consequently, integration of

272 (meta)transcriptome and (meta)metabolome analyses [48—50] with metagenome-based

273  analyses will reorganize our understanding of deterministic processes in microbiome

274  dynamics.

275
276

10
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277 MATERIALS AND METHODS
278  Time-series data of experimental microbiomes

279  We used the experimental system of the microbiome time-series monitoring described in a
280  previous study [19]. In the experiment, microbiomes differing in the magnitude of community
281  compositional shifts were constructed across the six treatments defined by the combinations
282  of two inoculum sources and three types of media. One of the source microbiomes derived
283  from the soil collected from the A layer (0-10 cm in depth) in the research forest of Center for
284  Ecological Research, Kyoto University, Otsu, Japan (34.972 °N; 135.958 °E). The other

285  source inoculum was prepared by collecting water from a pond (“Shoubuike’) near Center for
286  Ecological Research (34.974 °N, 135.966 °E). Each of the source inocula was introduced into
287  oatmeal (Medium-A), oatmeal-peptone (Medium-B), or peptone (Medium-C) broth media
288  with eight replicates. Thus, in total, 48 experimental microcosms (two source microbiomes x
289  three media x eight replicates) were constructed in a deep-well plate (1000-pL-scale culture in
290  each well). The plate was kept shaken at 1,000 rpm at 23 °C. After five-day pre-incubation,
291 200 pL out of the 1,000-pL culture medium was sampled from each well every 24 hours for
292 110 days. In each sampling event, 200 pL of fresh medium was added to each well so that the
293  total culture volume was kept constant. In total, 5,280 samples (48 communities/day x 110
294  days) were collected through the time-series experiment. After DNA extraction, the samples
295  were subjected to the amplicon sequencing analysis of the 16S rRNA region [19]. To quantify
296  the speed and magnitude of community shifts through time, the “abruptness” index was

297  calculated through the time-series of each replicate microcosm in each experimental treatment
298  [19]. Specifically, an estimate of the abruptness index for time point # was obtained as the

299  Bray-Curtis f-diversity between average community compositions from time points # — 4 to ¢
300 and those from ¢+ 1 to £ + 5 (i.e., dissimilarity between 5-day time-windows). The Bray-

YicalXij— Xk

301  Curtis fdiversity [51] was calculated as SCHED

where X;; and X;; denoted relative

302  abundance of microbial amplicon sequence variant (ASV) i in the compared time windows (j,
303 from¢—4tot; k, from¢+ 1tot+5). An abruptness score larger than 0.5 indicates that
304  turnover of more than 50 % of community compositions occurred between the time-windows

305 [19].
306

307  Shotgun metagenomics

11
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308  Focusing on a replicate microcosm in which the most rapid and substantial turnover of

309 community compositions was observed (replicate no. 5 of Water/Medium-A treatment; Fig.
310  S1), shotgun metagenomic sequencing was conducted by targeting 13 samples (Day 1, 10, 20,
311 24,30, 40, 50, 60, 70, 80, 90, 100, and 110) as described elsewhere [27]. Specifically, each
312 DNA sample was processed with Nextera XT DNA Library Preparation Kit (Illumina) and
313 sequenced with the DNBSEQ-G400 (BGI; 200-bp paired-end sequencing). From the output
314  data, sequencing adaptors were removed using Cutadapt [52] 2.5 and quality filtering was
315  performed with Fastp [53] 0.21.0: ca. 10 Gb/sample was subjected to the analysis [in total,
316  159.96 Gb (1000.301 M reads)]. The sequences of each sample were assembled with

317 metaSPAdes [54] 3.15.2. Binning was then performed with MetaWRAP [55] 1.3.2, followed
318 by quality assessing with CheckM [56] 1.1.3. The identity between MAGs were calculated
319  using FastANI [57] 1.33 and MAGs with > 99 % identity were dereplicated through the time-
320  series (Table S1). In the dereplication, the MAGs with the highest completeness and N50

321  statistics were selected as representative MAGs. Read-coverage was then calculated with

322 CoverM [58] 0.6.0, followed by taxonomic annotation was performed using GTDB-Tk [59,
323 60] 1.6. Only the MAGs with > 80 % completeness and < 5 % contamination were used in the
324  downstream analyses. Gene annotation was performed with Prokka [28] 1.14.6, yielding

325 6,999 annotated genes (Data S1). To conduct additional functional annotation of genes, the
326  orthology numbers of Kyoto Encyclopedia of Genomes (KEGG) were retrieved using

327  GhostKOALA [61] 2.2. For respective microbial MAGs (bins), completeness of metabolic
328  pathways was estimated with KEGG decoder [62] 1.3. Based on the matrix representing

329  KEGG metabolic pathway/process profiles of respective MAGs (Data S2), a heatmap

330 showing pathway/process completeness was drawn (Fig. S3).
331
332  Background environmental conditions

333 For the 13 samples subjected to the shotgun metagenomic analysis, concentrations of

334  ammonium (NH4") and nitrate (NO3~) were measured to obtain supplementary information of
335  background environmental conditions. Colorimetric methods with a modified indophenol

336  reaction [63, 64] and the VCI3/Griess assay were applied for the measurements of NH4" and
337  NOs, respectively. Samples were run in triplicates via a standard addition method to account

338  for individual matrix effects [65].

339
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340  Multivariate analysis of the metagenomic space

341  Based on the whole matrix representing the profiles of the 6,999 genes (Data S1), the Jaccard

342  metric of distance was calculated for each pair of the 32 microbial MAGs (D;;, where i and j

j
343 represent MAGs). The Jaccard-distance estimates were then used to perform a principal

344  coordinate analysis (PCoA). Using the obtained principal coordinate scores, all the microbial
345  MAGs detected through the time-series were plotted on a multivariate space consisting of the
346  first three PCoA axes (PCoA 1, PCoA 2, and PCoA 3). At each time point, the MAGs detected
347  with the shotgun metagenomic sequencing (defined as the MAGs whose relative abundance is

348  greater than 0.1 %) was plotted on the three-dimensional space defined with the PCoA axes.
349
350  Evaluation of niche overlap level

351  The community-scale magnitude of potential niche overlap among species was evaluated
352 based on the shogun metagenomic sequencing dataset. We developed two types of simple
353  indices for evaluating community-scale niche overlap as detailed in the Results section. To
354  test whether a high level of fundamental-niche overlap is observed prior to drastic changes in
355  microbial community structure, we examined relationship between the above niche overlap
356  index and time-series shifts in community structure (Bray-Curtis f-diversity between present

357  and next time points through the time-series of the shotgun metagenomic data).

358
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547  Fig. 1 Community and ecosystem dynamics. A Time-series data of community structure.
548  For the replicate microcosm that showed the most abrupt community compositional changes
549  through the 110-day microbiome experiment [19] (Fig. S1), family-level taxonomic

550  compositions inferred with 16S rRNA sequencing are shown. The blue line represents the
551  speed and magnitude of community compositional changes around each time point

552 (“abruptness” index [19]; see Materials and Methods). The red line indicates a-diversity

553  (Shannon’s H’) of microbial ASVs [19]. Note that a value larger than 0.5 represents turnover
554  of more than 50 % of microbial ASV compositions. See Fig. S1 for color profiles of bacterial
555  families. Reproduced from the data of a previous study [19]. B Taxonomic compositions

556  inferred with shotgun metagenomic sequencing. At each of the 13 time points through the
557  time-series of the target microcosm, the relative abundance of each MAG was estimated

558  based on the normalized read coverage value (reads per kilobase of genome per million reads
559  mapped). C Genome size and GC nucleotide content of the MAGs detected in the target

560  microcosm. See panel A for colors and symbols.
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Fig. 2 Metabolic pathway/process profiles of the MAGs. KEGG metabolic
pathways/profiles of the reconstructed bacterial genomes (MAGs) are shown. The detection
(relative abundance > 0.1 %) of each microbial MAG on each day within the shotgun
metagenomic data is indicated in the panel below. Only the microbial MAGs with > 80 %
completeness and < 5 % contamination were included (Table S1). The five MAGs that co-
occurred from Day 40 to 60 and metabolic pathways/processes mentioned in the main text are
highlighted. Only the metabolic pathways/processes with highly heterogeneous patterns

across microbial MAGs are shown. See Fig. S3 for detailed profiles of the metabolic
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574  Fig. 3 Metagenomic niche space. A Distributions of MAGs within metagenomic niche

575  space. Based on dissimilarity in gene repertoires, microbial MAGs that appeared in the time-
576  series of the target microcosm were plotted on the three-dimensional space defined by the
577  principal coordinate analysis (PCoA) of 6,999 genes. B Changes in the distributions of

578  microbial MAGs within niche space. At each time point, detected MAGs (relative abundance
579  >0.1 %) were plotted on the space defined in the multivariate analysis in the in the panel A.

580
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582

583  Fig. 4 Dynamics of niche-overlap level. A Community-level profiles of metabolic

584  pathways/processes and niche overlap index. The niche overlap indices were defined based on
585  the Jaccard similarity/dissimilarity of gene compositions between pairs of the microbial

586  MAGs detected at a target time point. Three types of niche overlap indices are shown on a
587  PCoA surface representing community-level compositions of genes. On the PCoA surface,
588  time points are distributed based on the sum of the gene repertoires of the detected MAGs. B
589  Dynamics of niche-overlap levels. Niche overlap scores are shown across the time-series. The
590  magnitude of community compositional changes (Bray-Curtis f-diversity between present
591  and next time points through the time-series of the shotgun metagenomic data) and a-

592  diversity indices of the communities are shown as well. C Relationship between a-diversity
593  and niche overlap scores. The lines represent linear regressions (with 95 % confidence

594  intervals).

595
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598  Fig. 5 Niche overlap level and community compositional shifts. The magnitude of

599  community compositional changes observed in the microbiome was regressed on each niche
600 overlap index obtained based on the shotgun metagenomic analysis. Niche overlap index at
601  each time point and time-series shifts in community structure (Bray-Curtis f-diversity

602  between present and next time points through the time-series of the shotgun metagenomic
603  data) are shown along horizontal and vertical axes, respectively. The regression lines are

604  shown with 95 % confidence intervals.
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