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 32 

Abstract 33 

The morphology of cells is dynamic and mediated by genetic and environmental factors. 34 

Characterizing how genetic variation impacts cell morphology can provide an important link 35 

between disease association and cellular function. Here, we combined genomic and high-36 

content imaging approaches on iPSCs from 297 unique donors to investigate the relationship 37 

between genetic variants and cellular morphology to map what we term cell morphological 38 

quantitative trait loci (cmQTLs). We identified novel associations between rare protein altering 39 

variants in WASF2, TSPAN15, and PRLR with several morphological traits related to cell shape, 40 

nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi 41 

confirmed their role in cell morphology. Analysis of common variants yielded one significant 42 

association and nominated over 300 variants with suggestive evidence (P<10-6) of association 43 

with one or more morphology traits. Our results showed that, similar to other molecular 44 

phenotypes, morphological profiling can yield insight about the function of genes and variants. 45 

  46 

Introduction 47 

Cellular morphology is an important and informative cellular trait across cell types, health, and 48 

disease. Changes in cell morphology can be indicators of disease. A classic example is sickle 49 

cell anemia, which gets its name by the sickle-like morphology of blood cells observed in 50 

patients afflicted with this condition1. Like other traits, such as gene expression, cellular 51 

morphology is, in part, genetically determined. Genetic studies have implicated various loci 52 

associated with red blood cell phenotypes such as mean volume and hemoglobin content2,3. 53 

However, there is still limited understanding of how human genetic diversity shapes cell 54 

morphology. This is due to several challenges: cell morphology is hard to quantify; ascertaining 55 
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how human genetic variation influences cellular phenotypes in living biological systems can be 56 

challenging and cost prohibitive; and many cellular phenotypes are context-specific requiring the 57 

acquisition of relevant tissue and cell types. Profiling cell morphology in different cell types and 58 

across genetically diverse populations could facilitate the identification of such loci.  59 

 60 

Recent innovations in cellular imaging and analysis have made it possible to measure 61 

thousands of morphological traits from a single cell, constructing morphology based ‘profiles’. 62 

Cell Painting, for example, leverages multiplexed dyes to enable trait measurement across 63 

many cellular compartments and organelles4,5. Cell Painting can ascertain gene function by 64 

linking expression to cellular traits6 and has been used to enable the prediction of functional 65 

impacts from lung cancer variants7. Cell morphology profiling provides a great asset for 66 

functional genomics studies compared to methods such as gene expression as it’s much more 67 

affordable and easily scalable at the bulk and single cell level. We hypothesized this approach 68 

could be leveraged to elucidate relationships more broadly between cell morphology and 69 

genetic variants. 70 

 71 

Ascertaining how human genetic diversity influences cellular phenotypes in living biological 72 

systems has been difficult. Collections of induced pluripotent stem cells (iPSCs) provide a 73 

powerful tool for modeling human genetics8. The emergence of large iPSC collections, now 74 

available in several public repositories, provides access to cell lines from donors of diverse 75 

ancestry and genetic backgrounds, enabling the study of how human common and rare genetic 76 

variation impacts cellular function and behavior9-17. Attempts to investigate how genetic variants 77 

drive cell morphology using iPSC-based models have shown promise but have been restrained 78 

by insufficient sample size and by the limited number of cellular traits being measured, 79 

hampering discovery potential18.  80 

 81 
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Here, we identified the morphological impacts of genomic variants, or cmQTLs, by generating 82 

high-throughput morphological profiling and whole genome sequencing data from 297 unique 83 

cell lines. Using Cell Painting on >5 million iPSCs derived from these donors, we 84 

comprehensively quantified 3,418 cell morphological traits and assessed associations with rare 85 

and common genetic variants genome-wide.  We identified trait-associations with rare-variant 86 

burden in several genes including WASF2, PRLR, and TSPAN15 which we then functionally 87 

validated using CRISPR interference. Additionally, we found only one common variant 88 

convincingly associated with morphology but found suggestive evidence for over 300 loci. 89 

These findings show that similar to gene expression, the morphology of cells is mediated by 90 

genetic determinants and highlights the utility of image-based methods for functional genomics.  91 

 92 

 93 

Results 94 

Whole-genome sequencing and morphological profiling for 297 unique iPSC lines  95 

To study associations between genetic variants and morphological traits, we assembled a 96 

cohort of iPSC lines from 297 unique donors, for which we had sex, ancestry, and clinical 97 

diagnosis information (Fig. 1, Table S1, Fig. 2A). We performed 30X whole-genome 98 

sequencing (WGS) on all iPSC lines. Following quality control (QC, see Methods), we retained 99 

7,020,633 common (minor allele frequency (MAF) > 5%) and 122,256 rare (MAF < 1%) variants 100 

for downstream analyses. 101 

 102 

To quantify cellular traits, we adopted the Cell Painting assay for use across a large array of 103 

different iPSC lines. This multiplexing dye assay uses six stains to capture morphological 104 

characteristics for eight cellular compartments including mitochondria, cytoplasmic RNA, actin 105 
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cytoskeleton, nucleoli, endoplasmic reticulum, Golgi apparatus, plasma membrane, and 106 

nuclei4,5.  107 

 108 

Overall, we measured 3418 morphology traits for 5.1 million iPSCs from 297 donors after 109 

stringent QC (Methods, Fig. S1, Table S2). We classified all morphological traits based on the 110 

cellular characteristics they represented, yielding five categories: Area and shape, Granularity, 111 

Intensity, Radial distribution, and Texture (Fig. 2B).  112 

 113 

Principal components and variance component analyses 114 

To assess if cell morphological may have a genetic component (cell morphological quantitative 115 

trait loci; cmQTLs), we assessed if replicates are correlated after correcting technical factors 116 

such as plate and well batch effects. These factors have previously been shown to alter 117 

morphology-based readouts19. Additionally, we explored how demographic factors including 118 

donor sex, disease status, age at sample generation, and iPSC sample source tissue may 119 

contribute to these traits (Fig. 2A). We observed non-random segregation of iPSC lines in 120 

principal component analysis (PCA) of morphology traits across ancestry categories (Fig. S2) 121 

and across plates (Fig. S3), indicating the contribution of genetic and technical factors to the 122 

measurement of morphology traits. To identify and control for these factors, we generated per-123 

well pseudo-bulk trait profiles through mean-averaging of single cell profiles, resulting in eight 124 

measurements per trait per donor, one for each of the eight replicates. With our pseudo-bulked 125 

well-level data, we performed variance component analysis to quantify the observed variance 126 

that can be attributed to each morphological trait (Methods). We assessed the significance for 127 

each variance component, correcting for the number of tests, which was the product of the traits 128 

(n=3418) and factors (n=9, namely iPSC cell line, plate and well of sequencing, whether the well 129 

was on the plate edge, tissue of origin for iPSC cell line, average number of cell neighbors 130 
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(other cells in contact with a given cell) in the well, donor’s sex, age, and disease status). Plate 131 

effects were associated with 3417 traits and explained 61.8+17%  of the variance, thus having a 132 

major impact on morphology (Fig. 2D). We found several confounders which contributed 133 

varying levels of effect on different morphological traits (Fig. 2C). After correcting for these 134 

covariates, 16.7+11% of variance in all morphological profiles was explained by cell line donor, 135 

indicating the potential for a genetic basis to the variability in morphology traits (Fig 2D). 136 

Interestingly, the difference among donors explained a greater degree of variance in the trait 137 

category of AreaShape relative to the other trait categories (Wilcoxon rank sum test P = 1.1x10-138 

55, Fig. S4). We note that some of the shared variance may be explained by non-genetic factors, 139 

such as stable epigenetic modifications. 140 

 141 

Selection of traits for association analysis 142 

We next summarized well-level trait values into donor-level values (i.e., pseudo-bulk) by mean-143 

averaging individual traits across all wells per donor, resulting in one measurement per trait per 144 

donor (N = 3418 traits and 297 donors). As cells often display varied morphology in response to 145 

environmental cues, we segregated all cells into two groups based on whether they had any 146 

cells in contact (called colony cells, 97.48% of all cells) or not (called isolate cells, 2.52% of all 147 

cells)18,20. In both colony and isolated cells, most traits (93.7 and 91.2%, respectively) had very 148 

high pairwise correlation (Pearson r > 0.9) with one or more traits (Fig. S5), suggesting the 149 

presence of many traits that were not independent of each other. Therefore, to reduce 150 

redundancy in association analysis, we examined pairwise correlation (Pearson r) among all 151 

3418 morphological traits across colony and isolated cells and selected a common set of 246 152 

traits having r < 0.9 with each other by iteratively selecting a single representative trait for the 153 

set of correlated traits (r > 0.9) (Methods). We refer to this common set of 246 traits as 154 

“composite traits” (Table S3).   155 
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  156 

Rare variant association analysis  157 

We next explored the effect of rare genetic variation on cellular morphology. We investigated 158 

the association of composite traits (n = 246) with gene-level burden of protein-altering rare 159 

variants (MAF < 0.01). To ensure well-powered investigation, we only examined 9105 genes 160 

that had rare variants in at least 2% of donors (n >= 6) for our association analysis. We modeled 161 

individual morphology traits as a function of rare protein-altering variant burden in a gene, 162 

controlling for plate, well, and donor sex using linear regression (Methods, Fig. S6). We 163 

performed this analysis separately in colony and isolated cells. Of all tested traits, one trait in 164 

colony cells and 3 traits in isolated cells passed the genome-wide significance threshold (P < 165 

2.2x10-8, Bonferroni correction for 246 traits and 9105 genes) (Fig. 3A). We did not observe any 166 

inflation in association statistics for these traits (Lambda (λ) = 1.01 for the association in colony 167 

cells and λ = 1.01, 0.96, 0.98 for the associations in isolated cells) (Fig. S7). 168 

 169 

In colony cells, a Zernike shape measure of the cytoplasm 170 

(Cytoplasm_AreaShape_Zernike_9_3) was negatively associated with rare variant burden in the 171 

WASF2 gene (n = 3 missense and 1 in-frame deletion rare variants, β or effect size (se) = -1.24 172 

(0.18), P = 3.1x10-10; Fig. 3B). WASF2 protein binds profilin, a G-actin-binding protein, 173 

promoting the exchange of ADP/ATP on actin and the formation of actin filament clusters21,22. 174 

The disruption of WASF2 impairs actin formation and organization that could lead to their 175 

polarized distribution and spindle-shaped cells23. In representative images of cells with rare 176 

variants in WASF2 it is difficult to identify this polarized and spindle-like shape by eye when 177 

compared to reference lines (Fig. S8). As many phenotypes may only be uncovered using 178 

analyses such as these, it highlights the necessity of leveraging high-dimensional morphological 179 

profiling over more traditional methods of capturing cellular phenotypes. Moreover, rare variant 180 
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burden in WASF2 had nominal association (P < 0.05) with 90 other traits including 27 traits of 181 

area and shape category, substantiating WASF2 as a genetic determinant of cellular 182 

morphology (Table S4). 183 

 184 

In isolated cells, three traits were associated with rare variant burden in the PRLR gene, one of 185 

which was the asymmetry in the distribution of mitochondria in the perinuclear space 186 

(Cells_RadialDistribution_RadialCV_Mito_1of4, n = 6 missense rare variants, β (se) = -1.17 187 

(0.2), P = 1.2x10-8; Fig. 3C). PRLR encodes membrane-anchored receptors for a prolactin 188 

ligand and is a part of the class-I cytokine receptor superfamily and regulator of JAK-STAT5 189 

pathway activity24. In addition to its well-known role in pregnancy and lactation, PRLR also plays 190 

a key role in an autocrine/paracrine loop present in stem cells, mediating their quiescence and 191 

proliferation25. Previous findings in adipocytes showed PRLR KO alters mitochondrial packing 192 

and distribution throughout the cell26. In a mouse model of depression, silencing of the PRLR 193 

gene inhibited neuron apoptosis, suggesting that disruption of PRLR activity could lead to 194 

cellular proliferation27. Indeed, we observed a higher cell count in iPSC lines carrying a rare 195 

variant burden in the PRLR gene compared to reference iPSC lines (Fig. S9). Further evidence 196 

supports a link between mitochondria distribution and neurodegeneration within the aging brain, 197 

whereby the position of mitochondria with respect to different organelles is essential for 198 

supplying bioenergetic homeostasis to cellular compartments28-32. These findings suggest 199 

mutations in PRLR drive asymmetry of mitochondria within the perinuclear ring, improving the 200 

bioenergetic homeostasis of the cell’s nucleus and reducing cellular apoptosis. Moreover, rare 201 

variant burden in PRLR had nominal association (P < 0.05) with 118 other traits, providing more 202 

support to PRLR as a genetic determinant of cellular morphology (Table S5).  203 

 204 

We also inspected the associations with suggestive evidence, i.e., P < 10-6. There was a total of 205 

12 and 13 associations in colony and isolated cells, respectively, which passed this threshold 206 
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(Table S6). Of our suggestive hits, one of the strongest associations was between the 207 

distribution in size of RNA particles in the cytoplasm (Cytoplasm_Granularity_3_RNA) and rare 208 

variant burden in TSPAN15 gene (n=2 missense and 1 splice region rare variants in the gene, β 209 

(se) = 0.9 (0.17), P = 3.7x10-7; Fig. 3D). TSPAN15 is expressed in all human tissues and 210 

encodes for a cell surface protein33. This protein plays a role in cell activation, development, and 211 

proliferation by negatively regulating Notch-signaling activity34, indicating that disruption of 212 

TSPAN15 could lead to higher transcriptional activity and RNA amount in the cell proxied by 213 

higher cytoplasmic RNA granularity and cellular proliferation. Indeed, all iPSC lines carrying a 214 

rare variant burden in TSPAN15 had higher cell count compared to wild-type iPSC lines (Fig. 215 

S10). 216 

 217 

To ensure that the observed associations were not driven by somatic variation potentially 218 

introduced during iPSC generation, cell seeding or genome sequencing, we repeated our 219 

analysis restricting to only those variants that were previously observed in the gnomAD 220 

database35 (106,590 of 122,256 variants). We recapitulate all observed associations (significant 221 

after Bonferroni correction for multiple testing and with suggestive evidence) with concordant 222 

effect size and statistical significance (p-value) (Fig. S11). Taken together, our analyses 223 

indicated that, using our dataset, we could successfully identify associations between rare 224 

coding variants and several morphological traits. 225 

 226 

Functional validation of rare variant associations 227 

CRISPR-based gene editing has been shown to be a viable mechanism for validating gene 228 

expression phenotypes resulting from rare-variation36. To validate our rare-variant burden 229 

associations, we tested whether knockdown of these genes impacted the same traits for which 230 

we identified a rare-variant burden association. We transduced iPSCs from a cell line 231 
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expressing constitutive dCas9-KRAB CRISPRi machinery with sgRNAs targeting WASF2, 232 

PRLR, and TSPAN15 (Fig. 4A). We targeted each gene with 2 different sgRNAs, and validated 233 

each sgRNA for knockdown in expression of their gene target, showing a range of knockdown 234 

efficiency (15%-95%) (Fig. S12, Table S7). Cells transduced with sgRNAs were Cell Painted 235 

and morphological traits were extracted and quantified using the same pipeline from our 236 

discovery cohort.  237 

 238 

For each of the three genes tested, we detected the predicted changes in each individual trait, 239 

and the change was in the same direction as our association analysis relative to non-targeting 240 

sgRNA controls (n = 28 wells per targeting sgRNA and 52 wells per non-targeting sgRNA, 241 

Welch’s Two Sample T-Test, P < 2.2x10-16) (Fig. 4B-D). Specifically, knockdown of WASF2 242 

resulted in a decrease in normalized score for the trait Cytoplasm_AreaShape_Zernicke_9_3 243 

(Fig. 4B). We further observed that a reduction in the expression of TSPAN15 coincided with an 244 

increase in trait score for Cytoplasm_Granularity_3_RNA (Fig. 4D). Finally, knockdown of PRLR 245 

expression decreased Cells_RadialDistribution_RadialCV_Mito_1of4, which defines the 246 

relationship between the radial distribution of mitochondria around the nucleus (Fig. 4C). This 247 

effect is highlighted in representative images, whereby cells transfected with a PRLR targeting 248 

sgRNA display more uniform distribution of mitochondria around the nucleus when compared to 249 

non-targeting sgRNA cells where mitochondria tend to colocalize to one side of the nucleus 250 

(Fig. 4E).  251 

 252 

Common variant association analysis 253 

To identify common variants that mediate cell morphology, we performed 246 genome-wide 254 

association analyses, one for each composite trait. Each association was tested in colony and 255 

isolated cells separately (Fig. 5A, B). With our set of 297 donors, only one variant, rs315506, 256 
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overlapping the chr17q11.2, passed the genome-wide significance threshold (Bonferroni 257 

correction for 246 morphology traits, 5x10-8/246 = 2x10-10). rs315506 is an intergenic variant and 258 

was associated with spatial distribution of endoplasmic reticulum (ER) in the cytoplasm 259 

(Cytoplasm_RadialDistribution_RadialCV_ER_3of4) in colonies (MAF = 0.08, β (se) = -0.52 260 

(0.08), P = 1.4x10-10, Fig. 5C). This variant also showed suggestive evidence of association (P 261 

< 10-5/246 = 4.1x10-8) with spatial distribution of ER near the periphery of cells 262 

(Cells_RadialDistribution_MeanFrac_ER_4of4). rs315506 lies in the center of a 400kb window 263 

containing the genes NF1, CORPS, UTP6 and SUZ12. Microdeletions on chr17q11.2 cause 264 

NF1 microdeletion syndrome, which has been shown to impair protein localization to the ER37,38.  265 

 266 

Besides rs315506, in colony cells, the second strongest association was on chromosome 7 267 

(between Nuclei_Granularity_9_AGP and rs36036340, MAF = 0.08, β (SE) = 0.38 (0.06), P = 268 

6x10-10). rs36036340 lies within the gene PRKAR1B. Variants in PRKAR1B have been linked to 269 

neurodevelopmental disorders and activity of PRKAR1B has been shown to regulate 270 

tumorigenesis39-41. PRKAR1B mediates PI3K/AKT/mTOR pathway signaling through direct 271 

interactions between PRKAR1B and PI3K-110alpha39. Given that MTORC1 activity is heavily 272 

influenced by the Golgi apparatus, and regulates cellular proliferation and cell cycle, variants in 273 

rs36036340 may impact PI3K/AKT/mTOR signaling, altering cellular morphology pertaining to 274 

the Golgi, actin, and plasma membrane.  275 

 276 

In isolated cells, the most significant association was found on chromosome 13 (between 277 

Nuclei_RadialDistribution_RadialCV_Brightfield_2of4 and rs9301897, MAF = 0.13, β (se) = -278 

0.31 (0.05), P = 4.5x10-10). rs9301897 lies within the gene GPC6. Genetic variants in GPC6 279 

have been implicated in Alzheimer's disease (AD), and TD43-proteinopathy, a hallmark of 280 

amyotrophic lateral sclerosis (ALS) pathology, has been shown to regulate GPC6 activity42,43. 281 

GPC6 and other glypicans are known to play a role in cell growth and cell division through cell 282 
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surface receptor activation44,45. As nuclear movement within the cell is heavily regulated by cell 283 

cycle dynamics, variants in GPC6 may alter nuclear localization by impacting mitosis. 284 

 285 

In total, over 300 loci reached the suggestive genome-wide significance threshold (P < 4.1x10-8, 286 

Table S8) suggesting that a larger sample size and improved statistical power would be able to 287 

identify additional common variants associated with cell morphology. Moreover, several loci 288 

(Table S8) showed suggestive association with more than one trait suggesting shared genetic 289 

etiology among different morphological traits.  290 

 291 

Discussion  292 

Previous studies linking genetic variants to cellular function have largely focused on human 293 

genes and alleles which mediate molecular phenotypes, such as gene or protein expression 294 

and chromatin accessibility46-49. Expanding on these studies, here we combine high-throughput 295 

cell culture techniques with cost-effective and high-dimensional image-based cell profiling (i.e., 296 

Cell Painting) to connect genetic variants to their morphological function in 297 donors.  297 

 298 

Our work provides the largest to date exploration of genetic influences on cell morphology (what 299 

we term cmQTLs). Where previous studies have been limited by both sample size and the scale 300 

of morphological measurements, we combined whole genome sequence analysis with Cell 301 

Painting to define relationships between genetic variants and 3418 morphological traits 302 

extracted from >5M iPSCs. Leveraging these advances, we identified novel associations 303 

between rare variant burdens in the WASF2, PRLR, TSPAN15 and cell morphological traits 304 

related to the cytoplasmic area and shape, nucleic granularity, and the distribution of 305 

mitochondria around the nucleus. These associations were validated by mechanistic information 306 

about these genes from the literature as well as CRISPR-mediated knockdown in our study.  307 
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 308 

In our common variant analysis, we found one significant result and 300 potential associations, 309 

indicating that future studies with larger sample sizes may help in elucidating other such loci. 310 

Interestingly, we observed no overlap in traits and associated variants between colony and 311 

isolated cells, suggesting a differential effect of genetic variation based on the environmental 312 

context of the cells. This is consistent with previous studies that have shown that intrinsic 313 

properties of cells may only come to light in the context of altering the cellular environment18,20. 314 

Further, we identified confounding factors that drive variation in cellular phenotypes which are 315 

important to address when performing similar studies. In particular, uniform cell densities across 316 

conditions is critical in imaging-based assays. To address this challenge, we incorporated 317 

automated liquid handling devices to reduce the latency of manually pipetting into 384 well 318 

microplates. 319 

 320 

Our work has several limitations that highlight directions for future research. First, the cell types 321 

utilized in this study are in a basal, undifferentiated state. It will be valuable for future studies to 322 

explore these associations in more physiologically relevant contexts, where disease-associated 323 

variants are enriched50. These findings suggest this framework could be applied to relevant cells 324 

and tissues such as iPSC-derived differentiated cells, post-mortem brain samples or excisable 325 

somatic cells. Second, though our study provides the largest (to our knowledge) image-based 326 

iPSC phenotyping dataset, we are still underpowered to detect a significant number of high 327 

confidence common variant cmQTLs. Future efforts may require cross-institutional 328 

collaborations to adequately scale in vitro sample sizes for common variant cmQTL 329 

identification.  330 

 331 

This approach holds significant promise for future studies leveraging human-derived, disease-332 

relevant cell types for modeling the impact of genetic variation on cellular function. The use of 333 
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imaging to capture phenotypes is particularly attractive in experimental designs for several 334 

reasons, such as the low cost per cell for imaging, and the ease of processing data and 335 

preparation of the cells or tissues as compared to the generation of other molecular data such 336 

as RNA-sequencing or epigenomic assays51. Moreso, large imaging datasets provide tools for 337 

developing robust statistical models for combined analysis of morphological profiling data with 338 

additional modalities such as gene expression to comprehensively interrogate genetic variants 339 

and their function52. Taken together, we demonstrate cellular morphology can be a cost-340 

effective readout for modeling the biological function of human genetic variation.  341 

 342 
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Figures  343 

344 

Fig 1. Study Overview 345 

iPSC lines from 297 donors were expanded, quality-control checked and then subject to both346 

high-throughput imaging with Cell Painting and 30X whole-genome sequencing. Overall, we347 

imaged 5.1x106 cells across all donors and quantified 3,418 morphological traits per cell using348 

CellProfiler software. We inferred genetic variants from the WGS data and investigated whether349 

individual morphological traits associated with both rare and common variation. 350 
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 351 

 352 

Fig 2. Summary of morphological traits and variant component analysis  353 

(A) Table with cell line metadata 354 

(B) Summary of five categories of morphological traits captured in our data (n=3418) 355 

(C) Exploring explained Variation in individual traits, namely distribution of mitochondria around 356 

nucleus, cytoplasmic Zernike shape metric 9_3, and cytoplasmic granularity in the RNA channel 357 

at scale 3, showed differences in sources of variance, including technical effects such as plate 358 

and well position and biological sources such as donor. Donor ID represents the remaining 359 

difference among profiles after accounting for all other technical, demographic, and disease-360 

status metadata. 361 

(D) Same as C but for all morphological traits (n=3418) 362 

 363 
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 364 

 365 

Fig 3. Association between morphology and rare variant burden 366 

(A) Manhattan plot showing association between morphological traits (n=246) and rare variant 367 

burden in candidate genes (n=9105). Black dotted line represents the p-value threshold after 368 

Bonferroni correction for the number of tested traits and genes (P = 0.05/246x9105, i.e. 369 

2.2x10^-8). Grey dotted line represents the p-value threshold for suggestive evidence of 370 

association (P = 10^-6).  371 

(B-D) Box plots displaying the association between the Zernike_9_3 cytoplasm shape metric 372 

and rare variant burden in WASF2 gene (B), distribution of mitochondria around the nucleus and 373 

rare variant burden in PRLR gene (C) and cytoplasmic granularity measure in the RNA channel 374 
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and rare variant burden in TSPAN15 gene. We provide the effect size (β estimate) and raw p-375 

value of the association for each trait.  376 

 377 

 378 
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 380 

 381 

Fig 4. Functional validation of rare-variant burden associations  382 

(A) Workflow for knockdown of rare-variant genes using CRISPR interference in iPSCs 383 

expressing constitutive dCas9-KRAB.  384 

(B-D) Violin plots displaying quantification of traits between control non-targeting sgRNAs and 385 

sgRNAs targeting WASF2, TSPAN15, and PRLR on a per-well level (n = 56 non-target 386 

sgRNAs, n = 56 targeting sgRNAs, P < 2.2x10-16, Welch's Two-Sample T-Test). Effect on the 387 

trait score is consistent with what we observed in our rare-variant burden association.   388 

(E) Representative image of an observable gene-trait association for PRLR. 389 

Cells_RadialDistribution_RadialCV_Mito_1of4 relates to the asymmetric distribution of 390 

mitochondria in the ring right around the nucleus. In the non-targeting controls (left) we 391 

observed clustering of mitochondria on a particular side of the nucleus, whereas in the PLRL 392 

knockdown sgRNA (right) we observed a more distributed presence of mitochondria around the 393 

nucleus. 394 

 395 

 396 

 397 

 398 
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 399 

 400 

Fig 5. Common variant analysis 401 

(A) Manhattan plot for trait association test in colony cells. Red line represents the p-value 402 

threshold after Bonferroni correction for the number of tested traits and genes (P < 2x10-10) Blue 403 

line represents the p-value threshold for hits with suggestive evidence (P < 4.1x10-8) 404 

(B) Manhattan plot for trait association test in isolate cells. Red line represents the p-value 405 

threshold after Bonferroni correction for the number of tested traits and genes (P < 2x10-10) Blue 406 

line represents the p-value threshold for hits with suggestive evidence (P < 4.1x10-8) 407 

(C) LocusZoom plot for the association signal at chr17q11.2. rs315506, was significantly 408 

associated with spatial distribution of cytoplasm 409 

(Cytoplasm_RadialDistribution_RadialCV_ER_3of4) in colonies (MAF = 0.08, effect size (se) = -410 

0.52 (0.08), P = 1.4x10-10) 411 

 412 
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Supplementary Materials 413 

Online Methods 414 

Material and iPSC generation 415 

Our dataset comprised 297 donors from the iPSC repository of California Institute for 416 

Regenerative Medicine (CIRM) (Supplementary Table 1). Either B cells or Fibroblasts were 417 

taken from each donor from which iPSC lines were generated using non-integrating episomal 418 

vectors. Cells were cultured in StemFlex (ThermoFisher; cat#A334901) culture media and 419 

passaged for expansion with 1mM EDTA (Gibco; cat#15575020) and 10uM Y-27632 420 

(StemcellTech; cat#72304). Each iPSC sample underwent Global Screening Array (GSA) for 421 

karyotype analysis to ensure chromosomal integrity, as well as 30X whole-genome sequencing 422 

to determine genome-wide variants for each donor. Each iPSC line was cultured between 423 

passages 12 and 15 before use in the experiment.  424 

Cell seeding and staining 425 

For each batch of imaging, cells were detached from 6-well NUNC plates using Accutase 426 

(StemcellTech; cat#07920) for generating single-cell suspensions. Following detachment, cells 427 

were centrifuged at 1000 rpm x 5:00 and re-suspended in StemFlex medium supplemented with 428 

ROCK inhibitor. After each cell line was counted to determine cell solution concentration and 429 

viability, the desired cell solution volume was aliquoted into a 96-deep well low attachment 430 

plate. To disperse a high number of cell lines across a 384-well plate in a semi-random fashion, 431 

we optimized the use of an Agilent Bravo liquid handling device. Here, using an 8-channel head, 432 

cell solutions were transferred from the 96-well low attachment plate and distributed into a 433 

geltrex-coated Perkin Elmer Cell Carrier 384-well plate. 434 
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Cell Painting and imaging 435 

Cells were staining and imaged with minor adaptations to procedures described previously4,5. 436 

Six hours post seeding in 384-well plates, cells were treated for 30 min with 0.5 uM MitoTracker 437 

Deep Red FM - Special Packaging (Thermo Fisher cat#: M22426) dye at 37oC. Following the 438 

MitoTracker treatment, cells were fixed with 16% paraformaldehyde diluted to a final 439 

concentration of 4% (Thermo Fisher cat#: 043368.9M) for 20 minutes in the dark at RT. After 440 

three washes with 1X HBSS cells were permeabilized and stained using a solution of 1X HBSS 441 

(Thermo Fisher cat#: 14175095), 0.1% Triton-X-100 (Sigma Aldrich cat#: X100-5ML), 1% 442 

Bovine Serum Albumin, 8.25nM Alexa Fluor 568 Phalloidin (Thermo Fisher cat#: A12380), 443 

0.005mg/ml Concanavalin A, Alexa Fluor 488 Conjugate (Thermo Fisher cat#: C11252), 1ug/ml 444 

Hoechst 33342, Trihydrochloride, Trihydrate (Thermo Fisher cat#: H3570), 6uM SYTO 14 445 

Green Fluorescent Nucleic Acid Stain (Thermo Fisher cat#: S7576), and 1.5ug/ml Wheat Germ 446 

Agglutinin, Alexa Fluor 555 Conjugate (Thermo Fisher cat#: W32464) for 1hr at RT in the dark. 447 

Following the staining, plates were washed 3X with 1X HBSS and sealed until imaging. Cell 448 

Painted plates were imaged on a Perkin Elmer Phenix Automated Imaging system under a 449 

standardized protocol. All 297 cell lines were dispersed across seven plates which were imaged 450 

in four separate batches. 451 

Quantification of cellular morphology traits and their quality control 452 

The segmentation of individual cells in the image into its cellular compartments (whole cell, 453 

cytoplasm and nuclei) and subsequently quantification of morphology traits for each cellular 454 

compartments was done using CellProfiler 3.1.853; pipelines are available at 455 

https://github.com/broadinstitute/imaging-platform-456 

pipelines/tree/master/cellpainting_ipsc_20x_phenix_with_bf_bin1. Analysis of CRISPR 457 

experiments was done in CellProifler 4.2.4 with pipelines availalbe at 458 

https://github.com/broadinstitute/imaging-platform-459 
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pipelines/tree/master/cellpainting_ipsc_20x_phenix_with_bf_bin1_cp454. Subsequently, cells 460 

missing measurement for more than 5% of traits were removed. Morphology traits a priori 461 

known to be problematic, not measured across all cells or non-variable across cells were 462 

removed using Caret v6.0-86 package. QC-ed cells were then segregated in two groups based 463 

on the number of neighbors: isolated cells having no neighbors and colony cells having one or 464 

more neighbors. Individual morphology traits were then summarized to well level measurement 465 

by averaging them across all cells per well, resulting in a well by trait matrix. Following this, 466 

each morphology trait was gaussianized across all 7 plates using inverse normal transformation 467 

(INT) method. 468 

Selection of traits for association analysis 469 

A set of morphology traits for association analysis (with both common variants and rare variant 470 

burden) was selected by considering their pairwise correlation across colony and isolate cells in 471 

the following steps: Step 1. Calculate Pearson correlation matrix for colony and isolate cells at 472 

donor level (total 2 correlation matrices). Step 2. Identify that single trait having the Pearson r >= 473 

0.9 with the largest number of other traits across both correlation matrices. We specifically 474 

chose Pearson r >= 0.9 as cutoff here because most traits (93.7% and 91.2% traits in colony 475 

and isolated cells, respectively) had a correlation Pearson >= 0.9 with at-least one other trait 476 

(Fig S7). Step 3. Include that individual trait for association analysis. Remove it and other traits 477 

having Pearson >= 0.9 with it from correlation matrices. Step 4. Repeat step 1 to 3 until there 478 

are no more traits to include in association analysis. 479 

Whole genome sequencing (WGS), variant calling and genes to test 480 

DNA was obtained from cell line pellets with the Qiagen Quick-Start DNeasy Blood and Tissue 481 

Kit (cat. no. 69506). DNA samples were submitted to the Genomics Platform at the Broad 482 

Institute of MIT and Harvard. Whole genome sequencing (30x) was performed for all individuals 483 
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(n=297) at the Broad Institute Genomics Platform using Illumina Nextera library preparation, 484 

quality control, and sequencing on the Illumina HiSeq 2500 platform. Raw sequences were QC-485 

ed and sequencing reads (150 bp, paired-end) were aligned to the hg38 reference genome 486 

using the BWA alignment program. Variants were called and annotated (VQSLOD filter) using 487 

HapMap reference. 488 

WGS data quality control for common variant association analysis 489 

The QC-ed WGS VCF file was processed using plink v1.90b3 to remove sex chromosomes, 490 

multi-allelic variants, variants with duplicated positions, and small insertions and deletions larger 491 

than 5bp. Of 38,239,223 variants loaded from the VCF file, 33,348,914 passed these filters. 492 

Donor-level genotype missingness rates were checked to exclude donors with genotype 493 

missingness rates > 10%. All 297 individuals passed this filter. Finally, variants with minor allele 494 

frequency (MAF) < 5%, missingness > 5%, and Hardy-Weinberg equilibrium p-value < 10-5 were 495 

excluded, following which, 7,020,633 remained for common variant association analysis. 496 

Principal components analysis (PCA) 497 

Plink v1.90b3 was used on common (MAF > 5%) and post-QC variants to remove regions with 498 

known long-range linkage disequilibrium (LD) and variants in high LD (r2 > 0.1 in a window of 499 

50 kb and a sliding window of 10 kb) (Price A. L. Am. J. Hum. Genetics 2008). The remaining 500 

291,493 variants were loaded to GCTA v1.91.1 to generate a genetic relatedness matrix (GRM) 501 

using the --make-grm command with default options. The resulting GRM was used to generate 502 

20 PCs using GCTA v1.91.1 --pca command with default options. 503 

Variance component analysis 504 

Variance component of fixed (cell neighbor density and donor’s age) and random effects (iPSC 505 

source tissue, cell line ID, plate and well of imaging, donor’s sex, and disease status) was 506 
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estimated for selected traits using linear mixed model (lmer function in lmertest package). We 507 

included the first 4 PCs derived from genetic variation, corresponding to the elbow in scree plot, 508 

for ancestry/population stratification. The p-value of each factor was Bonferroni corrected for the 509 

number of traits. 510 

Common variant association analysis 511 

The linear regression framework implemented in GCTA v1.91.1 (--fastGWA-lr command) was 512 

used to test the association of common (MAF > 5%), post-QC variants with 246 post-QC, INT 513 

traits that were described above. Like the rare variant association analysis, plate and sex were 514 

included as categorical and four genotyping PCs, number of cell neighbors (for cells in colony) 515 

and the edge variable were included as quantitative variables in the model. Associations were 516 

considered statistically significant if they passed the genome-wide significance threshold for 246 517 

tests (P < 5x10-8/246).  518 

Rare variant burden test 519 

The variants that were autosomal, passed the VQSLOD filter and called in >95% individuals 520 

were retained and annotated for their functional effect using SnpEff v5.0. To perform the rare 521 

variant burden test, the variants which were autosomal, passed the VQSLOD filter and called in 522 

>95% individuals and had MAF < 1% were retained. These variants were annotated for their 523 

functional effect using SnpEff v5.0. After annotation, those variants were kept which resided in 524 

the protein-coding region and had high or moderate effects on encoded protein. For each gene, 525 

multiple rare variants were grouped and coded as present or absent. The association between 526 

individual morphology traits and the presence of rare variants in a gene was investigated using 527 

linear regression models. The p-values of associations were corrected for both the number of 528 

tested traits and the number of genes using Bonferroni correction method. 529 
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CRISPRi sgRNA design, cloning, and virus production 530 

To functionally validate the rare-variant burden associations, we designed sgRNAs targeting the 531 

transcriptional start site (TSS) for each gene using CRISPick software (Doench, 2016, Sanson, 532 

2018). sgRNA oligonucleotides were cloned into the CROPseq vector using a Golden Gate 533 

cloning protocol (Juong, 2017). To validate sequence insertion, DNA plasmids were sequenced 534 

by a 3rd party provider. Plasmids with successful insertion were packaged for lentivirus 535 

generation using TransIT-293 reagent (Mirus Bio cat#: MIR 2704) and packaging plasmids 536 

VSV-G and DVPR (need to confirm these). HEK239T (ATCC cat#: CRL-3216) cells were 537 

transfected with sgRNA packaging plasmid and incubated for 48hrs. HEK239T media 538 

supernatant was collected, and lentivirus was concentrated using LENTI-X concentrator 539 

(Takara) per manufacturer's instructions. Virus supernatant was then aliquoted and stored at -540 

80C.  541 

sgRNA transduction in dCas9-iPSCs 542 

An iPSC line, WTC11_TO-NGN2_dCas9-BFP-KRAB (gift from Michael Ward), was seeded at 543 

250k cells per well in a 12 well plate and 50ul of sgRNA lentivirus was added to each 544 

designated well. The following day, 1mL of mTeSR1 complete media was added on top of the 545 

existing media. 48hrs post transduction, cells underwent a full media change with the addition of 546 

1 ug/ml puromycin (Sigma Aldrich cat#: P8833) for chemical selection of cells which did not 547 

uptake the sgRNAs. Puromycin is supplemented in the feeding media for the duration the cell 548 

line is in culture to avoid uninfected cells from populating the dish.  549 

qPCR analysis  550 

RNA isolation was performed with the Direct-Zol RNA miniprep kit (ZYMO: cat# R2051) 551 

according to the manufacturer’s instructions. To prevent DNA contamination, RNA was treated 552 

with DNase I (ZYMO: cat# R2051). The yield of RNA was determined with a Denovix DS-11 553 
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Series Spectrophotometer (Denovix). 200 ng of RNA was reverse transcribed with the iScript 554 

cDNA Synthesis Kit (Bio-Rad, cat# 1708890). For all analyses, RT–qPCR was carried out with 555 

iQ SYBR Green Supermix (Bio-Rad, cat# 1708880) and specific primers for each gene (listed 556 

below) with a CFX384 Touch Real-Time PCR Detection System (Bio-Rad). Target genes were 557 

normalized to the geometric mean of control genes, RPL10 and GAPDH, and relative 558 

expression compared to the mean Ct values for non-targeting control sgRNAs and gene 559 

targeting sgRNAs, respectively. 560 

 561 

The following primers were used:  562 

WASF2_forward 5′-TAGTAACGAGGAACATCGAGCC-3′  563 

WASF2_reverse 5′-AAGGGAGCTTACCCGAGAGG-3′  564 

PRLR_forward 5′-TCTCCACCTACCCTGATTGAC-3′  565 

PRLR_reverse 5′-CGAACCTGGACAAGGTATTTCTG-3′  566 

TSPAN15_forward 5′-TCCCTCCGTGACAACCTGTA-3′  567 

TSPAN15_reverse 5′-CCGCCACAGCACTTGAACT-3′  568 

RPL10_forward 5′-GCCGTACCCAAAGTCTCGC-3′  569 

RPL10_reverse 5′-CACAAAGCGGAAACTCATCCA-3′  570 

GAPDH_forward 5′-GGAGCGAGATCCCTCCAAAAT-3′  571 

GAPDH_reverse 5′-GGCTGTTGTCATACTTCTCATGG-3′ 572 

 573 

Data Availability 574 

Images and preprocessed profiles that are augmented with gene and compound annotation are 575 

available in the Cell Painting Gallery on the Registry of Open Data on AWS 576 

(https://registry.opendata.aws/cellpainting-gallery/) as dataset `cpg0022-cmqtl` at no cost and 577 

no need for registration. Whole genome sequencing for cell lines used in this study are hosted 578 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.09.522731doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.522731
http://creativecommons.org/licenses/by/4.0/


on Terra https://app.terra.bio/#workspaces/anvil-579 

datastorage/AnVIL_NIMH_Broad_ConvergentNeuro_McCarroll_Eggan_CIRM_GRU_WGS 580 

 581 

Code Availability 582 

Source code to reproduce and build upon the presented results is available at 583 

https://github.com/broadinstitute/cmQTL  584 

 585 
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Supplemental Figures 855 

856 
Fig S1. Data filtering and quality control for the traits measured across iPSC cells 857 

A total of 4318 cell morphology traits were quantified across all 5.5 million iPSCs cells from 297858 

donors. Morphology traits a priori known to be problematic, not measured across all cells or859 

non-variable across cells were removed. Also, cells missing measurement for >5% of traits were860 

removed, yielding 3418 traits across 5.1 million cells. 861 
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 862 

Fig S2. Principal component analysis (PCA) of donors  863 

Distribution of 297 donors (yellow dots) laid over individuals from 1K genomes on PC1 and PC2864 

calculated from common variants (maf > 5%). Of 297 donors, 207 self-reported their ancestry as865 

European. 866 
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Fig S3. Batch effects in measurement of morphology traits  868 

Distribution of 297 donors on PC1 and PC2 calculated from morphology traits (n=3418) color by869 

7 plates on which iPSCs from donors were imaged, showing the batch (plate) effect in the870 

measurement of morphology traits. 871 

 872 

Fig S4. Variation in traits explained by genetic difference among donors  873 

The comparison of variation explained by genetic difference among donors in traits belonging to874 

Area and Shape category and other categories. P-value from Wilcoxon rank sum test is shown. 875 

by 
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 876 

Fig S5. Correlation among morphology traits  877 

The number of traits having correlation (Pearson r) of up to 0.5, 0.6, 0.7, 0.8, 0.9 and 1 (on x-878 

axis) with at-least one other trait is shown for cells in colonies and cells which are isolated. 879 

 880 

Fig S6. Rare variant workflow 881 

Step by step workflow for QC and selection of rare variants for the association analyses. 882 

-
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 883 

Fig S7. Quantile-quantile (QQ) plots for associated traits 884 

QQ plots show the distribution of expected and observed p-value of association with all tested 885 

genes for 4 morphology traits. Each dot is a tested gene. Lambda statistic (λ), a measure of 886 

inflation in observed p-values, is shown. 887 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 9, 2023. ; https://doi.org/10.1101/2023.01.09.522731doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.09.522731
http://creativecommons.org/licenses/by/4.0/


 888 

Fig S8. Representative images from cell lines with rare variants in WASF2, PRLR, and 889 

TSPAN15. 890 

 891 

Randomly selected representative images from wells containing cell lines harboring rare892 

variants in WASF2, PRLR, and TSPAN15 compared to reference cell lines with no detected893 

variants. 894 
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 896 

Fig S9. Cell count for PRLR cell lines compared to others 897 

Boxplots displaying per well cell count between cell lines harboring rare variants in PRLR898 

compared to reference cell lines 899 
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 901 

Fig S10. Cell count for TSPAN15 cell lines compared to others 902 

Boxplots displaying per well cell count between cell lines harboring rare variants in TSPAN15903 

compared to reference cell lines 904 

 905 

 906 
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Fig S11. Associations using rare variants present in Gnomad  908 

Comparison of p-value and z-score of effect size (beta) of associations between individual 909 

morphology traits and rare variant burden in individual genes using all rare variants in our 910 

dataset and those rare variants (out of all) which are also present in Gnomad dataset is shown 911 

for colony cells (A) and isolated cells (B). The orange colored dots represent significant 912 

associations from Fig 3A where we used all rare variants. Pearson r is shown. 913 

 914 

 915 

Fig S12. qPCR knockdown of rare-variant associations using CRISPR interference  916 

Relative expression of sgRNA target genes compared to GAPDH and RPL10 between iPSCs 917 

transfected with gene targeting sgRNAs and non-targeting control sgRNAs. 918 

 919 

Supplemental Tables 920 

Table S1. Cell line metadata 921 

Demographic characteristics for all 297 iPSC lines used in this study. 922 
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Table S2. All morphological traits 923 

All 3418 morphological traits which passed QC 924 

Table S3. Composite morphological traits 925 

246 traits which were used for the association tests.  926 

Table S4. Morphology trait associations with rare variant burden in WASF2 927 

Morphological traits which meet nominal significance with association to rare variant burden in 928 

WASF2. 929 

Table S5. Morphology trait associations with rare variant burden in PRLR 930 

Morphological traits which meet nominal significance with association to rare variant burden in 931 

PRLR. 932 

Table S6. Morphological traits with suggestive evidence of association with rare variants in our 933 

study 934 

Morphological traits which show suggestive evidence for association with rare variants in our 935 

study. 936 

Table S7. CRISPRi sgRNA sequences 937 

 938 

Oligonucleotide sequences for all sgRNAs used in this study. 939 

Table S8. Morphological traits with suggestive evidence for association to common variants in 940 

our study.  941 

 942 
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Morphological traits which show suggestive evidence for association with common variants in 943 

our study. 944 

 945 

 946 

 947 

 948 

 949 

 950 
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 952 
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