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Abstract

The morphology of cells is dynamic and mediated by genetic and environmental factors.
Characterizing how genetic variation impacts cell morphology can provide an important link
between disease association and cellular function. Here, we combined genomic and high-
content imaging approaches on iPSCs from 297 unique donors to investigate the relationship
between genetic variants and cellular morphology to map what we term cell morphological
guantitative trait loci (cmQTLs). We identified novel associations between rare protein altering
variants in WASF2, TSPANL15, and PRLR with several morphological traits related to cell shape,
nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRI
confirmed their role in cell morphology. Analysis of common variants yielded one significant
association and nominated over 300 variants with suggestive evidence (P<10®) of association
with one or more morphology traits. Our results showed that, similar to other molecular

phenotypes, morphological profiling can yield insight about the function of genes and variants.

Introduction

Cellular morphology is an important and informative cellular trait across cell types, health, and
disease. Changes in cell morphology can be indicators of disease. A classic example is sickle
cell anemia, which gets its name by the sickle-like morphology of blood cells observed in
patients afflicted with this condition®. Like other traits, such as gene expression, cellular
morphology is, in part, genetically determined. Genetic studies have implicated various loci
associated with red blood cell phenotypes such as mean volume and hemoglobin content®®.
However, there is still limited understanding of how human genetic diversity shapes cell

morphology. This is due to several challenges: cell morphology is hard to quantify; ascertaining
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how human genetic variation influences cellular phenotypes in living biological systems can be
challenging and cost prohibitive; and many cellular phenotypes are context-specific requiring the
acquisition of relevant tissue and cell types. Profiling cell morphology in different cell types and

across genetically diverse populations could facilitate the identification of such loci.

Recent innovations in cellular imaging and analysis have made it possible to measure
thousands of morphological traits from a single cell, constructing morphology based ‘profiles’.
Cell Painting, for example, leverages multiplexed dyes to enable trait measurement across
many cellular compartments and organelles*®. Cell Painting can ascertain gene function by
linking expression to cellular traits® and has been used to enable the prediction of functional
impacts from lung cancer variants’. Cell morphology profiling provides a great asset for
functional genomics studies compared to methods such as gene expression as it's much more
affordable and easily scalable at the bulk and single cell level. We hypothesized this approach
could be leveraged to elucidate relationships more broadly between cell morphology and

genetic variants.

Ascertaining how human genetic diversity influences cellular phenotypes in living biological
systems has been difficult. Collections of induced pluripotent stem cells (iPSCs) provide a
powerful tool for modeling human genetics®. The emergence of large iPSC collections, now
available in several public repositories, provides access to cell lines from donors of diverse
ancestry and genetic backgrounds, enabling the study of how human common and rare genetic
variation impacts cellular function and behavior®*’. Attempts to investigate how genetic variants
drive cell morphology using iPSC-based models have shown promise but have been restrained
by insufficient sample size and by the limited number of cellular traits being measured,

hampering discovery potential®®.
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82 Here, we identified the morphological impacts of genomic variants, or cmQTLs, by generating
83  high-throughput morphological profiling and whole genome sequencing data from 297 unique
84 cell lines. Using Cell Painting on >5 million iPSCs derived from these donors, we
85  comprehensively quantified 3,418 cell morphological traits and assessed associations with rare
86 and common genetic variants genome-wide. We identified trait-associations with rare-variant
87  burden in several genes including WASF2, PRLR, and TSPAN15 which we then functionally
88 validated using CRISPR interference. Additionally, we found only one common variant
89  convincingly associated with morphology but found suggestive evidence for over 300 loci.
90 These findings show that similar to gene expression, the morphology of cells is mediated by
91 genetic determinants and highlights the utility of image-based methods for functional genomics.

92

93

94 Results

95 Whole-genome sequencing and morphological profiling for 297 unique iPSC lines

96 To study associations between genetic variants and morphological traits, we assembled a
97 cohort of iIPSC lines from 297 unique donors, for which we had sex, ancestry, and clinical

98 diagnosis information (Eig. 1, Table S1, Fig. 2A). We performed 30X whole-genome

99 sequencing (WGS) on all iPSC lines. Following quality control (QC, see Methods), we retained
100 7,020,633 common (minor allele frequency (MAF) > 5%) and 122,256 rare (MAF < 1%) variants
101  for downstream analyses.

102
103  To quantify cellular traits, we adopted the Cell Painting assay for use across a large array of
104  different iPSC lines. This multiplexing dye assay uses six stains to capture morphological

105 characteristics for eight cellular compartments including mitochondria, cytoplasmic RNA, actin
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106  cytoskeleton, nucleoli, endoplasmic reticulum, Golgi apparatus, plasma membrane, and
107  nuclei*®.

108

109  Overall, we measured 3418 morphology traits for 5.1 million iPSCs from 297 donors after

110 stringent QC (Methods, Fig. S1, Table S2). We classified all morphological traits based on the

111  cellular characteristics they represented, yielding five categories: Area and shape, Granularity,
112 Intensity, Radial distribution, and Texture (Eig. 2B).

113

114  Principal components and variance component analyses

115 To assess if cell morphological may have a genetic component (cell morphological quantitative
116 trait loci; cmQTLs), we assessed if replicates are correlated after correcting technical factors
117 such as plate and well batch effects. These factors have previously been shown to alter
118  morphology-based readouts™. Additionally, we explored how demographic factors including
119 donor sex, disease status, age at sample generation, and iPSC sample source tissue may
120 contribute to these traits (Eig. 2A). We observed non-random segregation of iPSC lines in
121  principal component analysis (PCA) of morphology traits across ancestry categories (Fig. S2)
122  and across plates (Eig. S3), indicating the contribution of genetic and technical factors to the
123  measurement of morphology traits. To identify and control for these factors, we generated per-
124 well pseudo-bulk trait profiles through mean-averaging of single cell profiles, resulting in eight
125 measurements per trait per donor, one for each of the eight replicates. With our pseudo-bulked
126  well-level data, we performed variance component analysis to quantify the observed variance
127  that can be attributed to each morphological trait (Methods). We assessed the significance for
128 each variance component, correcting for the number of tests, which was the product of the traits
129 (n=3418) and factors (n=9, namely iPSC cell line, plate and well of sequencing, whether the well

130 was on the plate edge, tissue of origin for iPSC cell line, average number of cell neighbors
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131  (other cells in contact with a given cell) in the well, donor’s sex, age, and disease status). Plate
132  effects were associated with 3417 traits and explained 61.8+17% of the variance, thus having a
133  major impact on morphology (Eig. 2D). We found several confounders which contributed
134  varying levels of effect on different morphological traits (Eig. 2C). After correcting for these
135 covariates, 16.7+11% of variance in all morphological profiles was explained by cell line donor,
136 indicating the potential for a genetic basis to the variability in morphology traits (Eig 2D).
137 Interestingly, the difference among donors explained a greater degree of variance in the trait
138 category of AreaShape relative to the other trait categories (Wilcoxon rank sum test P = 1.1x10°
139  *°, Fig. S4). We note that some of the shared variance may be explained by non-genetic factors,
140  such as stable epigenetic modifications.

141

142  Selection of traits for association analysis

143  We next summarized well-level trait values into donor-level values (i.e., pseudo-bulk) by mean-
144  averaging individual traits across all wells per donor, resulting in one measurement per trait per
145  donor (N = 3418 traits and 297 donors). As cells often display varied morphology in response to
146  environmental cues, we segregated all cells into two groups based on whether they had any
147  cells in contact (called colony cells, 97.48% of all cells) or not (called isolate cells, 2.52% of all
148  cells)'®. In both colony and isolated cells, most traits (93.7 and 91.2%, respectively) had very
149  high pairwise correlation (Pearson r > 0.9) with one or more traits (Eig. S5), suggesting the
150 presence of many traits that were not independent of each other. Therefore, to reduce
151 redundancy in association analysis, we examined pairwise correlation (Pearson r) among all
152 3418 morphological traits across colony and isolated cells and selected a common set of 246
153 traits having r < 0.9 with each other by iteratively selecting a single representative trait for the
154  set of correlated traits (r > 0.9) (Methods). We refer to this common set of 246 traits as

155  “composite traits” (Table S3).
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156

157 Rare variant association analysis

158 We next explored the effect of rare genetic variation on cellular morphology. We investigated
159 the association of composite traits (n = 246) with gene-level burden of protein-altering rare
160 variants (MAF < 0.01). To ensure well-powered investigation, we only examined 9105 genes
161 that had rare variants in at least 2% of donors (n >= 6) for our association analysis. We modeled
162 individual morphology traits as a function of rare protein-altering variant burden in a gene,
163  controlling for plate, well, and donor sex using linear regression (Methods, Fig. S6). We
164  performed this analysis separately in colony and isolated cells. Of all tested traits, one trait in
165 colony cells and 3 traits in isolated cells passed the genome-wide significance threshold (P <
166  2.2x10°®, Bonferroni correction for 246 traits and 9105 genes) (Eig. 3A). We did not observe any
167 inflation in association statistics for these traits (Lambda (A) = 1.01 for the association in colony
168 cellsand A =1.01, 0.96, 0.98 for the associations in isolated cells) (Eig. S7).

169

170 In colony cells, a Zernike shape measure of the cytoplasm
171  (Cytoplasm_AreaShape_Zernike_9 3) was negatively associated with rare variant burden in the
172  WASF2 gene (n = 3 missense and 1 in-frame deletion rare variants, B or effect size (se) = -1.24
173  (0.18), P = 3.1x10™ Fig. 3B). WASF2 protein binds profilin, a G-actin-binding protein,
174  promoting the exchange of ADP/ATP on actin and the formation of actin filament clusters®*%.
175 The disruption of WASF2 impairs actin formation and organization that could lead to their
176  polarized distribution and spindle-shaped cells®. In representative images of cells with rare
177  variants in WASF2 it is difficult to identify this polarized and spindle-like shape by eye when
178 compared to reference lines (Eig. S8). As many phenotypes may only be uncovered using
179 analyses such as these, it highlights the necessity of leveraging high-dimensional morphological

180 profiling over more traditional methods of capturing cellular phenotypes. Moreover, rare variant
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181  burden in WASF2 had nominal association (P < 0.05) with 90 other traits including 27 traits of
182 area and shape category, substantiating WASF2 as a genetic determinant of cellular
183  morphology (Table S4).

184

185 Inisolated cells, three traits were associated with rare variant burden in the PRLR gene, one of
186  which was the asymmetry in the distribution of mitochondria in the perinuclear space
187  (Cells_RadialDistribution_RadialCV_Mito_10f4, n = 6 missense rare variants, B (se) = -1.17
188 (0.2), P = 1.2x10® FEig. 3C). PRLR encodes membrane-anchored receptors for a prolactin
189 ligand and is a part of the class-I cytokine receptor superfamily and regulator of JAK-STAT5
190 pathway activity®. In addition to its well-known role in pregnancy and lactation, PRLR also plays
191 a key role in an autocrine/paracrine loop present in stem cells, mediating their quiescence and
192  proliferation®. Previous findings in adipocytes showed PRLR KO alters mitochondrial packing
193  and distribution throughout the cell®. In a mouse model of depression, silencing of the PRLR
194  gene inhibited neuron apoptosis, suggesting that disruption of PRLR activity could lead to
195 cellular proliferation®’. Indeed, we observed a higher cell count in iPSC lines carrying a rare
196  variant burden in the PRLR gene compared to reference iPSC lines (Eig. S9). Further evidence
197  supports a link between mitochondria distribution and neurodegeneration within the aging brain,
198 whereby the position of mitochondria with respect to different organelles is essential for

199  supplying bioenergetic homeostasis to cellular compartments®3

. These findings suggest
200 mutations in PRLR drive asymmetry of mitochondria within the perinuclear ring, improving the
201 bioenergetic homeostasis of the cell’'s nucleus and reducing cellular apoptosis. Moreover, rare
202  variant burden in PRLR had nominal association (P < 0.05) with 118 other traits, providing more
203  support to PRLR as a genetic determinant of cellular morphology (Table S5).

204

205 We also inspected the associations with suggestive evidence, i.e., P < 10°. There was a total of

206 12 and 13 associations in colony and isolated cells, respectively, which passed this threshold
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207 (Table S6). Of our suggestive hits, one of the strongest associations was between the
208  distribution in size of RNA particles in the cytoplasm (Cytoplasm_Granularity_ 3 RNA) and rare
209 variant burden in TSPAN15 gene (n=2 missense and 1 splice region rare variants in the gene, 3
210 (se) = 0.9 (0.17), P = 3.7x10"; Eig. 3D). TSPAN15 is expressed in all human tissues and
211  encodes for a cell surface protein®. This protein plays a role in cell activation, development, and
212  proliferation by negatively regulating Notch-signaling activity®*, indicating that disruption of
213  TSPAN15 could lead to higher transcriptional activity and RNA amount in the cell proxied by
214  higher cytoplasmic RNA granularity and cellular proliferation. Indeed, all iPSC lines carrying a
215 rare variant burden in TSPAN15 had higher cell count compared to wild-type iPSC lines (Eig.
216  S10).

217

218 To ensure that the observed associations were not driven by somatic variation potentially
219 introduced during iPSC generation, cell seeding or genome sequencing, we repeated our
220 analysis restricting to only those variants that were previously observed in the gnomAD
221  database® (106,590 of 122,256 variants). We recapitulate all observed associations (significant
222  after Bonferroni correction for multiple testing and with suggestive evidence) with concordant
223 effect size and statistical significance (p-value) (Fig. S11). Taken together, our analyses
224  indicated that, using our dataset, we could successfully identify associations between rare
225  coding variants and several morphological traits.

226

227 Functional validation of rare variant associations

228 CRISPR-based gene editing has been shown to be a viable mechanism for validating gene
229  expression phenotypes resulting from rare-variation®. To validate our rare-variant burden
230 associations, we tested whether knockdown of these genes impacted the same traits for which

231 we identified a rare-variant burden association. We transduced iPSCs from a cell line
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232  expressing constitutive dCas9-KRAB CRISPRi machinery with sgRNAs targeting WASF2,
233 PRLR, and TSPAN15 (Fig. 4A). We targeted each gene with 2 different sgRNAs, and validated
234  each sgRNA for knockdown in expression of their gene target, showing a range of knockdown

235 efficiency (15%-95%) (Eig. S12, Table S7). Cells transduced with sgRNAs were Cell Painted

236 and morphological traits were extracted and quantified using the same pipeline from our
237  discovery cohort.

238

239  For each of the three genes tested, we detected the predicted changes in each individual trait,
240 and the change was in the same direction as our association analysis relative to non-targeting
241  sgRNA controls (n = 28 wells per targeting sgRNA and 52 wells per non-targeting sgRNA,
242  Welch's Two Sample T-Test, P < 2.2x10°) (Eig. 4B-D). Specifically, knockdown of WASF2
243  resulted in a decrease in normalized score for the trait Cytoplasm_AreaShape_ Zernicke 9 3
244  (Eig. 4B). We further observed that a reduction in the expression of TSPAN15 coincided with an
245  increase in trait score for Cytoplasm_Granularity_3 RNA (Eig. 4D). Finally, knockdown of PRLR
246  expression decreased Cells_RadialDistribution_RadialCV_Mito_10f4, which defines the
247  relationship between the radial distribution of mitochondria around the nucleus (Eig. 4C). This
248  effect is highlighted in representative images, whereby cells transfected with a PRLR targeting
249  sgRNA display more uniform distribution of mitochondria around the nucleus when compared to
250 non-targeting sgRNA cells where mitochondria tend to colocalize to one side of the nucleus
251  (Fig. 4E).

252

253 Common variant association analysis

254  To identify common variants that mediate cell morphology, we performed 246 genome-wide
255  association analyses, one for each composite trait. Each association was tested in colony and

256 isolated cells separately (Fig. 5A, B). With our set of 297 donors, only one variant, rs315506,
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257  overlapping the chrl7gll.2, passed the genome-wide significance threshold (Bonferroni
258  correction for 246 morphology traits, 5x10%/246 = 2x10™*°). rs315506 is an intergenic variant and
259 was associated with spatial distribution of endoplasmic reticulum (ER) in the cytoplasm
260 (Cytoplasm_RadialDistribution_RadialCV_ER_3o0f4) in colonies (MAF = 0.08, B (se) = -0.52
261  (0.08), P = 1.4x10™°, Fig. 5C). This variant also showed suggestive evidence of association (P
262 < 10°/246 = 4.1x10®°) with spatial distribution of ER near the periphery of cells
263  (Cells_RadialDistribution_MeanFrac_ER_4o0f4). rs315506 lies in the center of a 400kb window
264  containing the genes NF1, CORPS, UTP6 and SUZ12. Microdeletions on chrl7g11.2 cause
265  NF1 microdeletion syndrome, which has been shown to impair protein localization to the ER®"*.
266

267 Besides rs315506, in colony cells, the second strongest association was on chromosome 7
268  (between Nuclei_Granularity 9 AGP and rs36036340, MAF = 0.08, B (SE) = 0.38 (0.06), P =
269  6x10™9). rs36036340 lies within the gene PRKAR1B. Variants in PRKAR1B have been linked to
270 neurodevelopmental disorders and activity of PRKAR1B has been shown to regulate
271  tumorigenesis®**!. PRKAR1B mediates PI3K/AKT/mTOR pathway signaling through direct
272  interactions between PRKAR1B and PI3K-110alpha®. Given that MTORC1 activity is heavily
273 influenced by the Golgi apparatus, and regulates cellular proliferation and cell cycle, variants in
274  rs36036340 may impact PI3BK/AKT/mTOR signaling, altering cellular morphology pertaining to
275 the Golgi, actin, and plasma membrane.

276

277 In isolated cells, the most significant association was found on chromosome 13 (between
278  Nuclei_RadialDistribution_RadialCV_Brightfield_2o0f4 and rs9301897, MAF = 0.13, B (se) = -
279  0.31 (0.05), P = 4.5x10™°). rs9301897 lies within the gene GPC6. Genetic variants in GPC6
280 have been implicated in Alzheimer's disease (AD), and TD43-proteinopathy, a hallmark of
A2,43

281  amyotrophic lateral sclerosis (ALS) pathology, has been shown to regulate GPC6 activity

282 GPC6 and other glypicans are known to play a role in cell growth and cell division through cell
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283  surface receptor activation***°. As nuclear movement within the cell is heavily regulated by cell
284  cycle dynamics, variants in GPC6 may alter nuclear localization by impacting mitosis.

285

286 In total, over 300 loci reached the suggestive genome-wide significance threshold (P < 4.1x10®,
287 Table S8) suggesting that a larger sample size and improved statistical power would be able to
288 identify additional common variants associated with cell morphology. Moreover, several loci
289 (Table S8) showed suggestive association with more than one trait suggesting shared genetic

290 etiology among different morphological traits.

201

292 Discussion

293  Previous studies linking genetic variants to cellular function have largely focused on human
294  genes and alleles which mediate molecular phenotypes, such as gene or protein expression
295 and chromatin accessibility*®*°. Expanding on these studies, here we combine high-throughput
296 cell culture techniques with cost-effective and high-dimensional image-based cell profiling (i.e.,
297  Cell Painting) to connect genetic variants to their morphological function in 297 donors.

298

299  Our work provides the largest to date exploration of genetic influences on cell morphology (what
300 we term cmQTLs). Where previous studies have been limited by both sample size and the scale
301 of morphological measurements, we combined whole genome sequence analysis with Cell
302 Painting to define relationships between genetic variants and 3418 morphological traits
303 extracted from >5M iPSCs. Leveraging these advances, we identified novel associations
304  Dbetween rare variant burdens in the WASF2, PRLR, TSPAN15 and cell morphological traits
305 related to the cytoplasmic area and shape, nucleic granularity, and the distribution of
306 mitochondria around the nucleus. These associations were validated by mechanistic information

307 about these genes from the literature as well as CRISPR-mediated knockdown in our study.
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308

309 In our common variant analysis, we found one significant result and 300 potential associations,
310 indicating that future studies with larger sample sizes may help in elucidating other such loci.
311 Interestingly, we observed no overlap in traits and associated variants between colony and
312 isolated cells, suggesting a differential effect of genetic variation based on the environmental
313 context of the cells. This is consistent with previous studies that have shown that intrinsic
314  properties of cells may only come to light in the context of altering the cellular environment®%,
315  Further, we identified confounding factors that drive variation in cellular phenotypes which are
316 important to address when performing similar studies. In particular, uniform cell densities across
317 conditions is critical in imaging-based assays. To address this challenge, we incorporated
318 automated liquid handling devices to reduce the latency of manually pipetting into 384 well
319  microplates.

320

321  Our work has several limitations that highlight directions for future research. First, the cell types
322 utilized in this study are in a basal, undifferentiated state. It will be valuable for future studies to
323  explore these associations in more physiologically relevant contexts, where disease-associated
324  variants are enriched®. These findings suggest this framework could be applied to relevant cells
325 and tissues such as iPSC-derived differentiated cells, post-mortem brain samples or excisable
326  somatic cells. Second, though our study provides the largest (to our knowledge) image-based
327 iPSC phenotyping dataset, we are still underpowered to detect a significant number of high
328 confidence common variant cmQTLs. Future efforts may require cross-institutional
329 collaborations to adequately scale in vitro sample sizes for common variant cmQTL
330 identification.

331

332  This approach holds significant promise for future studies leveraging human-derived, disease-

333 relevant cell types for modeling the impact of genetic variation on cellular function. The use of
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imaging to capture phenotypes is particularly attractive in experimental designs for several
reasons, such as the low cost per cell for imaging, and the ease of processing data and
preparation of the cells or tissues as compared to the generation of other molecular data such
as RNA-sequencing or epigenomic assays>. Moreso, large imaging datasets provide tools for
developing robust statistical models for combined analysis of morphological profiling data with
additional modalities such as gene expression to comprehensively interrogate genetic variants
and their function®. Taken together, we demonstrate cellular morphology can be a cost-

effective readout for modeling the biological function of human genetic variation.
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345 Fig 1. Study Overview

346 iPSC lines from 297 donors were expanded, quality-control checked and then subject to both
347  high-throughput imaging with Cell Painting and 30X whole-genome sequencing. Overall, we
348 imaged 5.1x10° cells across all donors and quantified 3,418 morphological traits per cell using
349  CellProfiler software. We inferred genetic variants from the WGS data and investigated whether

350 individual morphological traits associated with both rare and common variation.
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353 Fig 2. Summary of morphological traits and variant component analysis

354  (A) Table with cell line metadata

355 (B) Summary of five categories of morphological traits captured in our data (n=3418)

356 (C) Exploring explained Variation in individual traits, namely distribution of mitochondria around
357 nucleus, cytoplasmic Zernike shape metric 9_3, and cytoplasmic granularity in the RNA channel
358 at scale 3, showed differences in sources of variance, including technical effects such as plate
359 and well position and biological sources such as donor. Donor ID represents the remaining
360 difference among profiles after accounting for all other technical, demographic, and disease-
361  status metadata.

362 (D) Same as C but for all morphological traits (n=3418)

363
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Fig 3. Association between morphology and rare variant burden

(A) Manhattan plot showing association between morphological traits (n=246) and rare variant
burden in candidate genes (n=9105). Black dotted line represents the p-value threshold after
Bonferroni correction for the number of tested traits and genes (P = 0.05/246x9105, i.e.
2.2x107-8). Grey dotted line represents the p-value threshold for suggestive evidence of
association (P = 107-6).

(B-D) Box plots displaying the association between the Zernike_9_ 3 cytoplasm shape metric
and rare variant burden in WASF2 gene (B), distribution of mitochondria around the nucleus and

rare variant burden in PRLR gene (C) and cytoplasmic granularity measure in the RNA channel
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and rare variant burden in TSPAN15 gene. We provide the effect size (B estimate) and raw p-

value of the association for each trait.
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380
381

382 Fig 4. Functional validation of rare-variant burden associations

383 (A) Workflow for knockdown of rare-variant genes using CRISPR interference in iPSCs
384  expressing constitutive dCas9-KRAB.

385 (B-D) Vialin plots displaying quantification of traits between control non-targeting sgRNAs and
386 sgRNAs targeting WASF2, TSPAN15, and PRLR on a per-well level (n = 56 non-target
387 sgRNAs, n = 56 targeting sgRNAs, P < 2.2x10™*°, Welch's Two-Sample T-Test). Effect on the
388 trait score is consistent with what we observed in our rare-variant burden association.

389 (E) Representative image of an observable gene-trait association for PRLR.
390 Cells_RadialDistribution_RadialCV_Mito_10f4 relates to the asymmetric distribution of
391 mitochondria in the ring right around the nucleus. In the non-targeting controls (left) we
392 observed clustering of mitochondria on a particular side of the nucleus, whereas in the PLRL
393  knockdown sgRNA (right) we observed a more distributed presence of mitochondria around the
394  nucleus.

395

396

397

398
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401 Fig 5. Common variant analysis

402  (A) Manhattan plot for trait association test in colony cells. Red line represents the p-value
403 threshold after Bonferroni correction for the number of tested traits and genes (P < 2x10™'°) Blue
404 line represents the p-value threshold for hits with suggestive evidence (P < 4.1x10®)

405 (B) Manhattan plot for trait association test in isolate cells. Red line represents the p-value
406 threshold after Bonferroni correction for the number of tested traits and genes (P < 2x10™°) Blue
407  line represents the p-value threshold for hits with suggestive evidence (P < 4.1x107%)

408 (C) LocusZoom plot for the association signal at chr17q11.2. rs315506, was significantly

409  associated with spatial distribution of cytoplasm

410 (Cytoplasm_RadialDistribution_RadialCV_ER_30f4) in colonies (MAF = 0.08, effect size (se) = -
411  0.52(0.08), P = 1.4x10™)

412
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413  Supplementary Materials

414 Online Methods

415  Material and iPSC generation

416  Our dataset comprised 297 donors from the iPSC repository of California Institute for
417 Regenerative Medicine (CIRM) (Supplementary Table 1). Either B cells or Fibroblasts were
418 taken from each donor from which iPSC lines were generated using non-integrating episomal
419  vectors. Cells were cultured in StemFlex (ThermoFisher; cat#A334901) culture media and
420 passaged for expansion with 1mM EDTA (Gibco; cat#15575020) and 10uM Y-27632
421  (StemcellTech; cat#72304). Each iPSC sample underwent Global Screening Array (GSA) for
422  karyotype analysis to ensure chromosomal integrity, as well as 30X whole-genome sequencing
423 to determine genome-wide variants for each donor. Each iPSC line was cultured between

424  passages 12 and 15 before use in the experiment.

425  Cell seeding and staining

426  For each batch of imaging, cells were detached from 6-well NUNC plates using Accutase
427  (StemcellTech; cat#07920) for generating single-cell suspensions. Following detachment, cells
428  were centrifuged at 1000 rpm x 5:00 and re-suspended in StemFlex medium supplemented with
429  ROCK inhibitor. After each cell line was counted to determine cell solution concentration and
430 viability, the desired cell solution volume was aliquoted into a 96-deep well low attachment
431 plate. To disperse a high number of cell lines across a 384-well plate in a semi-random fashion,
432  we optimized the use of an Agilent Bravo liquid handling device. Here, using an 8-channel head,
433  cell solutions were transferred from the 96-well low attachment plate and distributed into a

434  geltrex-coated Perkin EImer Cell Carrier 384-well plate.
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435  Cell Painting and imaging

436  Cells were staining and imaged with minor adaptations to procedures described previously™*®.
437  Six hours post seeding in 384-well plates, cells were treated for 30 min with 0.5 uM MitoTracker
438 Deep Red FM - Special Packaging (Thermo Fisher cat#: M22426) dye at 37°C. Following the
439  MitoTracker treatment, cells were fixed with 16% paraformaldehyde diluted to a final
440  concentration of 4% (Thermo Fisher cat#: 043368.9M) for 20 minutes in the dark at RT. After
441  three washes with 1X HBSS cells were permeabilized and stained using a solution of 1X HBSS
442  (Thermo Fisher cat#: 14175095), 0.1% Triton-X-100 (Sigma Aldrich cat#: X100-5ML), 1%
443 Bovine Serum Albumin, 8.25nM Alexa Fluor 568 Phalloidin (Thermo Fisher cat#: A12380),
444 0.005mg/ml Concanavalin A, Alexa Fluor 488 Conjugate (Thermo Fisher cat#: C11252), 1ug/ml
445  Hoechst 33342, Trihydrochloride, Trihydrate (Thermo Fisher cat#: H3570), 6uM SYTO 14
446  Green Fluorescent Nucleic Acid Stain (Thermo Fisher cat#: S7576), and 1.5ug/ml Wheat Germ
447  Agglutinin, Alexa Fluor 555 Conjugate (Thermo Fisher cat#: W32464) for 1hr at RT in the dark.
448  Following the staining, plates were washed 3X with 1X HBSS and sealed until imaging. Cell
449  Painted plates were imaged on a Perkin Elmer Phenix Automated Imaging system under a
450 standardized protocol. All 297 cell lines were dispersed across seven plates which were imaged

451  in four separate batches.

452  Quantification of cellular morphology traits and their quality control

453  The segmentation of individual cells in the image into its cellular compartments (whole cell,
454  cytoplasm and nuclei) and subsequently quantification of morphology traits for each cellular
455 compartments was done using CellProfiler 3.1.8°% pipelines are available at

456 https://qgithub.com/broadinstitute/imaging-platform-

457  pipelines/tree/master/cellpainting_ipsc_20x_phenix_with_bf binl.  Analysis of CRISPR

458 experiments was done in CellProifler 4.2.4 with pipelines availalbe at

459 https://qgithub.com/broadinstitute/imaging-platform-
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460 pipelines/tree/master/cellpainting_ipsc_20x_phenix_with_bf binl_cp4>. Subsequently, cells

461 missing measurement for more than 5% of traits were removed. Morphology traits a priori
462 known to be problematic, not measured across all cells or non-variable across cells were
463 removed using Caret v6.0-86 package. QC-ed cells were then segregated in two groups based
464  on the number of neighbors: isolated cells having no neighbors and colony cells having one or
465  more neighbors. Individual morphology traits were then summarized to well level measurement
466 by averaging them across all cells per well, resulting in a well by trait matrix. Following this,
467  each morphology trait was gaussianized across all 7 plates using inverse normal transformation

468  (INT) method.

469  Selection of traits for association analysis

470 A set of morphology traits for association analysis (with both common variants and rare variant
471  burden) was selected by considering their pairwise correlation across colony and isolate cells in
472  the following steps: Step 1. Calculate Pearson correlation matrix for colony and isolate cells at
473  donor level (total 2 correlation matrices). Step 2. Identify that single trait having the Pearson r >=
474 0.9 with the largest number of other traits across both correlation matrices. We specifically
475 chose Pearson r >= 0.9 as cutoff here because most traits (93.7% and 91.2% traits in colony
476  and isolated cells, respectively) had a correlation Pearson >= 0.9 with at-least one other trait
477  (Fig S7). Step 3. Include that individual trait for association analysis. Remove it and other traits
478  having Pearson >= 0.9 with it from correlation matrices. Step 4. Repeat step 1 to 3 until there

479  are no more traits to include in association analysis.

480 Whole genome sequencing (WGS), variant calling and genes to test

481 DNA was obtained from cell line pellets with the Qiagen Quick-Start DNeasy Blood and Tissue
482  Kit (cat. no. 69506). DNA samples were submitted to the Genomics Platform at the Broad

483 Institute of MIT and Harvard. Whole genome sequencing (30x) was performed for all individuals
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484  (n=297) at the Broad Institute Genomics Platform using Illumina Nextera library preparation,
485  quality control, and sequencing on the lllumina HiSeq 2500 platform. Raw sequences were QC-
486 ed and sequencing reads (150 bp, paired-end) were aligned to the hg38 reference genome
487  using the BWA alignment program. Variants were called and annotated (VQSLOD filter) using

488 HapMap reference.

489  WGS data quality control for common variant association analysis

490 The QC-ed WGS VCF file was processed using plink v1.90b3 to remove sex chromosomes,
491  multi-allelic variants, variants with duplicated positions, and small insertions and deletions larger
492  than 5bp. Of 38,239,223 variants loaded from the VCF file, 33,348,914 passed these filters.
493 Donor-level genotype missingness rates were checked to exclude donors with genotype
494  missingness rates > 10%. All 297 individuals passed this filter. Finally, variants with minor allele
495  frequency (MAF) < 5%, missingness > 5%, and Hardy-Weinberg equilibrium p-value < 10 were

496  excluded, following which, 7,020,633 remained for common variant association analysis.

497  Principal components analysis (PCA)

498  Plink v1.90b3 was used on common (MAF > 5%) and post-QC variants to remove regions with
499  known long-range linkage disequilibrium (LD) and variants in high LD (r2 > 0.1 in a window of
500 50 kb and a sliding window of 10 kb) (Price A. L. Am. J. Hum. Genetics 2008). The remaining
501 291,493 variants were loaded to GCTA v1.91.1 to generate a genetic relatedness matrix (GRM)
502 using the --make-grm command with default options. The resulting GRM was used to generate

503 20 PCs using GCTA v1.91.1 --pca command with default options.

504 Variance component analysis

505 Variance component of fixed (cell neighbor density and donor’'s age) and random effects (iPSC

506  source tissue, cell line ID, plate and well of imaging, donor's sex, and disease status) was
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507 estimated for selected traits using linear mixed model (Imer function in Imertest package). We
508 included the first 4 PCs derived from genetic variation, corresponding to the elbow in scree plot,
509 for ancestry/population stratification. The p-value of each factor was Bonferroni corrected for the

510 number of traits.

511 Common variant association analysis

512  The linear regression framework implemented in GCTA v1.91.1 (--fastGWA-Ir command) was
513  used to test the association of common (MAF > 5%), post-QC variants with 246 post-QC, INT
514 traits that were described above. Like the rare variant association analysis, plate and sex were
515 included as categorical and four genotyping PCs, number of cell neighbors (for cells in colony)
516 and the edge variable were included as quantitative variables in the model. Associations were
517  considered statistically significant if they passed the genome-wide significance threshold for 246

518 tests (P < 5x107%/246).

519 Rare variant burden test

520 The variants that were autosomal, passed the VQSLOD filter and called in >95% individuals
521  were retained and annotated for their functional effect using SnpEff v5.0. To perform the rare
522  variant burden test, the variants which were autosomal, passed the VQSLOD filter and called in
523  >95% individuals and had MAF < 1% were retained. These variants were annotated for their
524  functional effect using SnpEff v5.0. After annotation, those variants were kept which resided in
525 the protein-coding region and had high or moderate effects on encoded protein. For each gene,
526  multiple rare variants were grouped and coded as present or absent. The association between
527 individual morphology traits and the presence of rare variants in a gene was investigated using
528 linear regression models. The p-values of associations were corrected for both the number of

529 tested traits and the number of genes using Bonferroni correction method.
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530 CRISPRIi sgRNA design, cloning, and virus production

531  To functionally validate the rare-variant burden associations, we designed sgRNAs targeting the
532  transcriptional start site (TSS) for each gene using CRISPick software (Doench, 2016, Sanson,
533  2018). sgRNA oligonucleotides were cloned into the CROPseq vector using a Golden Gate
534  cloning protocol (Juong, 2017). To validate sequence insertion, DNA plasmids were sequenced
535 by a 3rd party provider. Plasmids with successful insertion were packaged for lentivirus
536 generation using TranslIT-293 reagent (Mirus Bio cat#: MIR 2704) and packaging plasmids
537 VSV-G and DVPR (need to confirm these). HEK239T (ATCC cat#: CRL-3216) cells were
538 transfected with sgRNA packaging plasmid and incubated for 48hrs. HEK239T media
539 supernatant was collected, and lentivirus was concentrated using LENTI-X concentrator
540 (Takara) per manufacturer's instructions. Virus supernatant was then aliquoted and stored at -

541  80C.

542  sgRNA transduction in dCas9-iPSCs

543 An iPSC line, WTC11 TO-NGN2_dCas9-BFP-KRAB (gift from Michael Ward), was seeded at
544 250k cells per well in a 12 well plate and 50ul of sgRNA lentivirus was added to each
545  designated well. The following day, 1mL of mTeSR1 complete media was added on top of the
546  existing media. 48hrs post transduction, cells underwent a full media change with the addition of
547 1 ug/ml puromycin (Sigma Aldrich cat#: P8833) for chemical selection of cells which did not
548  uptake the sgRNAs. Puromycin is supplemented in the feeding media for the duration the cell

549 line is in culture to avoid uninfected cells from populating the dish.

550 gPCR analysis

551 RNA isolation was performed with the Direct-Zol RNA miniprep kit (ZYMO: cat# R2051)
552 according to the manufacturer’s instructions. To prevent DNA contamination, RNA was treated

553 with DNase | (ZYMO: cat# R2051). The yield of RNA was determined with a Denovix DS-11
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554  Series Spectrophotometer (Denovix). 200 ng of RNA was reverse transcribed with the iScript
555  cDNA Synthesis Kit (Bio-Rad, cat# 1708890). For all analyses, RT-qPCR was carried out with
556 iQ SYBR Green Supermix (Bio-Rad, cat# 1708880) and specific primers for each gene (listed
557  below) with a CFX384 Touch Real-Time PCR Detection System (Bio-Rad). Target genes were
558 normalized to the geometric mean of control genes, RPL10 and GAPDH, and relative
559  expression compared to the mean Ct values for non-targeting control sgRNAs and gene
560 targeting SQRNAS, respectively.

561

562  The following primers were used:

563 WASF2_forward 5-TAGTAACGAGGAACATCGAGCC-3'

564  WASF2_reverse 5-AAGGGAGCTTACCCGAGAGG-3'

565 PRLR_forward 5-TCTCCACCTACCCTGATTGAC-3'

566 PRLR_reverse 5-CGAACCTGGACAAGGTATTTCTG-3'

567 TSPAN15_forward 5-TCCCTCCGTGACAACCTGTA-3'

568 TSPAN15_reverse 5'-CCGCCACAGCACTTGAACT-3'

569 RPL10_forward 5-GCCGTACCCAAAGTCTCGC-3'

570 RPL10_reverse 5-CACAAAGCGGAAACTCATCCA-3'

571 GAPDH_forward 5-GGAGCGAGATCCCTCCAAAAT-3'

572 GAPDH reverse 5-GGCTGTTGTCATACTTCTCATGG-3'

573

574  Data Availability

575 Images and preprocessed profiles that are augmented with gene and compound annotation are
576 available in the Cell Painting Gallery on the Registry of Open Data on AWS

577  (https://reqistry.opendata.aws/cellpainting-gallery/) as dataset "cpg0022-cmqtl” at no cost and

578 no need for registration. Whole genome sequencing for cell lines used in this study are hosted
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579 on Terra https://app.terra.bio/#workspaces/anvil-

580 datastorage/AnVIL NIMH_ Broad ConvergentNeuro McCarroll Eggan CIRM_GRU WGS

581

582  Code Availability

583 Source code to reproduce and build upon the presented results is available at

584 https://github.com/broadinstitute/cmQTL

585
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Supplemental Figures

Data cleaning

Pre-QC dataset contained measurement

of 4,300 features for 5.5 million cells imaged lg%ﬂf, gg s
across 7 plates "5“1" S0 é‘p‘v R
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Step 1. Remove a priori known problematic features,

costes, correlations and non-numeric features (n=690) Cells

5.5M cells and 4300 features

Step 2. Remove features which are not measured in
all cells (n=38) or are non-variable (n=9)

Step 3. Remove features which are missing in >5% of
cells (n=145)

Features .

Step 4. Remove cells which are missing >5% of all
features (~400k)

5.1M cells and 3418 features

Fig S1. Data filtering and quality control for the traits measured across iPSC cells

A total of 4318 cell morphology traits were quantified across all 5.5 million iPSCs cells from 297
donors. Morphology traits a priori known to be problematic, not measured across all cells or
non-variable across cells were removed. Also, cells missing measurement for >5% of traits were

removed, yielding 3418 traits across 5.1 million cells.
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863 Fig S2. Principal component analysis (PCA) of donors

864  Distribution of 297 donors (yellow dots) laid over individuals from 1K genomes on PC1 and PC2

865 calculated from common variants (maf > 5%). Of 297 donors, 207 self-reported their ancestry as

866  European.
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868 Fig S3. Batch effects in measurement of morphology traits

869  Distribution of 297 donors on PC1 and PC2 calculated from morphology traits (n=3418) color by
870 7 plates on which iIPSCs from donors were imaged, showing the batch (plate) effect in the

871  measurement of morphology traits.
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873 Fig S4. Variation in traits explained by genetic difference among donors

874  The comparison of variation explained by genetic difference among donors in traits belonging to

875  Area and Shape category and other categories. P-value from Wilcoxon rank sum test is shown.
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876
877  Fig S5. Correlation among morphology traits
878  The number of traits having correlation (Pearson r) of up to 0.5, 0.6, 0.7, 0.8, 0.9 and 1 (on x-
879  axis) with at-least one other trait is shown for cells in colonies and cells which are isolated.
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881  Fig S6. Rare variant workflow
882  Step by step workflow for QC and selection of rare variants for the association analyses.
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883

884  Fig S7. Quantile-quantile (QQ) plots for associated traits

885 QQ plots show the distribution of expected and observed p-value of association with all tested

886 genes for 4 morphology traits. Each dot is a tested gene. Lambda statistic (A), a measure of

887 inflation in observed p-values, is shown.
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Fig S8. Representative images from cell lines with rare variants in WASF2, PRLR, and

TSPAN1S5.

Randomly selected representative images from wells containing cell lines harboring rare
variants in WASF2, PRLR, and TSPAN15 compared to reference cell lines with no detected

variants.
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897 Fig S9. Cell count for PRLR cell lines compared to others

898 Boxplots displaying per well cell count between cell lines harboring rare variants in PRLR
899  compared to reference cell lines
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902 Fig S10. Cell count for TSPAN15 cell lines compared to others

903 Boxplots displaying per well cell count between cell lines harboring rare variants in TSPAN15
904 compared to reference cell lines
905
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908 Fig S11. Associations using rare variants present in Gnomad

909 Comparison of p-value and z-score of effect size (beta) of associations between individual
910 morphology traits and rare variant burden in individual genes using all rare variants in our
911 dataset and those rare variants (out of all) which are also present in Gnomad dataset is shown
912 for colony cells (A) and isolated cells (B). The orange colored dots represent significant

913 associations from Fig 3A where we used all rare variants. Pearson r is shown.
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916 Fig S12. gPCR knockdown of rare-variant associations using CRISPR interference

917 Relative expression of sgRNA target genes compared to GAPDH and RPL10 between iPSCs
918 transfected with gene targeting sgRNAs and non-targeting control sgRNAs.

919

920  Supplemental Tables

921 Table S1. Cell line metadata

922  Demographic characteristics for all 297 iPSC lines used in this study.
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923 Table S2. All morphological traits

924  All 3418 morphological traits which passed QC

925 Table S3. Composite morphological traits

926 246 traits which were used for the association tests.

927 Table S4. Morphology trait associations with rare variant burden in WASF2

928  Morphological traits which meet nominal significance with association to rare variant burden in

929 WASF2.

930 Table S5. Morphology trait associations with rare variant burden in PRLR

931 Morphological traits which meet nominal significance with association to rare variant burden in

932 PRLR.

933 Table S6. Morphological traits with suggestive evidence of association with rare variants in our

934  study

935 Morphological traits which show suggestive evidence for association with rare variants in our

936  study.

937 Table S7. CRISPRIi sgRNA sequences

938

939 Oligonucleotide sequences for all sgRNAs used in this study.

940 Table S8. Morphological traits with suggestive evidence for association to common variants in

941 our study.
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Morphological traits which show suggestive evidence for association with common variants in

our study.
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