

1 Multiparametric senescent cell phenotyping reveals CD24 osteolineage cells as targets of 2 senolytic therapy in the aged murine skeleton

3

4 Madison L. Doolittle^{1,2}, Dominik Saul^{1,2,3}, Japneet Kaur^{1,2}, Jennifer L. Rowsey^{1,2}, Stephanie J.
5 Vos^{1,2}, Kevin D. Pavelko⁴, Joshua N. Farr^{1,2}, David G. Monroe^{1,2}, and Sundeep Khosla, M.D.*^{1,2}

6

7 Affiliations:

⁸ ¹Division of Endocrinology, Diabetes and Metabolism, Mayo Clinic, Rochester, MN, 55905, USA.

⁹ ²Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA.

10 ³Department for Trauma and Reconstructive Surgery, BG Clinic, University of Tübingen, Germany

11 ⁴Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA.

12

13

14 *Correspondence: Sundeep Khosla, M.D., Guggenheim 7-11, Mayo Clinic College of Medicine,

15 200 First Street SW, Rochester, MN 55905; Tel: +1-507-255-6663; Email:

16 khosla.sundeep@mayo.edu

17

18 **ABSTRACT**

19 Senescence drives organismal aging, yet the deep characterization of senescent cells *in*
20 *vivo* remains incomplete. Here, we applied mass cytometry by time-of-flight (CyTOF) using
21 carefully validated antibodies to analyze senescent cells at single-cell resolution. We used
22 multiple criteria to identify senescent mesenchymal cells that were growth arrested and resistant
23 to apoptosis (p16+/Ki67-/BCL-2+; “p16KB” cells). These cells were highly enriched for
24 senescence-associated secretory phenotype (SASP) and DNA damage markers and were
25 strongly associated with age. p16KB cell percentages were also increased in CD24+ osteolineage
26 cells, which exhibited an inflammatory SASP in aged mice and were robustly cleared by both
27 genetic and pharmacologic senolytic therapies. Following isolation, CD24+ skeletal cells exhibited
28 growth arrest, SA- β gal positivity, and impaired osteogenesis *in vitro*. These studies thus provide
29 a new approach using multiplexed protein profiling by CyTOF to define senescent mesenchymal
30 cells *in vivo* and identify a highly inflammatory, senescent CD24+ osteolineage population cleared
31 by senolytics.

32

33 **Key Words:** skeleton, osteolineage, osteoblasts, osteocytes, aging, senescence, SASP, mass
34 cytometry

35

36 **INTRODUCTION**

37 Cellular senescence is a state of proliferative arrest that occurs due to the accumulation
38 of DNA damage and cellular stress¹⁻⁴. This is distinct from quiescence, as senescent cells can
39 acquire a senescence-associated secretory phenotype (SASP), consisting of pro-inflammatory
40 factors that have detrimental effects on cell and tissue function both locally and systemically⁵.
41 Senescent cells accumulate in the bone microenvironment with age⁶, and clearance of senescent
42 cells in old mice alleviates multiple age-related morbidities⁷⁻¹², increases lifespan¹³⁻¹⁵, and
43 preserves bone microarchitecture and strength¹⁶. Thus, senescent cell clearance represents a
44 new therapeutic approach to delay or alleviate age-related diseases.

45 The direct identification of cells undergoing senescence *in vivo* would allow for biological
46 age phenotyping, determination of senolytic efficacy, and identification of novel senolytic targets;
47 however, multiple technical obstacles prevent this process. The variable abundance and rarity of
48 tissue-resident senescent cells¹⁷ requires large sample sizes to provide sufficient signal and
49 statistical power¹⁸. Moreover, established markers for senescence (e.g., p16^{Ink4a}, p21^{Cip1}) are
50 expressed intracellularly and at low levels, typically restricting senescence phenotyping to whole-
51 tissue RNA analyses. This method of bulk phenotyping unfortunately lacks the resolution to
52 determine if these cell-cycle proteins are upregulated in the same cells exhibiting a SASP and
53 growth arrest, blurring the distinction between senescence and systemic inflammation.
54 Compounded by their expected heterogeneity¹⁹, it remains difficult to comprehensively study
55 senescent cells *in vivo* without increased cellular resolution.

56 Single-cell RNA sequencing technologies have made significant technological advances,
57 yet studies using this approach to investigate senescence present their own challenges. Though
58 overcome by meticulous PCR primer design, the genes encoding both p16^{Ink4a} (*Cdkn2a*) and
59 p21^{Cip1} (*Cdkn1a*) proteins generate multiple transcript variants that are challenging to segregate
60 through standard single-cell transcriptomic libraries; *Cdkn2a* also encodes p19^{Arf} (p14^{Arf} in
61 humans), a protein with separate functions and opposing effects on senescence to p16^{Ink4a} 20-22,

62 and *Cdkn1a* has multiple variants that associate with aging to varying degrees²³. Moreover,
63 discrepancies between mRNA and protein expression have been observed for key senescence
64 markers, including p16^{Ink4a}²⁴, which is compounded by the effects of senescence on translation²⁵
65 and proteostasis²⁶. Therefore, single-cell techniques leveraging multiplexed protein profiling to
66 assess p16 or p21 proteins, as well as other properties of senescent cells (e.g., the SASP, growth
67 arrest, apoptosis resistance), would potentially be a significant advance for studying the
68 fundamental biology of senescence.

69 In the present study we leverage the power of mass cytometry by time-of-flight (CyTOF)²⁷
70 to define, at the single-cell level, mesenchymal senescent cells *in vivo*. Specifically, rather than
71 relying principally on p16 or p21 expression, we used multiple criteria to define senescent cells.
72 Moreover, given the inherent biological variability of senescent cells with aging²⁸, we used a large
73 sample size of mice across all experiments (n=88), assessed senescent cell burden in established
74 skeletal cell populations, and tested their susceptibility to senolytic clearance through either
75 genetic or pharmacologic approaches. Findings by CyTOF were supported by single cell RNA-
76 sequencing (scRNA-seq) and *in vitro* phenotyping. Collectively, our studies establish a robust
77 approach to define senescent mesenchymal cells *in vivo* using CyTOF, provide a detailed map of
78 aging- and senolytic-induced alterations in mesenchymal cells in the murine bone
79 microenvironment, and identify specific osteolineage populations that are highly inflammatory,
80 senescent using rigorous criteria, and cleared by senolytics.

81 **RESULTS**

82 **Development and validation of a senescence CyTOF antibody panel**

83 We constructed and validated a comprehensive CyTOF antibody panel to include markers
84 for both cell identity and senescent phenotype (Table 1). A defining characteristic of senescent
85 cells is expression of cell cycle inhibitors, in particular p16 or p21²⁹, so we carefully validated
86 antibodies to these proteins for use in CyTOF. Due to concerns regarding the specificity of
87 antibodies to mouse p16, we tested 3 separate commercial antibodies using an *in vitro* workflow
88 (Fig. 1A-C). Mouse p16 was expressed in human U2OS cells through vector transfection
89 alongside an empty vector control. While some antibodies demonstrated high background and
90 limited positive signal by CyTOF, one antibody in particular provided an excellent signal-to-noise
91 ratio (Fig. 1C) and was therefore selected for the panel. Notably, this antibody has been used in
92 other senescence studies for flow or mass cytometry^{30,31}. A similar process was followed for
93 antibodies targeting several additional antigens, including p21 (Extended Data Fig. 1A-D).

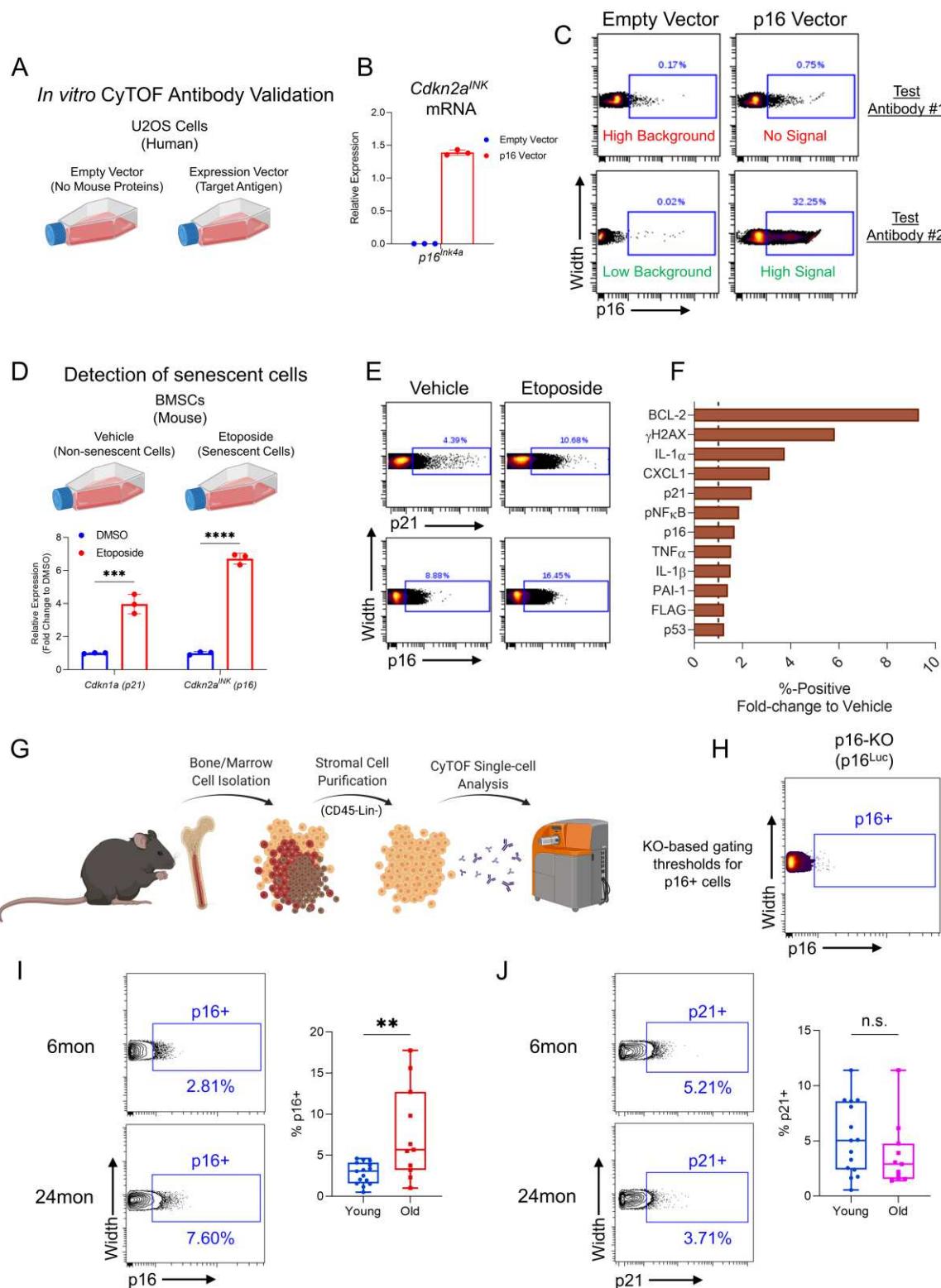
94 To validate our senescence/SASP antibodies and confirm our technical ability to process,
95 stain, and detect senescent cells, our panel was tested on etoposide-induced senescent mouse
96 bone marrow stromal cells (BMSCs) (Fig. 1D). Compared to non-senescent BMSCs, senescent
97 BMSCs demonstrated an upregulation of cells positive for p16, p21, and a majority of our
98 senescence/SASP markers by CyTOF (Fig. 1E, F). We also optimized our single-cell suspension
99 collection protocol from mouse bone and marrow: as shown by others^{32,33}, marrow digestion was
100 optimized to release high yields of non-hematopoietic cells from marrow stroma (Extended Data
101 Fig. 2A, B). Additionally, bone tissue digestion was optimized to ensure release of both early
102 (Runx2+, Osterix+) and late (ALPL+, Osteocalcin+) osteolineage cells (Extended Data Fig. 2C-
103 F), which also assisted in validating our osteoblast lineage cell antibodies^{34,35}.

104

105

106 **Table 1: CyTOF Antibody Panel and Validations.** Antibodies used in the CyTOF panel were
 107 commercially validated for CyTOF/flow cytometry and/or validated in-house using several
 108 different approaches.

			Commercial Validation		In-House Validation		
Identification	Marker	Metal Conjugation	CyTOF	Flow Cytometry	Expression Construct	Etoposide-Induced Senescence	Digested Bone Samples
Hematopoietic	CD45	89Y					
Perivascular	CD146	141Pr					
Bone Marrow Stromal Cells (BMSCs)	LeptinR	146Nd					
	Nestin	168Er					
	Sca-1	169Tm					
	CD24	142Nd					
	CD140a / PDGFR α	148Nd					
	SDF-1 / CXCL12	144Nd					
	Itga11 / OsteolectinR	156Gd					
	CD200	152Sm					
	CD29	158Gd					
Osteoblast	Runx2	147Sm					
	SP7	151Eu					
	ALPL	154Sm					
	OCN	111Cd					
Osteocyte	Dmp1	174Yb					
	Podoplanin	143Nd					
	Sclerostin	166Er					
Adipocyte	PPAR γ	153Eu					
	Adiponectin	170Er					
Transgene	FLAG	164Dy					
SASP	MCP-1	145Nd					
	TNF α	176Yb					
	PAI-1	155Gd					
	IL-6	116Cd					
	IL-1 α	149Sm					
	IL-1 β	162Dy					
	CXCL1	160Gd					
	pNFkB	167Er					
Senescence	CENP-B	171Yb					
	p21	159Tb					
	p16	175Lu					
	p53	110Cd					
DNA Damage	yH2A-X	173Yb					
	pATM	173Yb					
Anti-Apoptosis	Bcl-2	112Cd					
Proliferation	Ki67	106Cd					


109

110 We next applied our CyTOF antibody panel to freshly isolated bone and marrow
111 mesenchymal cells from *INK-ATTAC* mice: a transgenic model with an inducible caspase 8
112 cassette driven by the *p16^{Ink4a}* promoter, allowing for selective clearance of senescent cells
113 through treatment with AP20187 (AP)¹². Using this approach, we could robustly compare cellular
114 alterations resulting from both aging and senolytic clearance within the same mouse strain;
115 accordingly, we collected a total of 40 mice in these groups (n=15 “Young” [6-month], n=12 “Old”
116 [24-month] + vehicle, and n=13 Old [24-month] + AP). We applied our antibody panel to single-
117 cell suspensions of non-immune (Lin- [CD5, CD45R (B220), CD11b, Gr-1 (Ly-6G/C), Ly6B.2 and
118 Ter-119]) and non-hematopoietic (CD45-) stromal skeletal cells (Fig. 1G, see Extended Data Fig.
119 2G for gating strategy).

120 Using identically processed cells from p16 knock-out mice³⁶ as a negative control (Fig.
121 1H), we identified p16+ mesenchymal cells from both young and old mice (Fig. 1I). We emphasize
122 that our identification of p16+ cells *in vivo* by CyTOF utilized an antibody that specifically detected
123 the mouse p16 protein in human cells expressing the *p16^{Ink4a}* construct (Fig. 1C), demonstrated
124 an increased signal for p16+ cells *in vitro* following etoposide treatment (Fig. 1E), and was
125 thresholded on p16 knock-out cells (Fig. 1H). It is also important to note that the validation of this
126 antibody at this point is only for single-cell CyTOF and other uses (e.g., immunohistochemistry,
127 etc.) would require independent validation of this antibody for that specific purpose. Using this
128 antibody, we found that p16+ cells were more abundant with age, expanding from 2.81% ± 1.32%
129 to 7.60% ± 5.60% (P = 0.004) of the total cell population from 6 to 24 months of age, respectively
130 (Fig. 1I). In contrast, the prevalence of p21+ mesenchymal cells did not increase with age in the
131 bone microenvironment (Fig. 1J; 5.21% ± 3.27% in young, 3.71% ± 2.96% in old [P = 0.241]).

132

133

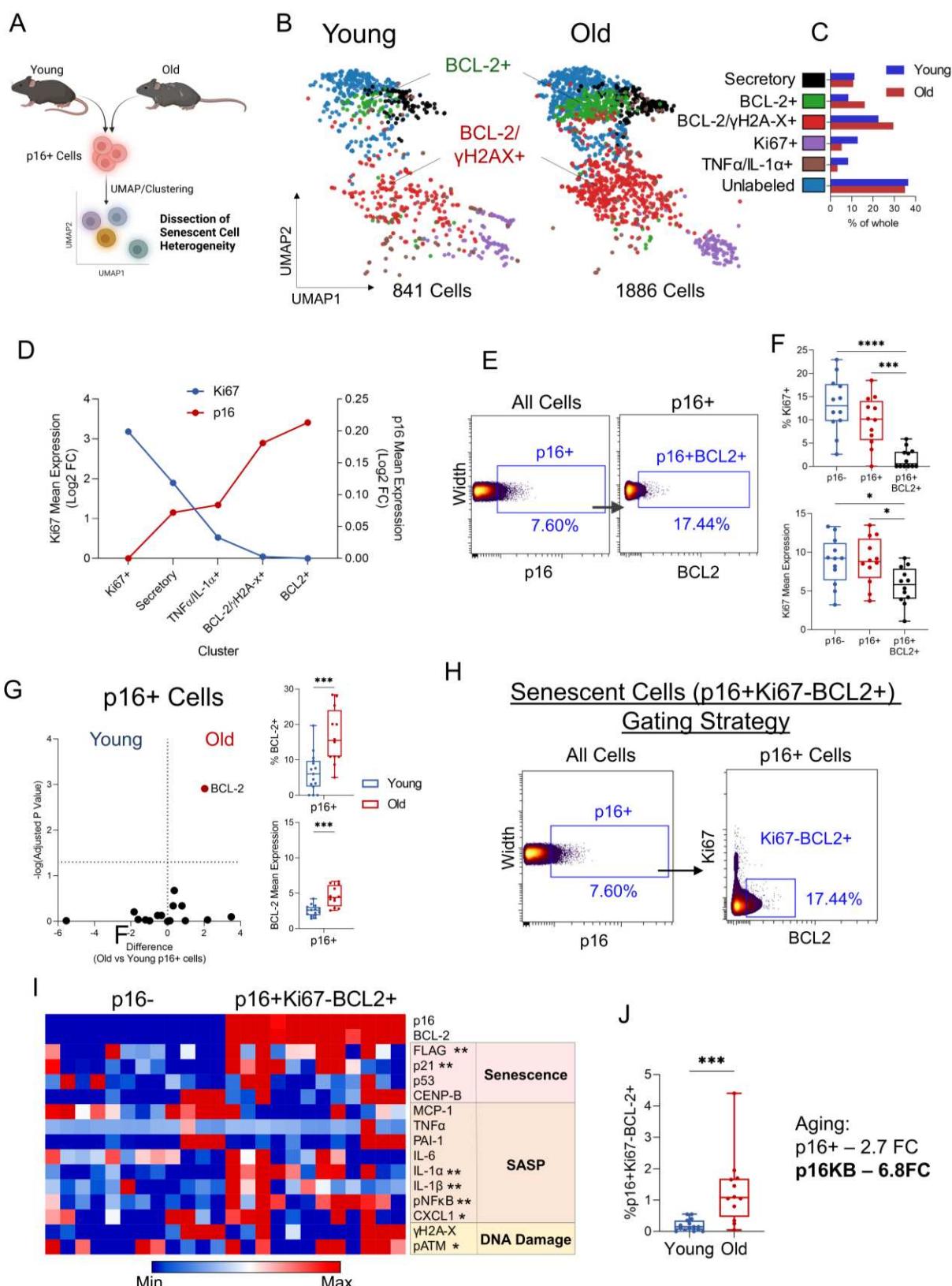
134 **Figure 1. Validation of antibodies and detection of senescent cells by CyTOF.** (A)

135 Experimental workflow of single mouse protein expression in U2OS cells for the testing of CyTOF

136 antibodies; (B) qPCR analysis confirming upregulated mouse *p16^{Ink4a}* mRNA (*Cdkn2a*) after

137 expression vector transfection; (C) CyTOF dot plots of expression samples testing different p16
138 antibodies, demonstrating outcomes of both failed (antibody #1) and successful (antibody #2)
139 tests; (D) Schematic of testing senescence-specific CyTOF antibodies using etoposide-treated
140 mouse BMSCs with qPCR confirmation of upregulated *p16^{Ink4a}* (*Cdkn2a^{NK}*) and *p21^{Cip1}* (*Cdkn1a*)
141 transcripts; (E) CyTOF plots of p16 and p21 protein expression, demonstrating increased percent-
142 positive cells with etoposide treatment; (F) Fold-change of percent-positive values for each of the
143 senescence panel markers in etoposide-treated cells, where dotted line represents values from
144 vehicle. (G) Schematic of bone and marrow mesenchymal cell isolation and CyTOF workflow; (H)
145 Gating strategy for p16+ cells using similarly processed cells from p16-null mice as a negative
146 control (I) Quantification of %p16+ and (J) %p21+ cells in young and old mice; ***p<0.001,
147 ****p<0.0001; (D) Multiple t tests with Holm-Sidak Correction. (I, J) Mann-Whitney test.
148

149 **Single-cell specification of senescent mesenchymal cells in bone and marrow**


150 Although found to be associated with age, p16 positivity can also be a characteristic of
151 non-senescent cells³⁷⁻⁴⁰, and thus in isolation may not identify a pure population of truly senescent
152 cells. Therefore, to define additional markers uniquely associated with age-induced senescent
153 cells, we performed multidimensional clustering of p16+ mesenchymal cells from young and aged
154 mice using all markers in our senescence panel (Fig. 2A, Extended Data Fig. 3A). We identified
155 considerable cellular heterogeneity, with p16+ cells segregating into 6 unique clusters defined by
156 expression of BCL-2, Ki67, γH2A-X, or other inflammatory markers, along with an unlabeled
157 cluster (Fig. 2B). Across aging, the BCL-2+ and BCL-2+/γH2A-X+ populations increased in
158 prevalence, while the Ki67+ populations were reduced (Fig. 2C). Similar to recent findings using
159 highly sensitive *p16^{Ink4a}*-reporter mice (INKBRITE)³⁷, we found an inverse relationship between
160 Ki67 and p16 expression (Extended Data Fig. 3B), which also revealed that clusters both high in
161 p16 and low in Ki67 were defined by expression of BCL-2, a major regulator of apoptosis
162 resistance⁴¹ (Fig. 2D). Fig. 2D also clearly demonstrates that as p16 expression increased across
163 the clusters (red line), Ki67 expression concurrently decreased (blue line). We then performed
164 manual gating on our samples and found that the BCL2+ subset of p16+ cells was inherently
165 reduced in both Ki67 expression and Ki67+ cells (Fig. 2E, F), with nearly 98% of p16+BCL2+ cells
166 being Ki67- (Extended Data Fig. 3C). Across aging, we found that BCL-2 was the only factor
167 clearly upregulated in old versus young p16+ cells (1.8-fold, adj. p=0.0012; Fig. 2G); this finding

168 is entirely consistent with extensive literature demonstrating upregulation of BCL-2 anti-apoptosis
169 pathways in senescent cells⁴²⁻⁴⁴.

170 Based on this data, we defined a mesenchymal senescent cell population at the single
171 cell level as being p16+ / Ki67- / BCL-2+ (hereafter referred to as “p16KB” cells) (Fig. 2H). To
172 support this, we found that p16KB cells exhibited upregulated expression of numerous markers
173 for senescence (p21), SASP (IL-1 α , IL1 β , pNF κ B, CXCL1) and DNA damage (pATM) (Fig. 2I).
174 Moreover, p16KB bone and marrow cells were highly age-associated, making up only <0.2% of
175 all cells in young mice, yet with a fold-change of 6.8 across aging (Fig. 2J) (as compared to total
176 p16+ cells: 2.81% in young, 2.7-fold with age, Fig. 1I).

177 Similar to p16, BCL-2+ subsetting of p21+ cells identified a population with reduced Ki67
178 positivity compared to total p21+ cells (Extended Data Fig. 3C). Analogous p21+/Ki67-/BCL-2+
179 (“p21KB cells”) were identified (Extended Data Fig. 3D), which displayed a robust SASP and DNA
180 damage expression profile (Extended Data Fig. 3E). Interestingly, despite no age-related increase
181 in total p21+ cells, p21KB cells did increase significantly in old mice (Extended Data Fig. 3F), thus
182 identifying an age-associated p21+ subpopulation. However, p16KB cells greatly outnumbered
183 p21KB cells in old mice and exhibited a more dramatic upregulation with age (Extended Data Fig
184 3G). Upon further investigation, we found minimal overlap between p16KB and p21KB cells
185 (0.04% of total cells in young, 0.10% in old; Extended Data Fig. 3H). To test the validity of both
186 p16KB and p21KB results, we replicated this CyTOF analysis in an additional cohort of young (6-
187 month) and aged (24-month) C57BL/6N mice (wild-type, rather than *INK-ATTAC*) (Extended Data
188 Fig. 4A). We found our observations to be robustly conserved, revealing similar age-associated
189 patterns for total p16+ and p21+ cells, with BCL-2 subsetting identifying growth-arrested and age-
190 associated subpopulations for each (Extended Data Fig. 4B-D).

191

192 **Figure 2: BCL-2 expression defines p16+ cells with senescent characteristics.** (A)
193 Schematic of multidimensional p16+ senescent cell analysis workflow; (B) UMAP visualization

194 and FlowSOM clustering of p16+ cells from young and old mice with (C) bar graphs indicating
195 percent-of-whole cluster abundance changes. (D) FlowSOM clusters ranked by descending Ki67
196 mean expression plotted against p16 mean expression (Log2 Fold-Change). (E) Gating strategy
197 for p16+BCL2+ cells and (F) quantification of %Ki67+ and Ki67 mean expression alongside p16-
198 and total p16+ cells. (G) Volcano plots of age-related changes in mean senescence marker
199 expression within p16+ cells and quantification of % BCL-2+ cells and mean BCL-2 expression
200 within all p16+ cells with age; (H) Gating strategy for “p16KB” cells; (I) Heatmap representation
201 of protein expression between p16KB cells and non-senescent p16- cells, with asterisks indicating
202 significance. (J) Quantification of p16KB cells with age and numerical comparison to total p16+
203 cells. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. (F, G) Multiple t tests with Holm-Sidak
204 Correction. (G, I, J) Mann-Whitney test.
205

206 Collectively, using single cell mass cytometry, we thus define p16KB and p21KB
207 mesenchymal cells as being senescent, as these populations fulfill virtually all of the required
208 criteria for senescent cells⁴⁵: increased p16 or p21 protein expression, growth arrest, upregulation
209 of anti-apoptotic pathways, upregulation of SASP and DNA damage markers, and near absence
210 in youth with a marked increase with aging. Moreover, we note that in addition to our use of
211 carefully validated antibodies in the CyTOF analysis, our orthogonal approach to identify p16KB
212 and p21KB cells does not rely solely on the specificity of any single antibody, but rather uses a
213 combinatorial approach, making it extremely unlikely that the p16KB or p21KB senescent cells
214 represent a false positive signal.

215

216 **Reconstruction of bone and marrow mesenchymal populations through CyTOF**

217 Next, in order to assess which mesenchymal skeletal cell populations harbored senescent
218 cells with age, we established our bone-resident clusters. Using t-SNE visualization and
219 FlowSOM cell clustering, we identified 11 populations of BMSCs (also termed skeletal stem cells
220 [SSCs]) and differentiated cell types with expression profiles consistent with the established
221 literature (Fig. 3A, B; see Table 2 for a detailed description of defining markers for each
222 population). These included LeptinR+ BMSCs⁴⁶, Sca-1+/PDGFR α + BMSCs (also termed PaS
223 cells)⁴⁷⁻⁴⁹, perivascular BMSCs^{50,51}, and Nestin+ pericytes⁵². Other characteristics of these cells
224 have been established by recent studies, such as expression of CXCL12⁵³ and OsteolectinR

225 (*Itga11*)⁵⁴ in LeptinR+ BMSCs, Adiponectin expression in perivascular and stromal cells⁵⁵, and
226 PDPN expression in Sca-1/PDGFR α + BMSCs^{49,56}. Additional clusters representing committed
227 cell types included early osteoblasts (Runx2+/Osterix+)^{57,58}, alkaline phosphatase (ALPL)+
228 osteolineage cells (Runx2+/ALPL+)^{59,60}, late osteoblasts/osteocytes
229 (Runx2+/Osterix+/Sclerostin+; note that our cell isolation protocol included a collagenase
230 digestion thereby releasing at least a subset of osteocytic cells)⁶¹ and pre-adipocytes
231 (Pparg+)^{62,63}. Other populations represented less well-defined populations, including CD24^{high/low}
232 osteolineage (CD24+/Runx2+/Osterix+) and CD24+/Osterix+ clusters. CD24 has previously been
233 linked to osteogenesis⁶⁴, while conversely also shown to mark pluripotent BMSCs^{65,66}, particularly
234 when co-expressed with Sca-1⁶⁷ or CD200; however, these CD24 clusters lacked co-expression
235 of these stem-like markers (Extended Data Fig. 5A, B) indicating a distinct, more committed
236 osteoblast lineage population.

237 We next evaluated our CyTOF panel for its ability to delineate the various stages of
238 mesenchymal cell differentiation. Diffusion mapping displayed perivascular BMSCs and Nestin+
239 pericytes on one end of the lineage continuum, and Sca-1/PDGFR α + BMSCs on another,
240 converging to form several committed osteogenic clusters (Extended Data Fig. 5C). This is
241 consistent with many studies that demonstrate the multipotency of these populations and indicate
242 multiple sources of osteolineage cells⁶⁸. To determine directionality, we performed pseudotime
243 analysis and trajectory inference, seeking to recapitulate the dynamics of *in vivo* cell
244 differentiation. The progression of our clusters was consistent with our current understanding of
245 biological mesenchymal differentiation of skeletal stem cells (Extended Data Fig. 5D, E): BMSC
246 clusters are present early, then leading to early osteoblasts, ALPL+ osteolineage, and ultimately
247 late osteoblast/osteocyte clusters. Interestingly, it appeared that the CD24+ clusters formed their
248 own bifurcation from the typical differentiation of BMSCs to late osteoblasts and osteocytes
249 (Extended Data Fig. 5D) and the CD24+ populations appeared to be middle (CD24^{low/high}
250 osteolineage [CD24+/Runx2+/Osterix+]) to later (CD24+/Osterix+) in the pseudotime progression

251 (Extended Data Fig. 5E), consistent with their lack of expression of stem cell markers such as
252 Sca-1 or CD200 (Extended Data Fig. 5A, B).

253 **Table 2: Defining markers for CyTOF cluster identification.** Each cluster was defined by
254 expression of specific defining markers and additional markers as characterized by previous
255 studies in the literature.

256

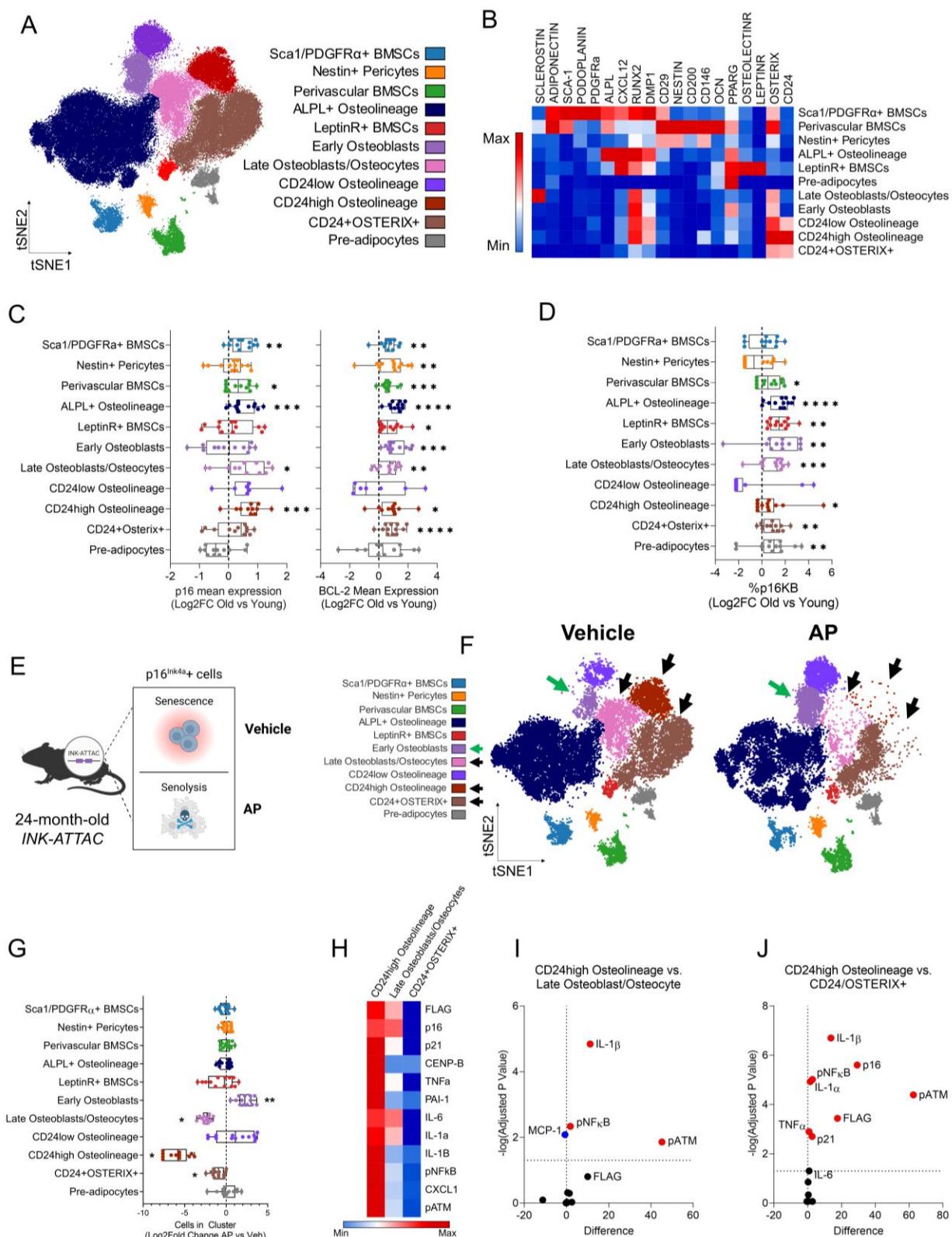
Cluster name	Defining Markers	References	Additional Markers
Sca-1/PDGFR α + BMSCs	Sca-1 PDGFR α	47 48	PDPN ^{49,56} CXCL12 ⁶⁹ Adiponectin ^{55,70} Runx2 ⁷¹ CD29 ⁴⁷ Dmp1 ⁷² ALPL ⁷³
Nestin+ Pericytes	Nestin CD146	52	CD29 ⁷⁴
Perivascular BMSCs	CD146 Sca-1 CD200 CD29	50,51	Adiponectin ^{55,70} OCN ⁷² Osterix ^{75,76}
ALPL+ Osteolineage	ALPL Runx2	59,60	Dmp1 CXCL12 ^{69,77}
LeptinR+ BMSCs	LeptinR	46,50	OsteolectinR ⁵⁴ CXCL12 ^{46,78} Runx2 ⁷⁹ Pparg ⁸⁰
Early Osteoblasts	Runx2 Osterix	57,58	N/A
Late Osteoblasts / Osteocytes	Sclerostin Osterix Runx2	61,81	Dmp1 ⁸²
CD24low Osteolineage	CD24(low) Osterix Runx2	64-66	N/A
CD24high Osteolineage	CD24(high) Osterix Runx2		
CD24+/OSTERIX+	CD24 Osterix		N/A
Pre-adipocytes	Pparg	62	N/A

257

258 To further validate our CyTOF clusters, we performed single-cell RNA-sequencing
259 (scRNA-seq) on a similarly prepared sample of bone and marrow cells from aged mice (Extended
260 Data Fig. 6A). After multidimensional analysis, we found that skeletal cell populations identified

261 through single-cell transcriptomics were entirely consistent with our CyTOF clusters (Extended
262 Data Fig. 6B). Specifically, the BMSC populations (Sca-1/Pdgfra+, Perivascular, and Nestin+
263 Pericytes) and CD24 osteolineage populations (*Cd24a*, *Runx2*) appeared well conserved, in
264 addition to the distribution of expression for certain markers (e.g. *Cxcl12*) (Extended Data Fig.
265 6C). However, some markers were expressed at very low/undetectable levels (e.g. *Dmp1*, *Sp7*
266 [*Osterix*], *Sost*) preventing classification of late osteogenic clusters. Besides these limitations by
267 scRNA-seq, the overall population structure was comparable to that which we observed using
268 CyTOF, adding confidence that this proteomic approach provides accurate interpretations of the
269 bone microenvironment.

270


271 **Mature osteolineage populations harbor age-induced senescent cells**

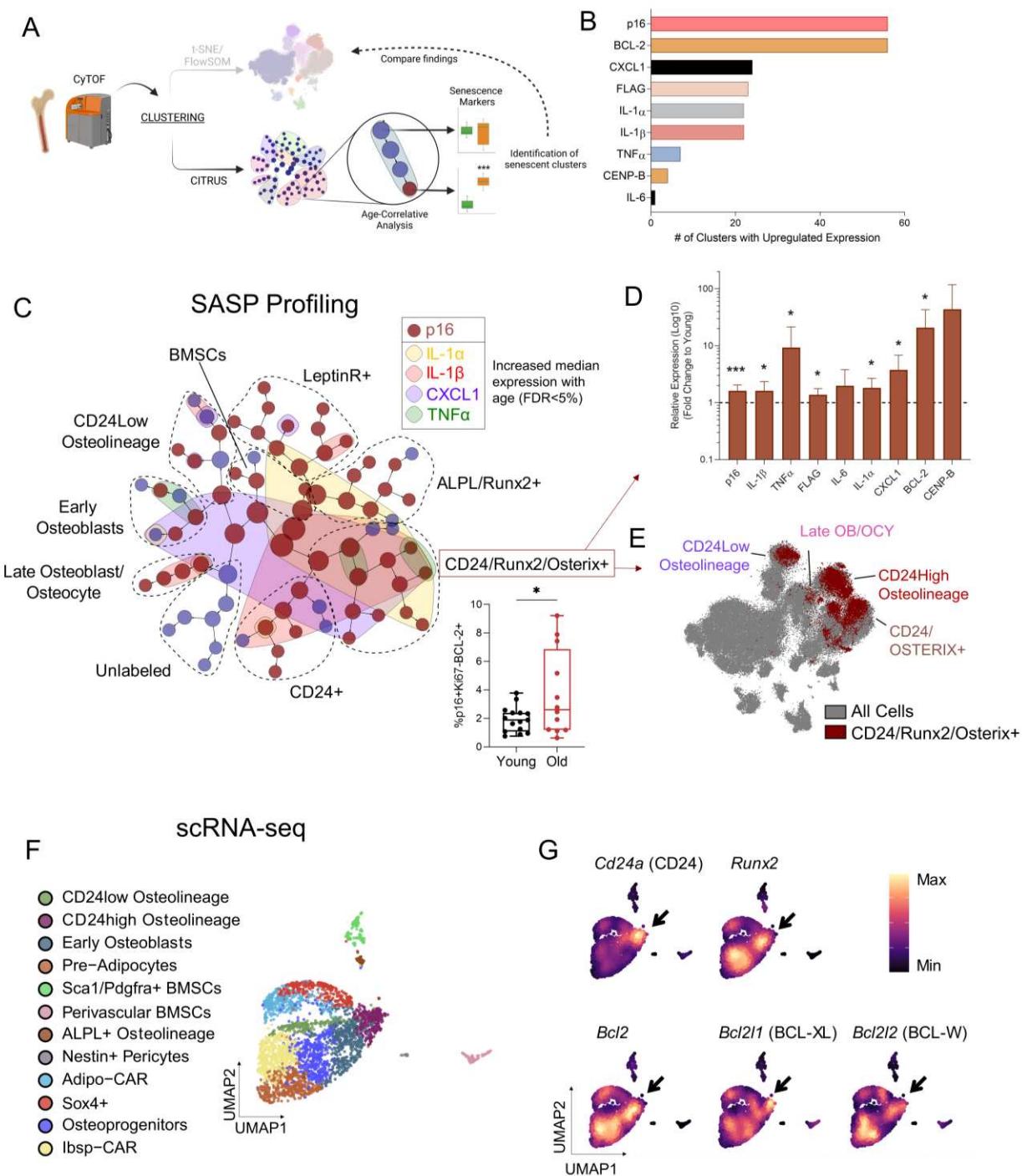
272 To identify mesenchymal populations affected by aging, we next examined senescence-
273 specific effects, focusing on p16KB senescent cells, as we have previously demonstrated that
274 clearing p16+ cells in *INK-ATTAC* mice prevents age-related bone loss, reduces bone resorption,
275 and increases bone formation¹⁶. We found that multiple clusters exhibited upregulation of p16
276 and/or BCL-2 expression with age (Fig. 3C), with many of these clusters exhibiting an expected
277 increase in the percentage of senescent p16KB cells with age (Fig. 3D).

278 We next tested if the above populations were those that are cleared in aged *INK-ATTAC*
279 mice (Fig. 3E; Extended Data Fig. 7A). Upon treatment with AP, cells in the late
280 osteoblast/osteocyte cluster were markedly reduced (Fig. 3F), which is consistent with our
281 previous data demonstrating a central role of osteocyte senescence with age^{6,16,83-85}. In addition
282 to this confirmatory result, we also uncovered that the CD24high Osteolineage population was
283 markedly reduced following AP treatment (Fig. 3F, G), along with a modest reduction in
284 CD24+Osterix+ cells. In addition to clearance of these clusters, the Early Osteoblast cluster
285 increased in number after AP treatment (Fig. 3F, G), suggesting that this is a newly replenished
286 osteogenic population that appears after the clearance of senescent cells. This is supported by

287 pseudotime analyses, which indicated that there is an emergence of cells that are early in the
288 differentiation continuum following clearance of p16+ senescent cells (Extended Data Fig. 7B).
289 This finding is entirely consistent with our previous work which demonstrated that AP treatment
290 in aged *INK-ATTAC* mice improved endosteal osteoblast numbers and bone formation rates¹⁶.
291 Finally, to support these findings we performed CITRUS analysis, which generates separately
292 stratified clusters from the original dataset to observe statistical differences, and independently
293 found downregulation of CD24+ clusters with AP treatment, along with an increase in Runx2+
294 and Runx2/Osterix+ early osteoblast clusters (Extended Data Fig. 7C).

295 Importantly, as noted above, we have previously demonstrated senescence within
296 osteocytes with age – and their clearance with senolytic therapy – through gene expression and
297 histological senescent phenotyping¹⁶. Entirely consistent with this, we now demonstrate
298 concomitant increases in p16 and BCL-2 expression (Fig 3C) and in %p16KB cells (Fig 3D) by
299 the late osteoblast/osteocyte cells, along with clearance of these cells following AP20187
300 treatment (Fig 3E-G). In addition, we identify new populations (CD24^{high} osteolineage
301 /CD24+Osterix+ cells) that also demonstrate increases in %p16KB cells with age (Fig 3C, D) and
302 are robust targets of senolytic clearance (Fig 3E-G). Interestingly, though, in aged mice, CD24^{high}
303 osteolineage cells displayed the highest expression levels of markers for senescence, SASP, and
304 DNA damage, with the CD24+Osterix+ cells being the lowest, and the late
305 osteoblast/osteolineage cells having intermediate levels of these markers (Fig. 3H-J). These data
306 thus reveal that CD24^{high} osteolineage cells exhibit a robust senescent and inflammatory profile
307 relative to other skeletal populations and - in addition to osteocytes, as previously reported¹⁶ -
308 these CD24^{high} osteolineage cells are key targets of p16-driven senolytic clearance.

309 **Figure 3: CD24^{high} osteolineage cells represent inflammatory senescent cells in old mice**
310 **targeted by genetic senolytic clearance.** (A) t-SNE visualization and FlowSOM clustering of
311 n=80,000 CD45-Lin- bone and marrow cells (n=40 INK-ATTAC mice [n=15 young, n=12 old +


312 vehicle, n=13 old + AP] – 2,000 cells sampled per mouse) analyzed by CyTOF. Cells are colored
313 by clustered population (see Table 1 for defining markers); (B) Heatmap representation of the 11
314 cell clusters and protein expression of identification markers; (C) Log2 fold-Change mean
315 expression of p16 or BCL-2 in each cluster with age. (D) Log2 fold-change of %p16KB cells in
316 each cluster across aging; (E) Schematic of p16+ senescent cell clearance in 24-month-old AP-
317 treated *INK-ATTAC* mice; (F) t-SNE plots of FlowSOM clusters of bone/bone marrow cells from
318 old vehicle- or AP-treated *INK-ATTAC* mice. Black arrows indicate cleared clusters while green
319 arrows indicate increased cluster abundance; (G) Quantification of cluster abundance changes
320 between vehicle- and AP-treated mice (Log2-fold change to vehicle); (H) Heatmap and (I, J)
321 volcano plots for statistical comparisons of senescence marker expression between cleared
322 clusters in vehicle-treated old mice. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001; (C, D) Mann-
323 Whitney test or Unpaired t test, as appropriate. (G, I, J) Multiple t tests with Holm-Sidak Correction.
324

325 **CD24 osteolineage populations exhibit a unique SASP profile with age**

326 To further investigate the senescent profile of these CD24+ osteolineage cells, we applied
327 CITRUS analysis and compared this to our established FlowSOM clusters (Fig. 4A). Consistent
328 with the findings noted above, we found that many clusters exhibited higher expression levels of
329 senescence/SASP proteins in old compared to young mice (FDR<5%) (Extended Data Fig. 7D).
330 Of these proteins, p16 and BCL-2 were upregulated in the largest number of clusters with age,
331 supporting their use as robust predictors of senescence (Fig. 4B). These factors were followed
332 closely by CXCL1, FLAG (detecting the *p16^{Ink4a}* promoter activity in the *INK-ATTAC* transgene)
333 and several interleukins (IL-6, IL-1 α , IL1 β). As observed previously, p21 was not found to be
334 differentially regulated with age by CITRUS.

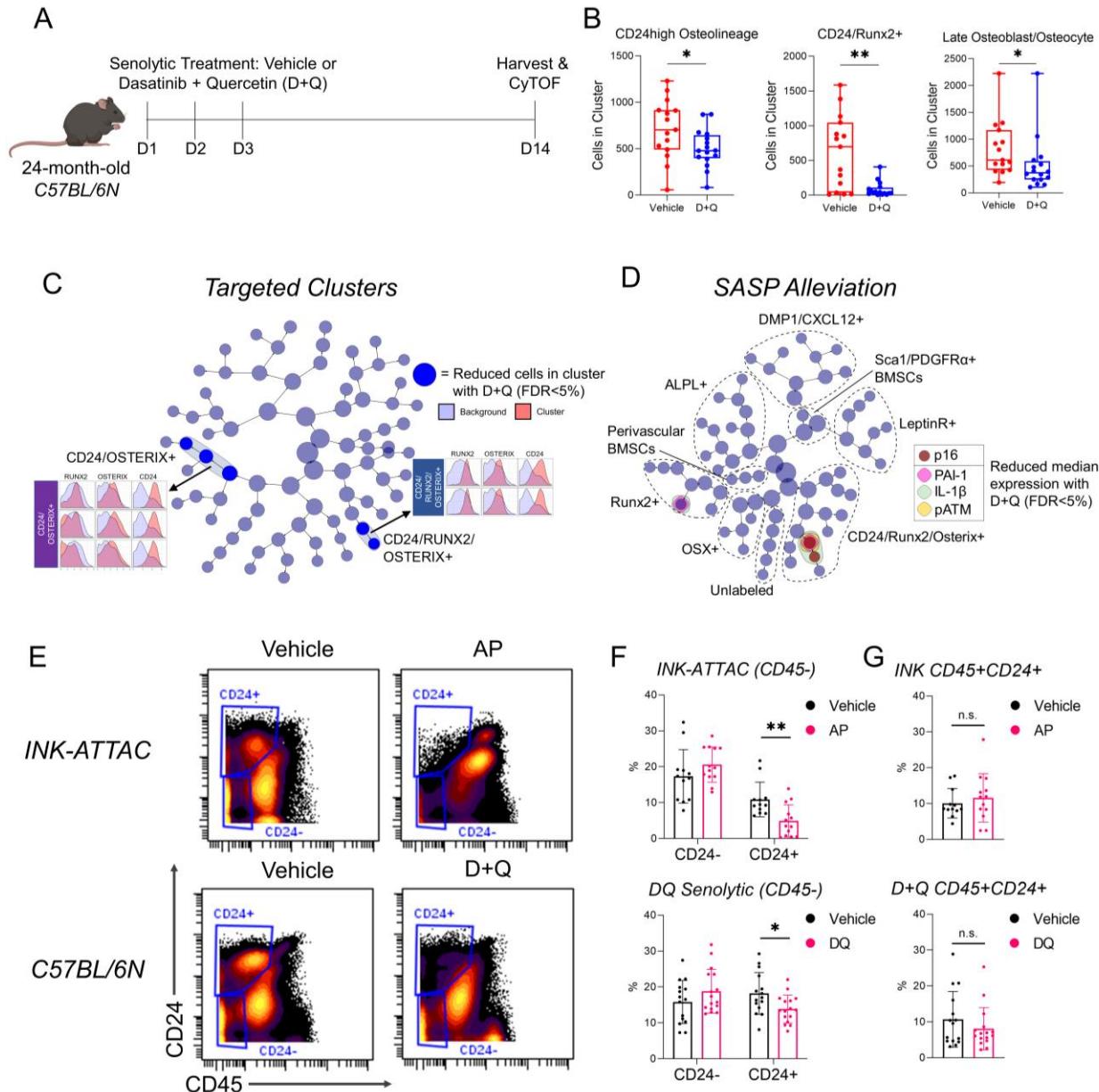
335 Among the clusters with increased p16 expression with age, cells expressing
336 CD24/Runx2/Osterix exhibited a unique upregulation of the most SASP inflammatory proteins,
337 including IL-1 α , IL1 β , CXCL1, and TNF α (Fig. 5C, D); these cells also exhibited robust
338 upregulation of BCL-2 and an increased percentage of p16KB cells with age (Fig. 4D). When
339 these CD24/Runx2/Osterix cells were overlaid with our original t-SNE plots, they were largely
340 contained within CD24+ osteolineage clusters, along with partial overlay in the late
341 osteoblast/osteocyte cluster (Fig. 4E). This independent CITRUS analysis thus strongly supports
342 our previous data demonstrating increased senescent cell burden in these clusters with age (Fig.
343 3C, D) and their clearance with AP (Fig. 3F).

344 We next investigated our scRNA-seq dataset, finding that CD24 osteolineage cells
345 (positive for *Cd24a* [CD24] and *Runx2*) strongly co-expressed not only *Bcl2*, but also other anti-
346 apoptotic genes *Bcl2l1* (BCL-XL) and *Bcl2l2* (BCL-W) (Fig.4F, G). This suggests that in addition
347 to their inflammatory profile, CD24 osteolineage cells are strongly resistant to apoptosis, perhaps
348 through several mechanisms. Collectively, we further establish that CD24 defines a senescent
349 osteolineage population exhibiting an expression profile enriched for SASP and apoptosis-
350 resistance factors in the aging bone microenvironment.

351 **Figure 4. CITRUS and scRNA-seq analyses.** (A) Schematic of CITRUS analysis workflow; (B) 352 Aging markers upregulated in the highest number of CITRUS clusters with age (FDR<5%); (C) 353 Senescence/SASP marker expression changes across aging overlaid on CITRUS plot (each 354 cluster is a cluster, grouped by cluster families dotted lines; see Figure S6A for identity marker 355 expression). Red clusters indicate upregulated p16 expression, while colored overlays indicate 356 upregulation in the corresponding SASP marker. All markers converge in 357 CD24+/Runx2+/Osterix+ clusters, indicating that this population exhibits the most widespread 358 age-related increase in SASP marker expression in bone/bone marrow. Box plot below 359 demonstrates an upregulation of %p16KB cells with age in this population. Red arrows point to

360 (D) quantified median expression of various SASP factors in the CD24+/Runx2+/Osterix+ clusters
361 with age and (E) overlay of the CD24+/Runx2+/Osterix+ cluster on original t-SNE plot with
362 FlowSOM clusters labeled; (F) UMAP visualization by scRNA-seq of n=3,362 clustered Lin-CD45-
363 cells from the digested bone and marrow of n=3 24-month untreated *INK-ATTAC* mice; CAR,
364 Cxcl12-abundant reticular; (G) Density plots of CD24 osteolineage markers and anti-apoptotic
365 factors (*Bcl2*, *Bcl2l1*, *Bcl2l2*). *p<0.05, ***p<0.001. (C) Mann-Whitney test. (D) Multiple t tests with
366 Holm-Sidak Correction.
367

368 **Pharmacological senolytic treatment also targets CD24^{high} Osteolineage cells**


369 The unique inflammatory profile of senescent CD24 osteolineage cells led us to test if they
370 are targeted not only by genetic but also by pharmacological senolytic treatment, which selectively
371 kills cells based on senescent cell anti-apoptotic pathways (SCAPs) rather than by activation of
372 transgenic caspase 8 in p16+ cells (as done in *INK-ATTAC* mice). Thus, we performed CyTOF
373 on aged *C57BL/6N* wild type mice treated with or without Dasatinib + Quercetin (D+Q) (Fig 5A):
374 a combination senolytic therapy that targets SCAPs and which we have previously shown to
375 reduce frailty and prevent bone loss in aged mice^{14,16,86}. Multidimensional analysis from this cohort
376 identified skeletal cell populations consistent with our *INK-ATTAC* cohort (Extended Data Fig. 8A,
377 B), and treatment with D+Q similarly targeted CD24^{high} Osteolineage, CD24+/Runx2+, and late
378 osteoblast/osteocyte clusters (Fig. 5B). Independently, with CITRUS analysis we found that D+Q
379 was more limited than the genetic *INK-ATTAC* model in its clearance, only targeting 5 clusters
380 overall (Fig. 5C). These clusters were all high in expression for CD24 and represented two
381 separate families of CD24+/Osterix+/Runx2+ and CD24+/Osterix+ clusters. In sequential
382 analyses, we found that D+Q reduced expression of p16, SASP factors PAI-1 and IL-1 β , and the
383 DNA damage marker pATM within CD24/Runx2/Osterix+ cells (Fig. 5D; Extended Data Fig. 8C).
384 This aligns with the established effectiveness of D+Q on senescent cells exhibiting DNA damage
385 and serpine (PAI) family proteins⁸⁶.

386 Due to the recurring presence of CD24 on senescent cell clusters, we next sought to
387 determine if this marker can be used to enrich for cells susceptible to senolytic clearance. Using
388 manual gating on our CyTOF data, we found that total CD45-CD24+ stromal cells were reduced

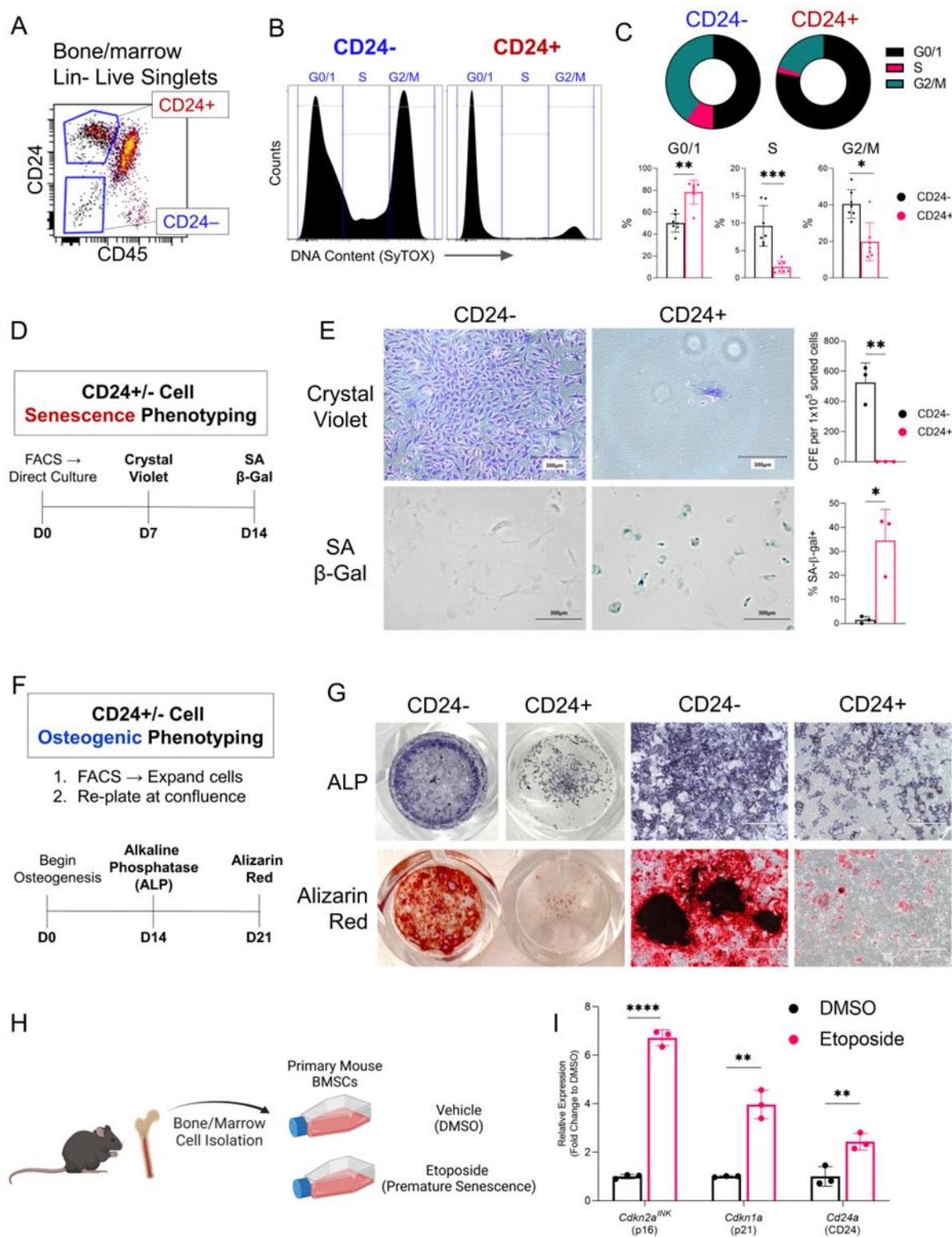
389 in both genetic (*INK-ATTAC*) and pharmacological (D+Q) methods of senolytic clearance, while
390 CD24– cells were unaffected (Fig. 5E, F). Importantly, CD24+ cells that were CD45+ were not
391 cleared (Fig. 5G), demonstrating senolytic specificity for non-hematopoietic, mesenchymal CD24+
392 cells. Overall, we establish that CD24 is a consistent marker on aged skeletal senescent cells that
393 are cleared by both genetic and pharmacologic senolytic therapy.

394

395

396 **Figure 5. Pharmacologic senolytic therapy targets CD24+ osteolineage cells in aged mice.**
397 (A) Experimental design of pharmacological senolytic treatment of 24-month-old C57BL/6N mice
398 with Dasatinib + Quercetin (D+Q). Mice were treated for 3 consecutive days, then harvested at
399 14 days (indicated by dashes); (B) Quantified cell abundance changes with D+Q treatment in
400 clusters similarly targeted in *INK-ATTAC* mice (See Extended Figure 8A, B for cluster definitions);
401 (C, D) CITRUS analysis of cluster abundance (C) and median expression changes (D) between
402 vehicle- and D+Q-treated mice (FDR<5%). (C) Cleared clusters, marked by blue, are defined by
403 high CD24, Osterix, and/or Runx2 expression, as shown by histograms. (D) Clusters with reduced
404 median expression are colored by their respective marker. Cluster families are marked by dotted
405 lines (See Extended Figure 8C for defining markers); (E) Gating strategy for CD45-CD24+ and –
406 populations from all cells in CyTOF data from *INK-ATTAC* mice treated with vehicle or AP, and
407 C57BL/6N mice treated with vehicle or D+Q; (F) Quantification of cell population percentages
408 demonstrate both senolytic treatments clear CD45-CD24+ cells, but not CD45-CD24- or (G)

409 CD45+CD24+ cells. * $p<0.05$, ** $p<0.01$; (B, G) Mann-Whitney or Unpaired t test, as appropriate;
410 (F) Multiple t tests with Holm-Sidak Correction.
411


412 **CD24+ Cells Display Functional Characteristics of Senescence**

413 To further test if CD24+ skeletal cells are enriched for growth arrested senescent cells,
414 we isolated non-hematopoietic (CD45-/Lin-) CD24+ and CD24- cells from the digested bone and
415 marrow of aged mice for *in vitro* phenotyping (Fig. 6A; See Extended Data Fig. 8D for gating
416 strategy). Cell cycle analyses revealed that CD24+ cells were largely growth arrested, with a
417 larger proportion of cells in the G0/1 phase and less in the G2/M phase than CD24- cells (Fig. 6B,
418 C). When placed in culture, CD24+ cells exhibited markedly reduced colony forming efficiency
419 (CFE) after 7 days, while CD24- cells grew rapidly (Fig. 6D-E). CD24+ cells generated very small
420 colonies, typically with only a few cells, demonstrating impaired stemness and proliferative
421 capabilities. Moreover, CD24+ cells exhibited spontaneous senescence, with up to 40% of cells
422 staining positive for senescence-associated β -galactosidase (SA- β -gal) after only 14 days in
423 culture, while CD24- cells continued to proliferate (Fig. 6E).

424 Although co-expressed with osteogenic markers in both scRNA-seq and CyTOF data, it
425 remains unclear if CD24+ cells have osteogenic capabilities. Thus, we induced osteogenesis in
426 both CD24+ and CD24- cells (Fig. 6F), finding that CD24+ cells have limited osteogenic potential
427 (Fig. 6G). CD24- cells underwent robust osteogenesis, staining strongly for alkaline phosphatase
428 (ALP), a measure of osteoblast differentiation, and Alizarin Red, which stains mineralized
429 nodules. In comparison, CD24+ cells exhibited impaired ALP and Alizarin Red staining, even with
430 sufficient cell numbers (Fig. 6G). Interestingly, these *in vitro* findings are consistent with the *in*
431 *vivo* pseudotime analysis in Extended Data Fig. 5D which shows that the CD24+ osteolineage
432 cells formed their own bifurcation distinct from the typical differentiation of BMSCs to late
433 osteoblasts and osteocytes.

434 In various cancers, CD24 serves as a stress marker indicative of tumor burden, rather
435 than a cell-specific marker⁸⁷⁻⁸⁹, which led us to test if CD24 may serve a similar role in senescence.

436 We found that CD24 is induced in the senescence program, as *in vitro* etoposide-induced
437 senescence of BMSCs led to elevated *Cd24a* expression, alongside *Cdkn2a*^{INK} (p16) and *Cdkn1a*
438 (p21) (Fig. 6H-I). Taken together, these data demonstrate that CD24+ stromal cells exhibit
439 functional characteristics of senescence and impaired osteogenesis, and CD24 may label cells
440 prone to senescence and senolytic clearance due to its upregulation during the onset of
441 senescence.

442

443 **Figure 6. Isolated CD24+ bone stromal cells exhibit functional characteristics of**
 444 **senescence and impaired osteogenesis.** (A) Gating strategy for FACS isolation of CD24+ and

445 – skeletal stromal cells from Lin-depleted bone/marrow cell suspensions; (B) Gating strategy and

446 (C) quantification of cell cycle analysis of CD24+/- cells (n=7 mice); (D) Outline of *in vitro*

447 senescence phenotyping of CD24+/- cells; (E) Brightfield images and quantification of colony
448 formation efficiency (CFE) assay and SA- β -gal staining of CD24- and CD24+ cells after 7 or 14
449 days in culture, respectively (n=3 mice); (F) Outline of osteoblast differentiation assays of CD24+/-
450 cells; (G) CD24- and + cell monolayers stained with either alkaline phosphatase (ALP) or Alizarin
451 Red after 14 and 21 days in culture, respectively. Accompanying high magnification images are
452 20X (n=3 mice); (H) Schematic of *in vitro* etoposide-induced senescence of BMSCs; (I) mRNA
453 levels of *Cdkn2a*^{INK} (p16), *Cdkn1a* (p21), and *Cd24a* (CD24) from BMSCs treated with vehicle
454 (DMSO) or etoposide (n=3 mice). Scale bars represent 750 μ m. Bars show mean \pm SD. *p<0.05,
455 **p<0.01, ***p<0.001, ****p<0.0001. (C, E) Unpaired t test or Mann-Whitney test as appropriate;
456 (I) Multiple t tests with Holm-Sidak Correction.

457

458 DISCUSSION

459 As senescent cells cannot be defined by a singular marker⁹⁰, the identification of these
460 cells *in vivo* has been impeded by technical limitations. Here, we provide a new approach to
461 identify and characterize *in vivo* senescent mesenchymal cells using multiplexed cellular profiling
462 by CyTOF. Using a methodically validated antibody panel, we dissected senescent cell
463 heterogeneity and defined specific cell populations fulfilling major requirements for senescence.
464 We then applied this definition to aging skeletal cell populations to provide new insights into the
465 identity and characteristics of senescent mesenchymal cells in the bone microenvironment,
466 uncovering physiologically-relevant cell types that are targeted by senolytic treatments we
467 previously demonstrated to be effective in preventing age-related bone loss in mice¹⁶.

468 Although long-established as a marker of senescence, we found that p16 expression
469 labels a diverse set of cells with both senescent and non-senescent properties. This finding is
470 entirely consistent with recent findings using highly sensitive *p16*^{lnk4a} reporter mice (INKBRITE)³⁷
471 , although we provide important complementary data at the protein level to the transcriptional data
472 in the previous study. Specifically, similar to our finding of p16 protein expression in both Ki67
473 negative and positive bone and marrow mesenchymal cells, in the INKBRITE *p16*^{lnk4a} reporter
474 mice, *p16*^{lnk4a} was also expressed in both proliferating and non-proliferating lung fibroblasts.
475 Importantly, and entirely consistent with our findings showing an inverse association between p16
476 and Ki67 protein expression (Fig. 2D-F; Extended Data Fig. 3B), high *p16*^{lnk4a}-expressing
477 fibroblasts from the INKBRITE mice had lower proliferative capacity than low *p16*^{lnk4a}-expressing

478 cells³⁷. Collectively, these findings indicate that there is a spectrum of *p16^{Ink4a}* RNA and protein
479 expression *in vivo*, with high expression associated with growth arrest and the full senescent
480 phenotype.

481 Our finding that BCL-2 co-expression is required to define senescent p16+ cells that are
482 also growth-arrested (Ki67-) aided in our further defining of senescent skeletal cell types, without
483 additional noise through comparing total p16 positivity. Moreover, our strict validation of the p16
484 antibody for antigen specificity, sensitivity, and biological signal permitted the in-depth
485 characterization of these cells. The application of this CyTOF panel therefore could advance the
486 study of senescence in various murine disease states without the need for genetic reporters.

487 Like p16+ cells, p21+ cell subsets positive for BCL-2 were associated with age in skeletal
488 mesenchymal cells, even though total p21+ cells were not. Although this was unexpected, as p21
489 has long been established as a marker for senescence^{29,91-93}, this further exemplifies the ability of
490 BCL-2 co-expression to define senescent cells. Furthermore, although this work focused on
491 p16KB cells due to their higher abundance, greater association with age, and previous studies
492 demonstrating beneficial skeletal effects in aged mice of clearing p16+ cells¹⁶ it will be of interest
493 for future studies to define the function of p21KB cells in skeletal aging. Recent work has
494 demonstrated that p21+ senescent cells are causal to radiation-induced bone loss, while p16+
495 senescent cells are dispensable⁹⁴. These data suggest the hypothesis that, in bone (and perhaps
496 in other tissues), p16KB cells contribute to age-related senescence, while p21KB cells, albeit still
497 senescent, may have more of a prominent role in acute senescence caused by injury. This is
498 supported by recent work demonstrating that p21 expression is upregulated in bone fracture, with
499 its highest expression immediately following injury, and then waning as p16 upregulation
500 emerges⁹⁵.

501 Our work also establishes CD24 osteolineage cells as a previously uncharacterized
502 senescent skeletal cell population in aged mice, which we characterized both *in vivo* and *in vitro*.
503 Isolated CD24+ cells exhibited an enrichment of senescent cells and had limited osteogenic

504 capabilities. *In vivo*, we found that the CD24 osteolineage cells had a marked upregulation of
505 SASP factors and clearance of these cells resulted in an increase in early osteoblast lineage cells,
506 consistent with our previously observed effects of senescent cell clearance on improving bone
507 formation in aged mice¹⁶. Additional *in vitro* and *in vivo* studies are needed, however, to further
508 define the possible paracrine effects of these CD24 osteolineage cells on osteoblasts as well as
509 osteoclasts and other cells in the bone microenvironment, including adipocytes and hematopoietic
510 cells.

511 CD24 is a cell-surface marker with established roles in stress and immune signaling^{87,88,96-}
512 ⁹⁹, yet ours is the first work, to our knowledge, to implicate CD24 in senescence. In cancer, CD24
513 expression is strongly associated with reduced life expectancy and is used as a diagnostic marker
514 for patient prognosis⁸⁹. Therefore, based on the evidence presented here, it is plausible that this
515 role of CD24 is conserved in senescent cells, and CD24 expression may have potential as a
516 diagnostic marker for senescence. It is important to note, however, that as the senolytic effect
517 was exclusive to non-hematopoietic cells (Fig. 5E-G) and CD24 is expressed on many immune
518 cell types⁹⁹, its application to detect senescent cells will likely only apply to mesenchymal cells.
519 The advantage compared to current senescence biomarkers (p16, p21) is that CD24 is a cell
520 surface protein, which permits simultaneous mesenchymal cell purification alongside tracking,
521 targeting, and sorting live senescent cells through cytometric methods. Thus, the implementation
522 of this marker may have important implications for pre-clinical senolytic screens in murine models,
523 and perhaps even validation of senolysis in human clinical studies. We acknowledge, however,
524 that additional studies are needed to evaluate the potential role of CD24 in marking senescent
525 cells in other tissues beyond the bone microenvironment and across species.

526 An important feature of our study is that it builds upon transcriptomic studies through
527 investigating protein expression, which has several advantages: protein is more stable and has a
528 longer half-life than RNA¹⁰⁰⁻¹⁰³, protein expression is more conserved than mRNA among
529 species¹⁰⁴, and mRNA transcription does not necessarily predict protein translation^{102,105}.

530 Therefore, the application of CyTOF, perhaps even in combination with scRNA-seq, allows for the
531 rigorous investigation of senescent cells at the single-cell resolution. Importantly, our validation of
532 CyTOF antibodies, particularly p16 and p21, provides confidence that this panel can reproducibly
533 detect senescent cells in various applications. We expect that this established workflow can be
534 utilized to delineate tissue-specific senescent cell identities and overcome the technical
535 challenges of senescent cell handling and antibody specificity.

536 We acknowledge potential limitations of our study. Specifically, CyTOF relies on a pre-
537 specified panel of antibodies, which limits exploration of further populations. This prevented the
538 inclusion of additional markers, e.g. for cell identity¹⁰⁶⁻¹⁰⁸ and senescence^{90,109,110}. We also
539 acknowledge that there may well be further heterogeneity within our working classification of
540 bone/marrow mesenchymal cell populations. However, in addition to being consistent with the
541 existing literature on the identity of these cell populations, this classification does provide a useful
542 framework for the subsequent analyses focusing on senescent cells by at least providing a
543 provisional identity to these cells. We sought to address this limitation with the inclusion of scRNA-
544 seq analysis, and we observed similarly clustered populations with both analyses. Nonetheless,
545 it will be of interest to define newly discovered senescence markers and cell types, particularly
546 those difficult to isolate in suspension (e.g. deeply embedded osteocytes), as our understanding
547 of the aging bone microenvironment advances further. Finally, it is important to acknowledge that
548 our characterization of p16KB and p21KB senescent cells applies only to mesenchymal cells;
549 whether “senescent” immune cells exhibit similar characteristics or not remains to be defined.

550 In summary, we provide a new approach to define senescent cells *in vivo* at the single cell
551 level using multiplexed protein profiling by CyTOF. Importantly, our definition of senescent cells
552 is entirely consistent with a recent consensus from the ICSA⁴⁵ and includes p16 or p21 positivity,
553 growth arrest, upregulation of anti-apoptosis pathways, expression of a SASP, evidence of DNA
554 damage, and virtual absence in youth with a marked increase with aging – all of which we defined
555 within the same cells. From a translational perspective, we provide a deeper characterization of

556 specific cell types targeted by senolytic clearance, including identifying a specific CD24+
557 osteolineage population, thereby facilitating the ultimate goal of defining better targets and
558 approaches for the treatment of osteoporosis. In addition, the unique property of BCL-2 to identify
559 true aging-specific senescent cells strongly support the development of new BCL-2 (and perhaps
560 other BCL-related protein) inhibitors with optimized side-effect profiles to specifically target aged
561 senescent cells for clearance. Finally, our work also points to the potential utility of CD24 for the
562 identification and tracking of senescent cells in the bone microenvironment and perhaps in other
563 tissues as a tool to evaluate the efficacy of senolytic treatments.

564 **ACKNOWLEDGEMENTS**

565 We would like to thank the Mayo Clinic Immune Monitoring Core, and specifically Samera
566 Farwana, for the efforts in planning and running CyTOF samples.

567

568 **Funding:** This work was supported by the American Federation of Aging Research (AFAR) Glenn
569 Foundation for Medical Research Postdoctoral Fellowship in Aging Research (M.L.D.), Robert
570 and Arlene Kogod Center on Aging Pilot Funds (M.L.D.), the National Institutes of Health (NIH)
571 grants P01 AG062413 (S.K., D.G.M., J.N.F.), R01 AG076515 (S.K., D.G.M.), U54 AG079754
572 (S.K.), R01 AG063707 (D.G.M.), R01 DK128552 (J.N.F.) T32 AG049672 (M.L.D.), and the
573 German Research Foundation (D.F.G., 413501650) (D.S.).

574

575 **AUTHOR CONTRIBUTIONS**

576 M.L.D. and S.K. conceived and directed the project. M.L.D. and S.K. designed the experiments
577 with input from K.P., D.G.M., and J.N.F. Experiments were performed by M.L.D., J.L.R., S.J.V.,
578 and J.K. Data was analyzed by M.L.D., and interpreted with input from S.K. and D.S. M.L.D. and
579 S.K. wrote the manuscript, which all authors then reviewed. S.K. supervised all experimental
580 design, data analyses, and manuscript preparation.

581

582 **COMPETING INTERESTS**

583 The authors declare no competing interests.

584

Key Resources Table		
Reagent or resource	Source or reference	Identifiers
CyTOF Antibodies		
CD45 (30-F11)	Fluidigm	3089005B
CD146 (ME-9F1)	Fluidigm	3141016B
LeptinR (Goat polyclonal)	R&D Systems	AF497
Nestin (Rat-401)	Biolegend	655102
Ly-6A/Sca-1 (D7)	Fluidigm	3169015B
CD24 (M1/69)	Biolegend	101802
CD140a / PDGFR α (APA5)	BioLegend	135902
SDF-1 / CXCL12 (79018)	R&D Systems	MAB350-100
Osteolectin/Itga11 (Rabbit polyclonal)	Abcam	ab198826
CD200 (OX-90)	Biolegend	123802
CD29 (HM β 1-1)	Biolegend	102235
Runx2 (2B9)	Abcam	ab76956
SP7 (Rabbit polyclonal)	Invitrogen	PA5-40411
ALPL (Goat polyclonal)	R&D Systems	af2910
OCN (E-6)	Santa Cruz	sc-376835
E11/Podoplanin (8.1.1)	BioLegend	127401
Dmp1 (Sheep polyclonal)	ThermoFisher	PA5-47621
Sclerostin (Rabbit polyclonal)	Abcam	ab63097
PPAR γ (Rabbit polyclonal)	Invitrogen	PA3-821A
Adiponectin (11H4L4)	Invitrogen	PA1-84881
FLAG (L5)	Biolegend	637301
p16 (EPR20418)	Abcam	ab232402
p21 (F-5)	Santa Cruz	sc-6246
p53 (EPR20416-124)	Abcam	ab252388
CENP-B (F-4)	Santa Cruz	sc-376283
MCP-1 (2D8)	Thermo Fisher	MA5-17040
TNF α (MP6-XT22)	Fluidigm	3162002B
PAI-1 (1D5)	Abcam	ab125687
IL-6 (MP5-20F3)	Fluidigm	3167003B
IL-1 α (ALF-161)	Biolegend	503202
IL-1 β (D6D6T)	Cell Signaling	31202
CXCL1 (48415)	R&D Systems	MAB453-500
pNF κ B (93H1)	Cell Signaling	3033

pATM (EPR895)	Abcam	ab217838
BCL-2 (BCL/10C4)	Biolegend	633502
Ki67 (B56)	Fluidigm	3168007B
Cell Sorting Reagents		
CD24-PE/Cyanine7	Biolegend	101821
CD45-FITC	Biolegend	103107
SYTOX Blue	ThermoFisher	S34857
Lineage Depletion Kit (mouse)	Miltenyi Biotec	130-090-858
Chemicals, Peptides, and Recombinant Proteins		
AP20187	MedChemExpress	HY-13992
Dasatinib	LC Laboratories	D-3307
Quercetin	Sigma-Aldrich	Q4951
Collagenase	Sigma-Aldrich	C9891
Liberase DL	Sigma-Aldrich	5401160001
1X RBC Lysis Buffer	ThermoFisher	00-4333-57
DPBS	ThermoFisher	14190144
DMEM	ThermoFisher	11885-076
MEM α	ThermoFisher	A1049001
Opti-MEM	ThermoFisher	31985062
Fetal Bovine Serum (FBS)	Gemini Bio-Products	GEM100-106
Antibiotic-Antimycotic	ThermoFisher	15240096
Gentamicin	Sigma-Aldrich	G1397
Ascorbic Acid	Sigma-Aldrich	A8960
Beta-Glycerophosphate	Sigma-Aldrich	G9422
Bovine Serum Albumin	Sigma-Aldrich	A7906
Alizarin Red	Millipore	TMS008C
1-Step NBT/BCIP Substrate Solution (ALP)	ThermoFisher	34042
Crystal Violet	Sigma-Aldrich	C0775
DAPI ProLong Diamond Antifade Mountant	ThermoFisher	P36961
FuGENE 6 Transfection Reagent	Promega	E2691
Trypsin-EDTA (0.5%), no phenol red	Gibco	15400054
Etoposide	Sigma-Aldrich	341205
DMSO	Sigma-Aldrich	D8418
QIAzol Lysis reagent	Qiagen	79306

Critical Commercial Assays		
Maxpar X8 Antibody Labeling Kit	Fluidigm	201149A
Cell-ID 20-Plex Pd Barcoding Kit	Fluidigm	201060
Cell-ID Intercalator-Ir	Fluidigm	201192B
Cell-ID Intercalator-Rh	Fluidigm	201103A
EQ Four Element Calibration Beads	Fluidigm	201078
Senescence β -Galactosidase Staining Kit	Cell Signaling Technology	9860
Chromium Next GEM Single Cell 3' GEM, Library & Gel Bead Kit v3.1	10X Genomics	PN-1000128
Qubit dsDNA HS and BR Assay Kits	ThermoFisher	Q32851
Software and algorithms		
Cytobank	Cytobank Inc.	https://premium.cytobank.org
R v4.03	R Project for Statistical Computing	https://www.r-project.org
Seurat v4.0	¹¹¹	https://satijalab.org/seurat
Nebulosa v3.13	¹¹²	https://github.com/powellgenomicslab/Nebulosa
CytoTree v1.03	¹¹³	https://github.com/JhuangLab/CytoTree
GraphPad Prism 8	GraphPad	http://www.graphpad.com/scientific-software/prism
ImageJ	NIH	https://imagej.nih.gov/ij
Recombinant DNA		
pcDNA-5/TO-p16ink4a	This paper	N/A
pCMV6-Cdkn1a	Origene	MR227529
pCMV6-Bcl-2	Origene	MR226785
pCMV6-Bglap (Ocn)	Origene	MR226351
pCMV6-Dmp1	Origene	MR221826
pCMV6-Sost	Origene	MR222588
pCMV6-Pdpn	Origene	MR201468
Experimental Models: Organisms/Strains/Cell lines		
INK-ATTAC	¹²	N/A
C57BL/6N	Charles River Laboratories	RRID:IMSR_CRL:027
Alb.B6.Cdkn2a-Luciferase ($p16^{Luc}$)	³⁶	RRID:IMSR_NCIMR:01XBT
U2OS Cell Line	ATCC	ATCC (HTB-96); RRID:CVCL_0042

586 **Resource Availability**

587 *Lead contact.* Further information and requests for resources and reagents should be directed to
588 and will be fulfilled by Dr. Sundeep Khosla (khosla.sundeep@mayo.edu).

589 *Materials availability.* All unique/stable reagents generated in this study will be freely available
590 from the lead contact to academic researchers with a completed Materials Transfer Agreement.

591

592 **Animals**

593 All animal studies were performed under protocols approved by the Institutional Animal Care and
594 Use Committee (IACUC), and experiments were performed in accordance with Mayo Clinic
595 IACUC guidelines. Mice were housed in ventilated cages and maintained within a pathogen-free,
596 accredited facility under a twelve-hour light/dark cycle with constant temperature (23°C) and
597 access to food and water ad libitum. Mice used included *INK-ATTAC*¹², *C57BL/6N* Wild Type
598 (WT), and p16 luciferase reporter mice (*p16^{Luc}*)³⁶. Two ages were used for all studies: Young-6
599 month, and old-24 month. All young mice were untreated. Old *INK-ATTAC* mice were randomized
600 by weight for treatment with either vehicle (4%ETOH 10%PEG-400 and 2%Tween) or 10mg/kg
601 AP dissolved in vehicle, administered subcutaneously twice weekly for two weeks. Old *C57BL/6N*
602 mice were randomized by weight for treatment with vehicle (10% EtOH, 30% PEG-400, 60%
603 Phosal-50) or Dasatinib + Quercetin (D+Q) (Dasatinib 5mg/kg and Quercetin 50mg/kg) dissolved
604 in vehicle, administered by oral gavage for three consecutive days and harvested at two weeks
605 post-treatment. Each cohort consisted of the following groups: *INK-ATTAC*: Young (n=15; 10
606 female, 5 male), Old + Vehicle (n=12; 6 female, 6 male), Old + AP (n=13; 6 female, 7 male).
607 *C57BL/6N*: Young (n=17; 10 female, 7 male), Old + Vehicle (n=15; 8 female, 7 male), Old + D+Q
608 (n=16; 10 female, 8 male). In comparisons of young versus old mice, Old + Vehicle mice were
609 used, for reduction purposes. To our knowledge, there are no effects of vehicle administration for
610 either treatment on aging, senescent, or skeletal outcomes. For CD24 cell isolation and scRNA-

611 seq studies, 24-27-month untreated male and female INK-ATTAC mice were used, with sexes
612 indicated in figure legends per experiments.

613

614 Consideration of sex as a biological variable

615 Per NIH guidelines ^{114,115}, we studied both female and male mice. In order to test for possible
616 effects of sex on our primary endpoints ¹¹⁶, we performed 2-way ANOVA tests on several
617 important parameters of aging and senolytic treatment (Supplementary Table 1). We found that
618 neither sex alone nor interaction between sex and age was significant, indicating that these
619 cellular effects of aging or senolytic treatment are not dependent on sex. Thus, both males and
620 females were analyzed together.

621

622 Dissociation and purification of mesenchymal cells from skeletal tissue

623 Mice were euthanized according to standardized and approved IACUC protocols. Femurs and
624 tibiae were isolated, cleaned of soft tissue, cut at both ends, and marrow centrifuged out of the
625 diaphyses and metaphyses into a collection tube. Marrow was resuspended in 1mg/mL Liberase
626 DL (Sigma) diluted in FACS buffer (0.5% BSA [Sigma] in PBS) and digested at 37°C for 30
627 minutes to increase yield of stromal cells released from the vasculature fraction as previously
628 described ³³. Diaphyses and metaphyses cleared of bone marrow were gently crushed, rinsed in
629 PBS, and then digested in 300 Units/mL of Collagenase IA (Sigma), diluted in MEM α
630 (ThermoFisher), 3 times for 25 minutes each. Bone and marrow solutions were then combined
631 and treated with RBC lysis buffer (ThermoFisher) to clear erythrocytes. The sample was then
632 depleted of cells expressing hematopoietic lineage markers (CD5, CD45R [B220], CD11b, Gr-1
633 [Ly-6G/C], 7-4, and Ter-119) using Magnet Assisted Cell Sorting (MACS) and the Lineage Cell
634 Depletion Kit (Miltenyl Biotec).

635

636 Cell culture

637 Primary mouse BMSCs were generated from 6-month-old C57BL/6N mice by digesting freshly
638 dissected femurs and tibias 3 times for 25 minutes each, followed by RBC lysis, as described
639 above. After expansion in growth media (DMEM [ThermoFisher] + 15% FBS [Gemini Bio-
640 Products] + 1X Antibiotic/Antimycotic [ThermoFisher] + 1X Gentamicin [Sigma]) in hypoxic
641 condition (2% O₂), BMSCs were seeded at 4x10⁴ cells/cm² in 75cm² flasks and treated for 48
642 hours with either vehicle (0.1% DMSO [Sigma]) or 20uM of etoposide (MilliporeSigma, St. Lous,
643 MO) dissolved in vehicle, followed by maintenance in growth media for 6 days. Cells were then
644 dissociated using Trypsin-EDTA (Gibco) and processed for CyTOF. CD24- and + cells were
645 maintained in the same growth media, as described above. For osteogenesis experiments, CD24-
646 and + cells were seeded at 2x10⁴ cells/cm² in 96-well plates, upon which media was changed to
647 osteogenic medium (MEM α + 10% FBS + 1X Anti/Anti + 10mM β-Glycerophosphate [Sigma] +
648 50mg/ml Ascorbic Acid [Sigma]) and differentiated until the indicated time point, changing media
649 every 48 hours. U2OS cells were maintained in normoxic conditions (5% O₂) in 75cm² flasks in
650 DMEM + 10% FBS + 1X Antibiotic/Antimycotic and seeded at 2x10⁴ cells/cm² in 6-well plates for
651 transfection. Expression constructs were transfected into U2OS cells using 1.5μg of DNA and
652 4.5μL FuGENE 6 Transfection Reagent (Promega) per well. DNA-FuGENE mixtures were
653 combined in Opti-MEM (ThermoFisher), then added dropwise to U2OS cells. After 24 hours, cells
654 were lifted using Trypsin-EDTA and processed for CyTOF, while separately lysing 10% of each
655 cell sample in QIAzol for qPCR validation.

656

657 p16 expression vector construction

658 The pcDNA5/TO-p16ink4a plasmid was constructed by cloning the open reading frame of mouse
659 *p16*^{ink4a} into the BamHI site of pcDNA5/TO (Promega, Madison, WI).

660

661 CyTOF processing

662 Custom conjugated antibodies were generated in-house through the Mayo Clinic Hybridoma Core
663 using Maxpar X8 Ab labeling kits (Fluidigm) according to the manufacturer's protocol. Isolated
664 cells were resuspended in 1 mL of Cell Staining Buffer (CSB) (Fluidigm) and incubated for 5
665 minutes with 0.5 μ m Cisplatin solution (Fluidigm) in PBS. Samples were then washed twice with
666 CSB. An antibody cocktail of the entire phenotyping panel was prepared as a master mix prior to
667 adding 50 μ L of cocktail to samples resuspended in 50 μ L of CSB. Samples were then incubated
668 at room temperature for 45 minutes. Samples were washed twice then fixed with 2% PFA
669 (Fluidigm) in PBS. After fixation and wash, samples were resuspended in 30 nM intercalation
670 solution (Fluidigm) and incubated overnight at 4°C. On the following morning, cells were washed
671 with PBS and resuspended in a 1:10 solution of calibration beads and cell acquisition solution
672 (CAS) (Fluidigm) at a concentration of 0.5x10⁶ cells/mL. Prior to data acquisition, samples were
673 filtered through a 35 μ m blue cap tube (Falcon). The sample was loaded onto a Helios CyTOF
674 system (Fluidigm) and acquired at a rate of 200-400 events per second. Data were collected as
675 .FCS files using the Cytof software (Version 6.7.1014). After acquisition, intra-file signal drift was
676 normalized to acquired calibration bead signal using Cytof software.

677

678 CyTOF data analysis

679 *Initial processing and clustering.* Cleanup of cell debris—including removal of beads, dead cells,
680 and doublets—and negative selection of CD45+ cells was performed (Extended Data Fig. 2A)
681 using Cytobank software ^{117,118}. Visual representation of CD45- single-cell data was achieved
682 using UMAP ¹¹⁹ (15 neighbors, 0.01 minimum distance, outliers collapsed), and viSNE mapping
683 (5,000 iterations, 100 perplexity, 0.5 theta), the latter of which is based on the t-Distributed
684 Stochastic Neighbor Embedding (t-SNE) algorithm ¹²⁰. FlowSOM clustering was performed within
685 Cytobank (hierarchical consensus, 10 iterations) and cluster labels were assigned using
686 established literature on skeletal cell types (Table 1), with relative marker intensities per cluster
687 visualized by heatmap. FCS files were exported, concatenated in R, then re-uploaded for

688 visualization of merged populations. Quantified values were exported to Graphpad Prism 8 to
689 construct plots and perform statistical analyses.

690

691 *CITRUS analysis.* CITRUS analyses¹²¹ were performed in Cytobank using Significance Analysis
692 of Microarrays (SAM) correlative association model. Nearest Shrunken Centroid (PAMR) and L1-
693 Penalized Regression (LASSO via GLMNET) predictive association models were run
694 simultaneously to analyze model error rates to confirm validity of the statistical model. For
695 CITRUS assessment of median expression changes, cells were clustered by identification
696 markers and statistics channels included all functional markers; for assessment of abundances,
697 all markers were used for clustering. All CITRUS analyses used the following settings: 2,000
698 events samples per file, 2% minimum cluster size, 5 cross validation folds, and 5% false discovery
699 rate (FDR).

700

701 *Pseudotime.* Exported FCS files from Cytobank were imported into R using the CytoTree package
702¹¹³. Briefly, samples were merged per condition and clustered into minimum spanning trees for
703 cell trajectory inference. Pseudotime calculation was performed by defining root clusters based
704 on expression of stem cell markers (CD146, Sca-1, PDGFR α , Nestin, LeptinR). Representation
705 of pseudotime was performed using diffusion mapping, along with density and trajectory plots.

706

707 Fluorescence-assisted cell sorting (FACS)

708 Single-cell suspensions of mesenchymal skeletal cells were prepared, as described above.
709 Samples were incubated with anti-mouse CD45-FITC (and CD24-PECy7 for CD24- and + cell
710 isolation) at 1:400 dilution in FACS buffer at 4°C for 20 minutes in the dark. Cells were then
711 incubated with SYTOX blue at 1:4,000 for 5 minutes, spun down at 300xg for 5 minutes at 4°C,
712 then resuspended in FACS buffer at 1x10⁷ cells/mL and analyzed on a FACS Aria II (BD

713 Biosciences). Unstained and single-color-stained controls were used for compensation and to
714 control the gating strategy. Post-run flow cytometry data was analyzed and visualized with
715 Cytobank software.

716

717 Cell staining

718 *SA- β -Gal.* To assess senescence *in vitro*, cellular SA- β -Gal activity was measured as described
719 previously ⁹⁵ using the Cell Signaling Technology Senescence β -Galactosidase Staining Kit.
720 Briefly, CD24+ or – cells were seeded on 8-well chamber slides at 1x10⁴ cells/cm² and allowed to
721 grow for 14 days. Cells were then washed in PBS (pH 7.4) and fixed with 1X fixative solution for
722 5 min, then washed three times using PBS. Cells were then incubated in 1X SA- β -Gal staining
723 solution at 37 °C for 16 hr. Cells were washed in ice-cold PBS and mounted with DAPI ProLong
724 (ThermoFisher) staining nuclei for cell counting. In blinded fashion, ten images per well were
725 taken from random fields using fluorescence microscopy (Nikon Eclipse Ti) and SA- β -Gal-positive
726 cells were counted and reported as a percentage of total cells.

727

728 *Crystal violet.* CD24- and + cells were seeded directly from FACS-mediated isolation into 25cm²
729 flasks and allowed to grow for 7 days. Cells were then washed in PBS and fixed in 4% PFA for
730 20 min. Fixed cells were washed again with PBS and stained with 1% crystal violet in 20 % ethanol
731 for 20 min. Excess dye was removed by washing with distilled water (dH₂O) and images were
732 acquired upon drying. Colony forming efficiency (CFE) was determined for each sample by
733 counting colonies containing over 50 cells, then dividing by total sorted cells.

734

735 *Alizarin Red and Alkaline Phosphatase.* Cells were washed with PBS then fixed with 4% PFA for
736 10 minutes. For Alkaline Phosphatase (ALP) analysis, the fixed cells were stained with 1-Step
737 NBT/BCIP Substrate Solution (ThermoFisher) in the dark for 30 minutes. To detect mineralization,

738 cells were fixed in 4% PFA and stained with Alizarin Red (Millipore) for 30 minutes; both stains
739 were washed with dH₂O and let dry before imaging.

740

741 Quantitative real-time polymerase chain reaction (qPCR) analysis

742 Total RNA was extracted according to the manufacturer's instructions using QIAzol Lysis
743 Reagent. Purification with RNeasy Mini Columns (QIAGEN, Valencia, CA) was subsequently
744 performed. On-column RNase-free DNase solution (QIAGEN, Valencia, CA), was applied to
745 degrade contaminating genomic DNA. RNA quantity was assessed with Nanodrop
746 spectrophotometry (Thermo Fisher Scientific, Wilmington, DE). Standard reverse transcriptase
747 was performed using High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems by Life
748 Technologies, Foster City, CA). Transcript mRNA levels were determined by qRT-PCR on the
749 ABI Prism 7900HT Real Time System (Applied Biosystems, Carlsbad, CA), using SYBR green
750 (Qiagen, Valencia, CA). The mouse primer sequences, designed using Primer Express Software
751 Version 3.0 (Applied Biosystems), for the genes measured by SYBR green are provided in
752 Supplementary Table 2. Input RNA was normalized using two reference genes (*Actb*, *Gapdh*)
753 from which the most stable reference gene was determined by the geNorm algorithm. For each
754 sample, the median cycle threshold (Ct) of each gene (run in triplicate) was normalized to the
755 geometric mean of the median Ct of the most stable reference gene. The delta Ct for each gene
756 was used to calculate the relative mRNA expression changes for each sample. Genes with Ct
757 values > 35 were considered not expressed (NE), as done previously ⁶.

758

759 scRNA-seq library preparation

760 Live Lin-CD45- cells, isolated by FACS, were washed twice in 1x PBS + 0.04% BSA and
761 immediately submitted to the Mayo Clinic Genome Analysis Core for single-cell sorting. The cells
762 were counted and measured for viability using the Vi-Cell XR Cell Viability Analyzer (Beckman-
763 Coulter). The Chromium Next GEM Single Cell 3' Library and Gel Bead Kit (10x Genomics) was

764 used for cDNA synthesis and standard Illumina sequencing primers and a set of unique i7 Sample
765 dual indices (10x Genomics) were added to each cDNA pool. All cDNA pools and resulting
766 libraries were measured using Qubit High Sensitivity assays (Thermo Fisher Scientific), Agilent
767 Bioanalyzer High Sensitivity chips (Agilent) and Kapa DNA Quantification reagents (Kapa
768 Biosystems). Libraries were sequenced at 50,000 fragment reads per cell following Illumina's
769 standard protocol using the Illumina cBot and HiSeq 3000/4000 PE Cluster Kit. The flow cells
770 were sequenced as 100 X 2 paired end reads on an Illumina HiSeq 4000 using HiSeq 3000/4000
771 sequencing kit and HCS v3.3.52 collection software. Base-calling was performed using Illumina's
772 RTA version 2.7.3. 10X Genomics Cell Ranger Single Cell Software Suite (v6.0.0) was used to
773 demultiplex raw base call (BCL) files generated from the sequencer into FASTQ files. The pipeline
774 input FASTQ files for each sample to perform alignment to the reference genome, filtering,
775 barcode counting and UMI counting.

776

777 scRNA-seq analysis

778 Seurat package (v4.0)¹¹¹ was used in R to perform integrated analyses of single cells. Genes
779 expressed in < 3 cells and cells that expressed < 200 genes and >20% mitochondria genes were
780 excluded for downstream analysis in each sample. Each dataset was SCTransform-normalized
781 and the top 3000 Highly Variable Genes (HVGs) across cells were selected. The datasets were
782 integrated based on anchors identified between datasets before Principal Component Analysis
783 (PCA) was performed for linear dimensional reduction. Shared Nearest Neighbor (SNN) Graph
784 were constructed to identify clusters on the low-dimensional space (top 30 statistically significant
785 principal components (PCs). Enriched marker genes in each cluster conserved across all samples
786 were identified. An unbiased clustering according to the recommendations of the Seurat package
787 was used, and a resolution of 0.8 led to 12 distinct cellular clusters (Extended Data Fig. 8). For
788 Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) calculations,

789 the RunUMAP function (dims = 1:40, reduction = "pca") was utilized, and both DimPlot (Seurat)
790 and plot_density (Nebulosa) used for plotting.

791

792 Statistics

793 In-text results and bar plots are mean \pm standard deviation. Graphical data represented as box
794 plots show median and interquartile range, and error bars represent minimum and maximum
795 values. Sample sizes were determined based on previously conducted and published
796 experiments ^{16,95} in which statistically significant differences were observed among various
797 senescence and skeletal parameters in response to aging or senolytic treatment. Animal numbers
798 are indicated in the figure legends, and all samples presented represent biological replicates. We
799 did not exclude mice, samples, or data points from analyses. Non-Gaussian distributions were
800 detected using the Shapiro-Wilk normality test. If the normality or equal variance assumptions for
801 parametric analysis methods were not met (Shapiro-Wilk $p < 0.05$), data were analyzed using non-
802 parametric tests (e.g., Mann-Whitney U test). For parametric tests, differences between groups
803 were analyzed by t-test (followed by Holm-Sidak correction with multiple comparisons) or ANOVA,
804 where justified as appropriate; figure legends indicate the statistical tests used in each
805 experiment. Statistical analyses were performed using GraphPad Prism (Version 8.0). A p -value
806 < 0.05 was considered statistically significant. Heatmap values were transformed by subtraction
807 of row mean and dividing by standard deviation, visualized in Morpheus – Broad Institute.
808 Experimental design diagrams and schematics were made using BioRender.com. Venn diagrams
809 were made using Meta-Chart.com.

810

811 **REFERENCES**

812 1 Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J. & Kirkland, J. L. Cellular senescence
813 and the senescent secretory phenotype: therapeutic opportunities. *J Clin Invest* **123**, 966-
814 972, doi:10.1172/JCI64098 (2013).

815 2 LeBrasseur, N. K., Tchkonia, T. & Kirkland, J. L. Cellular Senescence and the Biology of
816 Aging, Disease, and Frailty. *Nestle Nutr Inst Workshop Ser* **83**, 11-18,
817 doi:10.1159/000382054 (2015).

818 3 Swanson, E. C., Manning, B., Zhang, H. & Lawrence, J. B. Higher-order unfolding of
819 satellite heterochromatin is a consistent and early event in cell senescence. *J Cell Biol*
820 **203**, 929-942, doi:10.1083/jcb.201306073 (2013).

821 4 Khosla, S., Farr, J. N., Tchkonia, T. & Kirkland, J. L. The role of cellular senescence in
822 ageing and endocrine disease. *Nat Rev Endocrinol* **16**, 263-275, doi:10.1038/s41574-020-
823 0335-y (2020).

824 5 Nelson, G. *et al.* A senescent cell bystander effect: senescence-induced senescence.
825 *Aging Cell* **11**, 345-349, doi:10.1111/j.1474-9726.2012.00795.x (2012).

826 6 Farr, J. N. *et al.* Identification of Senescent Cells in the Bone Microenvironment. *J Bone*
827 *Miner Res* **31**, 1920-1929, doi:10.1002/jbmr.2892 (2016).

828 7 Bussian, T. J. *et al.* Clearance of senescent glial cells prevents tau-dependent pathology
829 and cognitive decline. *Nature* **562**, 578-582, doi:10.1038/s41586-018-0543-y (2018).

830 8 Schafer, M. J. *et al.* Cellular senescence mediates fibrotic pulmonary disease. *Nat*
831 *Commun* **8**, 14532, doi:10.1038/ncomms14532 (2017).

832 9 Walaszczuk, A. *et al.* Pharmacological clearance of senescent cells improves survival and
833 recovery in aged mice following acute myocardial infarction. *Aging Cell* **18**, e12945,
834 doi:10.1111/ace.12945 (2019).

835 10 Amor, C. *et al.* Senolytic CAR T cells reverse senescence-associated pathologies. *Nature*
836 **583**, 127-132, doi:10.1038/s41586-020-2403-9 (2020).

837 11 Palmer, A. K. *et al.* Targeting senescent cells alleviates obesity-induced metabolic
838 dysfunction. *Aging Cell* **18**, e12950, doi:10.1111/ace.12950 (2019).

839 12 Baker, D. J. *et al.* Clearance of p16Ink4a-positive senescent cells delays ageing-
840 associated disorders. *Nature* **479**, 232-236, doi:10.1038/nature10600 (2011).

841 13 Baker, D. J. *et al.* Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan.
842 *Nature* **530**, 184-189, doi:10.1038/nature16932 (2016).

843 14 Xu, M. *et al.* Senolytics improve physical function and increase lifespan in old age. *Nat*
844 *Med* **24**, 1246-1256, doi:10.1038/s41591-018-0092-9 (2018).

845 15 Yousefzadeh, M. J. *et al.* Fisetin is a senotherapeutic that extends health and lifespan.
846 *EBioMedicine* **36**, 18-28, doi:10.1016/j.ebiom.2018.09.015 (2018).

847 16 Farr, J. N. *et al.* Targeting cellular senescence prevents age-related bone loss in mice.
848 *Nat Med* **23**, 1072-1079, doi:10.1038/nm.4385 (2017).

849 17 Idda, M. L. *et al.* Survey of senescent cell markers with age in human tissues. *Aging*
850 *(Albany NY)* **12**, 4052-4066, doi:10.18632/aging.102903 (2020).

851 18 Childs, B. G., Durik, M., Baker, D. J. & van Deursen, J. M. Cellular senescence in aging
852 and age-related disease: from mechanisms to therapy. *Nat Med* **21**, 1424-1435,
853 doi:10.1038/nm.4000 (2015).

854 19 Kirschner, K., Rattanavirotkul, N., Quince, M. F. & Chandra, T. Functional heterogeneity
855 in senescence. *Biochem Soc Trans* **48**, 765-773, doi:10.1042/BST20190109 (2020).

856 20 Sharpless, N. E., Ramsey, M. R., Balasubramanian, P., Castrillon, D. H. & DePinho, R. A.
857 The differential impact of p16(INK4a) or p19(ARF) deficiency on cell growth and
858 tumorigenesis. *Oncogene* **23**, 379-385, doi:10.1038/sj.onc.1207074 (2004).

859 21 Sharpless, N. E. *et al.* Loss of p16Ink4a with retention of p19Arf predisposes mice to
860 tumorigenesis. *Nature* **413**, 86-91, doi:10.1038/35092592 (2001).

861 22 Baker, D. J. *et al.* Opposing roles for p16Ink4a and p19Arf in senescence and ageing
862 caused by BubR1 insufficiency. *Nat Cell Biol* **10**, 825-836, doi:10.1038/ncb1744 (2008).

863 23 Lopez-Dominguez, J. A. *et al.* Cdkn1a transcript variant 2 is a marker of aging and cellular
864 senescence. *Aging (Albany NY)* **13**, 13380-13392, doi:10.18632/aging.203110 (2021).

865 24 Muss, H. B. *et al.* p16 a biomarker of aging and tolerance for cancer therapy. *Transl
866 Cancer Res* **9**, 5732-5742, doi:10.21037/tcr.2020.03.39 (2020).

867 25 Payea, M. J., Anerillas, C., Tharakan, R. & Gorospe, M. Translational Control during
868 Cellular Senescence. *Mol Cell Biol* **41**, doi:10.1128/MCB.00512-20 (2021).

869 26 Sabath, N. *et al.* Cellular proteostasis decline in human senescence. *Proc Natl Acad Sci
870 USA* **117**, 31902-31913, doi:10.1073/pnas.2018138117 (2020).

871 27 Spitzer, M. H. & Nolan, G. P. Mass Cytometry: Single Cells, Many Features. *Cell* **165**,
872 780-791, doi:10.1016/j.cell.2016.04.019 (2016).

873 28 Wiley, C. D. *et al.* Analysis of individual cells identifies cell-to-cell variability following
874 induction of cellular senescence. *Aging Cell* **16**, 1043-1050, doi:10.1111/acel.12632
875 (2017).

876 29 Stein, G. H., Drullinger, L. F., Soulard, A. & Dulic, V. Differential roles for cyclin-dependent
877 kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in
878 human fibroblasts. *Mol Cell Biol* **19**, 2109-2117, doi:10.1128/mcb.19.3.2109 (1999).

879 30 Lagnado, A. *et al.* Neutrophils induce paracrine telomere dysfunction and senescence in
880 ROS-dependent manner. *EMBO J* **40**, e106048, doi:10.15252/embj.2020106048 (2021).

881 31 Wang, L. *et al.* Targeting p21(Cip1) highly expressing cells in adipose tissue alleviates
882 insulin resistance in obesity. *Cell Metab* **34**, 75-89 e78, doi:10.1016/j.cmet.2021.11.002
883 (2022).

884 32 Xu, S., De Becker, A., Van Camp, B., Vanderkerken, K. & Van Riet, I. An improved harvest
885 and in vitro expansion protocol for murine bone marrow-derived mesenchymal stem cells.
886 *J Biomed Biotechnol* **2010**, 105940, doi:10.1155/2010/105940 (2010).

887 33 Suire, C., Brouard, N., Hirschi, K. & Simmons, P. J. Isolation of the stromal-vascular
888 fraction of mouse bone marrow markedly enhances the yield of clonogenic stromal
889 progenitors. *Blood* **119**, e86-95, doi:10.1182/blood-2011-08-372334 (2012).

890 34 Stern, A. R. *et al.* Isolation and culture of primary osteocytes from the long bones of
891 skeletally mature and aged mice. *Biotechniques* **52**, 361-373, doi:10.2144/0000113876
892 (2012).

893 35 Severe, N. *et al.* Stress-Induced Changes in Bone Marrow Stromal Cell Populations
894 Revealed through Single-Cell Protein Expression Mapping. *Cell Stem Cell* **25**, 570-583
895 e577, doi:10.1016/j.stem.2019.06.003 (2019).

896 36 Burd, C. E. *et al.* Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-
897 luciferase model. *Cell* **152**, 340-351, doi:10.1016/j.cell.2012.12.010 (2013).

898 37 Reyes, N. S. *et al.* Sentinel p16(INK4a+) cells in the basement membrane form a
899 reparative niche in the lung. *Science* **378**, 192-201, doi:10.1126/science.abf3326 (2022).

900 38 Grosse, L. *et al.* Defined p16(High) Senescent Cell Types Are Indispensable for Mouse
901 Healthspan. *Cell Metab* **32**, 87-99 e86, doi:10.1016/j.cmet.2020.05.002 (2020).

902 39 Hall, B. M. *et al.* p16(INK4a) and senescence-associated beta-galactosidase can be
903 induced in macrophages as part of a reversible response to physiological stimuli. *Aging
904 (Albany NY)* **9**, 1867-1884, doi:10.18632/aging.101268 (2017).

905 40 Frescas, D. *et al.* Murine mesenchymal cells that express elevated levels of the CDK
906 inhibitor p16(INK4a) in vivo are not necessarily senescent. *Cell Cycle* **16**, 1526-1533,
907 doi:10.1080/15384101.2017.1339850 (2017).

908 41 Zinkel, S., Gross, A. & Yang, E. BCL2 family in DNA damage and cell cycle control. *Cell
909 Death Differ* **13**, 1351-1359, doi:10.1038/sj.cdd.4401987 (2006).

910 42 Hu, L. *et al.* Why Senescent Cells Are Resistant to Apoptosis: An Insight for Senolytic
911 Development. *Front Cell Dev Biol* **10**, 822816, doi:10.3389/fcell.2022.822816 (2022).

912 43 Chang, J. *et al.* Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic
913 stem cells in mice. *Nat Med* **22**, 78-83, doi:10.1038/nm.4010 (2016).

914 44 Zhu, Y. *et al.* Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family
915 of anti-apoptotic factors. *Aging Cell* **15**, 428-435, doi:10.1111/acel.12445 (2016).

916 45 Gorgoulis, V. *et al.* Cellular Senescence: Defining a Path Forward. *Cell* **179**, 813-827,
917 doi:10.1016/j.cell.2019.10.005 (2019).

918 46 Zhou, B. O., Yue, R., Murphy, M. M., Peyer, J. G. & Morrison, S. J. Leptin-receptor-
919 expressing mesenchymal stromal cells represent the main source of bone formed by adult
920 bone marrow. *Cell Stem Cell* **15**, 154-168, doi:10.1016/j.stem.2014.06.008 (2014).

921 47 Morikawa, S. *et al.* Prospective identification, isolation, and systemic transplantation of
922 multipotent mesenchymal stem cells in murine bone marrow. *J Exp Med* **206**, 2483-2496,
923 doi:10.1084/jem.20091046 (2009).

924 48 Houlihan, D. D. *et al.* Isolation of mouse mesenchymal stem cells on the basis of
925 expression of Sca-1 and PDGFR-alpha. *Nat Protoc* **7**, 2103-2111,
926 doi:10.1038/nprot.2012.125 (2012).

927 49 Helbling, P. M. *et al.* Global Transcriptomic Profiling of the Bone Marrow Stromal
928 Microenvironment during Postnatal Development, Aging, and Inflammation. *Cell Rep* **29**,
929 3313-3330 e3314, doi:10.1016/j.celrep.2019.11.004 (2019).

930 50 Ding, L., Saunders, T. L., Enikolopov, G. & Morrison, S. J. Endothelial and perivascular
931 cells maintain haematopoietic stem cells. *Nature* **481**, 457-462, doi:10.1038/nature10783
932 (2012).

933 51 Mangialardi, G., Cordaro, A. & Madeddu, P. The bone marrow pericyte: an orchestrator of
934 vascular niche. *Regen Med* **11**, 883-895, doi:10.2217/rme-2016-0121 (2016).

935 52 Mendez-Ferrer, S. *et al.* Mesenchymal and haematopoietic stem cells form a unique bone
936 marrow niche. *Nature* **466**, 829-834, doi:10.1038/nature09262 (2010).

937 53 Ding, L. & Morrison, S. J. Haematopoietic stem cells and early lymphoid progenitors
938 occupy distinct bone marrow niches. *Nature* **495**, 231-235, doi:10.1038/nature11885
939 (2013).

940 54 Shen, B. *et al.* Integrin alpha11 is an Osteolectin receptor and is required for the
941 maintenance of adult skeletal bone mass. *eLife* **8**, doi:10.7554/eLife.42274 (2019).

942 55 Zhong, L. *et al.* Single cell transcriptomics identifies a unique adipose lineage cell
943 population that regulates bone marrow environment. *eLife* **9**, doi:10.7554/eLife.54695
944 (2020).

945 56 Chan, C. K. F. *et al.* Identification of the Human Skeletal Stem Cell. *Cell* **175**, 43-56 e21,
946 doi:10.1016/j.cell.2018.07.029 (2018).

947 57 Komori, T. Runx2, a multifunctional transcription factor in skeletal development. *J Cell
948 Biochem* **87**, 1-8, doi:10.1002/jcb.10276 (2002).

949 58 Nakashima, K. *et al.* The novel zinc finger-containing transcription factor osterix is required
950 for osteoblast differentiation and bone formation. *Cell* **108**, 17-29, doi:10.1016/s0092-
951 8674(01)00622-5 (2002).

952 59 Anh, D. J., Dimai, H. P., Hall, S. L. & Farley, J. R. Skeletal alkaline phosphatase activity
953 is primarily released from human osteoblasts in an insoluble form, and the net release is
954 inhibited by calcium and skeletal growth factors. *Calcif Tissue Int* **62**, 332-340,
955 doi:10.1007/s002239900441 (1998).

956 60 Fen, J. Q. *et al.* Dentin matrix protein 1, a target molecule for Cbfa1 in bone, is a unique
957 bone marker gene. *J Bone Miner Res* **17**, 1822-1831, doi:10.1359/jbmr.2002.17.10.1822
958 (2002).

959 61 Winkler, D. G. *et al.* Osteocyte control of bone formation via sclerostin, a novel BMP
960 antagonist. *EMBO J* **22**, 6267-6276, doi:10.1093/emboj/cdg599 (2003).

961 62 Rosen, E. D. & Spiegelman, B. M. PPARgamma : a nuclear regulator of metabolism,
962 differentiation, and cell growth. *J Biol Chem* **276**, 37731-37734,
963 doi:10.1074/jbc.R100034200 (2001).

964 63 Akune, T. *et al.* PPARgamma insufficiency enhances osteogenesis through osteoblast
965 formation from bone marrow progenitors. *J Clin Invest* **113**, 846-855,
966 doi:10.1172/JCI19900 (2004).

967 64 van de Peppel, J. *et al.* Cell Surface Glycoprotein CD24 Marks Bone Marrow-Derived
968 Human Mesenchymal Stem/Stromal Cells with Reduced Proliferative and Differentiation
969 Capacity In Vitro. *Stem Cells Dev* **30**, 325-336, doi:10.1089/scd.2021.0027 (2021).

970 65 Wetzig, A. *et al.* Differential marker expression by cultures rich in mesenchymal stem cells.
BMC Cell Biol **14**, 54, doi:10.1186/1471-2121-14-54 (2013).

972 66 Schack, L. M. *et al.* Expression of CD24 in Human Bone Marrow-Derived Mesenchymal
973 Stromal Cells Is Regulated by TGFbeta3 and Induces a Myofibroblast-Like Genotype.
Stem Cells Int **2016**, 1319578, doi:10.1155/2016/1319578 (2016).

975 67 Ambrosi, T. H. *et al.* Adipocyte Accumulation in the Bone Marrow during Obesity and Aging
976 Impairs Stem Cell-Based Hematopoietic and Bone Regeneration. *Cell Stem Cell* **20**, 771-
977 784 e776, doi:10.1016/j.stem.2017.02.009 (2017).

978 68 Ambrosi, T. H., Longaker, M. T. & Chan, C. K. F. A Revised Perspective of Skeletal Stem
979 Cell Biology. *Front Cell Dev Biol* **7**, 189, doi:10.3389/fcell.2019.00189 (2019).

980 69 Greenbaum, A. *et al.* CXCL12 in early mesenchymal progenitors is required for
981 hematopoietic stem-cell maintenance. *Nature* **495**, 227-230, doi:10.1038/nature11926
982 (2013).

983 70 Wolock, S. L. *et al.* Mapping Distinct Bone Marrow Niche Populations and Their
984 Differentiation Paths. *Cell Rep* **28**, 302-311 e305, doi:10.1016/j.celrep.2019.06.031
985 (2019).

986 71 Takarada, T. *et al.* Genetic analysis of Runx2 function during intramembranous
987 ossification. *Development* **143**, 211-218, doi:10.1242/dev.128793 (2016).

988 72 Zhang, J. & Link, D. C. Targeting of Mesenchymal Stromal Cells by Cre-Recombinase
989 Transgenes Commonly Used to Target Osteoblast Lineage Cells. *J Bone Miner Res* **31**,
990 2001-2007, doi:10.1002/jbmr.2877 (2016).

991 73 Liu, W. *et al.* Alpl prevents bone ageing sensitivity by specifically regulating senescence
992 and differentiation in mesenchymal stem cells. *Bone Res* **6**, 27, doi:10.1038/s41413-018-
993 0029-4 (2018).

994 74 Pinho, S. *et al.* PDGFRalpha and CD51 mark human nestin+ sphere-forming
995 mesenchymal stem cells capable of hematopoietic progenitor cell expansion. *J Exp Med*
996 **210**, 1351-1367, doi:10.1084/jem.20122252 (2013).

997 75 Chen, J. *et al.* Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal
998 mice. *PLoS One* **9**, e85161, doi:10.1371/journal.pone.0085161 (2014).

999 76 Mizoguchi, T. *et al.* Osterix marks distinct waves of primitive and definitive stromal
1000 progenitors during bone marrow development. *Dev Cell* **29**, 340-349,
1001 doi:10.1016/j.devcel.2014.03.013 (2014).

1002 77 Baccin, C. *et al.* Combined single-cell and spatial transcriptomics reveal the molecular,
1003 cellular and spatial bone marrow niche organization. *Nat Cell Biol* **22**, 38-48,
1004 doi:10.1038/s41556-019-0439-6 (2020).

1005 78 Matsushita, Y. *et al.* A Wnt-mediated transformation of the bone marrow stromal cell
1006 identity orchestrates skeletal regeneration. *Nat Commun* **11**, 332, doi:10.1038/s41467-
1007 019-14029-w (2020).

1008 79 Yang, M. *et al.* Osteogenic Factor Runx2 Marks a Subset of Leptin Receptor-Positive Cells
1009 that Sit Atop the Bone Marrow Stromal Cell Hierarchy. *Sci Rep* **7**, 4928,
1010 doi:10.1038/s41598-017-05401-1 (2017).

1011 80 Yue, R., Zhou, B. O., Shimada, I. S., Zhao, Z. & Morrison, S. J. Leptin Receptor Promotes
1012 Adipogenesis and Reduces Osteogenesis by Regulating Mesenchymal Stromal Cells in
1013 Adult Bone Marrow. *Cell Stem Cell* **18**, 782-796, doi:10.1016/j.stem.2016.02.015 (2016).

1014 81 Wang, J. S. *et al.* Control of osteocyte dendrite formation by Sp7 and its target gene
1015 osteocrin. *Nat Commun* **12**, 6271, doi:10.1038/s41467-021-26571-7 (2021).

1016 82 Kalajzic, I. *et al.* Dentin matrix protein 1 expression during osteoblastic differentiation,
1017 generation of an osteocyte GFP-transgene. *Bone* **35**, 74-82,
1018 doi:10.1016/j.bone.2004.03.006 (2004).

1019 83 Chandra, A. *et al.* Targeted Reduction of Senescent Cell Burden Alleviates Focal
1020 Radiotherapy-Related Bone Loss. *J Bone Miner Res* **35**, 1119-1131,
1021 doi:10.1002/jbmr.3978 (2020).

1022 84 Eckhardt, B. A. *et al.* Accelerated osteocyte senescence and skeletal fragility in mice with
1023 type 2 diabetes. *JCI Insight* **5**, doi:10.1172/jci.insight.135236 (2020).

1024 85 Farr, J. N., Kaur, J., Doolittle, M. L. & Khosla, S. Osteocyte Cellular Senescence. *Curr
1025 Osteoporos Rep* **18**, 559-567, doi:10.1007/s11914-020-00619-x (2020).

1026 86 Zhu, Y. *et al.* The Achilles' heel of senescent cells: from transcriptome to senolytic drugs.
1027 *Aging Cell* **14**, 644-658, doi:10.1111/acel.12344 (2015).

1028 87 Karnan, S. *et al.* Identification of CD24 as a potential diagnostic and therapeutic target for
1029 malignant pleural mesothelioma. *Cell Death Discov* **6**, 127, doi:10.1038/s41420-020-
1030 00364-1 (2020).

1031 88 Tarhriz, V. *et al.* Overview of CD24 as a new molecular marker in ovarian cancer. *J Cell
1032 Physiol* **234**, 2134-2142, doi:10.1002/jcp.27581 (2019).

1033 89 Jing, X. *et al.* CD24 is a Potential Biomarker for Prognosis in Human Breast Carcinoma.
1034 *Cell Physiol Biochem* **48**, 111-119, doi:10.1159/000491667 (2018).

1035 90 Gonzalez-Gualda, E., Baker, A. G., Fruk, L. & Munoz-Espin, D. A guide to assessing
1036 cellular senescence in vitro and in vivo. *FEBS J* **288**, 56-80, doi:10.1111/febs.15570
1037 (2021).

1038 91 Wang, B. *et al.* An inducible p21-Cre mouse model to monitor and manipulate p21-highly-
1039 expressing senescent cells in vivo. *Nat Aging* **1**, 962-973, doi:10.1038/s43587-021-00107-
1040 6 (2021).

1041 92 Yosef, R. *et al.* p21 maintains senescent cell viability under persistent DNA damage
1042 response by restraining JNK and caspase signaling. *EMBO J* **36**, 2280-2295,
1043 doi:10.15252/embj.201695553 (2017).

1044 93 Chang, B. D. *et al.* Effects of p21Waf1/Cip1/Sdi1 on cellular gene expression: implications
1045 for carcinogenesis, senescence, and age-related diseases. *Proc Natl Acad Sci U S A* **97**,
1046 4291-4296, doi:10.1073/pnas.97.8.4291 (2000).

1047 94 Chandra, A. *et al.* Targeted clearance of p21- but not p16-positive senescent cells
1048 prevents radiation-induced osteoporosis and increased marrow adiposity. *Aging Cell*,
1049 e13602, doi:10.1111/acel.13602 (2022).

1050 95 Saul, D. *et al.* Modulation of fracture healing by the transient accumulation of senescent
1051 cells. *Elife* **10**, doi:10.7554/elife.69958 (2021).

1052 96 Kristiansen, G. *et al.* CD24 expression is a new prognostic marker in breast cancer. *Clin
1053 Cancer Res* **9**, 4906-4913 (2003).

1054 97 Chen, G. Y., Tang, J., Zheng, P. & Liu, Y. CD24 and Siglec-10 selectively repress tissue
1055 damage-induced immune responses. *Science* **323**, 1722-1725,
1056 doi:10.1126/science.1168988 (2009).

1057 98 Fang, X., Zheng, P., Tang, J. & Liu, Y. CD24: from A to Z. *Cell Mol Immunol* **7**, 100-103,
1058 doi:10.1038/cmi.2009.119 (2010).

1059 99 Ayre, D. C. & Christian, S. L. CD24: A Rheostat That Modulates Cell Surface Receptor
1060 Signaling of Diverse Receptors. *Front Cell Dev Biol* **4**, 146, doi:10.3389/fcell.2016.00146
1061 (2016).

1062 100 Yen, H. C., Xu, Q., Chou, D. M., Zhao, Z. & Elledge, S. J. Global protein stability profiling
1063 in mammalian cells. *Science* **322**, 918-923, doi:10.1126/science.1160489 (2008).
1064 101 Eden, E. *et al.* Proteome half-life dynamics in living human cells. *Science* **331**, 764-768,
1065 doi:10.1126/science.1199784 (2011).
1066 102 Schwanhausser, B. *et al.* Global quantification of mammalian gene expression control.
1067 *Nature* **473**, 337-342, doi:10.1038/nature10098 (2011).
1068 103 Dvinge, H. *et al.* Sample processing obscures cancer-specific alterations in leukemic
1069 transcriptomes. *Proc Natl Acad Sci U S A* **111**, 16802-16807,
1070 doi:10.1073/pnas.1413374111 (2014).
1071 104 Laurent, J. M. *et al.* Protein abundances are more conserved than mRNA abundances
1072 across diverse taxa. *Proteomics* **10**, 4209-4212, doi:10.1002/pmic.201000327 (2010).
1073 105 Vogel, C. & Marcotte, E. M. Insights into the regulation of protein abundance from
1074 proteomic and transcriptomic analyses. *Nat Rev Genet* **13**, 227-232, doi:10.1038/nrg3185
1075 (2012).
1076 106 Ambrosi, T. H. *et al.* Distinct skeletal stem cell types orchestrate long bone skeletogenesis.
1077 *eLife* **10**, doi:10.7554/eLife.66063 (2021).
1078 107 Chan, C. K. *et al.* Identification and specification of the mouse skeletal stem cell. *Cell* **160**,
1079 285-298, doi:10.1016/j.cell.2014.12.002 (2015).
1080 108 Debnath, S. *et al.* Discovery of a periosteal stem cell mediating intramembranous bone
1081 formation. *Nature* **562**, 133-139, doi:10.1038/s41586-018-0554-8 (2018).
1082 109 Althubiti, M. *et al.* Characterization of novel markers of senescence and their prognostic
1083 potential in cancer. *Cell Death Dis* **5**, e1528, doi:10.1038/cddis.2014.489 (2014).
1084 110 Chini, E. N., Chini, C. C. S., Espindola Netto, J. M., de Oliveira, G. C. & van Schooten, W.
1085 The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of
1086 Aging. *Trends Pharmacol Sci* **39**, 424-436, doi:10.1016/j.tips.2018.02.001 (2018).
1087 111 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587
1088 e3529, doi:10.1016/j.cell.2021.04.048 (2021).
1089 112 Alquicira-Hernandez, J. & Powell, J. E. Nebulosa recovers single cell gene expression
1090 signals by kernel density estimation. *Bioinformatics*, doi:10.1093/bioinformatics/btab003
1091 (2021).
1092 113 Dai, Y. *et al.* CytoTree: an R/Bioconductor package for analysis and visualization of flow
1093 and mass cytometry data. *BMC Bioinformatics* **22**, 138, doi:10.1186/s12859-021-04054-
1094 2 (2021).
1095 114 NIH. Consideration of sex as a biological variable in NIH-funded research. (2015).
1096 115 Arnegard, M. E., Whitten, L. A., Hunter, C. & Clayton, J. A. Sex as a Biological Variable:
1097 A 5-Year Progress Report and Call to Action. *J Womens Health (Larchmt)* **29**, 858-864,
1098 doi:10.1089/jwh.2019.8247 (2020).
1099 116 Garcia-Sifuentes, Y. & Maney, D. L. Reporting and misreporting of sex differences in the
1100 biological sciences. *eLife* **10**, doi:10.7554/eLife.70817 (2021).
1101 117 Kotecha, N., Krutzik, P. O. & Irish, J. M. Web-based analysis and publication of flow
1102 cytometry experiments. *Curr Protoc Cytom Chapter* **10**, Unit10 17,
1103 doi:10.1002/0471142956.cy1017s53 (2010).
1104 118 Chen, T. J. & Kotecha, N. Cytobank: providing an analytics platform for community
1105 cytometry data analysis and collaboration. *Curr Top Microbiol Immunol* **377**, 127-157,
1106 doi:10.1007/82_2014_364 (2014).
1107 119 Becht, E. *et al.* Dimensionality reduction for visualizing single-cell data using UMAP. *Nat
1108 Biotechnol*, doi:10.1038/nbt.4314 (2018).
1109 120 Amir el, A. D. *et al.* viSNE enables visualization of high dimensional single-cell data and
1110 reveals phenotypic heterogeneity of leukemia. *Nat Biotechnol* **31**, 545-552,
1111 doi:10.1038/nbt.2594 (2013).

1112 121 Bruggner, R. V., Bodenmiller, B., Dill, D. L., Tibshirani, R. J. & Nolan, G. P. Automated
1113 identification of stratifying signatures in cellular subpopulations. *Proc Natl Acad Sci U S A*
1114 **111**, E2770-2777, doi:10.1073/pnas.1408792111 (2014).
1115