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Abstract

Occam’s razor is the principle that, all else being equal, simpler explanations should be preferred over
more complex ones. This principle is thought to play a role in human perception and decision-making,
but the nature of our presumed preference for simplicity is not understood. Here we use preregistered
behavioral experiments informed by formal theories of statistical model selection to show that, when
faced with uncertain evidence, human subjects exhibit preferences for particular, theoretically grounded
forms of simplicity of the alternative explanations. These forms of simplicity can be understood in terms of
geometrical features of statistical models treated as manifolds in the space of the probability distributions,
in particular their dimensionality, boundaries, volume, and curvature. The simplicity preferences driven
by these features, which are also exhibited by artificial neural networks trained to optimize performance
on comparable tasks, generally improve decision accuracy, because they minimize over-sensitivity to
noisy observations (i.e., overfitting). However, unlike for artificial networks, for human subjects these
preferences persist even when they are maladaptive with respect to the task training and instructions.
Thus, these preferences are not simply transient optimizations for particular task conditions but rather a
more general feature of human decision-making. Taken together, our results imply that principled notions
of statistical model complexity have direct, quantitative relevance to human and machine decision-making
and establish a new understanding of the computational foundations, and behavioral benefits, of our

predilection for inferring simplicity in the latent properties of our complex world.

Occam’s razor formalized as model selection

To make decisions in the real world, we must often
choose between multiple, plausible explanations for
noisy, sparse data. When evaluating such competing
explanations, Occam’s razor says that we should con-
sider not just how well they account for the observed
data, but also their potentially excessive flexibility
in describing alternative, and potentially irrelevant,
data that have not been observed ((1); e.g., “a ghost
did it!”, Figure 1a). In cognitive science, simplicity,
or parsimony, has long been proposed as an organiz-
ing principle in mental function (2), from the early
concept of Pragnanz in Gestalt psychology (3), to a
number of “minimum principles” for vision (4), to
theories that posit a central role for data compres-
sion in cognition (5). However, despite evidence that
human decision-makers can exhibit simplicity prefer-
ences under certain task conditions (6-10), we lack

a principled understanding of what, exactly, consti-
tutes the “simplicity” that is favored (or, equivalently,
“complexity” that is disfavored) and how we balance
that preference with the evidence provided by the
observed data when we make decisions.

To provide this understanding, we turn to an ap-
proach based on Bayesian statistics (11, 12), which
allows us to measure the complexity of an explanation
for data on an absolute scale. Our process is formal-
ized as a model-selection problem: given a set X of N
observations and a set of possible statistical models
M1, M,, ..., we seek the model M that in some sense
is the best for the data X. In this context, Occam’s
razor can be interpreted as requiring the goodness-
of-fit of a model to be penalized by some measure
of its flexibility, or complexity, when comparing it
against other models. Bayesian statistics offers a nat-
ural characterization of such a measure of complexity
and specifies the way in which it should be traded off
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Figure 1: Formalizing Occam’s razor as Bayesian model selection to understand simplicity preferences in human
decision-making. a: Occam’s razor prescribes an aversion to complex explanations (models). In Bayesian model
selection, model complexity is a measure of the flexibility of a model, or its capacity to account for a broad
range of empirical observations. In this example, we observe an apple falling from a tree (left) and compare
two possible explanations: 1) classical mechanics, and 2) the intervention of a ghost. b: Schematic comparison
of the evidence of the two models in a. Classical mechanics (pink) explains a narrower range of observations
than the ghost (green), which is a valid explanation for essentially any conceivable phenomenon (e.g., both a
falling and spinning-upward trajectory, as in the insets). Absent further evidence, Occam’s razor posits that the
simpler model (classical mechanics) is preferred, because its hypothesis space is more concentrated around the
sparse, noisy data and thus avoids “overfitting” to noise. c¢: A geometrical view of the model-selection problem.
Two alternative models are represented as geometrical manifolds, and the maximum-likelihood point & for each
model is represented as the projection of the data (red star) onto the manifolds. d: Systematic expansion of
the log evidence of a model M. # is the maximum-likelihood point on model M for data X, N is the number
of observations, d is the number of parameters of the model, [ is the likelihood gradient evaluated at 19, his
the observed Fisher information matrix, and g is the expected Fisher information matrix (see Methods). g(%)
captures how distinguishable elements of M are in the neighborhood of 4. When M is the true source of the data
X, h(X ;1) can be seen as a noisy version of g(1), estimated from limited data. k™1 is a shorthand for h(X; )2,

and ||{]| 1=V [Th—1] is the length of [ measured in the metric defined by h~'. The ellipsis collects terms that
decrease as N grows. Each term of the expansion represents a distinct geometrical feature of the model (11):
dimensionality penalizes models with many parameters; boundary (a novel contribution of this work) penalizes
models for which & is on the boundary; volume counts the number of distinguishable probability distributions
contained in M; and robustness captures the shape (curvature) of M near 8. e: Psychophysical task with variants
designed to probe each geometrical feature in d. For each trial, a random location on one model was selected
(gray star), and data (red dots) were sampled from a Gaussian centered around that point (gray shading). The
red star represents the empirical centroid of the data, by analogy with c. The maximum-likelihood point can be
found by projecting the empirical centroid onto one of the models. Subjects saw the models (black lines) and
data (red dots) only and were required to choose which model was best for the data. Insets: task performance for
the given task variant, for a set of 100 simulated ideal Bayesian observers (orange) versus a set of 100 simulated
maximum-likelihood observers (i.e., choosing based only on whichever model was the closest to the empirical
centroid of the data on a given trial; cyan).
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against goodness-of-fit to maximize decision accuracy,
typically because the increased flexibility provided by
increased complexity tends to cause errors by overfit-
ting to noise in the observations (12-14).

Specifically, according to this framework mod-
els should be compared based on their evidence or
marginal likelihood p(X|M) = f dw()p(X|M, ),
where 1 represents model parameters and w(®) their
associated prior (Figure 1b). Under mild regularity as-
sumptions and with sufficient data, the (log) evidence
can be written as the sum of the maximum log like-
lihood of M and several penalty factors (Figure 1d).
These penalty factors, which are found even when the
prior probabilities of the models under consideration
are equal (i.e., independent of the data, all are equally
likely to be the correct model), can be interpreted as
providing quantitatively defined preferences against
certain models according to specific forms of com-
plexity that they embody (11, 12). If the prior over
parameters w(1#) is taken to be uninformative (15),
each penalty factor can be shown to capture a distinct
geometric property of the model (11), including di-
mensionality (number of parameters), boundary (a
novel term, detailed below), volume, and shape (Fig-
ure 1c,d). This approach, which we call the Fisher
Information Approximation (FIA), generalizes the
well-known Bayesian Information Criterion (BIC) for
model selection (16, 17). Its effectiveness has been
demonstrated by using it to identify worse-fitting,
but better-generalizing, psychophysical models de-
scribing the relationship between physical variables
(e.g., light intensity) and their psychological coun-
terparts (e.g., brightness) (18). Similar quantitative
definitions of statistical model complexity or model-
selection prescriptions can be obtained with different
theoretical approaches, such as the Minimum Descrip-
tion Length (19, 20), Minimum Message Length (21),
and Predictive Information (22) frameworks, testify-
ing to the generality of this approach (23).

A limitation of these existing approaches is that
they typically assume that the maximum-likelihood
solution is in the interior of the parameter space of
a given model (11). In contrast, because models are
just approximations of the true processes in the real
world that generated a given set of observations, those
observations may fall outside of the parameter space
of a given model. In these cases (or even when the
observations are based on samples generated by the
model but are corrupted by noise to fall outside of the
model’s parameter space), the maximum-likelihood
solution for that model, given those data, may fall on
the boundary of the model’s parameter space. To ac-
count for this condition, we extended the FIA to deal

with the simple case of a linear boundary in parameter
space (see Methods). When the maximum-likelihood
solution is on such a boundary, an additional penalty
term appears in the FIA, which we denote “boundary”
(Figure 1d). This extended FIA, consisting of dimen-
sionality, boundary, volume, and robustness terms,
provides a quantitative framework for assessing sim-
plicity preferences in simple decision tasks, as we
detail below.

Humans exhibit theoretically grounded simplicity
preferences

We designed a simple decision-making task to re-
late the FIA complexity terms to the potential prefer-
ences exhibited by both human and artificial decision-
makers. For each trial, N = 10 simultaneously pre-
sented observations (red dots in Figure le) were
sampled from a 2D Normal (“generative”) distribu-
tion centered somewhere within one of two possible
shapes (black shapes in Figure 1e). The identity of the
shape generating the data (top versus bottom) was
chosen at random with equal probability. Likewise,
the location of the center of the Normal distribution
within the selected shape was sampled uniformly at
random, in a way that did not depend on the model
parametrization, by using Jeffrey’s prior (15). Given
the observations, the subjects decided which shape
(model) was more likely to contain the center of the
generative distribution. We used four task variants,
each designed to primarily probe one of the distinct
geometrical features that are penalized in Bayesian
model selection (i.e., a Bayesian observer is expected
to have a particular, quantitative preference away
from the more-complex alternative in each pair; Fig-
ure 1d and e). In our task, the FIA provided a good
approximation of the exact Bayesian posterior (Sup-
plementary Information section C.1 and Supplemen-
tary Figure S1).

For our human studies, we used the on-line re-
search platforms Pavlovia, to implement the task, and
Prolific, to recruit subjects. Following our preregis-
tered approaches (24-26), we collected data from
202 subjects, divided into four groups that each per-
formed one of the four separate versions of the task
depicted in Figure 1e (each group comprised 50 sub-
jects; see Supplementary Text for details on subject
demographics). We provided instructions that used
the analogy of seeds from a flower located in one of
two flowerbeds, to provide an intuitive framing of
the key concepts of noisy data generated by a par-
ticular instance of a parametric model from one of
two model families. To minimize the possibility that
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Figure 2: Humans exhibit theoretically grounded simplicity preferences. a: Summary of human behavior. Hue
(pink/green): k-nearest-neighbor interpolation of the model choice, as a function of the empirical centroid of the
data. Color gradient (light/dark): marginal density of empirical data centroids for the given model pair, showing
the region of space where data were more likely to fall. Cyan solid line: decision boundary for an observer that
always chooses the model with highest maximum likelihood. Orange dashed line: decision boundary for an ideal
Bayesian observer. The subjects’ choices tended to reflect a preference for the simpler model, particularly near the
center of the screen, where the evidence for the alternatives was weak. For instance, in the left panel there is a
region where data were closer to the line than to the dot, but subjects chose the dot (the simpler, lower-dimensional
“model”) more often than the line. b: Subject sensitivity to each geometrical feature characterizing model com-
plexity was estimated via hierarchical logistic regression (see Methods, section A.5, Supplementary Figure S2
and Supplementary Text section C.3), using as predictors a constant to account for an up/down choice bias, the
difference in likelihoods for the two models (L, — L;) and the difference in each FIA term for the two models
(D, — Dy, etc). Following the hierarchical regression scheme, the subject-level sensitivities were in turn modeled as
being sampled from a population-level distribution. The mean of this distribution is our population-level estimate
for the sensitivity. ¢: Overall accuracy versus estimated relative FIA sensitivity for each task condition, as indicated.
Points are data from individual subjects. Each fitted FIA coefficient was normalized to the likelihood coefficient
and thus could be interpreted as a relative sensitivity to the associated FIA term. For each term, an ideal Bayesian
observer would have a relative sensitivity of one (dashed orange lines), whereas an observer that relied on only
maximum-likelihood estimation (i.e., choosing “up” or “down” based on only the model that was the closest to the
data) would have a relative sensitivity of zero (solid cyan lines). Top, gray: Population-level estimates (posterior
distribution of population-level relative sensitivity given the experimental observations). Bottom: each gray dot
represents the task accuracy of one subject (y axis) versus the posterior mean estimate of the relative sensitivity
for that subject (x axis). Purple: relative sensitivity of an ideal observer that samples from the exact Bayesian
posterior (not the approximated one provided by the FIA). Shading: posterior mean + 1 or 2 stdev., estimated by
simulating 50 such observers.
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subjects would simply learn from implicit or explicit
feedback over the course of each session to make
more optimal (i.e., simplicity-preferring) choices of
flowerbeds, we: 1) used conditions for which the dif-
ference in performance between ideal observers that
penalized model complexity according to the FIA and
simulated observers that used only model likelihood
was ~1% (depending on the task type; Figure le, in-
sets), which translates to ~5 additional correct trials
over the course of an entire experiment; and 2) pro-
vided feedback only at the end of each block of 100
trials, not each trial. We used hierarchical (Bayesian)
logistic regression to measure the degree to which
each subject’s choices were affected by model likeli-
hood (distance from the data to a given model) and
each of the FIA-derived geometrical features char-
acterizing model complexity (see Methods, section
A.5). We defined each subject’s sensitivity to each
FIA term as a normalized quantity, relative to their
likelihood sensitivity (i.e., by dividing the logistic coef-
ficient associated with a given FIA term by the logistic
coefficient associated with the likelihood).

The human subjects were sensitive to all four
forms of model complexity (Figure 2). Specifically,
the estimated normalized population-level sensitivity
for human subjects (posterior mean =+ st. dev., where
zero implies no sensitivity and one implies Bayes-
optimal sensitivity) was 4.66%+0.96 for dimensional-
ity, 1.1240.10 for boundary, 0.23£0.12 for volume,
and 2.2140.12 for robustness (note that, following
our preregistered plan, we emphasize parameter esti-
mation using Bayesian approaches (27-29) here and
throughout the main text, and we provide comple-
mentary null hypothesis significance testing in the
Supplementary Text, Section C.7 and Supplementary
Table S4). Formal model comparison (WAIC; see Sup-
plementary Text, section C.7.1 and Supplementary
Tables S2 and S3) confirmed that their behavior was
better described by taking into account the geometric
penalties defined by the theory of Bayesian model se-
lection, rather than by relying on only the minimum
distance between model and data (i.e., the maximum-
likelihood solution).

The subjects also exhibited substantial individual
variability in performance that included ranges of sen-
sitivities to each FIA term that spanned optimal and
sub-optimal values. This variability was large com-
pared to the uncertainty associated with subject-level
sensitivity estimates (Supplementary Text, section C.5
and Supplementary Figure S3) and impacted perfor-
mance in a manner that highlighted the usefulness
of appropriately tuned (i.e., close to Bayes optimal)
simplicity preferences: accuracy tended to decline for

subjects with FIA sensitivities further away from the
theoretical predictions (Figure 2c; posterior mean = st.
dev. of Spearman’s rho between accuracy and | — 1|,
where f is the sensitivity: dimensionality, -0.69£0.05;
boundary, -0.21+0.11; volume, -0.10£0.10; robust-
ness, -0.544+0.10). The sub-optimal sensitivities ex-
hibited by many subjects did not appear to result
simply from a lack of task engagement, because FIA
sensitivity did not correlate with errors on easy trials
(posterior mean =+ st. dev. of Spearman’s rho between
lapse rate, estimated with an extended regression
model detailed in Methods, section A.5.1, and the ab-
solute difference from optimal sensitivity for: dimen-
sionality, 0.084+0.12; boundary, 0.15+0.12; volume,
-0.04+£0.13; robustness, 0.15+0.14; see Supplemen-
tary Text section C.6 and Supplementary Figure S4).
Likewise, sub-optimal FIA sensitivity did not correlate
with weaker likelihood sensitivity for the boundary
(tho=-0.13+0.11) and volume (-0.06+0.11) terms,
although stronger, negative relationships with the
dimensionality (-0.35+0.07) and robustness terms
(-0.56%0.10) suggest that the more extreme and vari-
able simplicity preferences under those conditions
(and lower performance, on average; see Figure 2c)
reflected a more general difficulty in performing those
versions of the task.

Human simplicity preferences are robust to task
demands

To better understand the optimality, variability, and
generality of the simplicity preferences exhibited by
our human subjects, we compared their performance
to that of artificial neural networks (ANNS) trained to
optimize performance on this task. We used a novel
ANN architecture that we designed to perform sta-
tistical model selection, in a form applicable to the
task described above (Figure 3a,b). On each trial,
the network took as input two images representing
the models to be compared, and a set of coordinates
representing the observations on that trial. The out-
put of the network was a decision between the two
models, encoded as a softmax vector. We analyzed 50
instances of the ANN that differed only in the random
initialization of their weights and in the examples seen
during training, using the same logistic-regression ap-
proach we used for the human subjects.

The ANN was designed as follows. The input
stage consisted of two pretrained VGG16 convolu-
tional neural networks (CNNs), each of which took
in a pictorial representation of one of the two models
under consideration. VGG was chosen as a popular
architecture that is often taken as a benchmark for
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Figure 3: Deep neural networks exhibit theoretically grounded simplicity preferences. a: A novel deep neural-network
architecture for statistical model selection. The network (see text and Methods for details) takes two images
as input, each representing a model, and a set of 2D coordinates, each representing a datapoint. The output is
a softmax-encoded choice between the two models. b: Each network was trained on multiple variants of the
task, including systematically varied model length or curvature, then tested using the same configurations as
for the human studies. ¢: Summary of network behavior, like Figure 2a. Hue (pink/green): k-nearest-neighbor
interpolation of the model choice, as a function of the empirical centroid of the data. Color gradient (light/dark):
marginal density of empirical data centroids for the given model pair, showing the region of space where data
were more likely to fall. Cyan solid line: decision boundary for an observer that always chooses the model with
highest maximum likelihood. Orange dashed line: decision boundary for an ideal Bayesian observer. d: Estimated
relative sensitivity to geometrical features characterizing model complexity. As for the human subjects, each fitted
FIA coefficient was normalized to the likelihood coefficient and thus could be interpreted as a relative sensitivity
to the associated FIA term. For each term, an ideal Bayesian observer would have a relative sensitivity of one
(dashed orange lines), whereas an observer that relied on only maximum-likelihood estimation (i.e., choosing“up”
or “down” based on only the model that was the closest to the data) would have a relative sensitivity of zero
(solid cyan lines). Top: population-level estimate (posterior distribution of population-level relative sensitivity
given the experimental observations; see Methods, section A.5 for details). Bottom: each gray dot represents the
task accuracy of one of 50 trained networks (y axis) versus the posterior mean estimate of the relative sensitivity
for that network (x axis). Purple: relative sensitivity of an ideal observer that samples from the exact Bayesian
posterior (not the approximated one provided by the FIA). Shading: posterior mean + 1 or 2 stdev., estimated by
simulating 50 such observers.
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comparisons with the human visual system (30, 31).
The CNNs were composed by a number of convolu-
tional layers, whose weights were kept frozen at their
pretrained values, followed by three fully-connected
layers, whose weights were allowed to change dur-
ing training (see Methods for details). The output of
the CNNs were each fed into a multilayer perceptron
(MLP) consisting of linear, rectified-linear (ReLU), and
batch-normalization layers. The MLP outputs were
then concatenated and fed into an Equivariant MLB
which enforces equivariance of the network output un-
der position swap of the two models through a custom
parameter-sharing scheme (32). The network also
contained two conditional variational autoencoder
(C-VAE) structures, which sought to replicate the data-
generation process conditioned on each model and
therefore encouraged the fully connected layers up-
stream to learn model representations that captured
task-relevant features.

After training, the ANNs performed the task sub-
stantially better than the human subjects, with higher
overall accuracies that included higher likelihood sen-
sitivities (Supplementary Text, section C.4 and Sup-
plementary Table S1) and simplicity preferences that
more closely matched the theoretically optimal values
(Figure 3d). In fact, these simplicity preferences were
closer to those expected from simulated observers
that use the exact Bayesian model posterior rather
than the FIA-approximated one, indicating an imper-
fect approximation of the FIA to the exact Bayesian
posterior rather than suboptimal network behavior.
These simplicity preferences varied slightly in magni-
tude across the different networks, but unlike for the
human subjects this variability was relatively small
(compare ranges of values in Figures 2c and 3d, plot-
ted on different x-axis scales) and not related sys-
tematically to any differences in the generally high
accuracy rates for each condition (Figure 3e; poste-
rior mean =+ st. dev. of Spearman’s rho between
accuracy and 3 —1, where f is the sensitivity: dimen-
sionality, -0.14+0.10; boundary, 0.08+0.11; volume,
-0.12+0.11; robustness, -0.08+0.11). These results
imply that the stochastic nature of the task gives rise
to some variability in simplicity biases even after ex-
tensive training to optimize performance accuracy,
but this source of variability cannot by itself account
for the range of sensitivities (and suboptimalities)
exhibited by the human subjects.

These results, combined with the fact that we
did not provide trial-by-trial feedback to the subjects
while they performed the task, suggest that the human
simplicity preferences we measured were not simply
learned optimizations for these particular task condi-

tions but rather are a more inherent (and variable)
part of how we make decisions under uncertainty.
However, because we provided each subject with in-
structions that echoed Bayesian-like reasoning (see
Methods) and a brief training set with feedback be-
fore their testing session, we cannot rule out from this
dataset alone that at least some aspects of the simplic-
ity preferences we measured from the human subjects
depended on those specific instructions and training
conditions. We therefore ran a second experiment to
rule out this possibility. For this experiment, we used
the same task variants as above but a different set of
instructions and training, designed to encourage sub-
jects to pick the model with the maximum likelihood,
thus disregarding model complexity. Specifically, the
visual cues were the same as in the original exper-
iment, but the subjects were asked to report which
of the two shapes on the screen was closest to the
center-of-mass of the dot cloud. We ensured that the
subjects recruited for this “maximum-likelihood” task
had not participated in the original, “generative” task.
We also trained and tested ANNs on this version of
the task, using the maximum-likelihood solution as
the correct answer.

Despite this major difference in instructions and
training, the human subjects exhibited similar sim-
plicity preferences on the generative and maximum-
likelihood tasks, suggesting that humans have a gen-
eral predilection for simplicity even without relevant
instructions or incentives (Figure 4, left). Specifically,
despite some quantitative differences, the distribu-
tions of relative sensitivities showed the same basic
patterns for both tasks, with a general increase of
relative sensitivity from volume (0.19+0.08 for the
maximum-likelihood task; compare to values above),
to boundary (0.89+0.10), to robustness (2.2740.15),
to dimensionality (2.2940.41). In stark contrast to
the human data and to ANNs trained on the true gen-
erative task, ANN sensitivity to model complexity on
the maximum-likelihood task was close to zero for all
four terms (Figure 4, right).

To summarize the similarities and differences be-
tween how humans and ANNs used simplicity biases
to guide their decision-making behaviors for these
tasks, and their implications for performance, Figure
5 shows overall accuracy for each set of conditions we
tested. Specifically, for each network or subject, task
configuration, and instruction set, we computed the
percentage of correct responses with respect to both
the generative task (i.e., for which theoretically opti-
mal performance depends on simplicity biases) and
the maximum-likelihood task (i.e., for which theoret-
ically optimal performance does not depend on sim-


https://doi.org/10.1101/2023.01.10.523479
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.10.523479; this version posted February 8, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

a Humans b Neural networks
Dimensionality -# - v i
N Boundary - _<l. I Generative task | | _‘_
E [0 Max lik. task T :
2 H
o A e Bayes .
w e -
Volume "' Max lik. s
Robustness - + — V— -A-—
T T T T T
0 5 10 0 1
Relative sensitivity Relative sensitivity

Figure 4: Humans, but not artificial neural networks, exhibit simplicity preferences even when they are suboptimal.
a: Relative sensitivity of human subjects to the geometric complexity terms (population-level estimates, as in
Figure 2c, top) for two task conditions: 1) the original, “generative” task where subjects were implicitly instructed
to solve a model-selection problem (same data as in Figure 2c, top; cyan); and 2) a “maximum-likelihood” task
variant, where subjects were instructed to report which of two models has the highest likelihood (shortest distance
from the data; orange). The two task variants were tested on distinct subject pools of roughly the same size (202
subjects for the generative task, 201 for the maximum-likelihood task, in both cases divided in four groups of
roughly 50 subjects each). Solid cyan lines: relative sensitivity of a maximum-likelihood observer. Orange dashed
lines: relative sensitivity of an ideal Bayesian observer. b: Same comparison and format, but for two distinct
populations of 50 deep neural networks trained on the two variants of the task (orange is the same data as in

Figure 3d, top).
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Figure 5: Humans and artificial neural networks have different patterns of accuracy reflecting their different use
of simplicity preferences. Each panel shows accuracy with respect to maximum-likelihood solutions (i.e., the
model closest to the centroid of the data; ordinate) versus with respect to generative solutions (i.e., the model
that generated the data; abscissa). The gray line is the identity. Columns correspond to the four task variants
associated with the four geometric complexity terms, as indicated. a: Data from individual human subjects
(points), instructed to find the generative (orange) or maximume-likelihood (cyan) solution. Subject performance
was higher when evaluated against maximume-likelihood solutions than it was when evaluated against generative
solutions, for all groups of subjects (two-tailed paired t-test, generative task subjects: dimensionality, t-statistic
2.21, p-value 0.03; boundary, 6.21, 1e-7; volume, 9.57, 8e-13; robustness, 10.6, 2e-14. Maximum-likelihood task
subjects: dimensionality, 5.75, 5e-7; boundary, 4.79, 2e-6; volume, 10.8, 2e-14; robustness, 12.2, 2e-16). b: Data
from individual ANNs (points), trained on the generative (orange) or maximum-likelihood (cyan) task. Network
performance was always highest when evaluated against maximum-likelihood solutions, compared to generative

solutions (all dots are above the identity line).
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plicity biases). Because the maximum-likelihood so-
lutions are deterministic (they depend only on which
model the data centroid is closest to, and thus there ex-
ists an optimal, sharp decision boundary that leads to
perfect performance) and the generative solutions are
not (they depend probabilistically on the likelihood
and bias terms, so it is generally impossible to achieve
perfect performance), performance on the former is
expected to be higher than on the latter. Accordingly,
both ANNs and (to a lesser extent) humans tended to
perform better when assessed relative to maximum-
likelihood solutions. Moreover, the ANNs tended to
exhibit behavior that was consistent with optimiza-
tion to the given task conditions: networks trained
to find maximum-likelihood solutions did better than
networks trained to find generative solutions for the
maximum-likelihood task, and networks trained to
find generative solutions did better than networks
trained to find maximum-likelihood solutions for the
generative task. In contrast, humans tended to adopt
similar strategies regardless of the task conditions, in
all cases using Bayesian-like simplicity biases.

Put briefly, ANNs exhibited simplicity preferences
only when trained to do so, whereas human subjects
exhibited them regardless of their instructions and
training.

Discussion

Simplicity has long been regarded as a key element
of effective reasoning and rational decision-making,
and it has been proposed as a foundational princi-
ple in philosophy (1), psychology (2, 5), statistical
inference (11-14, 20, 21, 23, 33, 34), and more re-
cently machine learning (35-38). Accordingly, multi-
ple studies have identified preferences for simplicity in
human cognition (6, 8, 9), such as a tendency to pre-
fer smoother (simpler) curves as the inferred, latent
source of noisy observed data (7, 10). However, the
quantitative form and magnitude of this preference
have never been identified. In this work, we showed
that the simplicity preference is closely related to a
specific mathematical formulation of Occam’s razor,
situated at the convergence of Bayesian model selec-
tion and information theory (11). This formulation
enabled us to go beyond the mere detection of a prefer-
ence for simple explanations for data and to measure
precisely the strength of this preference in artificial
and human subjects under a variety of theoretically
motivated conditions.

Our study makes several novel contributions. The
first is theoretical: we derived a new term of the
Fisher Information Approximation (FIA) in Bayesian

model selection that accounts for the possibility that
the best model is on the boundary of the model fam-
ily. This boundary term is important because it can
account for the possibility that, because of the noise
in the data, the best value of one parameter (or of
a combination of parameters) takes on an extreme
value. This condition is related to the phenomenon
of “parameter evaporation” that is common in real-
world models for data (39). Moreover, boundaries for
parameters are particularly important for studies of
perceptual decision-making, in which sensory stimuli
are limited by the physical constraints of the experi-
mental setup and thus reasoning about unbounded
parameters would be problematic for subjects. For ex-
ample, imagine designing an experiment that requires
subjects to report the location of a visual stimulus. In
this case, an unbounded set of possible locations (e.g.,
along a line that stretches infinitely far in the distance
to the left and to the right) is clearly untenable. Our
“boundary” term formalizes the impact of considering
the set of possibilities as having boundaries, which
tend to increase local complexity because they tend
to reduce the number of local hypotheses close to the
data (see Figure 1b).

The second contribution of this work relates to
ANNSs: these networks can learn to use or ignore the
simplicity preferences in an optimal way (i.e., accord-
ing to the magnitudes prescribed by the theory), de-
pending on how they are trained. These results are
different from, and complementary to, recent work
that has focused on the idea that implementation of
simple functions could be key to generalization in
deep neural networks (35-38). Here we have shown
that effective learning can take into account the com-
plexity of the hypothesis space, rather than that of the
decision function, in producing normative simplicity
preferences. On the one hand, these results do not
seem surprising, because ANNs, and deep networks
in particular, are powerful function approximators
that perform well in practice on a vast range of infer-
ence tasks(40). Accordingly, our ANNs trained with
respect to the true generative solutions were able to
make effective decisions, including simplicity pref-
erences, about the generative source of a given set
of observations. Likewise, our ANNs trained with
respect to maximum-likelihood solutions were able
to make effective decisions, without simplicity pref-
erences, about the maximum-likelihood match for a
given set of observations. On the other hand, these
results provide new insights into how ANNs might be
analyzed to better understand the kinds of solutions
they produce for particular problems. In particular,
assessing the presence or absence of these kinds of
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simplicity preferences might help identify if and/or
how well an ANN is likely to avoid overfitting to train-
ing data and provide more generalizable solutions.

The third, and most important, contribution of
this work relates to human behavior: people tend
to use simplicity preferences when making decisions,
and unlike ANNs these preferences do not seem to
be simply the consequences of learning specific task
demands but rather an inherent part of how we in-
terpret uncertain information. This tendency has im-
portant implications for the kinds of computations
our brains must use to solve these kinds of tasks, and
how those computations appear to differ from those
implemented by the ANNs we used. From a theoret-
ical perspective, the difference between a Bayesian
solution (i.e., one that includes the simplicity prefer-
ences) and a maximum-likelihood solution (i.e., one
that does not include the simplicity preferences) to
these tasks is that the latter considers only the sin-
gle best-fitting model from each family, whereas the
former integrates over all possible models in each
family. Our finding that ANNs can converge on ei-
ther solution when trained appropriately indicates
that both are, in principle, learnable. However, our
finding that people tend to use the Bayesian solution
even when instructed to use the maximum-likelihood
solution suggests that we naturally do not make deci-
sions based simply on the single best or archetypical
instance within a family of possibilities but rather inte-
grate across that family. Put more concretely in terms
of our task, when told to identify the shape closest to
the data points, subjects were likely uncertain about
which exact location on each shape was closest and
thus integrated over the possibilities — thus inducing
simplicity preferences as prescribed by the Bayesian
solution. These findings will help motivate and inform
future studies to identify where and how the brain
implements and stores these integrated solutions to
relevant decision problems.

Another key feature of our findings that merits
further study is the magnitude and variability of pref-
erences exhibited by the human subjects. On average,
human sensitivity to each geometrical model feature
was: 1) larger than zero, 2) at least slightly different
from the optimal value (e.g., larger for dimensional-
ity and robustness, smaller for volume), 3) different
for distinct features and different subjects; and 4) in-
dependent of instructions and training. What is the
source of this diversity? One hypothesis is that people
may weigh more heavily the model features that are
easier or cheaper to compute. In our experiments, the
most heavily weighted feature was model dimension-
ality. In our mathematical framework, this feature

corresponds to the number of degrees of freedom of
a possible explanation for the observed data and thus
can be relatively easy to assess. By contrast, the least
heavily weighted feature was model volume. This fea-
ture involves integrating over the whole model family
(to count how many distinct states of the world can
be explained by a certain hypothesis, one needs to
enumerate them) and thus can be very difficult to
compute. The other two terms, boundary and robust-
ness, are intermediate in terms of human weighting
and computational difficulty: they are harder to com-
pute than dimensionality, because they depend on the
data and on the properties of the model at the max-
imum likelihood location, but are also simpler than
the volume term, because they are local quantities
that do not require integration over the whole model
manifold. This intuition leads to new questions about
the relationship between the complexity of the expla-
nations being compared and the complexity of the
decision-making process itself, calling into question
notions of bounded rationality and diminishing re-
turns in optimal inference (41, 42). Answering such
questions is beyond the scope of the present work but
merits further study.

Another potentially intriguing future direction is
a comparison with other formal approaches to the
emergence of simplicity that can lead to different pre-
dictions. Recent studies have argued that Jeffrey’s
prior (upon which our geometric approach is based)
could give an incomplete picture of the complexity of
a class of models that occur commonly in the natural
sciences, which contain many combinations of param-
eters that do not affect model behavior, and proposed
instead the use of data-dependent priors (43, 44).
The two methods lead to different results, especially
in the data-limited regime (45). It would be useful
to understand the relevance of these differences to
human and machine decision-making.

In summary, our work reveals the direct, quantita-
tive relevance of formal notions of model complexity
for human behavior. By relying on a combination of
theoretical advances, computational modeling and
behavioral experiments, we have established a novel
set of normative reference points for decision mak-
ing under uncertainty. Our findings therefore open
up a new arena in which human cognition could be
measured against optimal inferential processes, po-
tentially leading to new insights into the constraints
affecting information processing in the brain.
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A Methods

A.1 Derivation of the boundary term in the Fisher Information Approximation

Here we generalize the derivation of the Fisher Information Approximation given by Balasubramanian (11)
to the case where the maximum-likelihood solution for a model lies on the boundary of the parameter space.
Apart from the more general assumptions, the following derivation follows closely the original one, with
some minor notational changes. This derivation appeared in preliminary form in (46).

A.1.1 Set-up and hypotheses

The problem we consider here is that of selecting between two models (say M, and M), after observing
empirical data X = {x; }f]: 1- N is the sample size and M, is assumed to have d parameters, collectively
indexed as ¥ taking values in a compact domain ©. As a prior over 4 we take Jeffrey’s prior:

v/ det g(%)

w(?) = €y
[ dd9/det g(®)
where g is the (expected) Fisher Information of the model M;:
2 Inp(x|9)
N=E| 2
gun(P) [ aonaor |, 2
The Bayesian posterior
P(M;) d
P X)=—— | d*w(HPX|T
(M,1X) POX) w(P(X[F) (3)
then becomes, after assuming a flat prior over models and dropping irrelevant terms:
d?9+/det g exp[ —N(—= InP(X|5))
P(M |X) = Je VG : &)

[ dd9y/detg

Just as in (11), we now make a number of regularity assumptions: 1. InP(X|#) is smooth; 2. there is
a unique global minimum ¥ for InP(X|%); 3. g,,(%) is smooth; 4. g,,(¥) is positive definite; 5. © C RY is
compact; and 6. the values of the local minima of InP(X|#) are bounded away from the global minimum by
some € > 0. Importantly, unlike in (11), we do not assume that ¥ is in the interior of ©.

14
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The shape of ©. Because we are specifically interested in understanding what happens at a boundary of
the parameter space, we add a further assumption that, while being not very restrictive in spirit, allows us
to derive a particularly interpretable result. In particular, we assume that © is specified by a single linear

constraint of the form:
D, +d >0 (5)

Without loss of generality, we also take the constraint to be expressed in Hessian normal form, namely,
|D,, |l = 1. For clarity, note this assumption on the shape of © is used only from subsubsection A.1.3 onward.

A.1.2 Preliminaries

We now proceed to set up a low-temperature expansion of Equation 4 around the saddle point 8. We start by
rewriting the numerator in Equation 4 as:

d Nl _1 )]
f@d ﬁexp[ N( N Indetg NlnIF’(Xlﬁ) (6)

The idea of the Fisher Information Approximation is to expand the integrand in Equation 6 in powers of N
around the maximum likelihood point ¥. To this end, we define three useful objects:

N
- 1 1
i == Vi -5 Z V,, -V, InP(x;|9)
Jj= 4
Fy .y, = Vy, -V, Indetg(9) ,
Y = _ L Indetg — 1 InP(X|%)
TN TN
We immediately note that:
. 1
Vi, v:ui/llj =Ly ﬁFul Wi
which is useful to compute
A 1 A A
Y() = A(ﬁ“—ﬁ“)+§ V.V A(ﬁ“—ﬁ“)(ﬁ”—ﬁ”)+...
o 1
Z_'v vi w‘ (%1 — B .. (oM — D)
i=0 v
(o] 1 .
=) = e _ Gu
=25 Y vut| [ T~
i=0 T k=1
It is also useful to center the integration variables by introducing
¢ = VN@—-D) (7)
di¢ =N¥/2qdy (8)
so that _
: A e 1
— nN—i/2 i
ViV 191_[(15‘“’<—1§‘“’<)—N / (Iur--ui_ﬁFur--ui)‘i’m et ©))
k=1
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and Equation 6 becomes:

_ 1l - 1 .
Jddﬁexp[—N’l’[)]zN d/zfdd¢exp|:—NZi—'N /2 (Iul---ui_ﬂFm-"ui)qwlmqbul]
i=0

=N"4/2 J dd¢ exp { —N (—]lVlnIP’(leﬁ) — % lndetg(f})) +

i/2 i
—N[. N (1“1 ™ oy P )qﬁ“l d)“]}

1=1

— Nt exp[— (—ln]P’(Xh’A?) _1 lndetg(ﬁ))] X

J dd«bexp{ [r ~¢“+ T,¢" e "+
1 & i 1 - 1 )
3y 2N (G gt a9 S "““ﬂ}

Therefore,
P(M;|X)=N"% exp|:— (—mp(xh‘}) — % Indetg(®) + lnf d994/det g)] x

xfd%bexp[ 1/_qub ——Im,qb“qﬁ +

oo 1 (10)
ZN—E((H_Z)' e, P PP — 5 Y LLEe ¢ui)]}
—N"% exp —(—lnIP’(Xlﬁ)—%lndetg(ﬁ‘)+an ddg detg)]Q
L e
where -
Q= | dpexp| VNI, 9"~ 21,8"9"~ ()] av
Jo
and -~
_i 1 . 1 ,
60) = N (i s 94 = S 997 ) (12)

where G(¢) collects the terms that are suppressed by powers of N.

Our problem has been now reduced to computing Q by performing the integral in Equation 11. Now our
assumptions come into play for the key approximation step. For the sake of simplicity, assuming that N is
large we drop G(¢) from the expression above, so that Q becomes a simple Gaussian integral with a linear
term:

Q:J d?¢ exp [—«/ﬁfu¢“—1¢“fuv¢”] (13)
® 2

A.1.3 Choosing a good system of coordinates

Consider now the Observed Fisher Inforrnatlon at the maximum likelihood, T, uv- As long as it is not singular,
we can define its inverse A*” = (] W) LIf I y is positive definite, then the matrix representation of I,,, has a

set of d positive elgenvalues which we denote by {0(1), (_22), eee, a(_dz)}. The matrix representation of A*”

has eigenvalues {0(1), (20 d)}, and is diagonal in the same choice of coordinates as | uv- We denote by
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U the (orthogonal) diagonalizing matrix; i.e., U is such that

2
ofy 0 - 0
0 o2 :
uAUT = @ , Ulu=uvuT =1 (14)
: .0
0 ... 0 of

We define also the matrix K as the product of the diagonal matrix with elements 1/0 ) along the diagonal
and U:

k=| ° oo U (15)
: . 0
0 0 1/U(d)

Note that

detK = (det A*")™/2 = \/detl,,

and that K corresponds to a sphering transformation, in the sense that

KAK" =1 or KM A"K”, =5" (16)
and therefore, if we define the inverse
p=K"!
we have
PT(I,,)P=1 or PNI,P" =5, (17)
We can now define a new set of coordinates by centering and sphering, as follows:
gt =K* (¢”+VNA¥T,) (18)
Then,
d?E = y/detl,,d%¢ (19)
and
¥ =PH EY—V/NAMT, (20)
In this new set of coordinates,
. 1 -
- ‘/ﬁIv(i)v - §¢Ml,uv¢v =
- 1 -
= —(\/NI,, + 5(;5“1,”) ¢
- 1 - 1 I
=— («/NIV + EP“KSKIWE mA“KIKIW) ¢’
. | - VN . ,
=—vNI,P" E* + NA [T, — EznjngIWP”AgA + TP“K§KIHVA”AIA+

N -+ N .- - .
+ gA“KIKIWP v EM— EA“KIKIWAMIA

N. I |
=EVAMIA—§€“5K151 (21)

where we have used Equation 17 as well as the fact that A¥” = A" and that A¥*[,., = ", by definition.
Therefore, putting Equation 19 and Equation 21 together, Equation 13 becomes

Q= exp[ 51,A"T, | f

ydetl,, =

The problem is reduced to a (truncated) spherical gaussian integral, where the domain of integration = will
depend on the original domain © but also on | 1 I uv and ¥. To complete the calculation, we now need to
make this dependence explicit.

1
d? Eexp[—iglﬁ‘”é’v] (22)
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A.1.4 Determining the domain of integration
We start by combining Equation 7 and Equation 20 to yield:

1 .
o = J—Npuvgv — AW 4 He (23)

By substituting Equation 23 into Equation 5 we get

PH gﬁ/
D 4 AMYT 4+ 9% | +d >0
i\ o~ LA | +d>

which we can rewrite as

Duf“ +d=>=0 24)
with 1
= 1 ’
D= —=DP’, (25)
and

d :=d + D, 4" — D, AM]
YT (26)
=d +D“1?“ - (D“,IH)A
where by (-, -) , we mean the inner product in the inverse observed Fisher information metric. Now, note
that whenever T 4 is not zero, it will be parallel to D,,. Indeed, by construction of the maximum-likelihood
point , the gradient of the log likelihood can only be orthogonal to the boundary at 9, and pointing towards
the outside of the domain. Therefore T u» which is defined as minus the gradient, will point inward. At the
same time, D, will also always point toward the interior of the domain because of the form of the constraint
we have chosen in Equation 5. Because by assumption ||D,,|| = 1, we have that

I, =IILIID,

and
Dy, 1) A = [IDylla - 1111

so that
d=d+ D, —IDulla-I1T,llo 27)

Now, the signed distance of the boundary to the origin in £-space is

_d

Dl

where the sign is taken such that [ is negative when the origin is included in the integration domain. But
noting that
KM AMKY) =61 = AMY=PH 5P,
K K

we have
1Bl = y/B,6#7D, = \| =D, (Px,647P2,) D,
1 ”D,u”A
=\| =D, A"D, =

K )L m
and therefore .
d

[=— (28)
1Dl
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Finally, by plugging Equation 27 into Equation 28 we obtain

d+D, o
= —m[—“ — ||1u||A]

1Dl A (29)
= V2(s—m)
where m and s are defined for convenience like so:
Nd+D i
S (=0) (30)
2 |IDylla
N .
s=\FIls 0 (31)

We note that m is a rescaled version of the margin defined by the constraint on the parameters (and therefore
is never negative by assumption), and s is a rescaled version of the norm of the gradient of the log likelihood
in the inverse observed Fisher metric (and therefore is nonnegative by construction).

A.1.5 Computing the penalty

We can now perform a final change of variables in the integral in Equation 22. We rotate our coordinates to
align them to the boundary, so that
D‘U, = (”DI[,L”}O) O; .. '70)

Note that we can always do this as our integrand is invariant under rotation. In this coordinate system,
Equation 22 factorizes:

_ exp[ 51,87, ] f i [ mwsv] f‘” [ cz}

d 2% v dfexp| -2

Jdetl,,  Jri e
R L T [—C—z}
\ detIW v ), f 2

:\ (27‘E~)d exp(sz)%fl d{exp[—gz]

/V2

(32)

:\ det]

where erfc(+) is the complementary error function (47, section 7.1.2).
Finally, plugging Equation 32 into Equation 10 and taking the log, we obtain the extended FIA:

~. d. N detl,,
—InP(M;|E) ~InP(E[$)+ =In — +1n ddi‘h/detg+—1n +B (33)
2 27 detgy,,

where
=1In(2)—In [exp(sz) erfe(s — m)] (34)

can be interpreted as a penalty arising from the presence of the boundary in parameter space.

A.1.6 Interpreting the penalty

We now take a closer look at Equation 34. One key observation is that, by construction, at most one of m
and s is ever nonzero. This is because in the interior of the manifold, m > 0 by definition, but s = 0 because
the gradient of the likelihood is zero at #; and on the boundary, m = 0 by definition, and s can be either zero
or positive.

19
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Interior of the manifold When ¥ is in the interior of the parameter space ©, then T, u=0=s=0and
Equation 34 simplifies to
= In(2) — In(erfc(—m)) (35)

but since N is large we have m > 0, erfc(—m) — 2 and B — 0, so our result passes the first sanity check: we
recover the expression in (11).

Boundary of the manifold When & is on the boundary of ®, m = 0 and s > 0. Equation 34 becomes

=In(2)—In [exp(sz) erfc(s)] =1n(2) —In(w(is)) (36)
where w is the Feddeeva function (47, p. 7.1.3):
w(z)= e erfe(—iz)

This function is tabulated and can be computed efficiently. However, it is interesting to analyze its limiting
behavior, as follows.
As a consistency check, when s is small we have at fixed N, to first order:

~1n(2) —ln(l — 2—‘/5_)

, o~ (37)
S ~
21n(2)+ﬁ =1n(2)+ \ 7||I,u”A

and B = In(2) when [, = 0, as expected.

However, the real case of interest is the behavior of the penalty when N is assumed to be large, which is
consistent with the fact that we derived Equation 32 as an asymptotic expansion of Equation 11. In this case,
using the asymptotic expansion for the Feddeeva function (47, section 7.1.23):

eXp[sz] erfc(s) ~ s% |:1 + Z(_l)m 1-3---(2m— 1):|

2
m=1 (25 )m

To leading order, we obtain

~1In(2) +In(sv/7)
1n(2)+1n((||1 |IA)
which we can rewrite as
Bzélnév—n+ln|:27t||fu||A:| (38)

We can summarize the above by saying that a new penalty term of order In N arose due to the presence of the
boundary. Interestingly, comparing Equation 38 with Equation 33 we see that the first term in Equation 38 is
analogous to counting an extra parameter dimension in the original Fisher Information Approximation.

A.2 Behavioral experiments with human subjects

The behavioral task required subjects to view a screen showing two curves (one on the upper half, the other
on the lower half of the screen) and 10 dots and decide, based on different instructions (see below for details),
which curve was the more likely source of the observed dots. There were four task types that differed in
terms of the shapes of the curves, corresponding to the different terms of the FIA (see Figure 1 in the main
text and Figure S1): dimensionality, boundary, volume, and robustness. In each case, the curves represent
two parametric statistical models of the form:

(39

_ 2
Sl = I — (o) ]

1
V2mo?2 p[ 202
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where x is a location on the 2D plane visualized on the screen, and u(t), t € [0, 1] is a parametrization of the
curve. In other words, the curves represent Gaussians of unit isotropic variance whose mean p can be located
at any point along them. The dots shown to the subjects were sampled iid from one of the two models,
selected at random with uniform probability. The location of the true mean of the Gaussian generating the
dots (i.e., the value of t in the expression above) was randomly sampled from Jeffrey’s prior for the selected
model. All dots shown within a trial come from the same distribution (same model and same true mean). In
the “generative” version of the task, the subjects had to report which curve (model) the dots are more likely
to come from. In the “maximum-likelihood” version, the subjects had to report which curve was closest to
the empirical centroid of the dot cloud. In both versions of the task, they pressed the “up” or “down” keys on
their keyboard to select the curve in the upper or lower part of the screen, respectively.

Each model pairing was designed to emphasize a different term of the FIA. In the dimensionality variant,
models have different dimensionality (d = O for the point and d = 1 for the line). In the boundary variant,
both models have the same dimensionality and volume and are both flat so that their robustness terms
are always identically zero. However, they are oriented such that, for ambiguous data falling around the
midpoint between the two models, the influence of the boundary of the vertical model is stronger than that
of the horizontal model. In the volume variant, models have the same dimensionality but different volume
(length). In the robustness variant, models have the same dimensionality and volume, but their curvature is
such that one of them bends away from the region of data space that is more likely to contain ambiguous
stimuli, whereas the other bends around it (and therefore the robustness term for these models has opposite
sign for data points that fall in that region).

A single run of the task consisted of a brief tutorial followed by 500 trials, divided in 5 blocks of 100
trials each. For each trial, the chosen curve pairing was presented, randomly flipped vertically to dissociate
a fixed preference for one of the two models from a fixed preference for reporting “up” or “down”. At the
end of each block, the subject received feedback on their overall performance during that block. Subjects
received a fixed compensation for taking part in the experiment.

We ran both experiments (generative and maximum-likelihood) on the online platform Pavlovia (pavlovia.
org). For each task type, we collected data from at least 50 subjects who passed a pre-established perfor-
mance threshold (60% correct for the robustness task variant and 70% correct for the other variants; these
thresholds were chosen based on pilot data, and were fixed at preregistration (24-26)). We discarded the
data collected from all other subjects. For the generative task, the final dataset included 52 subjects for the
robustness task variant and 50 subjects for each of the other task variants. For the maximum-likelihood task,
the final dataset included 51 subjects for the dimensionality task variant and 50 subjects for each of the
others.

A.3 Detailed model definitions and computation of FIA terms

In this section, we report the detailed mathematical form of the models we used for the psychophysics
experiment. Each model is defined by specifying the form of the function u in Equation 39. Given this
function, we then derive the analytical solution to the maximume-likelihood problem for any value of
X ={x; }?’: 1» and finally the expressions for the likelihood (L), dimensionality (D), boundary (B), volume
(V) and robustness (R) terms in the FIA for the model pairings we use in the experiment.

We also show that the (expected) Fisher information is constant for all models considered:

T2
g(t)= 52 (40)

so that Jeffrey’s prior is simply the uniform probability distribution over the [0, 1] interval:

w(t) = To13(t) (41)

A.3.1 Fisher information and robustness term for curved exponential families

In the following, we compute the observed Fisher information for each of our models. To do so, it is convenient
to have a general expression for the Hessian of the log likelihood and for the observed and expected Fisher
information for curved exponential families.
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The general form of a curved exponential family is:
p(x|u) = exp[C(x) + 9 (w)F;(x) — Y(F(w)) ] (42)
where #(u) : R - R¥, k > d, is a smooth parametrization. The Hessian of the log-likelihood is:

9ap log p(x|u) = F;(x)8, 059 (1) — 8,95 h (9())

—F(x) 329" 9 (oY ki
- 0uedub Que \ 90t dub
o 00 o0 oy oo oy o (43)
-~ U 0uegud Que 99930 dub 99 dudud
PRk v a9
=  _[F(x)—E[F]l——g., —
g RO —E[FI- S g5
where we note that g;; = —Cov,[F];; (remember that by g;; we indicate the Fisher information of the

ambient family). Therefore, the (expected) Fisher information is:

oy a9
8ab = By [—3,0 log p(x;|u)] = ot e (44)
and the oberved Fisher information is:
1 &
hap ==~ 2,88 logp(xilu)
i=1 ; 21?1, . (45)
1
= 8w+ Guages | BRI~ 20)
As a corollary, we note that h,;, = g, Whenever ¥(+) is an affine transformation, that is when
¥ (W) =ALu® + B (46)

For some constant Aib and B'. In this case (which corresponds to autoparallel submanifolds in the exponential
connection, (48, Theorem 1.1)), the robustness term in the FIA is identically zero:

9 () =Al;1ua +B' = RX;u)=0 “47)

A.3.2 General properties of curved 2D Gaussian models

Our models of interest, defined through Equation 39, are a special case of curved exponential families. They
are all submanifolds of the same, larger model — the 2-dimensional exponential family of 2D Gaussian
distributions with known isotropic covariance and unknown center. We call this larger family the ambient
family S > M, composed by all probability distributions whose density is of the form:

2
exp [_M] (48)

202

plxlpw) =5 ——

We can reduce Equation 39 to the notation of Equation 42 by noting that

2
Inp(x|t) = —M — ln(2n02)
20 (49)

— 1 2 i j 1 2 2
=~ lIxl, + w0z =3 [Iu(OI +In((2m)* detg;y)]

where we indicate by g;; the Fisher information of the ambient family S:

_[1/0% 0
gij—[ 0 1/02] (50)
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By comparing Equation 49 with Equation 42 we see that

1
) =—Zllxllg, 1)
Fl)=x (and Fi(x) = g = ) 52)
o
1
(0= 2 [ IOl +In((2n)* det g;;) (53)

and that u(t) plays the role that #(u) played in Equation 42.
We can now compute the expected and observed Fisher information for our models by specializing
Equation 44 and Equation 45:

g(t)zﬂi(f)gijﬂj(t) (54)
h(t) = g(t) + ' (£)g;; [/ (1) — x] (55)

Where X is the empirical centroid of the dataset X,

N
% =x(X):= in (56)
i=1

and g and h have no indices, because they are scalar functions of t.

We note then that g(t) is simply the squared Euclidean norm of the vector i(t) divided by 2. In other
words, the geometry of M coincides, up to scaling by o2, with the Euclidean geometry of the plane curve
w(t). This very convenient fact is a consequence of the particularly simple noise model we have assumed
(Gaussian with known isotropic covariance).

Z|=

Model volume The volume of a model described by u(-) is

1 1 1
J dt\/g(t)=f deq/ai(t)g;p (t =éJ de||leCo)ll (57)
0 0 0

In other words, it is simply the length of the curve u(-) measured in units of o.

Likelihood gradient and maximum-likelihood point In the following, we will indicate the log-likelihood
function for a model by
[=1(x;t)=Inp(x|t) (58)

In order to find the maximum-likelihood point for our models, it is convenient to write a general expression
for the score function (the derivative of the log likelihood with respect to the parameter). We start by noting
that

2 3 |lx;— 2 .
2 mpxin=-y Z ool X [%Zﬂ:xn—u(t)]-u(t)

- Jt 202 202

G, _ al(x;t)
=N—Inp(x|t)=N——F——=
5, np(x[t) P
Therefore, to find the maximum likelihood point  for a certain X we can simply solve the corresponding
one-sample (N = 1) case for the centroid X¥. We can also write the rescaled likelihood gradient (which
appears in the FIA as ) as

1 01 10 i j i/
5 ) =~ Inp(X () = i (g [ (0) %] 9)

If we interpret (1(t) as the tangent vector to u in t, we see that away from model boundaries this equation
expresses the familiar condition that the maximum-likelihood point (where 81/t = 0) is the (Euclidean)
orthogonal projection of ¥ onto the model manifold. Again, this convenient property is a consequence of
assuming isotropic Gaussian noise.
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A.3.3 Horizontal model

This model, used in the dimensionality, boundary, and volume task variants, is defined as
T(t—3
u(t) 2[ ( - 2)} (60)

It is immediately evident that this model has volume (length) T /o. The “base” model corresponds to T =1,
7 =0, and the model type called “horizontal” is defined with T =3, 7 = 1.
Because

. 1

we)=T [O:| (61)
and following Equation 54 and Equation 55, the observed and expected Fisher information coincide and are
given by

g=h=— (62)

101 T2 [ x! 1
N 02[T ( 2)] (63)
and the maximum-likelihood point £ is
0 ifx! <—T/2
) ={1+% if-T/2<xl<T/2 (64)
1 ifx!'>T/2

All the FIA terms can be computed in closed form from these expressions:

L@)=—£%[u1—T@u)—1pn2+@2—7f}—gh(muﬂ) (65)

1. N

=1
B—lln—-+-1n[27rI x——(f(X)—l)H (if|3?1|>z) (67)
2 o|T 2 2

T
V=In— (68)

o
R=0 (69)

A.3.4 Vertical model

This model, used the boundary task variant, is just a rotated and translated version of the horizontal model.
It is defined as

u(t) = [T f“} (70)

where we keep T and 7 as arbitrary parameters for notational clarity, although in practice they are both fixed
to 1 in our study. From the definition, it follows that

0
p(t)=T [1} (71)
T2
g§= =52 (72)
191 T? [ X2 —
]VE(X;U__Z[ T t_ ] (73)
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and
0 ifx2<rt
B ={ &= ifr<x2<T+T (74)
1 ifxX2>714+T
so that the FIA terms can be written as
N N N
L(X) :—ﬁ[()’(1)2+(322—T—Tt(X))2:|—Eln(ZTcaz) (75)
o
1 N
D==-In— (76)
2 2m
1. N T |x?%—
B:—ln—+ln[2n— X ] (if 22 <TVE>>T+T) 77)
2 2n o
T
=In— (78)
o
R=0 (79)

A.3.5 Circular-arc model

This model, used in the robustness task variant, is constituted by an arc of a circle, and is defined as

Lsin(a)
ult) = [T + %Y(l - cos(a))] (80)
where ,
a=y (t — 5) 81

and v is a positive constant. Concretely, in the experiments we fixed y = (3/5)w, and T to the value
determined below for the rounded model type ( Equation 99). We note that the radius of the circle is r = T /7,
and the y-coordinate of the center is T + r. The tangent vector (i and the acceleration vector i in t are

| cos(a)
w(t)=T [sin(a)] (82)
Loy —sin(a)
p(t) =Ty [ cos(a) ] (83)
so that, by substitution in Equation 54,
4 oT? T?
g=ulgn = —Z(cosz(a) +sin%(a)) = — (84)
o o

and by substitution in Equation 55

T2 %1 vt yx2
h=g+— [—smz(a) +— T sin(a) + ? cos(a) + cos(a) — cos?(a) — T cos(a)]

_ Y_ffl : T _r® (85)
—g[ T sin(a) + T cos(a) + cos(a) T cos(a)]

= % [sin(a)x! + cos(a) (7 +r —x?)]

The rescaled likelihood gradient is (from Equation 59)

2 =1

_]l\lai In(p(X|t)) = 7(; [cos(a) sin(a) — % cos(a)
+ % sin(a) + sin(a) — sin(a) cos(a) — % Sin(a)] (86)
=— [—)‘cl cos(a) + 7 sin(a) + rsin(a) — x2 sin(a)]

= % [— cos(a)x! + sin(a) (T +r _’?2)]
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(note that h can also be obtained by differentiating this last expression).

To compute the FIA, we need the maximume-likelihood projection. As for the other models, this projection
is defined piecewise due to the presence of model boundaries. To properly partition the plane, we need to
define first the equation for the line intersecting the model perpendicularly at t:

p(x;t) =1 +r—cot(a(t))x (87)

With this definition, the maximume-likelihood point is

0 if X! <0AX%2> p(x1;0)
t(xX)=+1 if X! >0A%x2> p(x';1) (88)
% + % arctan - +’:1_)_62 otherwise
and therefore the FIA terms are:
N N N
L(X) = =55l = p(ECO)I* - - In(2m0?) (89)
1. N
D=>ln— 0
2 "o (0
. . 2
—cos(a(t))x! +sin(a(t)) (T +r—x2
B=1m i |o2n 1 [eo (A)) ( (A))( ) (91)
2 2n o2 sin(a(t))x! +cos(a(t))(t +r —x2)
T
V=In— (92)
o
-1 )
R= sin(a(f))x— + cos(a(f))u (93)
r r

where the value given for B is relevant only when f is either 0 or 1. Note that, due to the shape of the model
and the presence of the boundary, there are regions of the data space such that the log-likelihood function at
the maximum likelihood point will not be concave. These regions represent a complete breakdown of the
FIA, but they are not a problem in practice because the approximation holds in the region of data space that
is relevant for the experiments (see Figure S1).

A.3.6 Rounded model

This model, also used in the robustness task variant, is a circular arc (like the “circular” model described
above) with two straight arms attached on either side. The ratio of the length of the circular section of the
model over its total length is defined as a parameter f. The model definition is

( —-T [J;sin(y/Z)— (t - u;zf))cos(y/Z)] fp<lf
T+T[J%(l—cos(y/Z))—(t—%)sin(y/z)] 2
u(t)={ u (S 7y £ T) if SL<r< L (94)
T[%sin(y/2)+(t—&zf))cos(y/Z)] Pt
L T+T[J%(l—cos(y/Z))—k(t—#)sin(y/Z)] 2

where u, is the y mapping defined for the circular model, Equation 80.
For the experiment, the values of the parameters were chosen to guarantee that the circular section of
this model would have the same center as a circular model (described above) with y = (3/5)m and T =0,
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and that a relatively large fraction of the two models is in close proximity. The values are

f=1/3 (95)

r=@/5)n (96)

7=3/5 97)
__r

T = —7 (98)

Closed-form expressions for all FIA terms can be derived for this model by a straightforward, if somewhat
laborious, extension of those presented above for the circular-arc model. We do not report them here in the
interest of brevity.

A.3.7 Point model

This model, used in the dimensionality task variant, has no associated latent parameters (it is zero-dimensional).
To cast it in the same language as the others, we can define it as

uwt)=p= [2} (99)

For the point model, the FIA (which is an approximation to a model’s log evidence) is replaced by the exact
evidence, which simply coincides with the log likelihood. For notational consistency, we adopt the following
values for the FIA terms:

LX) = 2%2 (@2 + (%2 —1)?]— % In(2r0?) (100)
D=0 (101)
B=0 (102)
V=0 (103)
R=0 (104)

A.4 Numerical experiments with artificial neural networks
A.4.1 Inputs

On each trial, our artificial neural network (henceforth ANN) takes in two images, each depicting one
candidate model’s location in the data space. It also takes in a length-20 vector, containing the horizontal
and vertical coordinates of the N = 10 data points. Each image is provided as one RGB matrix of size
(3*256*256). In data space units (used for the model definitions in subsection A.3), each image extends
from x = —4 to x =4 and from y = —3.5 to y = 4.5, so that the center of the image (located in (0, 0.5)) is
equidistant from the models in each model pair.

A.4.2 Training dataset

The training dataset consisted of 5000 model pairs. Each model pair was used for generating 50 trials. This
approach led to a total of 250000 trials in the entire dataset.

The random generation of model pairs was as follows (see subsection A.3 for the detailed mathematical
definitions of each model and the precise meaning of the parameters controlling its shape). Each model pair
could be of one of the four variants described in subsection A.2, chosen randomly with equal probabilities.
Each model pair could be flipped vertically with probability 0.5. For the robustness variant, the separation of
the model pair was 0.6 data space units; for all other model pairs, the separation was 1 data space unit. For
the dimensionality variant, the length T (in data space units) of the one-dimensional model was sampled
uniformly from 2/(0.5, 5). For the boundary variant, the length of both model families were kept identical
and sampled from /(0.5, 3). For the volume variant, the lengths of both models were sampled independently
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from ¢£(0.5, 5); if their length difference was no greater than the task’s noise level o = 1, then the length of
one model was resampled from ¢/(0.5,5) until the length difference was greater than 1. For the robustness
variant, the length of both model families was kept constant at (27/50) - . The length proportion of the
rounded model that was perfectly circular was f = 1/3, and both model families share the same curvature
parameter y sampled from ¢/(1.5,3). The model pairs were centered around the center of each input image.

Given a model pair, each trial was randomly generated as follows. Select one model randomly with equal
probability. Sample a location along this model uniformly. Using this location as the center of a 2D isotropic
Gaussian and standard deviation of o = 1 data space units, sample N = 10 data points that were observable
to the subject.

The training dataset was pre-shuffled randomly for training purposes. The input batch size was always
50 trials.

A.4.3 Test dataset

The test dataset consisted of 8 model pairs, each generating 15000 trials. Thus, there was a total of 120000
trials in the dataset.

The model pairs were as follows. For the point variant, the one-dimensional model had length (in data
space units) 1. For the boundary variant, both model families had length 1. For the volume variant, one
model had length 1 while the other had 3. For the robustness variant, both model families had length
T =(27/50)-m, f = 1/3, and curvature parameter y = (3/5)7. Each model pair was presented in the
“upright” position (as per the definitions in subsection A.3) and in the vertically flipped position, for a total
of 8 cases. The separation between model families and the generation of trials was identical to as in the
training dataset.

A.4.4 Artificial neural network architecture

Our ANN had the following architecture (see Figure 3. Each of the two model input images was passed through
the pretrained convolutional neural network VGG16, which had its parameters frozen during training. We
replaced the fully connected layers at the end of VGG16 with our own structure of Linear-ReLU-BatchNorm1D
layers and allowed the updating of weights in these and all subsequent layers. For each image input, the
output of this image-processing module was a length-50 vector (model image representation).

In parallel, the length-20 vector of raw data point coordinates was fed through a permutation-invariant
layer. This layer featured shared weights such that its outputs were not affected by the sequence of the
N=10 data points in the length-20 vector input. This layer also outputted a length-20 vector, which was
concatenated to the end of each of the length-50 vectors (the model image representations) along the
preexisting dimension, producing two length-70 vectors.

Each length-70 vector was fed through Linear-ReLU-BatchNorm1D layers (identical weights used to
process each vector). The resultant two length-50 output vectors were then concatenated together along the
preexisting dimension, with the first input image’s representation in front.

The resultant length-100 vector was then fed through EquiLinear-ReLU-BatchNorm1D layers. The
EquiLinear layers were permutation-equivariant layers of our design, again achieved by weight sharing.
They ensure that if we concatenated the two length-50 output vectors in the opposite sequence, then their
output, a length-2 vector, also had the same values but in opposite sequence. This length-2 vector was passed
through a log softmax layer to produce the ANN’s final output, which was also a length-2 vector.

We also introduced a conditional variational encoder (CVAE) structure and used its output as part of the
loss function (discussed later), to encourage model representations to preserve information about the data
generation process. The details are described below.

We concatenate the length-20 raw data points vector (before passing input the permutation-invariant
layers) to the end of each length-50 model image representation vector. The resultant two length-70 vectors
(each corresponding to one model) were used as inputs for our CVAE (identical weights used to process
each vector). The CVAE took each length-70 vector through its encoder structure to produce 10-dimensional
vectors, which were used as parameters (Ucyag, Ocyag) for the Gaussian random generation of another
10-dimensional vector. The latter vector was again concatenated to the end of the length-50 model image

28


https://doi.org/10.1101/2023.01.10.523479
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.01.10.523479; this version posted February 8, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

representation vector responsible for its own generation, before being fed to the CVAE decoder, which mapped
back to a 20-dimensional output vector reminiscent of data points. Hence, there were two 20-dimensional
output vectors generated, each originating from one model.

A.4.5 Loss function

The loss function for each trial consisted of 2 parts: 1) the final output loss, and 2) the CVAE output loss. For
the final output loss, we used Pytorch’s negative log likelihood loss function NLLLoss (), which computed
the loss between the ANN’s length-2 output vector and the target label. For each trial’s CVAE output loss, we
considered only the CVAE output associated with the correct model image/target label (hence one out of
the two CVAE output vectors). The CVAE output loss was the sum of a MSE reconstruction loss (between
the length-20 CVAE output vector and the length-20 raw data points vector) and a KL Divergence Loss
(considering (Ucyar, Ocvar) used in the CVAE data generation process, using sum reduction). The total loss
was the sum of the final output loss and the CVAE output loss.

A.4.6 Update rule

We used Pytorch’s Adam optimizer with learning rate 0.005, keeping all other arguments to their default
values.

A.4.7 ANN predictions

To evaluate ANN task performance in a way that is comparable to human performance, we need to specify
how the ANN output, a length-2 log softmax vector, maps onto a chosen candidate model. The mapping is as
follows: we compare the two entries in the output vector and assume that the ANN chooses the candidate
model associated with the larger entry.

A.5 Experimental data analysis

For both human and artificial neural network (ANN) experiments, we modeled behavior assuming that each
subject samples from a posterior over models determined by a modified version of the Fisher Information
Approximation (FIA), where each term of the approximation is multiplied by a free parameter to be inferred,
representing the sensitivity of the subject to that term.

Specifically, in our experimental scenario the theory of Bayesian model selection applies directly. Given
two models M; and M,, assuming a flat prior over models p(M;) = p(M,) = 1/2 and an uninformative
prior (Jeffrey’s prior, see Balasubramanian (11) and Jaynes (15)) over the parameters of each model, when
N is sufficiently large we can use the asymptotic expansion in Figure 1 and Equation 33 to write the log
posterior ratio for M; over M, as

p(M;|X) o p(M;|X)

p(MX) B T—p(MyIX) (105)
~(Ly—Ly)+(Dy—Dy) +(By—B1) + (Vo —V;) + (Ry —R;)

where L;, D;, etc represent the FIA terms for model i:

L; =—logp(X|®, M;) (Likelihood)

D; = d log N (Dimensionality)
2 27
1 N o
B; = 3 log% +log [Zn ”l”iz—l] (Boundary)

V; =log J di®4/detg(?) (Volume)

1 [deth(x;f})

R; = -log ~ ] (Robustness)
det g(1)

2
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This expression suggests a simple normative model for subject behavior. Equation 105 determines the
probability of reporting M, for an ideal Bayesian observer performing probability matching. We can then
compare subject behavior to the normative prescription by allowing subjects to have distinct sensitivities to
the various terms of the FIA:

p(report M;|X)
0 =a+ P (Ly—Lq) + Bp(Dy —D; )+
gp(report My |X) Br(Ly—L1)+ Pp(Dy 1) (106)

+ B(By —B1) + By (Vo —V3) + Br(Ry —Ry)

where a and 3 were free parameters: a captures any fixed bias, f3; the sensitivity to differences in maximum
likelihood, B the sensitivity to differences in dimensionality, and so on.

We fitted the model expressed by Equation 106 to subject behavior using a hierarchical, Bayesian logistic
regression scheme:

V> V1,---» Vg ~ 1+ Exponential(29) (107)

Was> W, - - -, g ~ Normal(0, 3) (108)

O, 0p,---,0g ~ Exponential(3) (109)

a; ~ StudentT( vy, Uy, Tg) (110)

Br,i ~ StudentT(vy, pu;,0p) (11D

: (112)

Br.i ~ StudentT(vg, ug, or) (113)

Ci ¢ ~ Bernoulli (logit_1 (lpr (ai: BL.i>Bp.i> B i> B> ﬂR,i)Xi,t))) (114)

where C; , is the choice made by subject i on trial ¢, X; , is the sensory stimulus on that same trial, Ipr is
the log posterior ratio defined by Equation 106, a; is the bias for subject i, 3, ; is the likelihood sensitivity
of that same subject, and so on for the other sensitivity parameters. The bias and sensitivity parameters
describing each subject are modeled as independent samples from a population-level Student-T probability
distribution characterized by a certain shape (v), location (1) and scale (o). The priors assumed over these
population-level parameters are standard weakly informative priors (28, 29), and broader or flat priors lead
to similar results to those presented below. The model was implemented in PyMC (49), and inference was
performed by sampling from the posterior for the parameters given the experimental data {C; ;,X; .} using
the No-U-Turn Sampler algorithm (50, 51). Further technical details on the inference procedure can be found
below, in subsubsection A.5.2.

Definition of relative sensitivity and presentation of sensitivity estimates. Relative sensitivity for a
certain feature was defined as the sensitivity for that feature divided by the relevant posterior mean for the
likelihood sensitivity. For instance, for dimensionality:

5 Bp

= (115)
Po (ﬂL)p(ﬁleata)

This formulation applies both at the subject level and at the population level.

We note that, because each human subject performed only one task variant, not all sensitivities could
be estimated for all subjects. For instance, f;, only entered the behavioral model (and therefore could be
estimated) for the subjects that performed the point task variant, where the alternative models had different
dimensionality. The same holds with 3y, and the horizontal task variant, and 8z and the rounded task variant.
The boundary term entered the behavioral model for all task variants, although by design it took on a much
broader range of values for the vertical task. For consistency, for each sensitivity parameter, we reported its
estimate only for those subjects that performed the task variant designed to test it.
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A.5.1 Lapse-rate modeling

We designed a variant of the behavioral model that accounts for lapses in subjects’ responses (i.e., errors on
easy trials). Specifically, we modified Equation 106 as follows:

p(report M;|X) _€ _ _ _
ng(reporthlX) —2+(1 ) o+ Br(Ly—Ly)+ Bp(Dy—Dy)+ (116)

+ Bp(By —By) + By (Vo — V1) + Br(R, _R1)]

where € € [0,1] is the lapse rate, representing the probability that a given response is completely random.
For € =1 the responses are random on every trial, whereas for € = 0 this model is equivalent to the original
one in Equation 106.

To estimate A from our experimental data jointly with all other parameters, we kept the same structure
as in Equations 107- Equation 114 and exteded it by modeling the population level distribution of € as a Beta
distribution, parameterized by count parameters a and b. Following the recommendations in (29, section
5.3) and (52, section 24.2), we specify hyperpriors in terms of the mean of the distribution ¢ = a/(a + b)
and the total count A =a + b:

¢ ~ Uniform(0,1) (117)

A ~ Pareto(0.1,1.5) (p()t) o< x—2.5) (118)
a=A-¢ (119)
b=2A-(1—¢) (120)

€; ~ Beta(a, b) (121)

where ¢; is the lapse rate for subject i.

A.5.2 Technical details of the inference procedure

Posterior sampling was performed with PyMC (49) version 4.2.0, using the NUTS Hamiltonian Monte Carlo
algorithm (50). Target acceptance probability was set to 0.9 for the human data (both generative and
maximum-likelihood task), to 0.8 for the generative task with neural networks and for 0.99 for the maximum-
likelihood task for neural networks. The posterior distributions were built by sampling 12 independent
Markov chains for 10000 draws each. No divergence occurred in any of the chains. Effective sample size and
R diagnostics for some of the key parameters are given in Table S5.

A.5.3 Reporting of posterior distributions for inferred parameters

The posterior distributions reported in all figures are Kernel Density Estimates with bandwidth chosen
according to Scott’s rule (53).
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Figure S1: Comparison of the full Bayesian and Fisher Information Approximation computation of the log posterior
ratio (LPR) for the model pairs used in our psychophysics tasks (N = 10). Each row corresponds to one task
variants (from top to bottom, “dimensionality”, “boundary”, “volume”, “robustness”). First column from the
left: full Bayesian LPR, computed by numerical integration. Second column: LPR computed with the Fisher
Information Approximation. Third column: difference between FIA and exact LPR. Fourth column: relative

difference (difference divided by the absolute value of the FIA LPR). Adapted from (46).
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Figure S2: Posterior predictive check for the human subjects in the generative task, looking at subject performance.
We sampled 240 samples from the posterior over model parameters by thinning the MCMC chains used for model
inference. For each of these samples, we ran a simulation of the experiment using the actual stimuli shown to
the subjects, and we recorded the resulting performance of all 202 simulated subjects. This procedure yielded
240 samples of the joint posterior-predictive distribution of task performance over all experimental subjects. To
visualize this distribution, for each subject we plotted a cloud of 240 dots where the y coordinate of each dot is
the simulated performance of that subject in one of the simulations, and the x coordinate is the true performance
of that subject in the experiment plus a small random jitter (for ease of visualization). The gray line is the identity,
showing that our inference procedure captures well the behavioral patterns in the experimental data. In the figure,
all task types are pooled together, but subjects that performed different task types are distinguished by the color of
the dots.
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Orig. task Max lik. task
Parameter Humans ANNs Humans ANNs
Wq (up/down bias) | 0.107£0.023 —0.242+0.151 | 0.056+0.024 0.010+0.07
u; (likelihood) | 0.461£0.012 6.529+0.188 | 0.561+£0.018 7.966+0.401
up (dimensionality) | 2.150£0.445 8.484+0.653 | 1.285+0.231 —0.030+0.486
ug (boundary) | 0.518+0.045 6.286+0.186 | 0.499+0.058 0.883+0.121
uy (volume) | 0.108 £0.057 6.089+£0.204 | 0.105+0.044 0.128£0.196
ug (robustness) | 1.018 £0.056 4.882+0.417 | 1.276+0.085 0.356+0.281

Table S1: Posterior mean+standard deviation for population-level parameters. See Equation 106 to Equation 114
for the precise definition of each parameter and its role in the hierarchical model of behavior.
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Figure S3: Subject-level relative sensitivities to the geometric features that determine model complexity. Dots
with error bars: posterior mean =+ standard deviation of the relative sensitivity (the dots are the same as in Figure
2c). For ease of visualization, subjects are ranked based on their posterior mean.
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Figure S4: Lapse rate versus relative sensitivity to complexity across subjects. Each dot gives the posterior mean
estimate of the relative sensitivity to one of the features that determine model complexity (abscissa) and the
posterior mean estimate of the lapse rate, as defined in Section A.5.1.
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Model | Rank WAIC pWAIC dWAIC SE dSE
Full 0 -34824.6 641.963 0 183.981 0
Likelihood only 1 -37524.9 370.340 2700.4 183.923 69.3817

Table S2: WAIC comparison of the full model and the likelihood-only model for the human subjects in the
generative task, reported in the standard format used by (27, section 6.4.2). Briefly, WAIC is the value of the
criterion (log-score scale — higher is better); pWAIC is the estimated effective number of parameters; dWAIC is
the difference between the WAIC of the given model and the highest-ranked one; SE is the standard error of the
WAIC estimate; and dSE is the standard error of the difference in WAIC. These estimates were produced with the
compare function provided by ArviZ (54), using 12 MCMC chains with 10000 samples each for each model (in
total, 120000 samples for each model).
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Model | Rank WAIC pWAIC  dWAIC SE dSE
Full 0 -31022.8 638.926 0 184.912 0
Likelihood only 1 -33155.1 374.023 2132.28 186.667 63.1851

Table S3: Same as Table S2, for the maximum-likelihood task, where subjects were asked to report the model that
was closest to the data.
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Parameter ROPE 95% HDI PD (genera- 95% HDI PD (max lik.)
(generative) tive) (max lik.)
Likelihood | |fB;]| < 0.0076 | [0.012,0.437] 1.00 [0.526,0.597] 1.00
Dimensionality |Bpl < 0.43 [1.299,3.048] 1.00 [0.835,1.745] 1.00
Boundary | |8zl <0.06 | [0.43,0.604] 1.00 [0.386,0.612] 1.00
Volume | |By|<0.091 | [—0.005,0.218]  0.97 [0.019,0.193] 0.99
Robustness | |Bgzl <0.11 | [0.908,1.126] 1.00 [1.11,1.446] 1.00

Table S4: HDI vs ROPE comparison and Probability of Direction (PD) for the population-level parameters in the
human experiments. See Supplementary Information section C.7.2 and (28) for an explanation of the ROPE-HDI
comparison, and (55, 56) for more details on the probability of direction metric. Note that the ROPE and HDI
definitions were preregistered (24-26).
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A

Parameter ESS R
Uy 52148 1.000
ur 19254 1.000
Up 27384 1.000
up 32434 1.000
Uy 64614 1.000
ug | 112118 1.000

Table S5: R statistic and effective sample size (ESS) for 12 Markov Chain traces run as described in the text, for
the fit to human data in the generative task. See (29, sections 11.4-11.5) and Vehtari et al. (57) for in-depth
discussion of chain quality diagnostics. Briefly, R depends on the relationship between the variance of the draws
estimated within and between contiguous draw sequences. R is close to 1 when the chains have successfully
converged. The effective sample size estimates how many independent samples one would need to extract the
same amount of information as that contained in the (correlated) MCMC draws.
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C Supplementary Text

C.1 Numerical comparison of the extended FIA vs exact Bayes

Figure S1 shows that the FIA computed with the expressions given in this document provides a very good
approximation to the exact Bayesian log posterior ratio (LPR) for the model pairs used in the psychophysics
experiments, and for the chosen sample size (N = 10). As highlighted in the panels in the rightmost column,
the discrepancies between the exact and the approximated LPR are generally small in relative terms, and
therefore are not very important for the purpose of model fitting and interpretation. Note that here, as
well as for the results in the main text, the B term in the FIA is computed using Equation 34 rather than
Equation 38 in order to avoid infinities (that for finite N can arise when the likelihood gradient is very small)
and discontinuities (that for finite N can arise on the interior of the manifold, in proximity to the boundary,
where the value of B goes from zero when {4 is in the interior to log(2) when & is exactly on the boundary).

Even though overall the agreement between the approximation is good, it is interesting to look more
closely at where the approximation is poorest. The task type for which the discrepancies are the largest
(both in absolute and relative terms) is the “robustness” type (fourth row in Figure S1). This discrepancy
arises because the FIA hypotheses are not fully satisfied everywhere for one of the models. More specifically,
the models in that task variant are a circular arc (the bottom model in Figure S1, third row) and a smaller
circular arc, concentric with the first, with a straight segment attached to either side (the top model). The
log-likelihood function for this second model is smooth only to first order, but its second derivative (and
therefore its Fisher Information and its observed Fisher Information) is not continuous at the points where the
circular arc is joined with the straight segments, locally breaking hypothesis number 3 in subsubsection A.1.1.
Geometrically, this discontinuity is analogous to saying that the curvature of the manifold changes abruptly
at the joints. It is likely that the FIA for a model with a smoother transition between the circular arc and the
straight arms would have been even closer to the exact value for all points on the 2D plane (the data space).
More generally, this line of reasoning suggests that it would be interesting to investigate the features of a
model that affect the quality of the Fisher Information Approximation.

C.2 Subject demographics

For the generative task, after excluding subjects based on pre-registered performance thresholds as detailed
above, we were left with data from 202 subjects. The age range was 18-68 (mean: 28.0, std: 9.5). Sex was
reported as male for 129 subjects, female for 69, other for 4. Ethnicity was as follows: White 174, Asian 12,
Hispanic or Latino 5, Other 4, Black or African American 3, American Indian or Alaskan Native 2, do not
wish to respond 2. For the maximum-likelihood task, the total number of subjects after exclusions was 201,
and the with the following demographics. Age: 18-87 (mean: 35.9, std: 12.8). Sex: male 124, female 75,
other 1, prefer not to say 1. Ethnicity: White 157, Asian 25, Black or African American 8, Other 6, Hispanic
or Latino 3, American Indian or Alaskan Native 1, do not wish to respond 1.

C.3 Posterior predictive checks

We performed a simple posterior predictive check (28) to ensure that the Bayesian hierarchical model
described in the text captures the main pattern of behavior across our subjects. In Figure S2, the behavioral
performance of the subjects is compared with its posterior predictive distribution under the model, for the
case of the human subjects in the generative task. As can be seen from the figure, the performance of each
subject is correctly captured by the model, across systematic differences between task types (with subjects
performing better in the boundary task variant than the robustness task variant, for instance) as well as
individual differences between subjects that performed the same task variant.

C.4 Details on raw estimated sensitivities

Table S1 reports the posterior mean and standard deviation of the population-level parameters entering
the regression (Equation 106). Note that these are the raw parameters, not their normalized counterparts
relative to the likelihood sensitivity as reported in the rest of the paper.
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C.5 Uncertainty in subject-level sensitivities

Figure S3 illustrates the uncertainty in the estimate for the relative sensitivity of each subject. This uncertainty
is typically small compared to between-subject variability of the sensitivity, which is therefore not a trivial
consequence of the noise in the sensitivity estimation for individual subjects.

C.6 Lapse-rate analysis

By applying the model variant described in Section A.5.1, we were able to estimate a lapse rate for each
subject simultaneously with the sensitivity parameters. The results are summarized in Figure S4, showing
that although there is a substantial spread of lapse rates in the range 0-0.2, there is no clear relationship
between lapse rates and sensitivity. The sensitivity parameters estimated with this extended model were
qualitatively compatible with those presented everywhere else in the text.

C.7 Outcome of significance tests specified in the preregistration documents
C.7.1 Formal comparison between ideal observers

We compared the Bayesian hierarchical model described in section A.5 to a simpler model, where subjects
were assumed to only be sensitive to likelihood differences, or in other words to choose M; over M, based
only on which model was on average closer to the dot cloud constituting the stimulus on a given trial.
Mathematically, this “likelihood-only” model was equivalent to fixing all § parameters to zero except for f3;
in the model described in section A.5. All other details of the model were the same, and in particular the
model still had a hierarchical structure with adaptive shrinkage (the subject-level parameters a and f3; were
modeled as coming from Student T distributions controlled by population-level parameters). We compared
the full model and the likelihood-only model on our human behavior data using the Widely Applicable
Information Criterion (29). This comparison indicates strong evidence in favor of the full model not only in
the generative task (Table S2), but also in the maximum-likelihood task (Table S3).

C.7.2 Other statistical tests

As described in the preregistration documents (24-26), in this work we have emphasized parameter estimation
and information criteria-based model comparison over null hypothesis significance testing (see for instance
(27), and (28) for a discussion and comparison of these ideas). However, for completeness, we report
in Table S4 (1) the comparison between the Regions of Practical Equivalence (ROPE, (28)) and the 95%
highest-density interval (HDI) for each population-level parameter, and (2) the “probability of direction” (55,
56) for the same parameters (see below for more details on these methods). The ROPE-HDI tests highlight
that the null value of zero sensitivity is not credible (rejected) for L, D and R, and neither rejected not
accepted for V. The probability of direction is high for all parameters, including V, which has PD = 0.97
for the generative task and PD = 0.99 for the maximum-likelihood task. Overall, these analyses point to
a significant sensitivity for all terms of the FIA in both experiments (generative and maximum-likelihood),
with V having a more moderate effect size than the other terms.

Technical details on the ROPE-HDI comparison and on the Probability of Direction for sensitivity
parameters Briefly, the ROPE for a parameter is the range around a null value for that parameter such
that variations within this range would imply only a “negligible change” in the behavior of the model, if
all other parameters were held at their null values. The HDI is the smallest interval that contains a certain
probability mass for the posterior of that parameter. The ROPE-HDI comparison is based on the idea that if
the bulk of the posterior distribution for that parameter (represented by the HDI) falls outside the ROPE,
then the null value for that parameter can be considered not credible (rejected). On the other hand, if the
bulk of the posterior for the parameter falls within the ROPE, the null value can be considered credible
(accepted). Finally, if the posterior distribution has a partial overlap with the ROPE (neither mostly contained
within it, nor mostly falling outside of it), then the test is inconclusive. Note that, just like frequentist null
hypothesis significance testing procedures and unlike the information criterion approach used above, this
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method depends on some arbitrary assumptions, namely the definition of the ROPE and the probability to
use in computing the HDI.

In practice, as explained in more details in our preregistration documents (24-26), here we define,
conventionally, the HDI as the smallest interval that contains 95% of the posterior. The ROPE is computed as
follows. We start by defining a “negligible change” over the probability of the choice variable over the “main
range” [u, —20,, U, + 20, ] of one of the predictors in our model (L, D, B, V or R). In other words pick an
interval of probabilities [ty — &, o + 6] such that if the probability stays within [y — &, Ty + 6] when x
varies over its typical range, then the probability is not meaningfully affected by x. Mathematically, if the
probability of choosing one of the alternatives in the task is 7t and the log-odds is logit(7t) = log(n/(1 — 7)) =,
then in a logistic regression setting

logit(m) =a+ Bx . (122)

If 1y = logit™!(a), then the ROPE for f is defined as

logit(tg +0) =a+ B, (u, +20,) (123)
logit(tg—6) =a+ B_(u, —20,) (124)
so that
logit(tg+6)—a
Py + 20,
logit(mty— &) —
B = ogit( g )—a (126)
Py =20

In our case, assuming a negligible influence of the up/down bias (a in Equation 106), 7ty = 0.5 and therefore
we can assume a = 0. The definition of the ROPE further depends on the arbitrary choice of 6, and on the
values of u, and o,. We choose 6 = 0.025, and we estimate u, and o, by generating 25000 experimental
trials per task type (Dimensionality, Boundary, Volume, Robustness) and computing the empirical average
and standard deviation of the predictors over that trial set. These numbers were all fixed at preregistration
time (24-26).
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