

Structural insights into ligand-recognition, activation, and signaling-bias at the complement C5a receptor, C5aR1

3 Shirsha Saha^{1#}, Jagannath Maharana^{1#}, Manish K. Yadav^{1#}, Parishmita Sarma¹, Vinay Singh¹,
4 Samanwita Mohapatra¹, Chahat Soni¹, Sayantan Saha¹, Sudha Mishra¹, Manisankar Ganguly¹,
5 Mohamed Chami², Ramanuj Banerjee^{1*} and Arun K. Shukla^{1*}

6 ¹Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur
7 208016, India; ²BioEM Lab, Biozentrum, Universität Basel, Basel, Switzerland. [#]Joint 1st author

⁸ *Corresponding authors (ramanujb@iitk.ac.in or arshukla@iitk.ac.in)

9

10

11

12

13

14

15

21 **Abstract**

22 Activation of the complement cascade is a critical part of our innate immune response against
23 invading pathogens, and it operates in a concerted fashion with the antibodies and phagocytic
24 cells towards the clearance of pathogens. The complement peptide C5a, generated during the
25 activation of complement cascade, is a potent inflammatory molecule, and increased levels of
26 C5a are implicated in multiple inflammatory disorders including the advanced stages of COVID-
27 19 pathophysiology. The proximal step in C5a-mediated cellular and physiological responses is
28 its interaction with two different seven transmembrane receptors (7TMRs) known as C5aR1 and
29 C5aR2. Despite a large body of functional data on C5a-C5aR1 interaction, direct visualization of
30 their interaction at high-resolution is still lacking, and it represents a significant knowledge gap in
31 our current understanding of complement receptor activation and signaling. Here, we present
32 cryo-EM structures of C5aR1 activated by its natural agonist C5a, and a G-protein-biased
33 synthetic peptide ligand C5a^{pep}, in complex with heterotrimeric G-proteins. The C5a-C5aR1
34 structure reveals the ligand binding interface involving the N-terminus and extracellular loops of
35 the receptor, and we observe that C5a exhibits a significant conformational change upon its
36 interaction with the receptor compared to the basal conformation. On the other hand, the
37 structural details of C5a^{pep}-C5aR1 complex provide a molecular basis to rationalize the ability of
38 peptides, designed based on the carboxyl-terminus sequence of C5a, to act as potent agonists
39 of the receptor, and also the mechanism underlying their biased agonism. In addition, these
40 structural snapshots also reveal activation-associated conformational changes in C5aR1
41 including outward movement of TM6 and a dramatic rotation of helix 8, and the interaction
42 interface for G-protein-coupling. In summary, this study provides previously lacking molecular
43 basis for the complement C5a recognition and activation of C5aR1, and it should facilitate
44 structure-based discovery of novel lead molecules to target C5aR1 in inflammatory disorders.

45

46 **Introduction**

47 The complement system, also known as the complement cascade, is an integral part of our
48 immune response against pathogenic infections¹. Once activated, it plays a vital role in efficient
49 destruction and clearance of microbial agents through the formation of membrane attack
50 complex and associated mechanisms^{2,3}. Complement activation results in the generation of
51 several peptide fragments by the action of different proteases, and these complement peptides
52 subsequently exert their functions through the corresponding receptors and effectors^{2,3}. One
53 such complement peptide is C5a, which is generated through the proteolytic cleavage of the
54 complement component C5 by the C5 convertase enzyme, and it consists of 74 amino acids^{2,3}.
55 C5a is a highly potent inflammatory molecule, and its abnormal production often contributes to
56 the onset and progression of multiple inflammatory conditions including sepsis and the
57 advanced stage of COVID-19 pathophysiology⁴⁻⁶.

58 C5a binds to, and activates, two distinct seven-transmembrane receptors (7TMRs),
59 namely the C5aR1 and C5aR2 (also known as C5L2)^{7,8}. While C5aR1 is a prototypical G-
60 protein-coupled receptor (GPCR), C5aR2 couples only to β-arrestins (βarrs) without any
61 measurable G-protein activation, and hence it is also referred to as an Arrestin-Coupled
62 Receptor (ACR)^{8,9}. C5aR1 is widely distributed in immune cells including the macrophages and
63 neutrophils, and endothelial cells with primary coupling to Gai sub-type of heterotrimeric G-
64 proteins¹⁰ (Figure 1A). Upon activation by agonists, C5aR1 also undergoes phosphorylation
65 followed by the binding of βarrs and subsequent internalization¹¹. The interaction of C5a with
66 C5aR1 and ensuing downstream signaling responses have been implicated in the disease
67 severity of COVID-19 patients, including a potential chemoattracting role that leads to infiltration
68 of neutrophils and monocytes in the broncho-alveolar lavage fluid (BALF) of the patients⁴.
69 Moreover, a monoclonal antibody capable of blocking C5a-C5aR1 interaction has shown
70 therapeutic promise for COVID-19 in mouse model⁴.

71 Previously determined crystal structures of C5a have revealed a four-helix architecture
72 with connecting loops stabilized by three disulfide bridges¹². A series of mutagenesis studies,
73 coupled with functional assays, have suggested that binding of C5a with C5aR1 involves an
74 interface between the core region of C5a with the N-terminus and extracellular loop 2 (ECL2) of
75 C5aR1, and a second interface between the carboxyl-terminus of C5a with the extracellular
76 pocket of the receptor¹³⁻¹⁶. In addition to C5a, several peptide ligands derived from, and
77 modified based on the carboxyl-terminus sequence of C5a, have been described as potent
78 agonists for C5aR1, albeit with relatively lower affinities¹⁶⁻²¹. Of these, a hexapeptide referred to
79 as C5a^{pep} is particularly interesting as it behaves as a functionally-biased agonist compared to
80 C5a in terms of transducer-coupling and cellular responses¹¹. It exhibits comparable efficacy to
81 C5a for cAMP inhibition and ERK1/2 MAP kinase activation, although with significantly weaker
82 potency, while it is a partial agonist for β arr recruitment and trafficking¹¹. Moreover, C5a^{pep}
83 displays full agonism for inhibiting LPS-induced IL-6 release in human macrophages but only
84 partial agonism with respect to neutrophil migration¹¹. However, direct visualization of agonist-
85 binding to the receptor, either with C5a or peptide agonists, is currently lacking, and it remains a
86 major knowledge gap in our understanding of complement recognition mechanism and
87 activation of C5aR1.

88 In this study, we present two cryo-EM structures of C5aR1 in complex with the
89 heterotrimeric G-proteins where the receptor is occupied either by C5a or C5a^{pep}. These
90 structures not only unravel the molecular basis of complement recognition and receptor
91 activation including a previously unanticipated dramatic rotation of helix 8, but they also offer
92 important insights into functional bias at the receptor elicited by peptide agonists. Additionally,
93 these structural snapshots also offer a previously lacking platform to facilitate structure-guided
94 novel ligand discovery at the complement receptors with enhanced sub-type selectivity and
95 improved biased agonism.

96 **Results and discussion**

97 **Reconstitution of agonist-C5aR1-G-protein complexes**

98 In order to determine the structure of active C5aR1 in complex with G-proteins, we first started
99 with expression and purification of the full-length human C5aR1 using the baculovirus
100 expression system. However, despite robust expression and efficient purification, the receptor
101 exhibited a heterogenous profile when analyzed by size-exclusion chromatography. Therefore,
102 we focused our efforts on the mouse C5aR1, which appeared highly monodisperse and suitable
103 for structural studies (Figure S1A). We first compared the pharmacology of human C5a (hC5a)
104 and C5a^{pep} on human and mouse C5aR1, referred to as hC5aR1 and mC5aR1, respectively, in
105 terms of G-protein-coupling, and β arr recruitment and trafficking using previously described
106 GloSensor²² and NanoBiT²³ assays, respectively. We observed that both hC5a and C5a^{pep}
107 behave as full agonists on mC5aR1 with slightly lower potency compared to hC5aR1 in terms of
108 G-protein-mediated cAMP response (Figure 1B). On the other hand, while hC5a exhibits full
109 agonism for β arr recruitment and endosomal trafficking on mC5aR1 (Figure 1C), C5a^{pep} displays
110 partial agonism at mC5aR1 compared to hC5aR1 in these assays (Figure 1D), and it exhibits G-
111 protein-bias in line with our previous study¹¹. In these experiments, mC5aR1 and hC5aR1 were
112 expressed at comparable levels (Figure S1B-K). Subsequently, we successfully reconstituted
113 C5a-C5aR1-Gao β 1 γ 2 and C5a^{pep}-C5aR1-Gao β 1 γ 2 complexes stabilized using ScFv16 by
114 combining the purified components (Figure S2A-B), and negative-staining of these complexes
115 suggested uniform particle distribution with an overall complex architecture reminiscent of
116 typical GPCR-G-protein assemblies (Figure 1E-F and S2C-D).

117 **Overall structures of C5a/C5a^{pep}-C5aR1-Gao β 1 γ 2 complexes**

118 These complexes were subsequently subjected to cryo-EM data collection on a 300kV Titan
119 Krios microscope followed by data analysis using cryoSPARC (v3.3.2/v4)²⁴ as outlined in Figure

120 S3 for the C5a-C5aR1-Gao β 1y2-ScFv16 and Figure S4 for the C5a^{pep}-C5aR1-Gao β 1y2-ScFv16
121 complex yielding structures at 3.9 \AA and 3.4 \AA , respectively (Figure 2 and S5). Despite somewhat
122 moderate resolution, cryo-EM maps allowed unambiguous modeling of the secondary structures
123 of all the components including C5a and C5a^{pep} in the corresponding structures (Figure 2 and
124 Figure S6A-B). The final model of C5a-C5aR1-Go complex contains clear density for the
125 residues ranging from Pro24^{N-term} to Ser315^{H8} of the receptor, although the residues Tyr103 to
126 Asp105 in ECL1 and Val187 to Glu200 in ECL2 did not show discernible densities, potentially
127 due to inherent flexibility (Figure S7). The C5a^{pep}-C5aR1-Go complex contains clear densities
128 for the residues ranging from Gly36^{N-term} to Ser315^{H8} although the regions corresponding to
129 Ala66 to Arg68 in ICL1 and Lys179 to Glu200 in ECL2 were not resolved in the final model
130 (Figure S7). A schematic representation of the residues corresponding to the different
131 components of the complex resolved in the final structural models are summarized in Figure S7.
132 Expectedly, the overall quality of cryo-EM maps was the highest at the receptor-Go interface
133 while the extracellular loops exhibited relatively higher variability. The overall structures of
134 C5a^{pep} and C5a-bound C5aR1 are similar and exhibit an RMSD of 0.736 \AA across the receptor
135 upon superimposition (Figure S8).

136 **Interaction of C5a and C5a^{pep} with C5aR1**

137 Previous crystal structures of C5a have revealed a rigid core consisting of a four-helix bundle
138 (H1-H4) wherein the carboxyl-terminus adopts a short α -helical conformation¹² (Figure 3A).
139 Strikingly, we observed a significant conformational and structural rearrangement in C5a upon
140 its interaction with C5aR1, although it still adopts a four-helix bundle architecture (Figure 3B-C).
141 In particular, the carboxyl-terminus of C5a displays an extended conformation instead of the
142 short α -helical turn, and the third short helix tilted at an angle of about 45 $^{\circ}$ in C5aR1-bound
143 conformation compared to the basal state (Figure 3C). Consistent with previous studies, we
144 observed a two-site binding mechanism of C5a to C5aR1 (Figure 3D). The N-terminus and

145 ECL2 of the receptor interface with the central core of C5a, while the extended carboxyl-
146 terminus of C5a docks into the orthosteric binding pocket formed on the extracellular side of the
147 transmembrane bundle of the receptor (Figure 3D). The interface areas of these two sites of
148 C5a interaction on C5aR1 are 316Å² and 600Å², respectively. There are several hydrogen
149 bonds, hydrophobic interactions, salt bridges, and polar interactions that help stabilize the
150 overall positioning of C5a on C5aR1 (Figure 3E and S9A). For example, His29 in the N-terminus
151 of C5aR1 forms a hydrogen bond and non-bonded contact with Arg³⁷ and Arg⁴⁰ of C5a,
152 respectively. In addition, non-bonded contacts between Ile28 in the N-terminus of C5aR1 with
153 Arg⁴⁰ and Ile⁴¹, and hydrogen bonds between Glu176 in ECL2 of the receptor and His⁶⁷ and
154 Ser⁶⁶ of C5a are also key determinants for the first binding site. On the other hand, as a part of
155 the second binding site, Gly⁷³ and Arg⁷⁴ in C5a form extensive interactions with Val287^{7.38} and
156 Tyr259^{6.51}, Gly263^{6.55} and Ile266^{6.58}, respectively, in TM6 of the receptor (Figure 3D-E).

157 In the C5a^{pep}-C5aR1-Go structure, we observe that C5a^{pep} adopts a peg-like
158 conformation and positions itself into the orthosteric pocket with an interface that is analogous to
159 the carboxyl-terminus of C5a (Figure 4B). Interestingly, the N-methyl-phenylalanine residue of
160 C5a^{pep} is located in close vicinity of ECL2 and forms an anion-π interaction with Glu176 and
161 non-bonded contact with Tyr178 in the ECL2 of the receptor (Figure 4A, C). In addition, Pro³ of
162 C5a^{pep} makes a contact with Glu280^{7.32} in the receptor through the main chain oxygen atom,
163 while Cha⁵ of C5a^{pep} forms hydrogen bonds with Arg175^{ECL2} in the receptor (Figure 4C). Finally,
164 d-Arg⁶ in C5a^{pep} makes substantial interactions with the residues in TM2, TM3 and TM7 of the
165 receptor (Figure 4C). Interestingly, d-Cha⁴ in C5a^{pep} does not appear to be involved in any major
166 interaction with the receptor. These extensive interactions help stabilize C5a^{pep} in the receptor's
167 orthosteric pocket, and a comprehensive map of interactions between C5a/C5a^{pep} and C5aR1
168 are listed in Figure S9.

169 A direct comparison of the second C5a binding site on C5aR1 with that of C5a^{pep} binding
170 site reveals that their engagement with Leu92^{2.60}, Arg175^{ECL2} and Glu176^{ECL2}, and Val287^{7.38} are
171 common (Figure 5A-B). However, there are substantial differences in the binding modes of the
172 two ligands and the receptor residues engaged by them (Figure 5C). The carboxyl-terminus of
173 C5a adopts a hook-like conformation and penetrates deeper into the orthosteric pocket as
174 compared to C5a^{pep} (Figure 5A). Leu⁷² in C5a engages with Thr95^{2.63} and Asn100^{ECL1} of C5aR1
175 while Gln⁷¹ in C5a contacts Pro113^{3.29} of C5aR1. Furthermore, Gly⁷³ in C5a interacts with
176 Met120^{3.36} of the receptor through its main chain oxygen (Figure 5C). Additionally, upon binding
177 of C5a, Glu176 in ECL2 of C5aR1 forms hydrogen bonds with Ser⁶⁶ and His⁶⁷ in the extended
178 carboxyl-terminus of C5a, and these potentially serve to bridge the ECL2 of the receptor with
179 the C-terminus of the natural agonist, together with the additional contacts mentioned above. In
180 contrast, although the main chain oxygen of d-Cha⁴ and Cha⁵ in C5a^{pep} interact with Tyr178^{ECL2}
181 and Arg175^{ECL2} of the receptor, respectively, the rest of the contacts with ECL2 are absent
182 (Figure 5B-C). Instead, C5a^{pep} engages Ile116^{3.32}, Leu117^{3.33}, Tyr178^{ECL2}, Glu280^{7.31} and
183 Asn283^{7.34}, which are absent in the case of C5a (Figure 5C). Finally, Arg⁷⁴ in C5a engages with
184 Gly263^{6.55} and Ile266^{6.58} in C5aR1 through hydrophobic interactions, and it also makes ionic
185 contact with Tyr259^{6.51}. In contrast to this, d-Arg⁶ in C5a^{pep} is positioned upwards compared to
186 Arg⁷⁴ in C5a, and therefore, interacts instead with Ile116^{3.32} and Leu117^{3.33} of the receptor
187 (Figure 5C and S10A).

188 It is conceivable that the lack of first binding site in case of C5a^{pep} would impart lower
189 binding affinity to the receptor compared to C5a as proposed based on the two-site binding
190 mechanism¹³. However, it is also possible that the differences observed in the second binding
191 site for these two ligands may also be responsible, at least partly, for the differences in their
192 binding affinities to the receptor. More importantly, these distinct set of interactions formed by
193 C5a vs. C5a^{pep} with the receptor are likely to be the primary determinants for the difference in

194 their transducer-coupling efficacy, especially $\beta\alpha$ recruitment, and the resulting G-protein-bias
195 of C5a^{pep} (Figure 5D-E) although future studies are required to explore it further.

196 Interestingly, previous studies have suggested that the removal of terminal arginine
197 (Arg⁷⁴) in C5a *in-vivo* by the action of a carboxypeptidase yields C5a^{des-Arg}, and it displays
198 significantly reduced binding affinity and potency at C5aR1 when tested using recombinant
199 ligand^{10,16,25,26}. The extensive interaction of Arg⁷⁴ in C5a with multiple residues in C5aR1 such as
200 Tyr259^{6,51}, Gly263^{6,55}, Ile266^{6,58} and Val287^{7,38}, which are critical for stabilizing carboxyl-terminal
201 conformation of C5a in the orthosteric pocket, and will be absent in case of C5a^{des-Arg}, may help
202 rationalize its lower potency at the receptor (Figure S10B).

203 **Structural insights into species-specific differences in agonist pharmacology**

204 As presented in Figure 1, we observed only a small difference between the human and mouse
205 C5aR1 for C5a-induced G-protein-coupling as measured using GloSensor assay, whereas $\beta\alpha$ recruitment
206 interaction and trafficking were essentially identical. On the other hand, $\beta\alpha$ recruitment and
207 trafficking were dramatically different between the human and mouse receptors upon C5a^{pep}
208 stimulation. Sequence analysis of the human and mouse C5aR1 in terms of C5a- and C5a^{pep}-
209 interacting residues provides the potential structural basis for this observation (Figure S11).
210 While there are differences between C5a-interacting residues between the human and mouse
211 receptor, especially in the second binding site, they appear to be rather modest. On the other
212 hand, the differences are more pronounced in case of C5a^{pep} (Figure 6A and S12A). For
213 example, Thr95^{2,63}, Asn100^{ECL1}, Glu176^{ECL2} and Phe181^{ECL2}, and Ile266^{6,58} in mouse C5aR1 are
214 substituted with Ser95^{2,63}, His100^{ECL1}, Val176^{ECL2} and Tyr181^{ECL2}, and Met265^{6,58}, respectively,
215 in human C5aR1. Glu176^{ECL2} in the ECL2 of mouse C5aR1 forms hydrogen bonds with Ser⁶⁶
216 and His⁶⁷ of C5a, thereby rigidifying the conformation of C5a within the extracellular binding
217 pocket of C5aR1. Substitution of Glu176^{ECL2} in mouse C5aR1 with Val would result in disruption

218 of these hydrogen bonds and thereby, facilitate formation of weak hydrophobic interactions
219 between Val and its neighboring residues, increasing the flexibility of the bound ligand. Similarly,
220 substitution of Phe181^{ECL2} and Ile266^{6.58} in mouse C5aR1 with Tyr and Met respectively would
221 facilitate formation of polar interactions and hydrogen bond of these residues with their
222 surrounding environment. These substitutions in C5aR1 might provide a plausible explanation
223 for the small difference observed in the GloSensor assay. On the other hand, C5a^{pep}-interacting
224 residues Tyr178^{ECL2}, and Glu280^{7.31} and Asn283^{7.34} in mouse C5aR1 are substituted with
225 Arg178^{ECL2}, Lys279^{7.31} and Asp282^{7.34}, respectively, in human C5aR1 (Figure 6B and S12B). In
226 the structure, Tyr178^{ECL2} interacts with NME-Phe¹, d-Cha⁴ and Cha⁵, and substitution of Tyr with
227 Arg would reverse the polarity in these positions. Likewise, substitution of Glu280^{7.31} and
228 Asn283^{7.34} in mouse C5aR1 with Lys and Asp respectively would alter the individual polarity
229 patterns and possibly allow differential interactions in these sites. These alterations between the
230 amino acid sequence of mouse and human C5aR1 might account for the difference observed in
231 βarr recruitment and trafficking between the human and mouse receptors upon C5a^{pep}
232 stimulation. In fact, Tyr178Arg mutation in mouse C5aR1 enhances the potency and efficacy of
233 C5a^{pep} in βarr1 trafficking, which supports the structural interpretation as outlined above (Figure
234 6C). While additional studies are required to link this primary sequence difference with the
235 observed responses in the functional assays, it provides a plausible structural explanation for
236 species-specific differences in ligand potency for C5aR1 ligands as reported previously²⁷.

237 **Structural insights into competitive antagonism of PMX53**

238 Finally, these structures also provide interesting clues about the competitive antagonistic
239 behavior of some peptide fragments, PMX53 in particular, designed and modified based on the
240 carboxyl-terminus of C5a²⁸⁻³⁰. The overall binding pocket of PMX53 observed in previously
241 determined crystal structure is analogous to that of C5a^{pep} and the extended carboxyl-terminus
242 of C5a (Figure 7A-B). The comparison of PMX53 binding with that of C5a^{pep} and the carboxyl-

243 terminus of C5a reveals common interactions with Arg175 in ECL2, Leu92 in TM2, Glu176 in
244 ECL2 and Val287 in TM7 of the receptor (Figure 7C). These interactions may explain the
245 competitive binding mode of PMX53 with C5a and C5a^{pep}. On the other hand, PMX53 also
246 makes several critical contacts with C5aR1 that are absent in the C5a/C5a^{pep} bound C5aR1
247 structures (Figure S13). For example, previous studies have proposed that Ile116^{3.32} and
248 Val286^{7.38} (Val287^{7.38} in case of mouse C5aR1) form an “activation switch” in C5aR1³¹, and
249 mutating these residues completely abolishes C5a receptor activity³². In our structure, C5a^{pep}
250 makes extensive contacts with both Ile116^{3.32} and Val287^{7.38}, which further stabilizes the
251 conformation of the peptide within the ligand binding pocket of the receptor. In contrast,
252 although PMX53 makes similar contacts, it also engages several extra residues on C5aR1, that
253 are not observed in C5a/C5a^{pep} bound structures (Figure S13). The bulky nature of Trp at
254 position 5 of the cyclic hexapeptide possibly restricts adequate movement of I116^{3.32}, thereby
255 locking the inactive state and hindering receptor activation (Figure S13). Moreover, the cyclic
256 nature of PMX53 blocks the C-terminal carboxylate which has been proposed to help induce
257 agonist activity of the peptide (Figure 7D). Interestingly, it has been observed that mutating the
258 fifth residue in C5a^{pep} to tryptophan converts it into an antagonist and substituting I116^{3.32} of
259 C5aR1 with Ala rescues this antagonism^{21,33}. Moreover, the conformation of PMX53 is stabilized
260 by a network of hydrogen bonds formed between the residues of PMX53 with Pro113^{3.29},
261 R175^{ECL2}, Cys188^{ECL2}, V190^{ECL2}, Tyr258^{6.51}, Thr261^{6.54} and Asp282^{7.34} of C5aR1 (Figure 7E),
262 suggesting a rigid binding mode of PMX53 within the extracellular binding pocket of C5aR1, in
263 turn stabilizing the receptor in inactive conformation. Taken together, these structural insights
264 help rationalize the antagonistic nature of PMX53 despite sharing an overall similar binding
265 pocket on the receptor as C5a/C5a^{pep}.

266 **Interaction of C5aR1 with G-proteins**

267 The overall interface between C5aR1 and G-protein heterotrimer displays an approximate
268 buried surface area of 1,880 Å² and 1,720 Å² in C5a-C5aR1-Go and C5a^{pep}-C5aR1-Go
269 structures, respectively, with Gao constituting the primary interface (Figure 8A-B). Expectedly,
270 the distal end of the α 5-helix of Gao inserts into the cytoplasmic side of the receptor
271 transmembrane core as observed for other GPCR-G-protein complexes including a close
272 phylogenetic neighbor of C5aR1, the Formyl Peptide receptor subtype 2 (FPR2)³⁴⁻³⁶ (Figure 8C-
273 E). On the receptor side, the major interface is formed by the cytoplasmic ends of TM2, TM3,
274 TM6, TM7, ICL2 and ICL3, and is essentially identical between C5a and C5a^{pep}-bound
275 structures (Figure S14). The overall interaction between the receptor and Gao is stabilized by
276 multiple hydrogen bonds, polar contacts, and hydrophobic interactions, which are listed in
277 Figure S14. Some of the critical interactions include hydrogen bonding between Asn³⁴⁷, Asp³⁴¹
278 and Tyr³⁵⁴ of the α 5 helix in Gao with Arg148^{ICL2}, Arg233^{5.68} and Ser238^{ICL3} of C5aR1,
279 respectively (Figure 8C-D and S14). Interestingly, the residues ranging from Trp143 to Lys146
280 in the ICL2 of the receptor adopt a short α -helical turn that is positioned into the hydrophobic
281 groove formed by the α 5, α N, β 1 and β 3 strands of Gao. Specifically, Ile142 in the ICL2 of
282 C5aR1 interacts with Asn¹⁹⁴ and Leu¹⁹⁵ of the β 2- β 3 loop of Gao, while Gln145 and Lys146 of
283 ICL2 engage with Lys³² in the α N helix- β 1 loop of Gao. In addition, the receptor-G-protein
284 engagement is facilitated further by the interaction of ICL3 residues such as Thr236, Arg237
285 and Ser238 with Tyr³⁵⁴ in the α 5 helix of Gao (Figure S14).

286 **Agonist-induced activation of C5aR1**

287 In order to identify the conformational changes associated with C5aR1 activation, we compared
288 these structures with previously determined crystal structures of C5aR1 in antagonist-bound
289 state (Figure 9A)^{31,37}. As expected, C5aR1 exhibits the major hallmarks of GPCR activation
290 including a large outward movement of TM6 by about 8 Å (as measured from C α of Ser238^{6.30}),
291 and an inward movement of TM7 by about 6 Å (as measured from C α of Gly305^{7.57}) (Figure 9B-
292

292 C). In the inactive state structure of C5aR1, helix 8 exhibits an inverted orientation and it is
293 sandwiched between TM1 and TM7, however, upon activation, it undergoes almost a 180°
294 rotation (Figure 9B-C). Considering the G-protein interaction interface, this significant rotation
295 and repositioning of helix 8 would be deemed essential to facilitate G-protein-coupling to the
296 receptor. Taken together, these interactions promote the opening of a cavity towards the
297 cytoplasmic face of the receptor, capable of accommodating the signal-transducers such as G-
298 protein and the core interaction with β arrs (Figure 9D). In addition, a triad of conserved residues
299 Ile^{3.40}-Pro^{5.50}-F^{6.44} was observed to form a hydrophobic interaction network which stabilized the
300 inactive conformation of C5aR1 in the antagonist-bound state by preventing the movement of
301 TM5 and TM6^{31,37} (Figure 9E-F). We observe rotameric shifts for these residues resulting in the
302 opening of this hydrophobic triad and allowing the interaction with the α 5 helix of Gao (Figure
303 9E-F). Interestingly, C5aR1 harbors a slight variation of the highly conserved D^{3.49}-R^{3.50}-Y^{3.51}
304 motif where Y^{3.51} is substituted with F^{3.51}, and we observe a significant conformation change in
305 this region upon receptor activation. In particular, the ionic interactions between D^{3.49} and R^{3.50},
306 and R^{3.50} and S^{6.31} are disrupted upon receptor activation (Figure 9E-F). Finally, the other
307 activation microswitches³⁸ in C5aR1 such as the NPxxY, C(F)WxP and PIF motif also display
308 noticeable conformational changes upon activation as observed in other GPCR-G-protein
309 structures (Figure 9E-F). Although we have used C5a^{pep}-C5aR1-Go structure for interpretation
310 of activation-induced conformational changes considering the higher resolution; we note that
311 these conformational changes are similar in the C5a-C5aR1-Go structure as well.

312 **Concluding remarks**

313 Our study provides the structural details of molecular interactions that are responsible for the
314 conformational changes in C5aR1 upon activation, and the interface with G-proteins. These
315 structural templates also provide a starting point for rational site-directed mutagenesis of the
316 receptor to identify structural determinants of ligand bias, and potentially novel biased ligands as

317 well. It is important to note that C5aR1 also exhibits moderate but significant secondary coupling
318 to G α q and G α 16 sub-types of G-proteins^{9,39}, and additional structural snapshots in future
319 studies may shed light on G-protein sub-type selectivity. Finally, structure determination of
320 C5aR1 in complex with β bars in subsequent studies should also facilitate a comprehensive
321 understanding of receptor-transducer coupling and mechanisms that control receptor
322 downregulation.

323 **Data availability statement**

324 Any additional information required to reanalyze the data reported in this paper is available from
325 the corresponding author upon reasonable request.

326 **Acknowledgements**

327 This work is supported primarily by an extramural grant from the Department of Biotechnology
328 (DBT) (BT/PR29041/BRB/10/1697/2018) sanctioned under the Membrane Protein Structural
329 Biology initiative, and National Bioscience Award (BT/HRD/NBA/39/06/2018-19). In addition, the
330 research in A.K.S.'s laboratory is supported by the Senior Fellowship of the DBT Wellcome
331 Trust India Alliance (IA/S/20/1/504916) awarded to A.K.S., Science and Engineering Research
332 Board (EMR/2017/003804, SPR/2020/000408, and IPA/2020/000405), Council of Scientific and
333 Industrial Research [37(1730)/19/EMR-II], Indian Council of Medical research
334 (F.NO.52/15/2020/BIO/BMS), Young Scientist Award from Lady Tata Memorial Trust, and IIT
335 Kanpur. A.K.S. is EMBO Young Investigator. SS is supported by the Prime Minister's Research
336 Fellowship. We also thank Mithu Baidya for construct design of mC5aR1, Minakshi Baruah for
337 initial purification ScFv16, and Ashutosh Ranjan for assistance in purification of C5a. Cryo-EM
338 was performed at BioEM lab of the Biozentrum at the University of Basel, and we thank Carola
339 Alampi and David Kalbermatter for their excellent technical assistance.

340

341 **Authors' contribution**

342 SS and MKY expressed and purified C5aR1, and reconstituted the complex with G-proteins for
343 negative-staining and cryo-EM; SS carried out the functional assays with help from PS; JM and
344 RB carried out negative-staining analysis and analyzed the cryo-EM data; VS, SM, SuM
345 contributed in purification of ScFv16 and C5a; CS and SaS contributed in purification of G-
346 proteins; MC collected cryo-EM data; JM prepared the figures together with SS, RB, MKY and
347 MG; AKS supervised and managed the overall project; all authors contributed to data analysis,
348 interpretation and manuscript writing.

349 **Conflict of interest**

350 The authors declare that they have no competing financial interests.

351 **Accession number**

352 The cryo-EM maps and structures have been deposited in the EMDB and PDB with accession
353 numbers EMD-34943 and PDB ID: 8HPT (C5a^{pep}-C5aR1-Go), and EMD-34947 and PDB ID:
354 8HQC (C5a-C5aR1-Go) respectively.

355 **Materials and Methods**

356 **General reagents, plasmids, and cell culture**

357 Most of the general reagents were purchased from Sigma Aldrich unless otherwise mentioned.
358 Dulbecco's Modified Eagle's Medium (DMEM), Phosphate Buffer Saline (PBS), Trypsin-EDTA,
359 Fetal-Bovine Serum (FBS), Hank's Balanced Salt Solution (HBSS), and Penicillin-Streptomycin
360 solution were purchased from Thermo Fisher Scientific. HEK293T cells (ATCC) were
361 maintained in DMEM (Gibco, Cat. no: 12800-017) supplemented with 10% (v/v) FBS (Gibco,
362 Cat. no: 10270-106) and 100U ml⁻¹ penicillin and 100μg ml⁻¹ streptomycin (Gibco, Cat. no:

363 15140122) at 37°C under 5% CO₂. Sf9 cells were obtained from Expression Systems and
364 maintained in protein-free cell culture media purchased from Expression Systems (Cat. no: 96-
365 001-01) at 27°C with 135 rpm shaking. The cDNA coding region of mC5aR1 was cloned in
366 pcDNA3.1 vector with an N-terminal FLAG tag and in pVL1393 vector with an N-terminal FLAG
367 tag followed by the N-terminal region of M4 receptor (residues 2-23). Constructs used for
368 various NanoBiT assays were previously described⁴⁰. All DNA constructs were verified by
369 sequencing from Macrogen. Recombinant human C5a was purified from *E. coli* as previously
370 described^{11,12}. C5a^{pep} was synthesized from GenScript and its details are as previously
371 described¹¹. C5aR1 mutant was generated using NEB Q5 Site-Directed Mutagenesis Kit (NEB,
372 Cat. no: E0554S).

373 **GloSensor-based cAMP assay**

374 Ligand-induced Gai-mediated inhibition of cAMP was measured using the GloSensor Assay, as
375 previously described²². Briefly, HEK293T cells were co-transfected with FLAG-tagged receptor
376 (3.5μg) and luciferase-based 22F cAMP biosensor construct (3.5μg) (Promega, Cat. no: E2301)
377 using polyethyleneimine (PEI) (Polysciences, Cat. no: 19850) at a ratio of 3:1 (PEI:DNA 3:1).
378 14-16h after transfection, the cells were detached by trypsinization, resuspended in the assay
379 buffer (20mM HEPES pH 7.4 and 1X HBSS) containing 0.5mg ml⁻¹ of D-luciferin (GoldBio, Cat.
380 no: LUCNA-1G) and seeded in 96-well white plates (SPL Life Sciences) at a density of 125,000
381 cells per well. The plates were then incubated for 1.5h at 37°C followed by an additional 30min
382 at room temperature after which basal luminescence was measured. Since we were measuring
383 Gai activity, the cells were first treated with 5μM forskolin and luminescence was recorded using
384 a microplate reader (FLUOStar Omega, BMG Labtech) till the readings stabilized (5-10 cycles)
385 and then ligand was added at the indicated final concentration. Change in luminescence signal
386 was recorded for 30 cycles. Data were normalized by treating luminescence observed at lowest

387 concentration of agonist as 100%; plotting and analysis was performed using nonlinear
388 regression in GraphPad Prism 9 software.

389 **NanoBiT-based βarr recruitment assay**

390 Recruitment of βarrs to the receptor in response to agonist treatment was measured using the
391 NanoBiT assay, as previously described. Briefly, HEK293T cells were co-transfected with either
392 2.5μg of C-terminally SmBiT-tagged mC5aR1 or 3.5μg of C-terminally SmBiT-tagged hC5aR1,
393 and 3.5μg of βarr1/2 containing an LgBiT tag on their N-terminal end. 14-16h post-transfection,
394 cells were harvested by trypsinization, resuspended in the assay buffer (5mM HEPES pH 7.4,
395 1X HBSS and 0.01% w/v BSA) containing 10μM of coelenterazine (GoldBio, Cat. no: CZ05) and
396 seeded in 96-well white plates (SPL Life Sciences) at a density of 125,000 cells per well. After
397 1.5h of incubation at 37°C and 30min at room temperature, basal luminescence was recorded
398 using a microplate reader (FLUOStar Omega, BMG Labtech). This was followed by addition of
399 ligand at indicated final concentration and measurement of changes in signal for 20 cycles.
400 Average data from 5 cycles was used for analysis. Data was normalized by calculating the fold
401 increase in luminescence with respect to the signal observed at lowest concentration; plotting
402 and analysis was performed using nonlinear regression in GraphPad Prism 9 software.

403 **Agonist-induced endosomal trafficking of βarrs**

404 Agonist-induced endosomal trafficking of βarrs was measured as a surrogate for measuring
405 receptor endocytosis. Briefly, HEK293T cells were co-transfected with 3μg of either mC5aR1 or
406 hC5aR1, 2μg of βarr1/2 harboring an N-terminal SmBiT tag and 5μg of LgBiT-FYVE. For
407 measuring βarr trafficking downstream of C5aR1^{Tyr178Arg} mutant, the following amounts of
408 receptor DNA were used for transfection: 3μg of C5aR1^{WT} and 2μg of C5aR1^{Tyr178Arg}. The rest of
409 the protocol followed was same as described for measuring βarr recruitment, and data were
410 normalized as mentioned above.

411 **Surface expression assay**

412 Receptor surface expression was measured by performing whole-cell ELISA, as previously
413 described⁴¹. Briefly, HEK293T cells transfected with the FLAG-tagged receptor of interest were
414 seeded into 24-well plates (pre-coated with 0.01% poly-D-Lysine) at a density of 0.1 million cells
415 per well, 24h after transfection. The next day, media was removed from the wells and the cells
416 were washed once with ice-cold 1XTBS, followed by fixation with 4% (w/v) paraformaldehyde
417 (prepared in 1XTBS) for 20min. The cells were then washed with 1XTBS extensively and
418 blocking of non-specific sites was performed for 1.5h at room temperature by incubating with
419 1% BSA (w/v) prepared in 1XTBS. This was followed by incubation with anti-FLAG M2-HRP
420 antibody (Sigma, Cat no. A8592) at a dilution of 1:5000 prepared in 1% BSA for another 1.5h.
421 Excess unbound antibody was removed by washing the cells three times with 1% BSA. Cells
422 were then incubated with 200µl of TMB (Thermo Scientific, Cat. no: 34028) substrate till a light
423 blue color appeared and the reaction was stopped by pipetting 100µl of this colored solution to a
424 96-well plate already containing 100µl of 1M H₂SO₄. Absorbance was measured at 450nm in a
425 multi-mode plate reader (Victor X4, Perkin Elmer). The remaining solution was removed from
426 the wells and the cells were washed once with 1XTBS followed by incubation with 200µL of
427 0.2% (w/v) Janus green B (Sigma, Cat. no. 201677), a mitochondrial stain, for 20min. Cells
428 were then washed extensively with deionized water to remove excess stain. 800µl of 0.5N HCl
429 was added to each well to elute bound stain. 200µl of this solution was then transferred to a 96-
430 well plate and absorbance was measured at 595nm. Data were normalized by calculating the
431 ratio of A450 to A595.

432 **Expression and purification of C5a and C5aR1**

433 Gene encoding C5a was cloned in pET-32a(+) vector with a Trx-6X-His tag at the N-terminal
434 end and purified following previously described protocol with slight modification^{11,12}. After Ni-

435 NTA purification, we directly proceeded to TEV cleavage followed by cation-exchange
436 chromatography. Codon-optimized mC5aR1 was expressed in *Spodoptera frugiperda* (*Sf9*) cells
437 using baculovirus expression system with an N-terminal FLAG tag to facilitate purification. The
438 receptor was purified as described previously⁹. Briefly, 72h post-infection, insect cells were
439 harvested and lysed by sequentially douncing in low salt buffer (20mM HEPES pH 7.4, 10mM
440 MgCl₂, 20mM KCl, 1mM PMSF, and 2mM Benzamidine), high salt buffer (20mM HEPES pH 7.4,
441 1M NaCl, 10mM MgCl₂, 20mM KCl, 1mM PMSF, and 2mM Benzamidine), and lysis buffer
442 (20mM HEPES pH 7.4, 450mM NaCl, 2mM CaCl₂, 1mM PMSF, 2mM Benzamidine and 2mM
443 Iodoacetamide). After lysis, receptor was solubilized in 0.5% L-MNG (Anatrace, Cat. no:
444 NG310) and 0.1% cholesteryl hemisuccinate (Sigma, Cat. no: C6512) for 2h at 4°C, under
445 constant stirring. Post-solubilization, salt concentration was lowered to 150mM, and the receptor
446 was purified on M1-FLAG column. After binding, FLAG beads were washed alternately with
447 three washes of low salt buffer (20mM HEPES pH 7.4, 2mM CaCl₂, 0.01% CHS, 0.01% L-MNG)
448 and two washes of high salt buffer (20mM HEPES pH 7.4, 450mM NaCl, 2mM CaCl₂, 0.01% L-
449 MNG) to remove non-specific proteins. The bound receptor was eluted with FLAG elution buffer
450 (20mM HEPES pH 7.4, 150mM NaCl, 0.01% MNG, 2mM EDTA, and 250µg ml⁻¹ FLAG peptide)
451 and alkylated with iodoacetamide to prevent aggregation. The purified receptor was
452 concentrated using a 30kDa MWCO concentrator and stored at -80°C in 10% glycerol till further
453 use. 100nM of hC5a or 1µM of C5a^{pep} were kept in all steps of receptor purification.

454 **Expression and purification of G-proteins**

455 Gene for miniGao1 subunit was cloned in pET-15b(+) vector with an in-frame 6X-His tag at the
456 N-terminal end and expressed in *E. coli* BL21 (DE3) cells^{42,43}. A starter culture supplemented
457 with 0.2% glucose was grown in LB media at 37°C for 6-8h at 220 rpm, followed by overnight
458 primary culturing at 30°C with 0.2% glucose supplementation. 15ml primary culture was
459 inoculated in 1.5L TB (Terrific Broth) media and induced with 50µM IPTG at an O.D₆₀₀ of 0.8

460 and cultured at 25°C for 18-20h. Cells were lysed in lysis buffer (40mM HEPES pH 7.4, 100mM
461 NaCl, 10mM Imidazole, 10% Glycerol, 5mM MgCl₂, 1mM PMSF, 2mM Benzamidine) in the
462 presence of 1 mg ml⁻¹ lysozyme, 50μM GDP and 100μM DTT. Cell debris was pelleted down by
463 centrifuging at 18000 rpm for 30 mins at 4°C. Protein was enriched on Ni-NTA bead and after
464 washing extensively with wash buffer (20mM HEPES pH 7.4, 500mM NaCl, 40mM Imidazole,
465 10% Glycerol, 50μM GDP and 1mM MgCl₂), eluted with elution buffer (20mM HEPES pH 7.4,
466 100mM NaCl, 10% Glycerol, 500mM Imidazole). Eluted protein was pooled and stored at -80°C
467 in 10% glycerol till further use.

468 The gene encoding the G β 1 subunit with an in-frame C-terminal 6X-His tag and G γ 2
469 subunit was expressed in *Sf9* cells using the baculovirus expression system. Post 72h of
470 infection, cells were harvested and resuspended in lysis buffer (20mM Tris-Cl pH 8.0, 150mM
471 NaCl, 10% Glycerol, 1mM PMSF, 2mM Benzamidine, 1mM MgCl₂). Cells were lysed by
472 douncing and centrifuged at 18000 rpm for 40 mins at 4°C. Pellet was resuspended and
473 dounced in solubilization buffer (20mM Tris-Cl pH 8.0, 150mM NaCl, 10% Glycerol, 1% DDM,
474 5mM β -ME, 10mM Imidazole, 1mM PMSF and 2mM Benzamidine) and solubilized at 4°C under
475 constant stirring for 2h. Cell debris was pelleted down by centrifuging at 20000 rpm for 60min at
476 4°C. Protein was enriched on Ni-NTA resin, and after extensive washing with wash buffer
477 (20mM Tris-Cl pH 8.0, 150mM NaCl, 30mM Imidazole, 0.02% DDM), the protein was eluted with
478 elution buffer (20mM Tris-Cl pH 8.0, 150mM NaCl, 300mM Imidazole, 0.01% MNG). Eluted
479 protein was concentrated with a 10kDa MWCO concentrator (Cytiva, Cat. no: GE28-9322-96)
480 and stored at -80°C with 10% glycerol.

481 **Expression and purification of ScFv16**

482 Gene encoding ScFv16⁴⁴ was cloned in pET-42a(+) vector with an in-frame N-terminal 10X-His-
483 MBP tag followed by a TEV cleavage site and expressed in *E. coli* Rosetta (DE3) strain⁴⁵.

484 Overnight primary culture was sub-cultured in 1L 2XYT media supplemented with 0.5% glucose
485 and 5mM MgSO₄. At O.D₆₀₀ 0.6, culture was induced with 250µM IPTG for 16-18h at 18°C.
486 Cells were resuspended in 20mM HEPES pH 7.4, 200mM NaCl, 10mM Imidazole, 2mM
487 Benzamidine, 1mM PMSF and incubated at 4°C for 1h with constant stirring. Cells were
488 disrupted by ultrasonication, and cell debris was removed by centrifugation at 18000 rpm for
489 40min at 4°C. Protein was enriched on Ni-NTA resins and nonspecifically bound proteins were
490 removed by extensive washing (20mM HEPES pH 7.4, 200mM NaCl, 10mM Imidazole). Bound
491 protein was eluted in elution buffer (20mM HEPES pH 7.4, 200mM NaCl, 300mM Imidazole).
492 Subsequently, Ni-NTA elute was enriched on amylose resin (NEB, Cat. no: E8021L), and
493 washed with buffer (20mM HEPES pH 7.4, 200mM NaCl) to remove nonspecific proteins.
494 Protein was eluted with 10mM maltose (prepared in 20mM HEPES pH 7.4, 200mM NaCl), and
495 the His-MBP tag was removed by overnight treatment with TEV protease. Tag-free ScFv16 was
496 recovered by passing TEV-cleaved protein through Ni-NTA resin. Eluted protein was
497 concentrated and cleaned by size exclusion chromatography on Hi-Load Superdex 200
498 preparative grade 16/600 column (Cytiva Life sciences, Cat. no: 17517501). Purified protein
499 was flash frozen and stored at -80°C with 10% glycerol.

500 **Reconstitution of the C5a/C5a^{pep}-C5aR1-Gαoβ1γ2-ScFv16 complexes**

501 Purified mC5aR1 was incubated with 1.2 molar excess of Gαo1, Gβ1γ2, and ScFv16 at room
502 temperature for 2h in the presence of 25mU ml⁻¹ apyrase (NEB, Cat. no: M0398L) and either
503 hC5a or C5a^{pep} for complex formation. The G-protein complex was separated from unbound
504 components by loading on Superose 6 increase 10/300 GL SEC column and analyzed on SDS
505 page. Complex fractions were pooled and concentrated to ~10mg ml⁻¹ using a 100MWCO
506 concentrator (Cytiva, Cat. no: GE28-9323-19) and stored at -80°C until further use.

507 **Negative stain electron microscopy and data processing of C5a-C5aR1-Go and C5a^{pep}-
508 C5aR1-Go complexes**

509 Negative staining of C5a-C5aR1-Go and C5a^{pep}-C5aR1-Go samples were performed with
510 uranyl formate stain to verify complex formation and homogeneity in accordance with a
511 previously published protocol⁹. Complexes were diluted to 0.02 mg ml⁻¹, immediately dispensed
512 on glow discharged carbon/formvar coated 300 mesh Cu grids (PELCO, *Ted Pella*) and blotted
513 off after incubation for 1min using a filter paper. Negative staining was done by touching the grid
514 on a first drop of freshly prepared 0.75% (w/v) uranyl formate solution and blotted off using a
515 filter paper. This was followed by incubating the grid on a second drop of stain for 30s and
516 allowed to air dry before placing it on a TEM specimen grid holder. Imaging and data collection
517 was performed at 30,000x magnification with a FEI Tecnai G2 12 Twin TEM (LaB6) operating at
518 120kV and equipped with a Gatan CCD camera (4k x 4k). Data processing of the collected
519 micrographs was performed with Relion 3.1.2⁴⁶. More than 10,000 particles were autopicked,
520 extracted with a box size of 280 px and subjected to reference free 2D classification to obtain
521 the 2D class averages.

522 **Cryo-EM sample preparation and data acquisition**

523 3µl of the purified complexes of C5a^{pep}-C5aR1-Go or C5a-C5aR1-Go were applied onto glow
524 discharged Quantifoil holey carbon grids (Au, R2/1 M300) and vitrified using a Vitrobot Mark IV
525 (Thermo Fisher Scientific, USA) operating at 10°C and maintained at 90% humidity. Data
526 collection was performed with a Titan Krios electron microscope (Thermofisher Scientific, USA)
527 operating at 300kV equipped with Gatan Energy Filter. Movies were recorded in counting mode
528 with a Gatan K2 Summit direct electron detector DED (Gatan, USA) using the automated
529 SerialEM software at a nominal magnification of 165 000x and a pixel size of 0.82Å at the
530 specimen level. 24,711 movie stacks for C5a^{pep}-C5aR1-Go and 22,014 movie stacks for C5a-

531 C5aR1-Go consisting of 40 frames were collected with a defocus value in the range of 0.5 to
532 2.5 μ m with a total accumulated dose of 42 e $^-$ /A 2 and total exposure time of 4s.

533 **Cryo-EM data processing**

534 The flowchart for processing the vitrified C5a^{pep}-C5aR1-Go and C5a-C5aR1-Go complexes are
535 shown in Figures S3 and S4. All data processing steps were performed with cryoSPARC version
536 3.3.2 or version 4²⁴. Briefly, 24,711 movies of C5a^{pep}-C5aR1-Go were imported and subjected to
537 Patch motion correction (multi) followed by CTF estimation with Patch CTF estimation (multi).
538 23,723 motion corrected micrographs with CTF fit resolution better than 6 \AA were selected for
539 further processing. 1,886,363 particles were autopicked with the blob-picker sub-program within
540 the cryoSPARC suite, extracted with a box size of 360 px and fourier cropped to 64 px (pixel
541 size of 4.61) for reference free 2D classification. Several rounds of iterative 2D classification
542 yielded class averages representing different orientations of the complex. A subset of 835,654
543 clean particles from the 2D classification were re-extracted with a box size of 360 px and fourier
544 cropped to 256 px (pixel size of 1.15). This was followed by Ab-initio reconstruction and
545 heterogenous refinement with C1 symmetry yielding 3 models. 380,463 particles corresponding
546 to the class with clear complex conformation were re-extracted with full box size of 416 px,
547 fourier cropped to 360 px and subjected to non-uniform refinement followed by local refinement
548 with mask on the complex excluding the micelle. This led to a reconstruction at 3.45 \AA (voxel
549 size of 0.9476) as determined by gold standard Fourier Shell Correlation (FSC) using the 0.143
550 criterion. Blocres sub-program within cryoSPARC version 3.3.2 was used to estimate local
551 resolution of all reconstructions.

552 For the C5a-C5aR1-Go dataset, 22,014 movies were imported and subjected to Patch
553 motion correction (multi). CTF estimation was performed on the motion corrected micrographs
554 and 21,449 micrographs with CTF fit resolution better than 6 \AA were selected for downstream

555 processing. Automated particle picking with blob-picker resulted in 2,601,754 particles which
556 were extracted with a box size of 360 px and fourier cropped to box size of 64 (pixel size of
557 4.61). These particles were then subjected to several rounds of 2D classification and class
558 averages with clear conformations of the complex were selected and extracted with a box size
559 of 360px and fourier cropped to 256 px (pixel size of 1.15). These clean set of particles were
560 subjected to Ab-initio reconstruction and heterogeneous refinement yielding 3 models. 173,416
561 particles corresponding to the 3D class with evident secondary features were re-extracted with
562 full box size of 416px and fourier cropped to 360px. This was followed by non-uniform
563 refinement and local refinement with mask on the complex resulting in a final map at 3.89Å
564 resolution (voxel size of 0.9476) according to the gold standard Fourier shell correlation (FSC)
565 criterion of 0.143. All maps were sharpened with “Autosharpen” sub-program within the Phenix
566 suite⁴⁷ for better visualization and model building.

567 **Model building and refinement**

568 The receptor coordinates from the cryo-EM structure of human formyl peptide receptor 2 (PDB
569 ID: 7WVV) and the coordinates for the Gα, Gβ1, Gγ2 from the cryo-EM structure of Muscarinic
570 acetylcholine receptor 2-Go complex (PDB ID: 6OIK) were used as an initial model to dock into
571 the EM density of C5a^{pep}-C5aR1-Go complex using Chimera⁴⁸. This was followed by manual
572 rebuilding of the model along with the ligand in COOT⁴⁹ and iterative real space refinement in
573 Phenix⁴⁷. This yielded a model with 95.13% in the most favoured region and 4.87% in the
574 allowed region of the Ramachandran plot.

575 For the C5a-C5aR1-Go complex map, the coordinates of C5a^{pep}-C5aR1-Go complex
576 was used as an initial model and docked into the EM density with the “Fit in map” extension in
577 Chimera. Similarly, the coordinates corresponding to human C5a were taken from a previously
578 solved crystal structure of the human C5a in complex with MEDI7814, a neutralising antibody
579 (PDB ID: 4UU9). The model so obtained was docked in Chimera, manually rebuilt in COOT and

580 subjected to several rounds of real space refinement in Phenix to reach a final model with
581 95.87% in the favoured region and 4.13% in the allowed region of the Ramachandran plot. Data
582 collection, 3D reconstruction and refinement statistics have been included as Figure S5. All
583 figures were prepared either with Chimera or ChimeraX software^{48,50}. Buried surface and
584 interface surface area have been calculated with PDBePISA webserver⁵¹. Ligand-receptor
585 interactions presented in Figure S12 were identified using PDBsum⁵².

586 **Figure legends**

587 **Figure 1. Activation of C5aR1 and downstream functional outcomes**

588 **(A)** C5 convertase, a critical player in the complement cascade cleaves complement C5 into two
589 different fragments, C5a and C5b. C5b is directed towards the formation of the pathogen killing
590 membrane attack complex (MAC), whereas C5a activates the cognate GPCR, C5aR1. C5aR1
591 is a classical G protein-coupled receptor and couples to G α i subtype of heterotrimeric G-
592 proteins and β arrs upon stimulation with C5a resulting in various cellular responses. C5aR1 also
593 recognizes a C5a-derived peptide agonist, C5a^{pep} which drives signaling through G-proteins
594 whereas weakly recruits β arrs. C5a^{pep} triggers “biased” functional outcomes upon binding to
595 C5aR1. Schematic prepared using BioRender.com. **(B)** C5a (top) and C5a^{pep} (bottom) driven
596 G α i-mediated second messenger response as measured by agonist dependent decrease in for-
597 skolin-induced cytosolic cAMP levels downstream to C5aR1. Respective logEC₅₀ values are
598 mentioned in the inset. Data (mean \pm SEM) represents four independent experiments, normal-
599 ized with respect to highest signal (measured as 100%) for each receptor. **(C-D)** C5a/C5a^{pep} in-
600 duced β arr1/2 recruitment and trafficking as measured by NanoBiT assay. Respective logEC₅₀
601 values are mentioned in the inset. Data (mean \pm SEM) represents four independent experiments,
602 fold normalized with respect to luminescence observed at lowest dose (measured as 1) for each
603 receptor. **(E, F)** Visualization of the purified C5a-C5aR1-Go (top) and C5a^{pep}-C5aR1-Go (bot-

604 tom) complexes via negative staining EM. 2D class averages and representative 2D class de-
605 picting a typical GPCR-G-protein complex are shown.

606 **Figure 2. Overall structure of C5a- and C5a^{pep}-bound C5aR1-G-protein complexes**

607 **(A, B)** Cryo-EM 2D class averages of C5a bound C5aR1-G-protein complex and C5a^{pep}-C5aR1-
608 G-protein complex respectively. **(C, D)** Two different views showing subunit organization of the
609 C5a and C5a^{pep} bound C5aR1-G-protein complexes respectively; representative 2D class aver-
610 age of the complex with clear secondary features have been included in inset. **(E)** Ribbon dia-
611 gram of the C5a bound C5aR1 complex (gray: C5aR1, cyan: C5a, orange: Gαo, blue: Gβ1,
612 green: Gγ2). **(F)** Ribbon diagram of the C5a^{pep} bound C5aR1 complex (gray: C5aR1, yellow:
613 C5a^{pep}, orange: Gαo, blue: Gβ1, green: Gγ2, purple: ScFv16).

614 **Figure 3. Structural details of C5a-C5aR1 interaction**

615 **(A)** Overall architecture of free C5a showing four helical bundle and a short helix in the C tail.
616 **(B)** Upon binding to C5aR1, the C-terminal tail of C5a docks perpendicularly into the ligand
617 binding cavity. **(C)** Structural comparison of free C5a with C5a bound to C5aR1. Helix 3 of C5a
618 can be seen to exhibit a rotation of ~45° upon binding to the receptor. **(D)** Interaction interfaces
619 of site 1 and site 2 of C5a with the N-terminus, ECL2 and TMs of C5aR1 have been illustrated.
620 **(E)** A comprehensive list of all the interactions including polar and non-bonded contacts have
621 been included in the table. (Polar interactions: Black dotted lines, non-bonded contacts: Green
622 dotted lines).

623 **Figure 4. Structural details of C5a^{pep}-C5aR1 interaction**

624 **(A)** Sequence of the C5a derived peptide, C5a^{pep}. **(B)** C5a^{pep} occupies a similar binding pocket
625 as C5a in C5aR1. **(C)** The binding pocket of C5a^{pep} in C5aR1 on the extracellular side is sur-
626 rounded by residues from ECLs and TMs. Interactions of the residues in C5a^{pep} with C5aR1 in
627 the ligand binding pocket have been represented as dotted lines. The yellow cone depicts ani-

628 on- π interaction between NME-F1 of C5a^{pep} and Glu176^{ECL2} of C5aR1. (Polar interactions: Black
629 dotted lines, non-bonded contacts: Green dotted lines).

630 **Figure 5. Comparison of C5a and C5a^{pep} binding to C5aR1**

631 **(A)** The C terminal region of C5a (top) and C5a^{pep} (bottom) employ a similar binding pocket on
632 C5aR1. The receptor and ligands have been represented as surface slices and ribbons respec-
633 tively. **(B, C)** Common and unique interactions of C5a (top) and C5a^{pep} (bottom) at the ligand-
634 receptor interface have been shown as dotted lines. (Polar interactions: Black dotted lines, Non-
635 bonded contacts: Green dotted lines). **(D)** Comparison of C5a/C5a^{pep} mediated cAMP response
636 downstream of mouse C5aR1 reveal reduced efficacy of C5a^{pep} as compared to C5a. Respec-
637 tive logEC₅₀ values are mentioned in the inset. Data (mean \pm SEM) represents four independent
638 experiments, normalized with respect to highest signal (measured as 100%) in response to
639 each ligand. **(E)** Measuring β arr1/2 recruitment to mouse C5aR1 upon stimulation with C5a and
640 C5a^{pep} shows significant reduction in both efficacy as well as potency of C5a^{pep} as compared to
641 C5a (top). Respective logEC₅₀ values are mentioned in the inset. Data (mean \pm SEM) represents
642 four independent experiments, fold normalized with respect to luminescence observed at lowest
643 dose (measured as 1) for each ligand. Bias factor (β value) determined taking C5a as reference
644 elucidates the G-protein biased nature of C5a^{pep}.

645 **Figure 6. Structural insights into species-specific ligand bias at mouse C5aR1**

646 **(A, B)** Schematic representation of residue contacts between C5a and C5a^{pep} with C5aR1. The
647 nature of contacts annotated are highlighted in an inset box on the right. **(C)** Measuring β arr1
648 trafficking in response to C5a^{pep} downstream to a series of mouse C5aR1 mutants mimicking
649 the corresponding human C5aR1 residues show dramatic increase in both potency and efficacy
650 of β arr1 trafficking compared to the wild type mouse receptor. Data (mean \pm SEM) represents two
651 independent experiments, performed in duplicate, fold normalized with respect to luminescence

652 observed at lowest dose (measured as 1) for each receptor (top). All the receptors were ex-
653 pressed at comparable levels (bottom).

654 **Figure 7. Structural insights into competitive antagonism of PMX53 at C5aR1**

655 **(A)** Superimposition of active C5a and C5a^{pep} activated C5aR1 with the inactive PMX53 bound
656 C5aR1 (PDB ID: 6C1R). Ligands are shown in surface and receptors in ribbon representation.
657 **(B)** PMX53 binds at a similar pocket as C5a and C5a^{pep}. Surface slices of C5aR1 with cognate
658 ligands are depicted to highlight the occupancy of ligands at the same binding pocket. **(C)** Over-
659 all conserved interactions between PMX53, C5a and C5a^{pep} with C5aR1 are listed. **(D)** The cy-
660 clic peptide, PMX53 engages an extra binding site (yellow patch) on C5aR1 unlike C5a/C5a^{pep}
661 (green patch). The carboxylate group is blocked in PMX53 (highlighted in yellow) due to the cy-
662 clic nature of the peptide, further preventing agonistic behavior. **(E)** PMX53 forms extensive hy-
663 drogen bonds with the residues of the ligand binding pocket of C5aR1.

664 **Figure 8. Overall interface of C5aR1-G-protein interaction**

665 **(A, B)** Domain organization of heterotrimeric G-proteins in complex C5a/C5a^{pep}-C5aR1 respec-
666 tively. **(C)** The C-terminal α 5 helix of G α docks into the cytoplasmic core of C5aR1 in the C5a-
667 C5aR1-G α structure. Key interactions between residues of G-protein with residues of TMs, ICL2
668 and ICL3 of C5a bound C5aR1. **(D)** The C-terminal α 5 helix of G α docks into the cytoplasmic
669 core of C5aR1 in the C5a^{pep}-C5aR1-G α structure. Key interactions between residues of G-
670 protein with residues of TMs, ICL2 and ICL3 of C5a^{pep} bound C5aR1. **(E)** Comparative analysis
671 of FPR2-G ι (PDB ID: 6OMM) with C5aR1-G α . The α 5 helix of G-proteins inserts into a similar
672 cavity (surface representation: top, hydrophobic surface representation: bottom) at the cyto-
673 plasmic face of the receptors. **(F)** Schematic representation of common residues of G-protein
674 interacting with the residues of FPR2 and C5aR1. The respective residues mentioned are of
675 C5aR1.

676

677 **Figure 9. Activation-dependent conformational changes in C5aR1**

678 **(A)** Structural alignment of the inactive (PMX53 bound C5aR1; PDB ID:6C1R) and active C5a
679 and C5a^{pep} bound C5aR1. **(B, C)** Displacements of TM6, TM7 and helix 8 upon C5aR1 activa-
680 tion in C5a and C5a^{pep} bound C5aR1 structures respectively. **(D)** Opening of the cytoplasmic
681 cavity in the active state structure of C5aR1. **(E, F)** Conformational changes in the conserved
682 microswitches: (DRY(F), NPxxY, C(F)WxP(L), and PIF) upon C5aR1 activation.

683 **References**

- 684 1. Sarma, J.V. & Ward, P.A. The complement system. *Cell Tissue Res* **343**, 227-35 (2011).
- 685 2. Merle, N.S., Church, S.E., Fremeaux-Bacchi, V. & Roumenina, L.T. Complement System Part I -
686 Molecular Mechanisms of Activation and Regulation. *Front Immunol* **6**, 262 (2015).
- 687 3. Merle, N.S., Noe, R., Halbwachs-Mecarelli, L., Fremeaux-Bacchi, V. & Roumenina, L.T.
688 Complement System Part II: Role in Immunity. *Front Immunol* **6**, 257 (2015).
- 689 4. Carvelli, J. et al. Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis.
690 *Nature* **588**, 146-150 (2020).
- 691 5. Woodruff, T.M. & Shukla, A.K. The Complement C5a-C5aR1 GPCR Axis in COVID-19 Therapeutics.
692 *Trends Immunol* **41**, 965-967 (2020).
- 693 6. Lo, M.W., Kemper, C. & Woodruff, T.M. COVID-19: Complement, Coagulation, and Collateral
694 Damage. *J Immunol* **205**, 1488-1495 (2020).
- 695 7. Pandey, S., Maharana, J., Li, X.X., Woodruff, T.M. & Shukla, A.K. Emerging Insights into the
696 Structure and Function of Complement C5a Receptors. *Trends Biochem Sci* **45**, 693-705 (2020).
- 697 8. Croker, D.E. et al. Discovery of functionally selective C5aR2 ligands: novel modulators of C5a
698 signalling. *Immunol Cell Biol* **94**, 787-95 (2016).
- 699 9. Pandey, S. et al. Intrinsic bias at non-canonical, beta-arrestin-coupled seven transmembrane
700 receptors. *Mol Cell* **81**, 4605-4621 e11 (2021).
- 701 10. Klos, A., Wende, E., Wareham, K.J. & Monk, P.N. International Union of Basic and Clinical
702 Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors.
703 *Pharmacol Rev* **65**, 500-43 (2013).
- 704 11. Pandey, S. et al. Partial ligand-receptor engagement yields functional bias at the human
705 complement receptor, C5aR1. *J Biol Chem* **294**, 9416-9429 (2019).
- 706 12. Schatz-Jakobsen, J.A. et al. Structural and functional characterization of human and murine C5a
707 anaphylatoxins. *Acta Crystallogr D Biol Crystallogr* **70**, 1704-17 (2014).
- 708 13. Siciliano, S.J. et al. Two-site binding of C5a by its receptor: an alternative binding paradigm for G
709 protein-coupled receptors. *Proc Natl Acad Sci U S A* **91**, 1214-8 (1994).
- 710 14. Dumitru, A.C. et al. Submolecular probing of the complement C5a receptor-ligand binding
711 reveals a cooperative two-site binding mechanism. *Commun Biol* **3**, 786 (2020).
- 712 15. Chen, Z. et al. Residues 21-30 within the extracellular N-terminal region of the C5a receptor
713 represent a binding domain for the C5a anaphylatoxin. *J Biol Chem* **273**, 10411-9 (1998).
- 714 16. Wetsel, R.A. Structure, function and cellular expression of complement anaphylatoxin receptors.
715 *Curr Opin Immunol* **7**, 48-53 (1995).

716 17. Halai, R. et al. Derivation of ligands for the complement C3a receptor from the C-terminus of
717 C5a. *Eur J Pharmacol* **745**, 176-81 (2014).

718 18. Gorman, D.M. et al. Development of Potent and Selective Agonists for Complement C5a
719 Receptor 1 with In Vivo Activity. *J Med Chem* **64**, 16598-16608 (2021).

720 19. Li, X.X. et al. Pharmacological characterisation of small molecule C5aR1 inhibitors in human cells
721 reveals biased activities for signalling and function. *Biochem Pharmacol* **180**, 114156 (2020).

722 20. Kawai, M. et al. Structure-function studies in a series of carboxyl-terminal octapeptide
723 analogues of anaphylatoxin C5a. *J Med Chem* **35**, 220-3 (1992).

724 21. Konteatis, Z.D. et al. Development of C5a receptor antagonists. Differential loss of functional
725 responses. *J Immunol* **153**, 4200-5 (1994).

726 22. Kumar, B.A., Kumari, P., Sona, C. & Yadav, P.N. GloSensor assay for discovery of GPCR-selective
727 ligands. *Methods Cell Biol* **142**, 27-50 (2017).

728 23. Dijon, N.C., Nesheva, D.N. & Holliday, N.D. Luciferase Complementation Approaches to Measure
729 GPCR Signaling Kinetics and Bias. *Methods Mol Biol* **2268**, 249-274 (2021).

730 24. Punjani, A., Rubinstein, J.L., Fleet, D.J. & Brubaker, M.A. cryoSPARC: algorithms for rapid
731 unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296 (2017).

732 25. Bajic, G., Yatime, L., Klos, A. & Andersen, G.R. Human C3a and C3a desArg anaphylatoxins have
733 conserved structures, in contrast to C5a and C5a desArg. *Protein Science* **22**, 204-212 (2013).

734 26. Reis, E.S. et al. C5aR-dependent cell activation by physiological concentrations of C5a-desArg: Insights
735 from a novel label-free cellular assay. *Immunobiology* **217**, 1147-1147 (2012).

736 27. Woodruff, T.M. et al. Species dependence for binding of small molecule agonist and antagonists
737 to the C5a receptor on polymorphonuclear leukocytes. *Inflammation* **25**, 171-7 (2001).

738 28. Tamamis, P. et al. Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent
739 molecular dynamics simulations and docking. *BMC Biophys* **7**, 5 (2014).

740 29. March, D.R. et al. Potent cyclic antagonists of the complement C5a receptor on human
741 polymorphonuclear leukocytes. Relationships between structures and activity. *Mol Pharmacol*
742 **65**, 868-79 (2004).

743 30. Lillegard, K.E. et al. Differential effects of complement activation products c3a and c5a on
744 cardiovascular function in hypertensive pregnant rats. *J Pharmacol Exp Ther* **351**, 344-51 (2014).

745 31. Liu, H. et al. Orthosteric and allosteric action of the C5a receptor antagonists. *Nat Struct Mol Biol*
746 **25**, 472-481 (2018).

747 32. Gerber, B.O., Meng, E.C., Dotsch, V., Baranski, T.J. & Bourne, H.R. An activation switch in the
748 ligand binding pocket of the C5a receptor. *J Biol Chem* **276**, 3394-400 (2001).

749 33. Higginbottom, A. et al. Comparative agonist/antagonist responses in mutant human C5a
750 receptors define the ligand binding site. *J Biol Chem* **280**, 17831-40 (2005).

751 34. Zhu, Y. et al. Structural basis of FPR2 in recognition of Abeta(42) and neuroprotection by
752 humanin. *Nat Commun* **13**, 1775 (2022).

753 35. Zhuang, Y. et al. Structure of formylpeptide receptor 2-G(i) complex reveals insights into ligand
754 recognition and signaling. *Nat Commun* **11**, 885 (2020).

755 36. Zhuang, Y. et al. Molecular recognition of formylpeptides and diverse agonists by the
756 formylpeptide receptors FPR1 and FPR2. *Nat Commun* **13**, 1054 (2022).

757 37. Robertson, N. et al. Structure of the complement C5a receptor bound to the extra-helical
758 antagonist NDT9513727. *Nature* **553**, 111-114 (2018).

759 38. Schwartz, T.W., Frimurer, T.M., Holst, B., Rosenkilde, M.M. & Elling, C.E. Molecular mechanism
760 of 7TM receptor activation--a global toggle switch model. *Annu Rev Pharmacol Toxicol* **46**, 481-
761 519 (2006).

762 39. Burg, M. et al. G alpha-16 complements the signal transduction cascade of chemotactic
763 receptors for complement factor C5a (C5a-R) and N-formylated peptides (fMLF-R) in Xenopus

764 laevis oocytes: G alpha-16 couples to chemotactic receptors in *Xenopus* oocytes. *FEBS Lett* **377**,
765 426-8 (1995).

766 40. Baidya, M. et al. Key phosphorylation sites in GPCRs orchestrate the contribution of beta-
767 Arrestin 1 in ERK1/2 activation. *EMBO Rep* **21**, e49886 (2020).

768 41. Pandey, S., Roy, D. & Shukla, A.K. Measuring surface expression and endocytosis of GPCRs using
769 whole-cell ELISA. *Methods Cell Biol* **149**, 131-140 (2019).

770 42. Carpenter, B. & Tate, C.G. Engineering a minimal G protein to facilitate crystallisation of G
771 protein-coupled receptors in their active conformation. *Protein Eng Des Sel* **29**, 583-594 (2016).

772 43. Nehme, R. et al. Mini-G proteins: Novel tools for studying GPCRs in their active conformation.
Plos One **12**(2017).

773 44. Maeda, S. et al. Development of an antibody fragment that stabilizes GPCR/G-protein
774 complexes. *Nature Communications* **9**(2018).

775 45. Hong, C. et al. Structures of active-state orexin receptor 2 rationalize peptide and small-
776 molecule agonist recognition and receptor activation. *Nature Communications* **12**(2021).

777 46. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in
778 RELION-3. *Elife* **7**(2018).

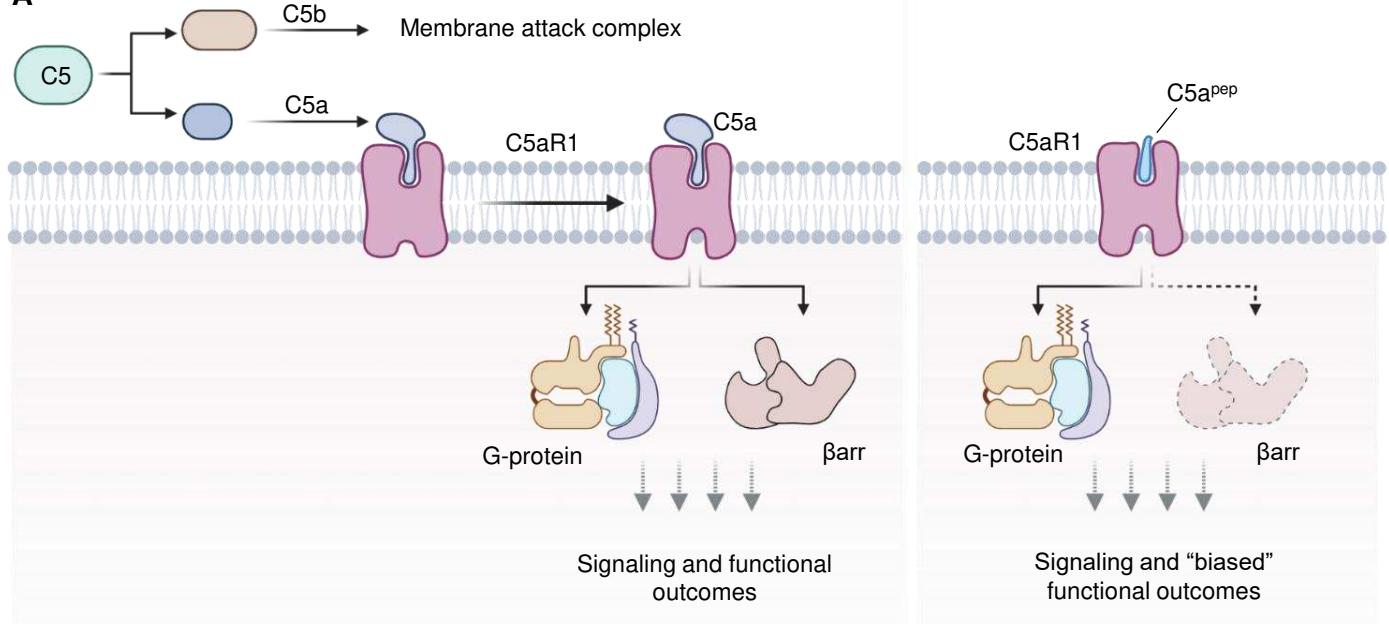
779 47. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and
780 electrons: recent developments in Phenix. *Acta Crystallogr D Struct Biol* **75**, 861-877 (2019).

781 48. Pettersen, E.F. et al. UCSF Chimera--a visualization system for exploratory research and analysis.
J Comput Chem **25**, 1605-12 (2004).

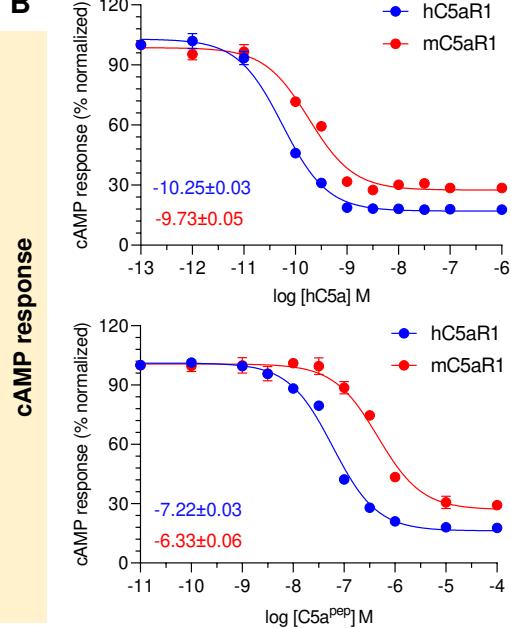
782 49. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. *Acta
783 Crystallogr D Biol Crystallogr* **66**, 486-501 (2010).

784 50. Pettersen, E.F. et al. UCSF ChimeraX: Structure visualization for researchers, educators, and
785 developers. *Protein Sci* **30**, 70-82 (2021).

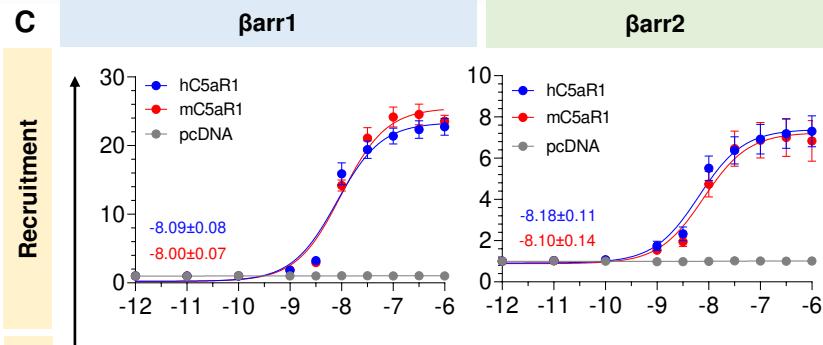
786 51. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. *J Mol
787 Biol* **372**, 774-97 (2007).

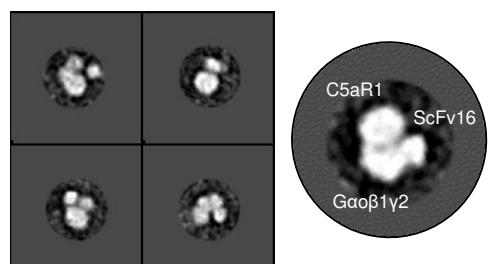

788 52. Laskowski, R.A., Jablonska, J., Pravda, L., Varekova, R.S. & Thornton, J.M. PDBsum: Structural
789 summaries of PDB entries. *Protein Sci* **27**, 129-134 (2018).

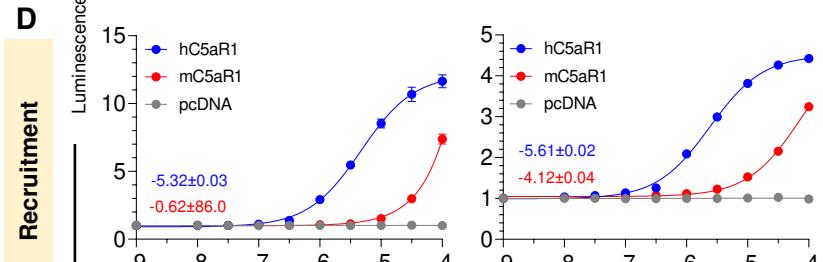
790

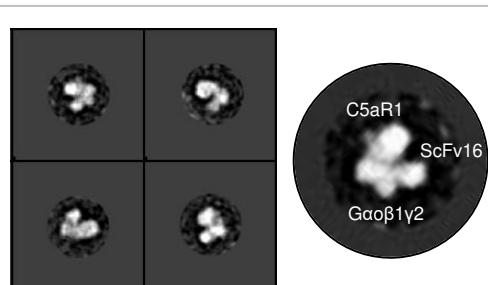

791

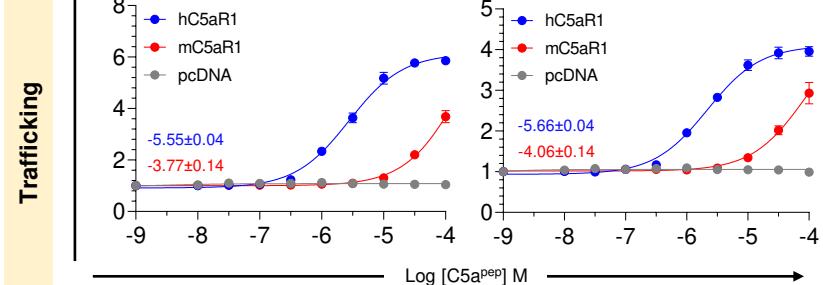
792


A

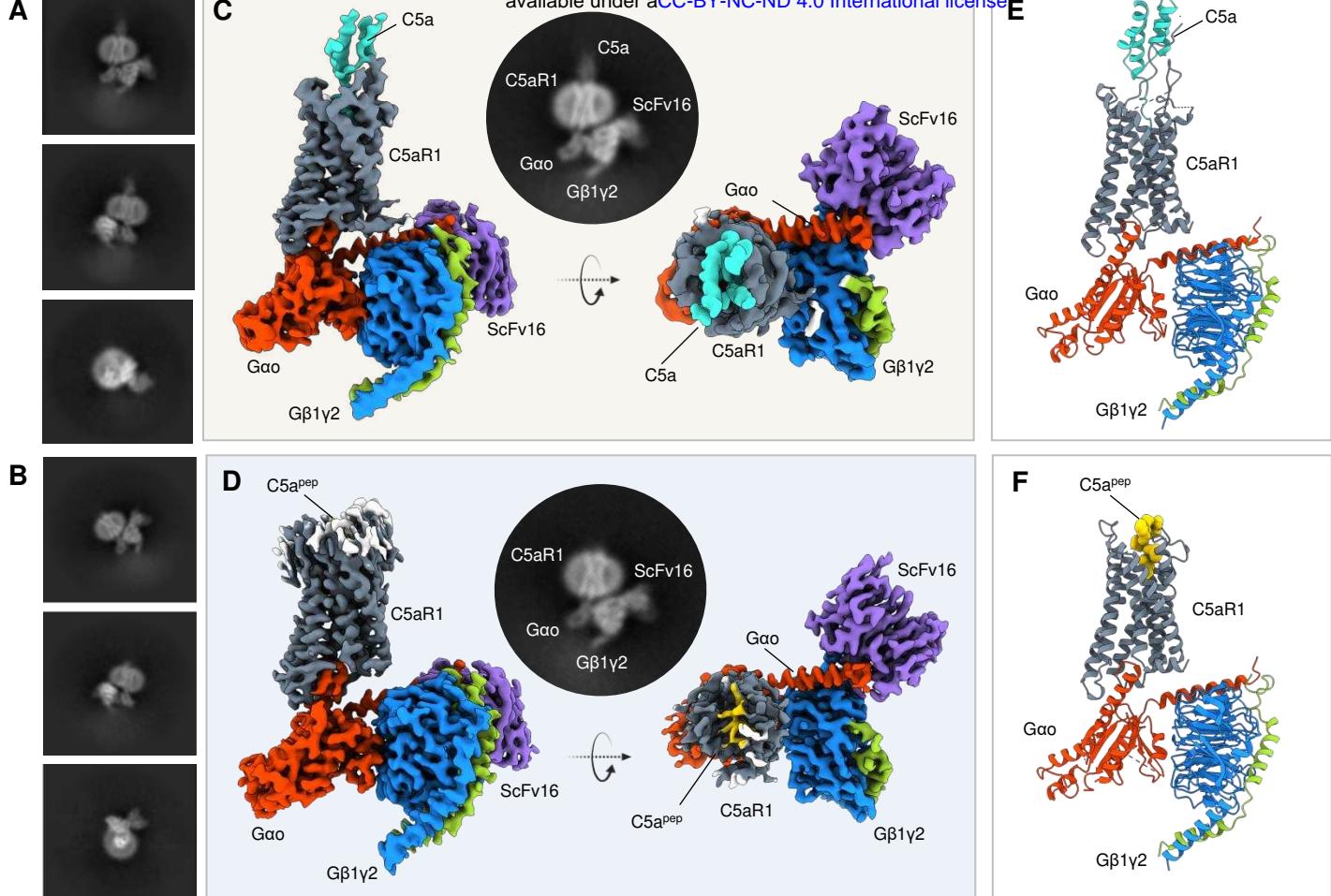

B


C


E

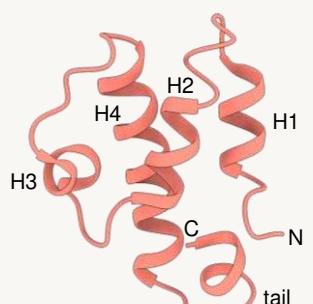

D

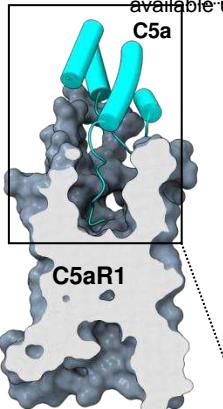
F



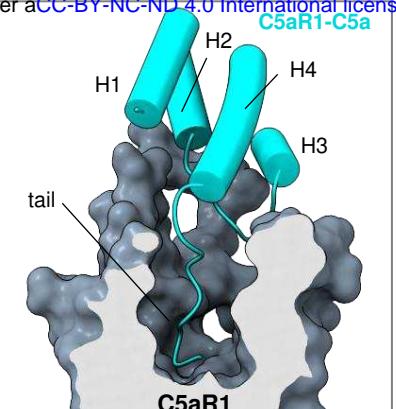
Trafficking

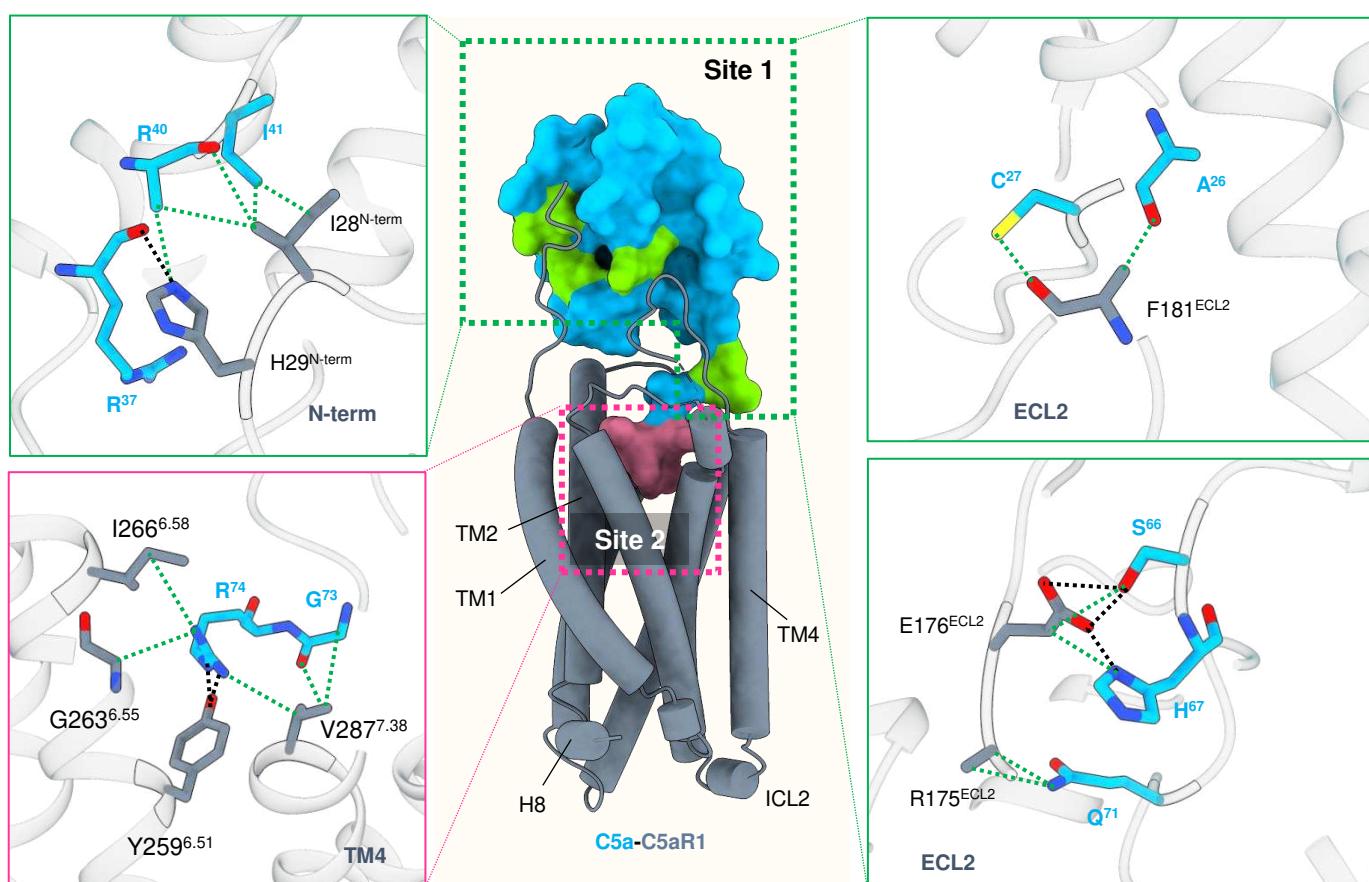
Figure 1. Agonist-induced activation and pharmacology of C5aR1


(A) C5 convertase, a critical player in the complement cascade cleaves complement C5 into two different fragments, C5a and C5b. C5b is directed towards the formation of the pathogen killing membrane attack complex (MAC), whereas C5a activates the cognate GPCR, C5aR1. C5aR1 is a classical G protein-coupled receptor and couples to G_{αi} subtype of heterotrimeric G-proteins and β-arrestins upon stimulation with C5a resulting in various cellular responses. C5aR1 also recognizes a C5a-derived peptide agonist, C5a^{pep} which drives signaling through G-proteins whereas weakly recruits βarrs. C5a^{pep} triggers “biased” functional outcomes upon binding to C5aR1. Schematic prepared using BioRender.com. **(B)** C5a (top) and C5a^{pep} (bottom) driven G_{αi}-mediated second messenger response as measured by agonist dependent decrease in forskolin-induced cytosolic cAMP levels downstream to C5aR1. Respective logEC50 values are mentioned in the inset. Data (mean±SEM) represents four independent experiments, normalized with respect to highest signal (measured as 100%) for each receptor. **(C-D)** C5a/C5a^{pep} induced βarr1/2 recruitment and trafficking as measured by NanoBit assay. Respective logEC50 values are mentioned in the inset. Data (mean±SEM) represents four independent experiments, fold normalized with respect to luminescence observed at lowest dose (measured as 1) for each receptor. **(E, F)** Visualization of the purified C5a-C5aR1-Go (top) and C5a^{pep}-C5aR1-Go (bottom) complexes via negative staining EM. 2D class averages and representative 2D class depicting a typical GPCR-G-protein complex are shown.


Figure 2. Overall structure of C5a- and C5a^{pep}-bound C5aR1-G-protein complexes

(A, B) Cryo-EM 2D class averages of C5a bound C5aR1-G-protein complex and C5a^{pep}-C5aR1-G-protein complex respectively. **(C, D)** Two different views showing subunit organization of the C5a and C5a^{pep} bound C5aR1-G-protein complexes respectively; representative 2D class average of the complex with clear secondary features have been included in inset. **(E)** Ribbon diagram of the C5a bound C5aR1 complex (gray: C5aR1, cyan: C5a, orange: Gao, blue: Gβ1, green: Gγ2). **(F)** Ribbon diagram of the C5a^{pep} bound C5aR1 complex (gray: C5aR1, yellow: C5a^{pep}, orange: Gao, blue: Gβ1, green: Gγ2, purple: ScFv16).

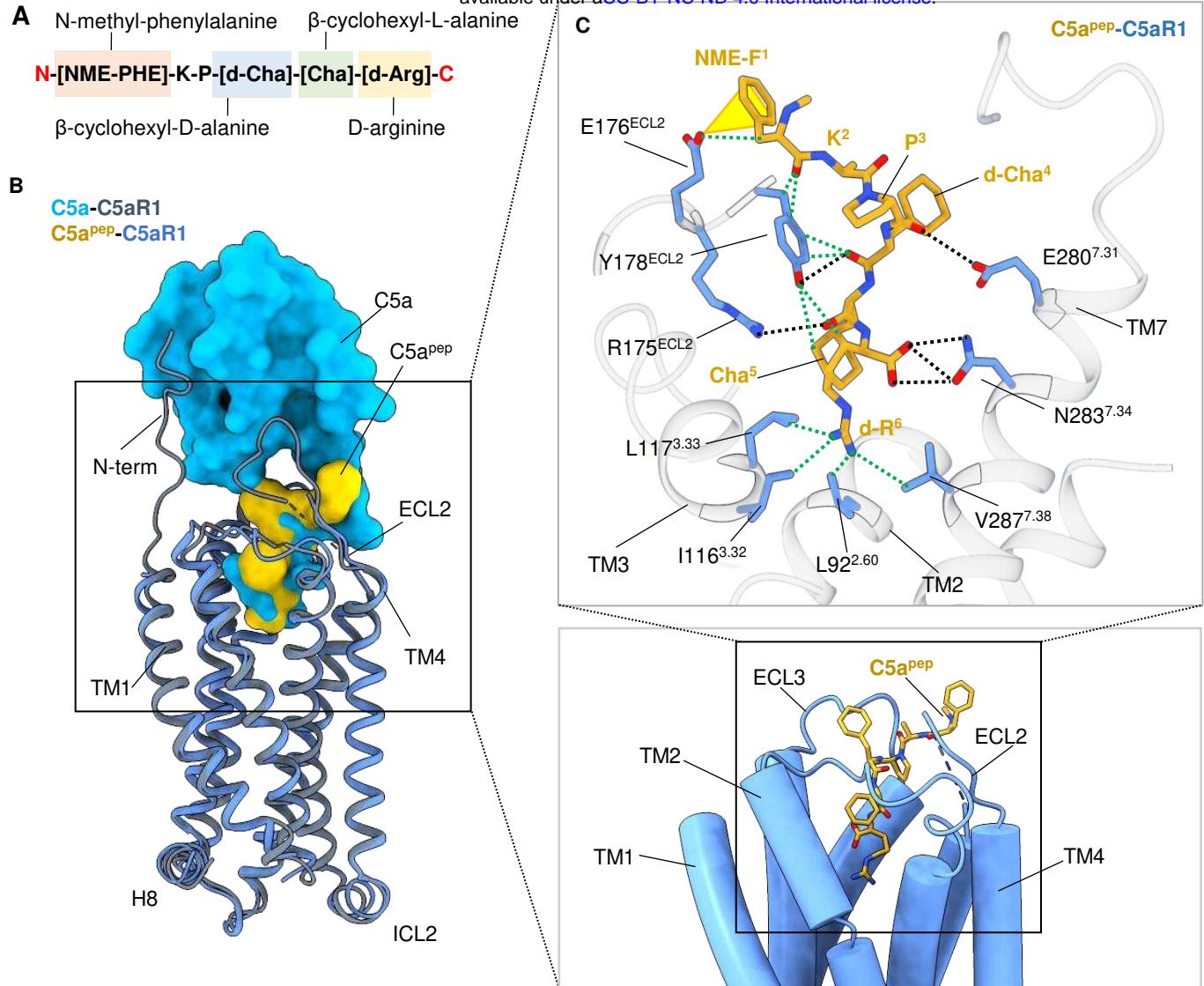

A Free C5a


B

C

D

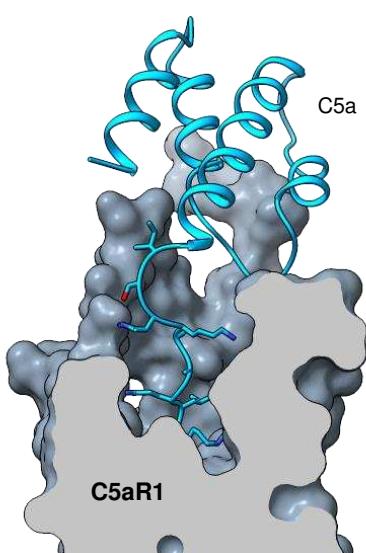
E

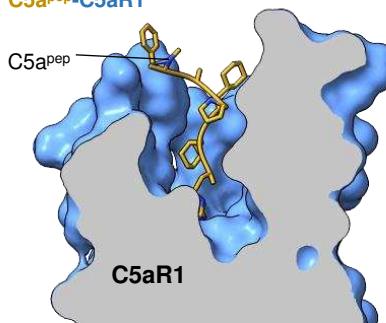

Site 1

Site 2

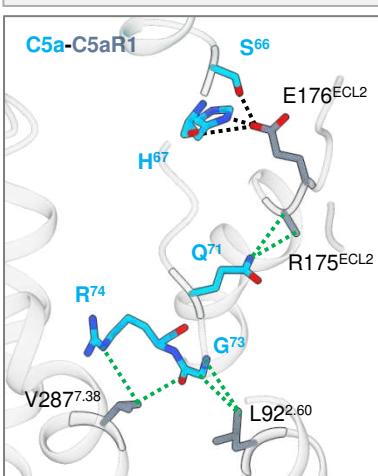
C5aR1	C5a	C5aR1	C5a
Ile28 ^{N-term}	Arg ⁴⁰ , Ile ⁴¹		
His29 ^{N-term}	Arg ³⁷ , Arg ⁴⁰		
Glu176 ^{ECL2}	Ser ⁶⁶ , His ⁶⁷		
Arg175 ^{ECL2}	Gln ⁷¹		
Phe181 ^{ECL2}	Ala ²⁶ , Cys ²⁷		
		Val287 ^{7.38}	Gly ⁷³ , Arg ⁷⁴

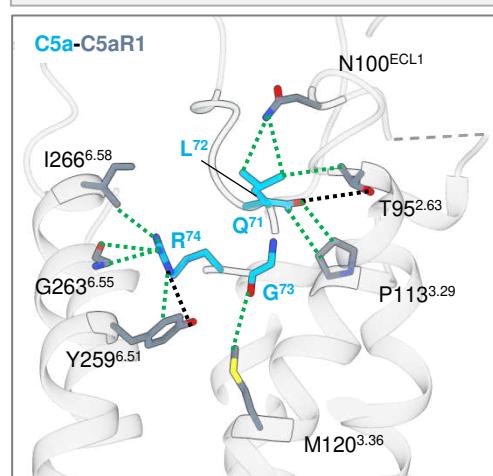
Figure 3. Structural details of C5a-C5aR1 interaction

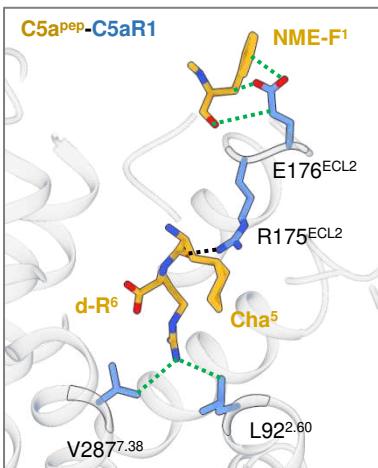

(A) Overall architecture of free C5a showing four helical bundle and a short helix in the C tail. **(B)** Upon binding to C5aR1, the C-terminal tail of C5a docks perpendicularly into the ligand binding cavity. **(C)** Structural comparison of free C5a with C5a bound to C5aR1. Helix 3 of C5a can be seen to exhibit a rotation of ~45° upon binding to the receptor. **(D)** Interaction interfaces of site 1 and site 2 of C5a with the N-terminus, ECL2 and TMs of C5aR1 have been illustrated. **(E)** A comprehensive list of all the interactions including polar and non-bonded contacts have been included in the table. (Polar interactions: Black dotted lines, Non-bonded contacts: Green dotted lines).

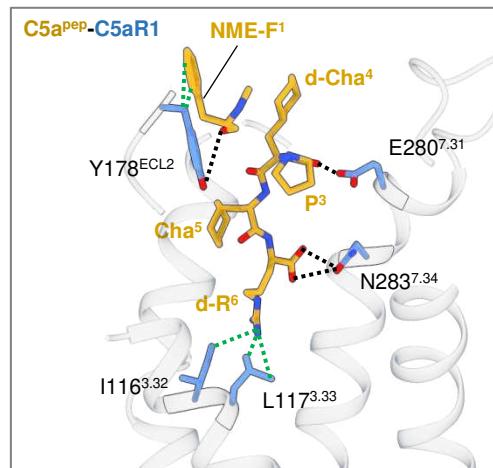

Figure 4. Structural details of C5a^{pep}-C5aR1 interaction

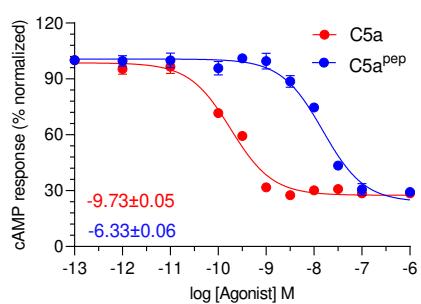
(A) Sequence of the C5a derived peptide, C5a^{pep}. **(B)** C5a^{pep} occupies a similar binding pocket as C5a in C5aR1. **(C)** The binding pocket of C5a^{pep} in C5aR1 on the extracellular side is surrounded by residues from ECLs and TMs. Interactions of the residues in C5a^{pep} with C5aR1 in the ligand binding pocket have been represented as dotted lines. The yellow cone depicts anion-π interaction between NME-F1 of C5a^{pep} and Glu176^{ECL2} of C5aR1. (Polar interactions: Black dotted lines, Non-bonded contacts: Green dotted lines).

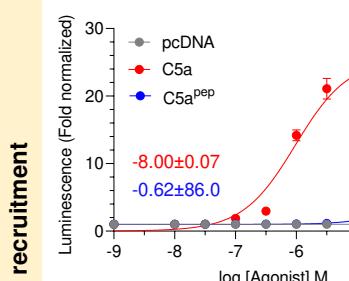

A C5a-C5aR1

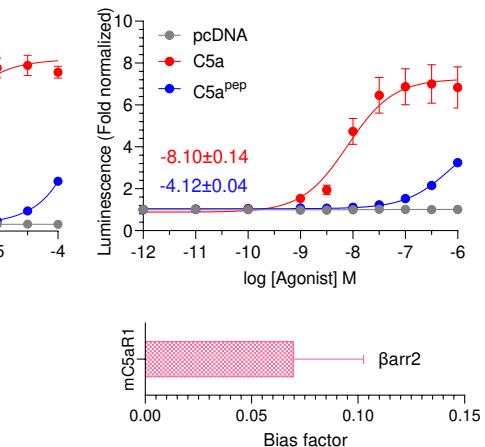

C5a^{pep}-C5aR1


B Conserved contacts

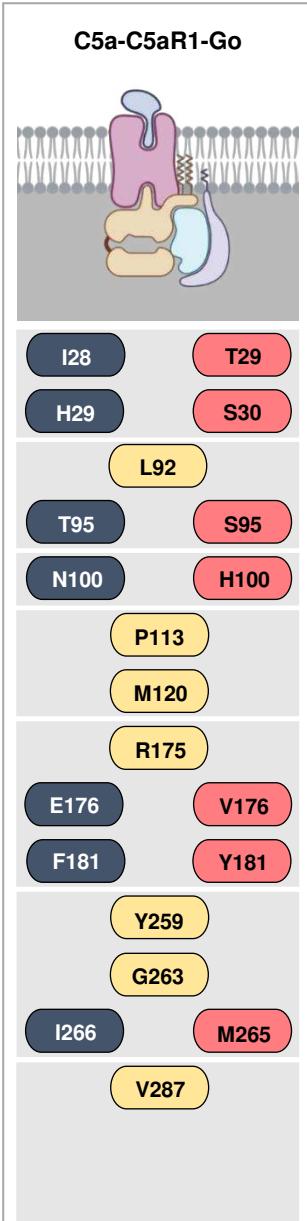

C Distinct contacts

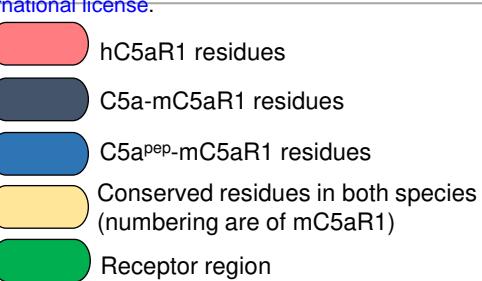

C5a^{pep}-C5aR1


C5a^{pep}-C5aR1


cAMP response

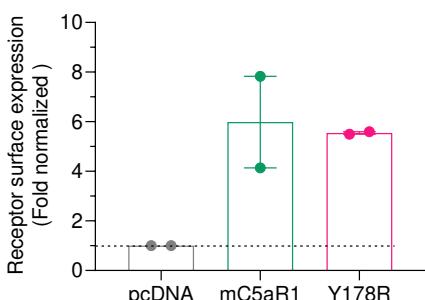
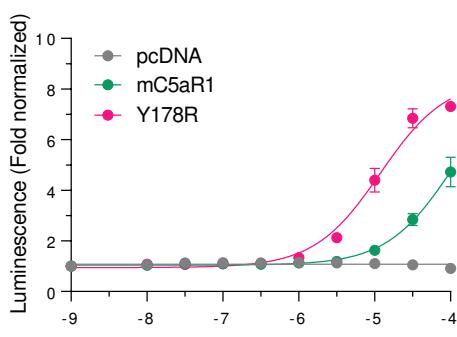
βarr1


βarr2

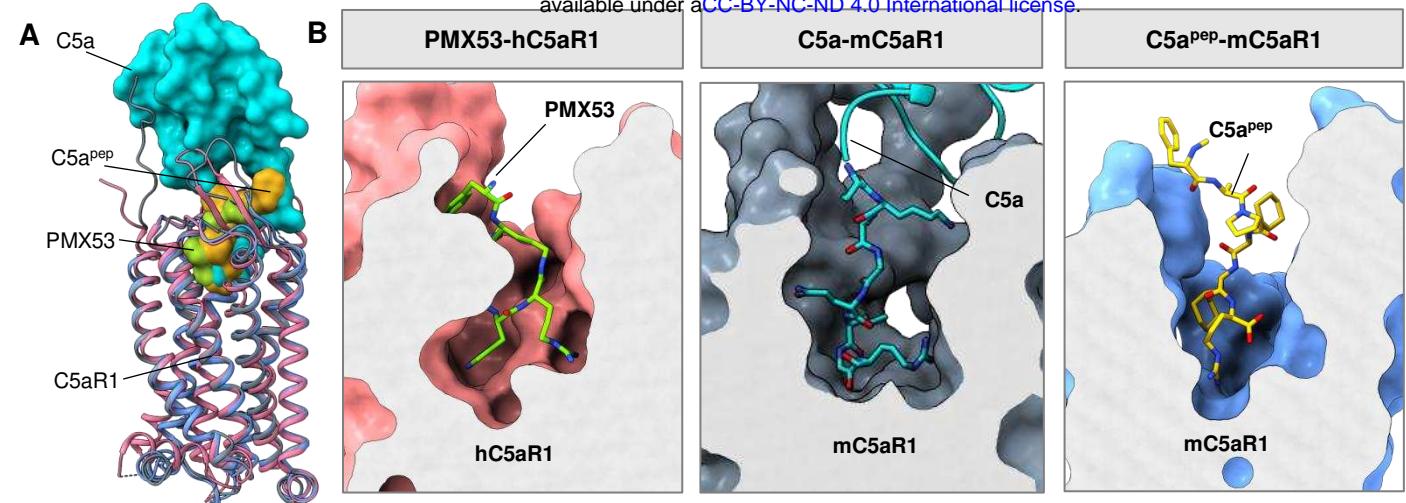

Figure 5. Comparison of C5a and C5a^{pep} binding to C5aR1

(A) The C terminal region of C5a (top) and C5a^{pep} (bottom) employ a similar binding pocket on C5aR1. The receptor and ligands have been represented as surface slices and ribbons respectively. **(B, C)** Common and unique interactions of C5a (top) and C5a^{pep} (bottom) at the ligand-receptor interface have been shown as dotted lines. (Polar interactions: Black dotted lines, Non-bonded contacts: Green dotted lines). **(D)** Comparison of C5a/C5a^{pep} mediated cAMP response downstream of mouse C5aR1 reveal reduced efficacy of C5a^{pep} as compared to C5a. Respective logEC50 values are mentioned in the inset. Data (mean±SEM) represents four independent experiments, normalized with respect to highest signal (measured as 100%) in response to each ligand. **(E)** Measuring β arr1/2 recruitment to mouse C5aR1 upon stimulation with C5a and C5a^{pep} shows significant reduction in both efficacy as well as potency of C5a^{pep} as compared to C5a (top). Respective logEC50 values are mentioned in the inset. Data (mean±SEM) represents four independent experiments, fold normalized with respect to luminescence observed at lowest dose (measured as 1) for each ligand. Bias factor (β value) determined taking C5a as reference elucidates the G-protein biased nature of C5a^{pep}. The graphs in panel D and E are derived from the same experimental data that are presented in Figure 1B-D.

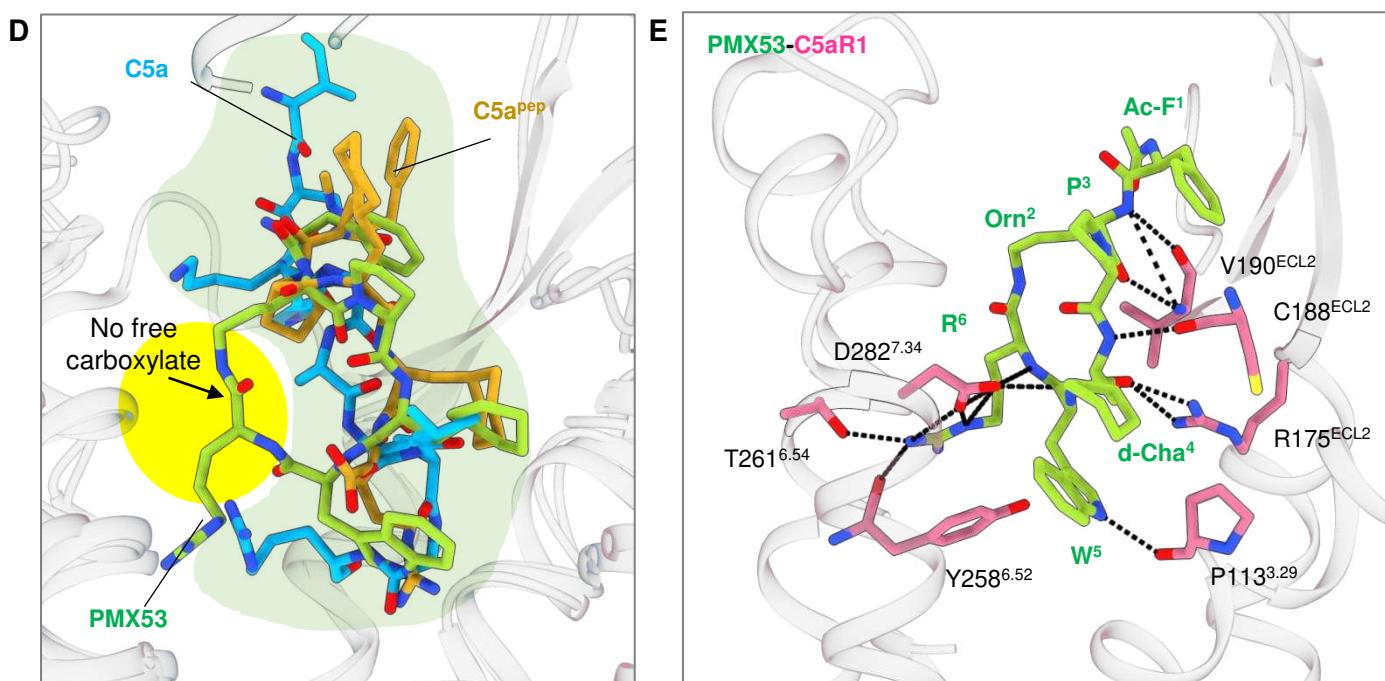
A

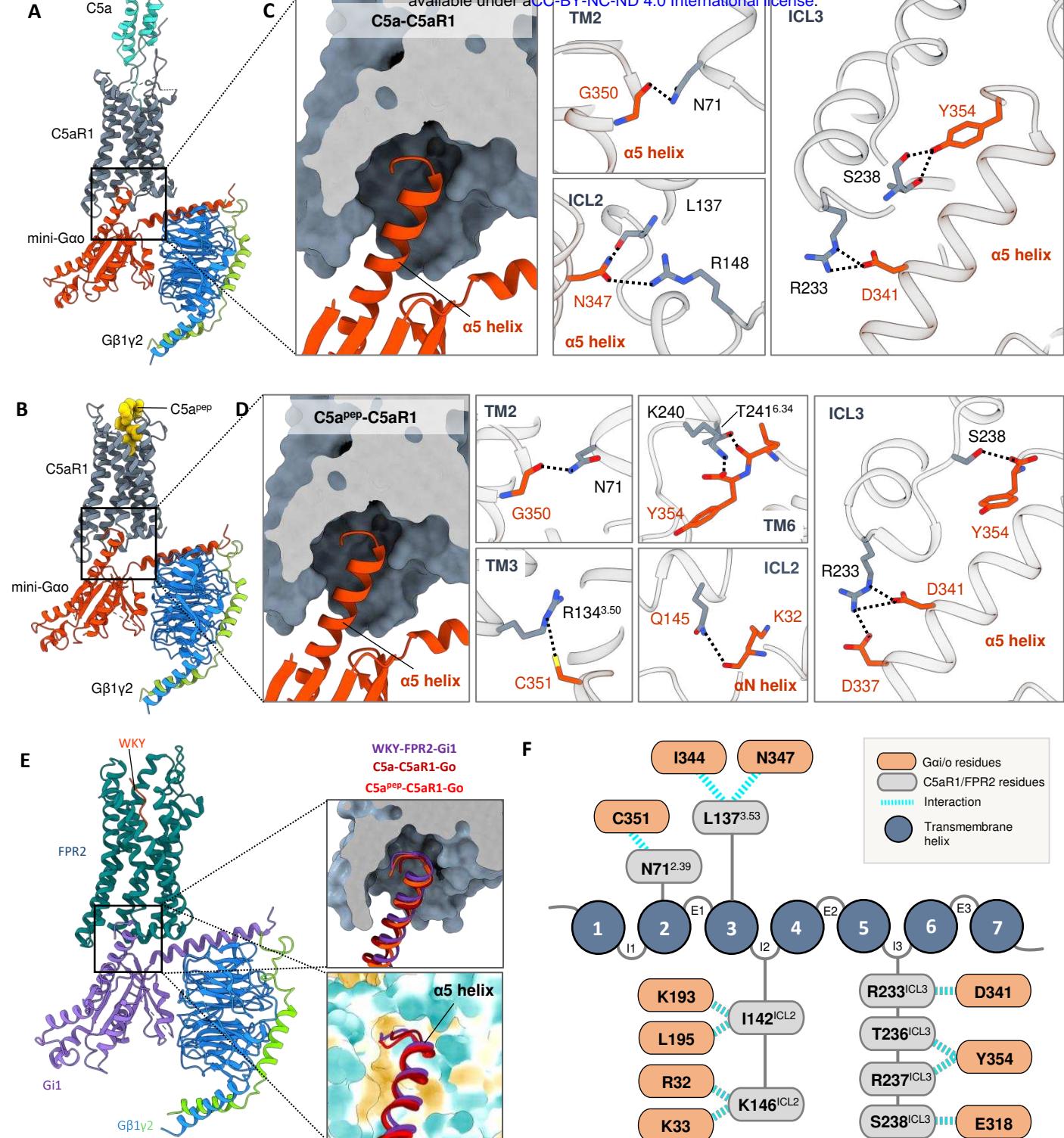
B


C

βarr1 trafficking


Figure 6. Structural insights into species-specific ligand bias at mouse C5aR1

(A, B) Schematic representation of residue contacts between C5a and C5a^{pep} with C5aR1. The nature of contacts annotated are highlighted in an inset box on the right. **(C)** Measuring βarr1 trafficking in response to C5a^{pep} downstream to a series of mouse C5aR1 mutants mimicking the corresponding human C5aR1 residues show dramatic increase in both potency and efficacy of βarr1 trafficking compared to the wild type mouse receptor. Data (mean±SEM) represents two independent experiments, performed in duplicate, fold normalized with respect to luminescence observed at lowest dose (measured as 1) for each receptor (top). All the receptors were expressed at comparable levels (bottom).

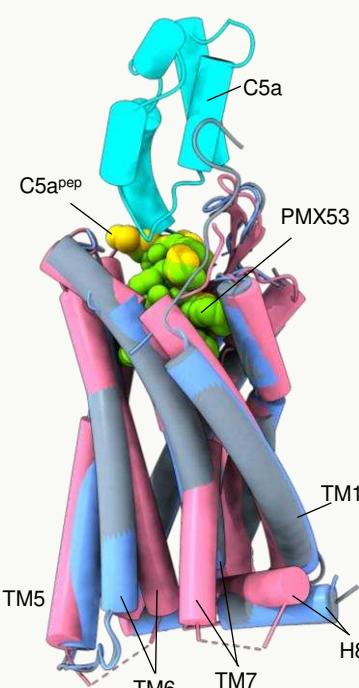

C

C5aR1	PMX53	C5a	C5a ^{pep}
L92 ^{2.60}	W ⁵	G ⁷³	d-R ⁶
R175 ^{ECL2}	d-Cha ⁴	Q ⁷¹	Cha ⁵
E176 ^{ECL2}	F ¹	S ⁶⁶ , H ⁶⁷	NME-F ¹
V287 ^{7.38}	W ⁵	G ⁷³ , R ⁷⁴	d-R ⁶

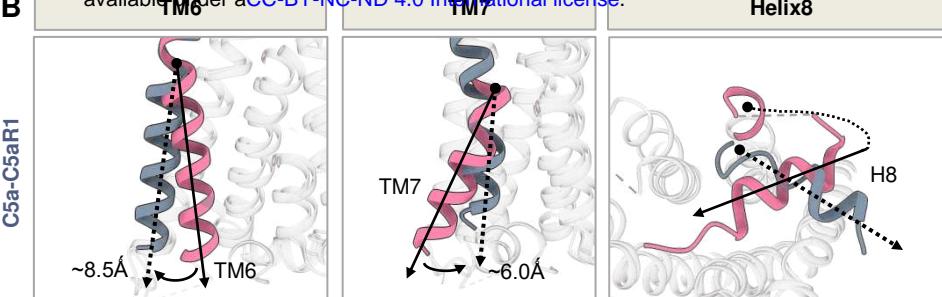
Figure 7. Structural insights into competitive antagonism of PMX53 at C5aR1

(A) Superimposition of active C5a and C5a^{pep} activated C5aR1 with the inactive PMX53 bound C5aR1 (PDB ID: 6C1R). Ligands are shown in surface and receptors in ribbon representation. **(B)** PMX53 binds at a similar pocket as C5a and C5a^{pep}. Surface slices of C5aR1 with cognate ligands are depicted to highlight the occupancy of ligands at the same binding pocket. **(C)** Overall conserved interactions between PMX53, C5a and C5a^{pep} with C5aR1 are listed. **(D)** The cyclic peptide, PMX53 engages an extra binding site (yellow patch) on C5aR1 unlike C5a/C5a^{pep} (green patch). The carboxylate group is blocked in PMX53 (highlighted in yellow) due to the cyclic nature of the peptide, further preventing agonistic behavior. **(E)** PMX53 forms extensive hydrogen bonds with the residues of the ligand binding pocket of C5aR1.

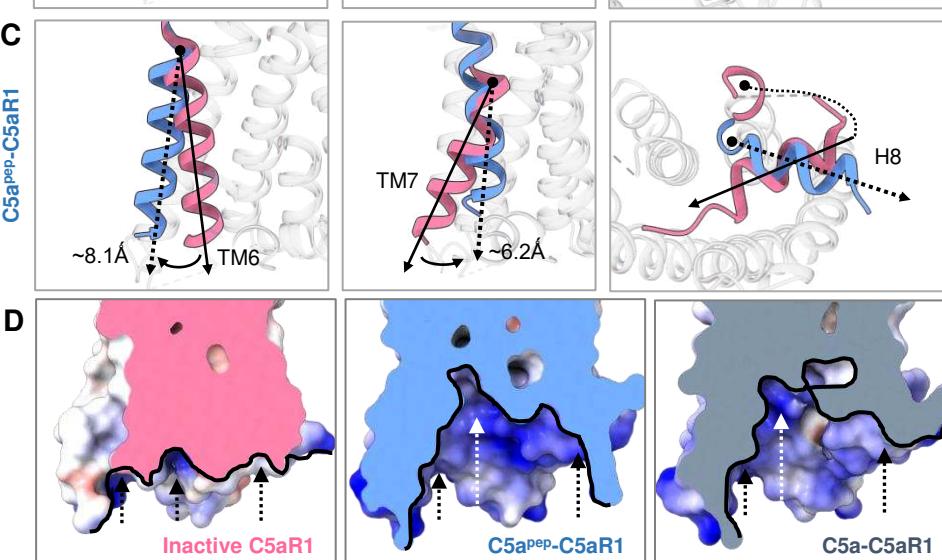
Figure 8. Overall interface of C5aR1-G-protein interaction

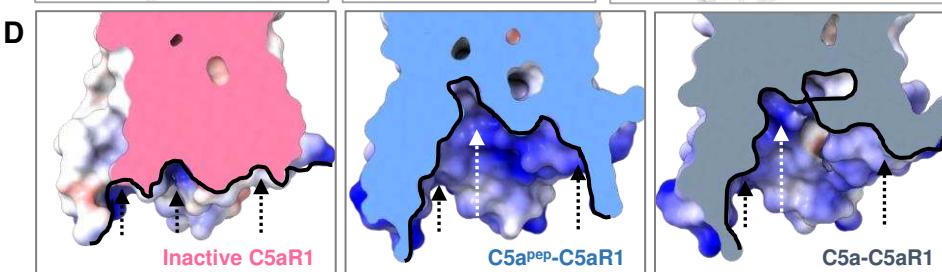

(A, B) Domain organization of heterotrimeric G-proteins in complex C5a/C5a^{pep}-C5aR1 respectively. **(C)** The C-terminal α5 helix of Gαo docks into the cytoplasmic core of C5aR1 in the C5a-C5aR1-Go structure. Key interactions between residues of G-protein with residues of TMs, ICL2 and ICL3 of C5a bound C5aR1. **(D)** The C-terminal α5 helix of Gαo docks into the cytoplasmic core of C5aR1 in the C5a^{pep}-C5aR1-Go structure. Key interactions between residues of G-protein with residues of TMs, ICL2 and ICL3 of C5a^{pep} bound C5aR1. **(E)** Comparative analysis of FPR2-Gi (PDB ID: 6OMM) with C5aR1-Go. The α5 helix of G-proteins inserts into a similar cavity (surface representation: top, hydrophobic surface representation: bottom) at the cytoplasmic face of the receptors. **(F)** Schematic representation of common residues of G-protein interacting with the residues of FPR2 and C5aR1. The respective residues mentioned are of C5aR1.

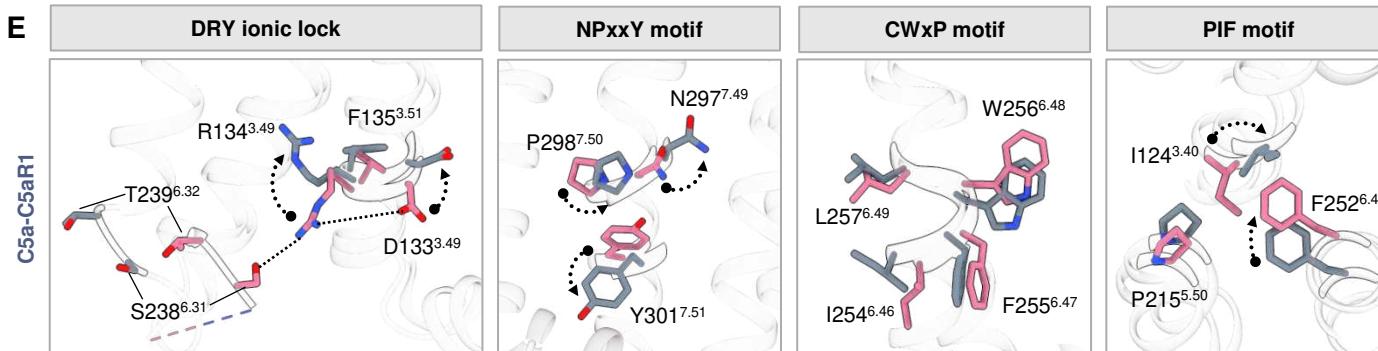
A

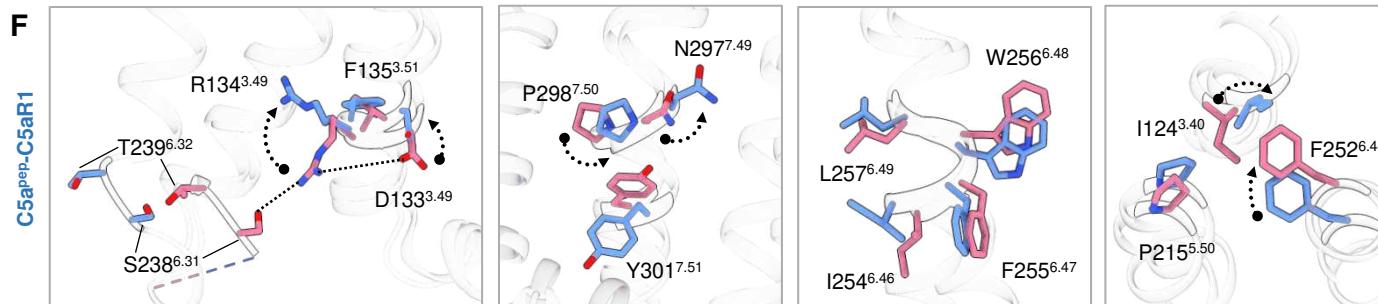

Inactive PMX53-C5aR1

C5a-C5aR1


C5a^{pep}-C5aR1


B


C


D

E

F

Figure 9. Activation-dependent conformational changes in C5aR1

(A) Structural alignment of the inactive (PMX53 bound C5aR1; PDB ID:6C1R) and active C5a and C5a^{pep} bound C5aR1. **(B, C)** Displacements of TM6, TM7 and helix 8 upon C5aR1 activation in C5a and C5a^{pep} bound C5aR1 structures respectively. **(D)** Opening of the cytoplasmic cavity in the active state structure of C5aR1. **(E, F)** Conformational changes in the conserved microswitches: (DRY(F), NPxxY, C(F)WxP(L), and PIF) upon C5aR1 activation.