

1 **High-dimensional phenotyping to define the genetic basis of cellular morphology**

2
3
4 Matthew Tegtmeyer^{1,2,3*}, Jatin Arora^{6,7,8,9*}, Samira Asgari^{6,7,8,9,10,13*}, Beth A. Cimini⁵, Emily
5 Peirent¹, Dhara Liyanage¹, Gregory Way⁵, Erin Weisbart⁵, Aparna Nathan^{6,7,8,9,10}, Tiffany
6 Amariuta^{10,12,14,15}, Kevin Eggan^{1,2}, Marzieh Haghghi⁵, Steven A. McCarroll^{1,4,10}, Anne
7 E.Carpenter⁵, Shantanu Singh^{5#}, Ralda Nehme^{1,2#}, Soumya Raychaudhuri^{6,7,8,9,10,11#}

8
9 ¹Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA

10 ²Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA

11 ³Centre for Gene Therapy and Regenerative Medicine, King's College, London, UK

12 ⁴Department of Genetics, Harvard Medical School, Boston, MA, USA

13 ⁵Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA

14 ⁶Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

15 ⁷Division of Rheumatology, Inflammation, and Immunity, Department of Medicine,
16 Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA

17 ⁸Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA,
18 USA

19 ⁹Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA

20 ¹⁰Department of Biomedical Informatics, Harvard Medical School,
21 Boston, MA, USA

22 ¹¹Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health
23 Science Centre, University of Manchester, Manchester, UK

24 ¹²Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA

25 ¹³Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA

26 ¹⁴Halicioğlu Data Science Institute, University of California, La Jolla, CA, USA

27 ¹⁵Department of Medicine, University of California, La Jolla, CA, USA

29 * Equal contribution

30 # Correspondence

32

33 **Abstract**

34 The morphology of cells is dynamic and mediated by genetic and environmental factors.
35 Characterizing how genetic variation impacts cell morphology can provide an important link
36 between disease association and cellular function. Here, we combined genomic and high-
37 content imaging approaches on iPSCs from 297 unique donors to investigate the relationship
38 between genetic variants and cellular morphology to map what we term cell morphological
39 quantitative trait loci (cmQTLs). We identified novel associations between rare protein altering
40 variants in *WASF2*, *TSPAN15*, and *PRLR* with several morphological traits related to cell shape,
41 nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi
42 confirmed their role in cell morphology. Analysis of common variants yielded one significant
43 association and nominated over 300 variants with suggestive evidence ($P < 10^{-6}$) of association
44 with one or more morphology traits. Our results showed that, similar to other molecular
45 phenotypes, morphological profiling can yield insight about the function of genes and variants.

46

47 **Introduction**

48 Cellular morphology is an important and informative cellular trait across cell types, health, and
49 disease. Changes in cell morphology can be indicators of disease. A classic example is sickle
50 cell anemia, which gets its name by the sickle-like morphology of blood cells observed in
51 patients afflicted with this condition¹. Like other traits, such as gene expression, cellular
52 morphology is, in part, genetically determined. Genetic studies have implicated various loci
53 associated with red blood cell phenotypes such as mean volume and hemoglobin content^{2,3}.
54 However, there is still limited understanding of how human genetic diversity shapes cell
55 morphology. This is due to several challenges: cell morphology is hard to quantify; ascertaining

56 how human genetic variation influences cellular phenotypes in living biological systems can be
57 challenging and cost prohibitive; and many cellular phenotypes are context-specific requiring the
58 acquisition of relevant tissue and cell types. Profiling cell morphology in different cell types and
59 across genetically diverse populations could facilitate the identification of such loci.

60

61 Recent innovations in cellular imaging and analysis have made it possible to measure
62 thousands of morphological traits from a single cell, constructing morphology based ‘profiles’.
63 Cell Painting, for example, leverages multiplexed dyes to enable trait measurement across
64 many cellular compartments and organelles^{4,5}. Cell Painting can ascertain gene function by
65 linking expression to cellular traits⁶ and has been used to enable the prediction of functional
66 impacts from lung cancer variants⁷. Cell morphology profiling provides a great asset for
67 functional genomics studies compared to methods such as gene expression as it’s much more
68 affordable and easily scalable at the bulk and single cell level. We hypothesized this approach
69 could be leveraged to elucidate relationships more broadly between cell morphology and
70 genetic variants.

71

72 Ascertaining how human genetic diversity influences cellular phenotypes in living biological
73 systems has been difficult. Collections of induced pluripotent stem cells (iPSCs) provide a
74 powerful tool for modeling human genetics⁸. The emergence of large iPSC collections, now
75 available in several public repositories, provides access to cell lines from donors of diverse
76 ancestry and genetic backgrounds, enabling the study of how human common and rare genetic
77 variation impacts cellular function and behavior⁹⁻¹⁷. Attempts to investigate how genetic variants
78 drive cell morphology using iPSC-based models have shown promise but have been restrained
79 by insufficient sample size and by the limited number of cellular traits being measured,
80 hampering discovery potential¹⁸.

81

82 Here, we identified the morphological impacts of genomic variants, or cmQTLs, by generating
83 high-throughput morphological profiling and whole genome sequencing data from 297 unique
84 cell lines. Using Cell Painting on >5 million iPSCs derived from these donors, we
85 comprehensively quantified 3,418 cell morphological traits and assessed associations with rare
86 and common genetic variants genome-wide. We identified trait-associations with rare-variant
87 burden in several genes including *WASF2*, *PRLR*, and *TSPAN15* which we then functionally
88 validated using CRISPR interference. Additionally, we found only one common variant
89 convincingly associated with morphology but found suggestive evidence for over 300 loci.
90 These findings show that similar to gene expression, the morphology of cells is mediated by
91 genetic determinants and highlights the utility of image-based methods for functional genomics.

92

93

94 **Results**

95 **Whole-genome sequencing and morphological profiling for 297 unique iPSC lines**

96 To study associations between genetic variants and morphological traits, we assembled a
97 cohort of iPSC lines from 297 unique donors, for which we had sex, ancestry, and clinical
98 diagnosis information ([Fig. 1](#), [Table S1](#), [Fig. 2A](#)). We performed 30X whole-genome
99 sequencing (WGS) on all iPSC lines. Following quality control (QC, see **Methods**), we retained
100 7,020,633 common (minor allele frequency (MAF) > 5%) and 122,256 rare (MAF < 1%) variants
101 for downstream analyses.

102

103 To quantify cellular traits, we adopted the Cell Painting assay for use across a large array of
104 different iPSC lines. This multiplexing dye assay uses six stains to capture morphological
105 characteristics for eight cellular compartments including mitochondria, cytoplasmic RNA, actin

106 cytoskeleton, nucleoli, endoplasmic reticulum, Golgi apparatus, plasma membrane, and
107 nuclei^{4,5}.

108
109 Overall, we measured 3418 morphology traits for 5.1 million iPSCs from 297 donors after
110 stringent QC (**Methods**, **Fig. S1**, **Table S2**). We classified all morphological traits based on the
111 cellular characteristics they represented, yielding five categories: Area and shape, Granularity,
112 Intensity, Radial distribution, and Texture (**Fig. 2B**).

113

114 **Principal components and variance component analyses**

115 To assess if cell morphological may have a genetic component (cell morphological quantitative
116 trait loci; cmQTLs), we assessed if replicates are correlated after correcting technical factors
117 such as plate and well batch effects. These factors have previously been shown to alter
118 morphology-based readouts¹⁹. Additionally, we explored how demographic factors including
119 donor sex, disease status, age at sample generation, and iPSC sample source tissue may
120 contribute to these traits (**Fig. 2A**). We observed non-random segregation of iPSC lines in
121 principal component analysis (PCA) of morphology traits across ancestry categories (**Fig. S2**)
122 and across plates (**Fig. S3**), indicating the contribution of genetic and technical factors to the
123 measurement of morphology traits. To identify and control for these factors, we generated per-
124 well pseudo-bulk trait profiles through mean-averaging of single cell profiles, resulting in eight
125 measurements per trait per donor, one for each of the eight replicates. With our pseudo-bulked
126 well-level data, we performed variance component analysis to quantify the observed variance
127 that can be attributed to each morphological trait (**Methods**). We assessed the significance for
128 each variance component, correcting for the number of tests, which was the product of the traits
129 ($n=3418$) and factors ($n=9$, namely iPSC cell line, plate and well of sequencing, whether the well
130 was on the plate edge, tissue of origin for iPSC cell line, average number of cell neighbors

131 (other cells in contact with a given cell) in the well, donor's sex, age, and disease status). Plate
132 effects were associated with 3417 traits and explained $61.8 \pm 17\%$ of the variance, thus having a
133 major impact on morphology (**Fig. 2D**). We found several confounders which contributed
134 varying levels of effect on different morphological traits (**Fig. 2C**). After correcting for these
135 covariates, $16.7 \pm 11\%$ of variance in all morphological profiles was explained by cell line donor,
136 indicating the potential for a genetic basis to the variability in morphology traits (**Fig. 2D**).
137 Interestingly, the difference among donors explained a greater degree of variance in the trait
138 category of AreaShape relative to the other trait categories (Wilcoxon rank sum test $P = 1.1 \times 10^{-55}$,
139 **Fig. S4**). We note that some of the shared variance may be explained by non-genetic factors,
140 such as stable epigenetic modifications.

141

142 **Selection of traits for association analysis**

143 We next summarized well-level trait values into donor-level values (i.e., pseudo-bulk) by mean-
144 averaging individual traits across all wells per donor, resulting in one measurement per trait per
145 donor ($N = 3418$ traits and 297 donors). As cells often display varied morphology in response to
146 environmental cues, we segregated all cells into two groups based on whether they had any
147 cells in contact (called colony cells, 97.48% of all cells) or not (called isolate cells, 2.52% of all
148 cells)^{18,20}. In both colony and isolated cells, most traits (93.7 and 91.2%, respectively) had very
149 high pairwise correlation (*Pearson r* > 0.9) with one or more traits (**Fig. S5**), suggesting the
150 presence of many traits that were not independent of each other. Therefore, to reduce
151 redundancy in association analysis, we examined pairwise correlation (*Pearson r*) among all
152 3418 morphological traits across colony and isolated cells and selected a common set of 246
153 traits having $r < 0.9$ with each other by iteratively selecting a single representative trait for the
154 set of correlated traits ($r > 0.9$) (**Methods**). We refer to this common set of 246 traits as
155 “composite traits” (**Table S3**).

156

157 **Rare variant association analysis**

158 We next explored the effect of rare genetic variation on cellular morphology. We investigated
159 the association of composite traits ($n = 246$) with gene-level burden of protein-altering rare
160 variants (MAF < 0.01). To ensure well-powered investigation, we only examined 9105 genes
161 that had rare variants in at least 2% of donors ($n \geq 6$) for our association analysis. We modeled
162 individual morphology traits as a function of rare protein-altering variant burden in a gene,
163 controlling for plate, well, and donor sex using linear regression (**Methods, Fig. S6**). We
164 performed this analysis separately in colony and isolated cells. Of all tested traits, one trait in
165 colony cells and 3 traits in isolated cells passed the genome-wide significance threshold ($P <$
166 2.2×10^{-8} , Bonferroni correction for 246 traits and 9105 genes) (**Fig. 3A**). We did not observe any
167 inflation in association statistics for these traits (Lambda (λ) = 1.01 for the association in colony
168 cells and $\lambda = 1.01, 0.96, 0.98$ for the associations in isolated cells) (**Fig. S7**).

169

170 In colony cells, a Zernike shape measure of the cytoplasm
171 (*Cytoplasm_AreaShape_Zernike_9_3*) was negatively associated with rare variant burden in the
172 *WASF2* gene ($n = 3$ missense and 1 in-frame deletion rare variants, β or effect size (se) = -1.24
173 (0.18), $P = 3.1 \times 10^{-10}$; **Fig. 3B**). *WASF2* protein binds profilin, a G-actin-binding protein,
174 promoting the exchange of ADP/ATP on actin and the formation of actin filament clusters^{21,22}.
175 The disruption of *WASF2* impairs actin formation and organization that could lead to their
176 polarized distribution and spindle-shaped cells²³. In representative images of cells with rare
177 variants in *WASF2* it is difficult to identify this polarized and spindle-like shape by eye when
178 compared to reference lines (**Fig. S8**). As many phenotypes may only be uncovered using
179 analyses such as these, it highlights the necessity of leveraging high-dimensional morphological
180 profiling over more traditional methods of capturing cellular phenotypes. Moreover, rare variant

181 burden in *WASF2* had nominal association ($P < 0.05$) with 90 other traits including 27 traits of
182 area and shape category, substantiating *WASF2* as a genetic determinant of cellular
183 morphology (**Table S4**).

184

185 In isolated cells, three traits were associated with rare variant burden in the *PRLR* gene, one of
186 which was the asymmetry in the distribution of mitochondria in the perinuclear space
187 (*Cells_RadialDistribution_RadialCV_Mito_1of4*, $n = 6$ missense rare variants, β (se) = -1.17
188 (0.2), $P = 1.2 \times 10^{-8}$; **Fig. 3C**). *PRLR* encodes membrane-anchored receptors for a prolactin
189 ligand and is a part of the class-I cytokine receptor superfamily and regulator of JAK-STAT5
190 pathway activity²⁴. In addition to its well-known role in pregnancy and lactation, *PRLR* also plays
191 a key role in an autocrine/paracrine loop present in stem cells, mediating their quiescence and
192 proliferation²⁵. Previous findings in adipocytes showed *PRLR* KO alters mitochondrial packing
193 and distribution throughout the cell²⁶. In a mouse model of depression, silencing of the *PRLR*
194 gene inhibited neuron apoptosis, suggesting that disruption of *PRLR* activity could lead to
195 cellular proliferation²⁷. Indeed, we observed a higher cell count in iPSC lines carrying a rare
196 variant burden in the *PRLR* gene compared to reference iPSC lines (**Fig. S9**). Further evidence
197 supports a link between mitochondria distribution and neurodegeneration within the aging brain,
198 whereby the position of mitochondria with respect to different organelles is essential for
199 supplying bioenergetic homeostasis to cellular compartments²⁸⁻³². These findings suggest
200 mutations in *PRLR* drive asymmetry of mitochondria within the perinuclear ring, improving the
201 bioenergetic homeostasis of the cell's nucleus and reducing cellular apoptosis. Moreover, rare
202 variant burden in *PRLR* had nominal association ($P < 0.05$) with 118 other traits, providing more
203 support to *PRLR* as a genetic determinant of cellular morphology (**Table S5**).

204

205 We also inspected the associations with suggestive evidence, i.e., $P < 10^{-6}$. There was a total of
206 12 and 13 associations in colony and isolated cells, respectively, which passed this threshold

207 (**Table S6**). Of our suggestive hits, one of the strongest associations was between the
208 distribution in size of RNA particles in the cytoplasm (*Cytoplasm_Granularity_3_RNA*) and rare
209 variant burden in *TSPAN15* gene ($n=2$ missense and 1 splice region rare variants in the gene, β
210 (se) = 0.9 (0.17), $P = 3.7 \times 10^{-7}$; **Fig. 3D**). *TSPAN15* is expressed in all human tissues and
211 encodes for a cell surface protein³³. This protein plays a role in cell activation, development, and
212 proliferation by negatively regulating Notch-signaling activity³⁴, indicating that disruption of
213 *TSPAN15* could lead to higher transcriptional activity and RNA amount in the cell proxied by
214 higher cytoplasmic RNA granularity and cellular proliferation. Indeed, all iPSC lines carrying a
215 rare variant burden in *TSPAN15* had higher cell count compared to wild-type iPSC lines (**Fig.**
216 **S10**).

217
218 To ensure that the observed associations were not driven by somatic variation potentially
219 introduced during iPSC generation, cell seeding or genome sequencing, we repeated our
220 analysis restricting to only those variants that were previously observed in the gnomAD
221 database³⁵ (106,590 of 122,256 variants). We recapitulate all observed associations (significant
222 after Bonferroni correction for multiple testing and with suggestive evidence) with concordant
223 effect size and statistical significance (p-value) (**Fig. S11**). Taken together, our analyses
224 indicated that, using our dataset, we could successfully identify associations between rare
225 coding variants and several morphological traits.

226

227 **Functional validation of rare variant associations**

228 CRISPR-based gene editing has been shown to be a viable mechanism for validating gene
229 expression phenotypes resulting from rare-variation³⁶. To validate our rare-variant burden
230 associations, we tested whether knockdown of these genes impacted the same traits for which
231 we identified a rare-variant burden association. We transduced iPSCs from a cell line

232 expressing constitutive dCas9-KRAB CRISPRi machinery with sgRNAs targeting *WASF2*,
233 *PRLR*, and *TSPAN15* (**Fig. 4A**). We targeted each gene with 2 different sgRNAs, and validated
234 each sgRNA for knockdown in expression of their gene target, showing a range of knockdown
235 efficiency (15%-95%) (**Fig. S12, Table S7**). Cells transduced with sgRNAs were Cell Painted
236 and morphological traits were extracted and quantified using the same pipeline from our
237 discovery cohort.

238
239 For each of the three genes tested, we detected the predicted changes in each individual trait,
240 and the change was in the same direction as our association analysis relative to non-targeting
241 sgRNA controls ($n = 28$ wells per targeting sgRNA and 52 wells per non-targeting sgRNA,
242 *Welch's Two Sample T-Test, $P < 2.2 \times 10^{-16}$*) (**Fig. 4B-D**). Specifically, knockdown of *WASF2*
243 resulted in a decrease in normalized score for the trait *Cytoplasm_AreaShape_Zernicke_9_3*
244 (**Fig. 4B**). We further observed that a reduction in the expression of *TSPAN15* coincided with an
245 increase in trait score for *Cytoplasm_Granularity_3_RNA* (**Fig. 4D**). Finally, knockdown of *PRLR*
246 expression decreased *Cells_RadialDistribution_RadialCV_Mito_1of4*, which defines the
247 relationship between the radial distribution of mitochondria around the nucleus (**Fig. 4C**). This
248 effect is highlighted in representative images, whereby cells transfected with a *PRLR* targeting
249 sgRNA display more uniform distribution of mitochondria around the nucleus when compared to
250 non-targeting sgRNA cells where mitochondria tend to colocalize to one side of the nucleus
251 (**Fig. 4E**).

252

253 **Common variant association analysis**

254 To identify common variants that mediate cell morphology, we performed 246 genome-wide
255 association analyses, one for each composite trait. Each association was tested in colony and
256 isolated cells separately (**Fig. 5A, B**). With our set of 297 donors, only one variant, rs315506,

257 overlapping the chr17q11.2, passed the genome-wide significance threshold (Bonferroni
258 correction for 246 morphology traits, $5 \times 10^{-8} / 246 = 2 \times 10^{-10}$). rs315506 is an intergenic variant and
259 was associated with spatial distribution of endoplasmic reticulum (ER) in the cytoplasm
260 (*Cytoplasm_RadialDistribution_RadialCV_ER_3of4*) in colonies (MAF = 0.08, β (se) = -0.52
261 (0.08), $P = 1.4 \times 10^{-10}$, **Fig. 5C**). This variant also showed suggestive evidence of association (P
262 $< 10^{-5} / 246 = 4.1 \times 10^{-8}$) with spatial distribution of ER near the periphery of cells
263 (*Cells_RadialDistribution_MeanFrac_ER_4of4*). rs315506 lies in the center of a 400kb window
264 containing the genes *NF1*, *CORPS*, *UTP6* and *SUZ12*. Microdeletions on chr17q11.2 cause
265 NF1 microdeletion syndrome, which has been shown to impair protein localization to the ER^{37,38}.

266

267 Besides rs315506, in colony cells, the second strongest association was on chromosome 7
268 (between *Nuclei_Granularity_9_AGP* and rs36036340, MAF = 0.08, β (SE) = 0.38 (0.06), $P =$
269 6×10^{-10}). rs36036340 lies within the gene *PRKAR1B*. Variants in *PRKAR1B* have been linked to
270 neurodevelopmental disorders and activity of *PRKAR1B* has been shown to regulate
271 tumorigenesis³⁹⁻⁴¹. *PRKAR1B* mediates PI3K/AKT/mTOR pathway signaling through direct
272 interactions between *PRKAR1B* and PI3K-110alpha³⁹. Given that MTORC1 activity is heavily
273 influenced by the Golgi apparatus, and regulates cellular proliferation and cell cycle, variants in
274 rs36036340 may impact PI3K/AKT/mTOR signaling, altering cellular morphology pertaining to
275 the Golgi, actin, and plasma membrane.

276

277 In isolated cells, the most significant association was found on chromosome 13 (between
278 *Nuclei_RadialDistribution_RadialCV_Brightfield_2of4* and rs9301897, MAF = 0.13, β (se) = -
279 0.31 (0.05), $P = 4.5 \times 10^{-10}$). rs9301897 lies within the gene *GPC6*. Genetic variants in *GPC6*
280 have been implicated in Alzheimer's disease (AD), and TD43-proteinopathy, a hallmark of
281 amyotrophic lateral sclerosis (ALS) pathology, has been shown to regulate *GPC6* activity^{42,43}.
282 *GPC6* and other glypicans are known to play a role in cell growth and cell division through cell

283 surface receptor activation^{44,45}. As nuclear movement within the cell is heavily regulated by cell
284 cycle dynamics, variants in *GPC6* may alter nuclear localization by impacting mitosis.

285

286 In total, over 300 loci reached the suggestive genome-wide significance threshold ($P < 4.1 \times 10^{-8}$),
287 **Table S8**) suggesting that a larger sample size and improved statistical power would be able to
288 identify additional common variants associated with cell morphology. Moreover, several loci
289 (**Table S8**) showed suggestive association with more than one trait suggesting shared genetic
290 etiology among different morphological traits.

291

292 **Discussion**

293 Previous studies linking genetic variants to cellular function have largely focused on human
294 genes and alleles which mediate molecular phenotypes, such as gene or protein expression
295 and chromatin accessibility⁴⁶⁻⁴⁹. Expanding on these studies, here we combine high-throughput
296 cell culture techniques with cost-effective and high-dimensional image-based cell profiling (i.e.,
297 Cell Painting) to connect genetic variants to their morphological function in 297 donors.

298

299 Our work provides the largest to date exploration of genetic influences on cell morphology (what
300 we term cmQTLs). Where previous studies have been limited by both sample size and the scale
301 of morphological measurements, we combined whole genome sequence analysis with Cell
302 Painting to define relationships between genetic variants and 3418 morphological traits
303 extracted from >5M iPSCs. Leveraging these advances, we identified novel associations
304 between rare variant burdens in the *WASF2*, *PRLR*, *TSPAN15* and cell morphological traits
305 related to the cytoplasmic area and shape, nucleic granularity, and the distribution of
306 mitochondria around the nucleus. These associations were validated by mechanistic information
307 about these genes from the literature as well as CRISPR-mediated knockdown in our study.

308

309 In our common variant analysis, we found one significant result and 300 potential associations,
310 indicating that future studies with larger sample sizes may help in elucidating other such loci.
311 Interestingly, we observed no overlap in traits and associated variants between colony and
312 isolated cells, suggesting a differential effect of genetic variation based on the environmental
313 context of the cells. This is consistent with previous studies that have shown that intrinsic
314 properties of cells may only come to light in the context of altering the cellular environment^{18,20}.
315 Further, we identified confounding factors that drive variation in cellular phenotypes which are
316 important to address when performing similar studies. In particular, uniform cell densities across
317 conditions is critical in imaging-based assays. To address this challenge, we incorporated
318 automated liquid handling devices to reduce the latency of manually pipetting into 384 well
319 microplates.

320

321 Our work has several limitations that highlight directions for future research. First, the cell types
322 utilized in this study are in a basal, undifferentiated state. It will be valuable for future studies to
323 explore these associations in more physiologically relevant contexts, where disease-associated
324 variants are enriched⁵⁰. These findings suggest this framework could be applied to relevant cells
325 and tissues such as iPSC-derived differentiated cells, post-mortem brain samples or excisable
326 somatic cells. Second, though our study provides the largest (to our knowledge) image-based
327 iPSC phenotyping dataset, we are still underpowered to detect a significant number of high
328 confidence common variant cmQTLs. Future efforts may require cross-institutional
329 collaborations to adequately scale *in vitro* sample sizes for common variant cmQTL
330 identification.

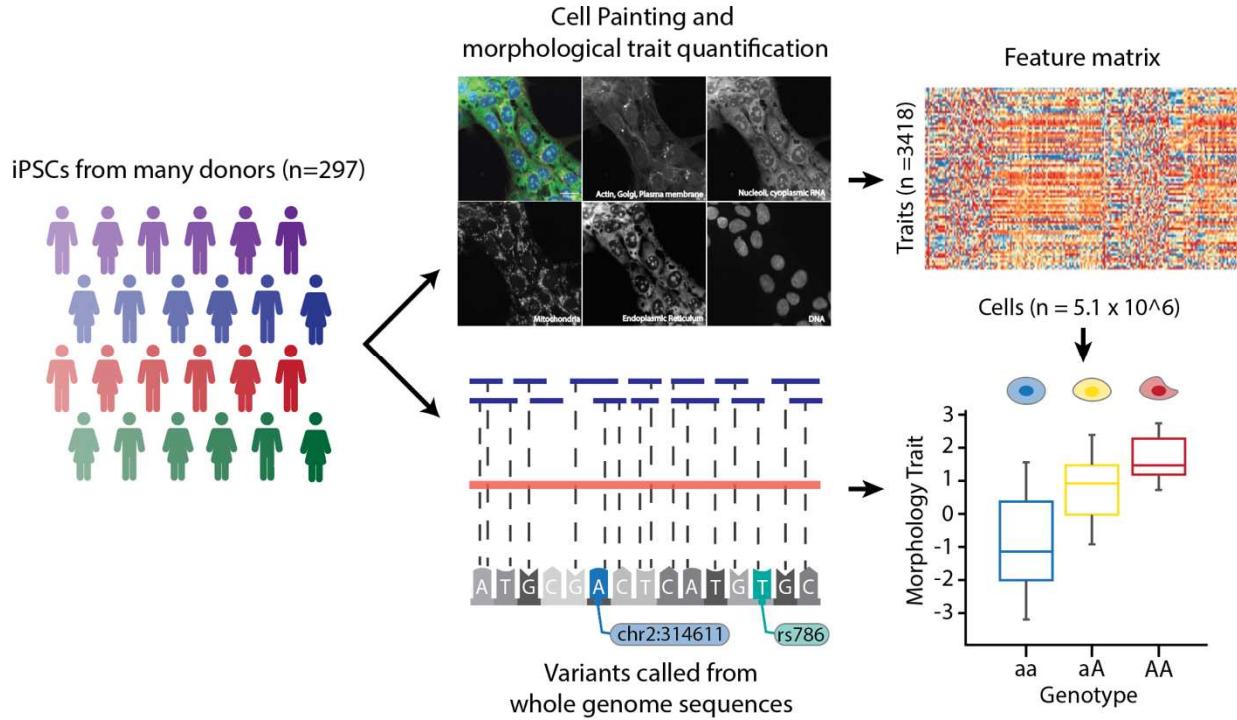
331

332 This approach holds significant promise for future studies leveraging human-derived, disease-
333 relevant cell types for modeling the impact of genetic variation on cellular function. The use of

334 imaging to capture phenotypes is particularly attractive in experimental designs for several
335 reasons, such as the low cost per cell for imaging, and the ease of processing data and
336 preparation of the cells or tissues as compared to the generation of other molecular data such
337 as RNA-sequencing or epigenomic assays⁵¹. Moreso, large imaging datasets provide tools for
338 developing robust statistical models for combined analysis of morphological profiling data with
339 additional modalities such as gene expression to comprehensively interrogate genetic variants
340 and their function⁵². Taken together, we demonstrate cellular morphology can be a cost-
341 effective readout for modeling the biological function of human genetic variation.

342

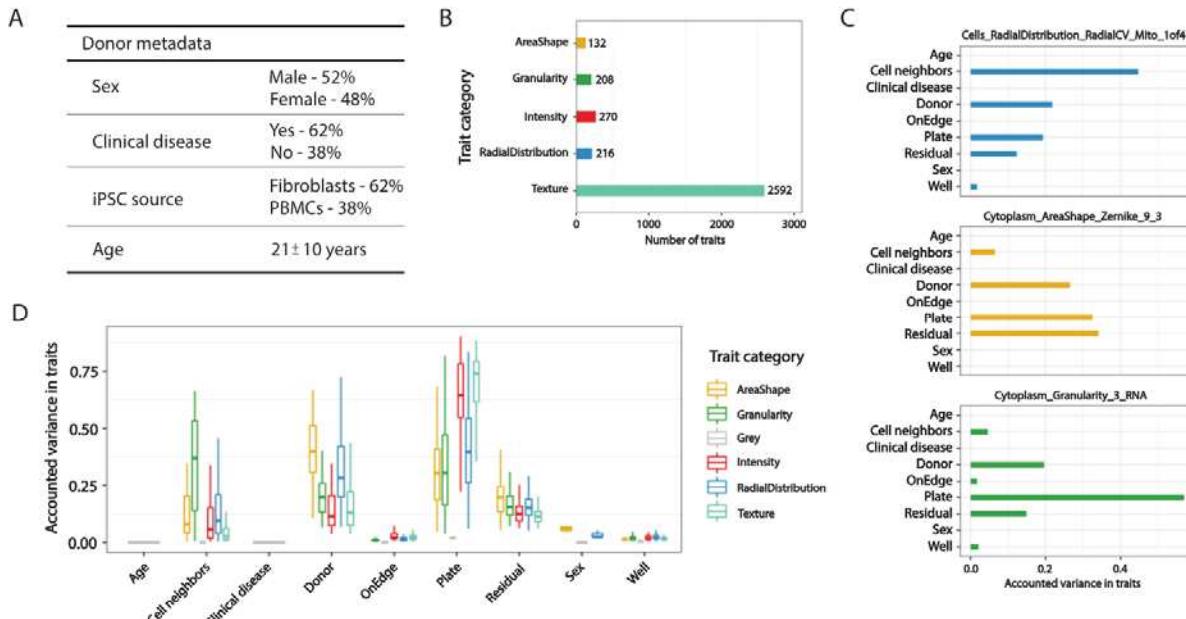
343 **Figures**



344

345 **Fig 1. Study Overview**

346 iPSC lines from 297 donors were expanded, quality-control checked and then subject to both
347 high-throughput imaging with Cell Painting and 30X whole-genome sequencing. Overall, we
348 imaged 5.1×10^6 cells across all donors and quantified 3,418 morphological traits per cell using
349 CellProfiler software. We inferred genetic variants from the WGS data and investigated whether
350 individual morphological traits associated with both rare and common variation.



351

352

353 **Fig 2. Summary of morphological traits and variant component analysis**

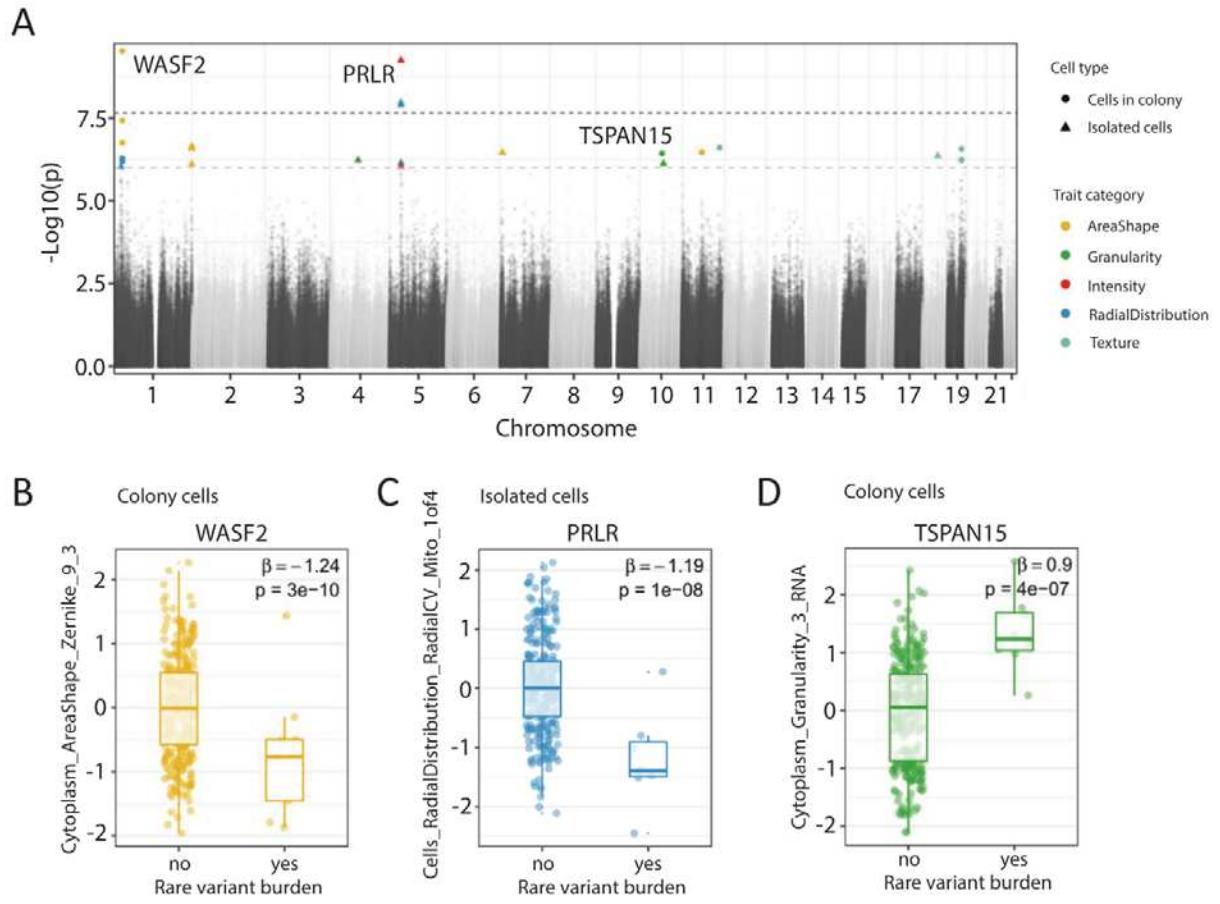
354 **(A)** Table with cell line metadata

355 **(B)** Summary of five categories of morphological traits captured in our data (n=3418)

356 **(C)** Exploring explained Variation in individual traits, namely distribution of mitochondria around
357 nucleus, cytoplasmic Zernike shape metric 9_3, and cytoplasmic granularity in the RNA channel
358 at scale 3, showed differences in sources of variance, including technical effects such as plate
359 and well position and biological sources such as donor. Donor ID represents the remaining
360 difference among profiles after accounting for all other technical, demographic, and disease-
361 status metadata.

362 **(D)** Same as C but for all morphological traits (n=3418)

363



364

365

366 **Fig 3. Association between morphology and rare variant burden**

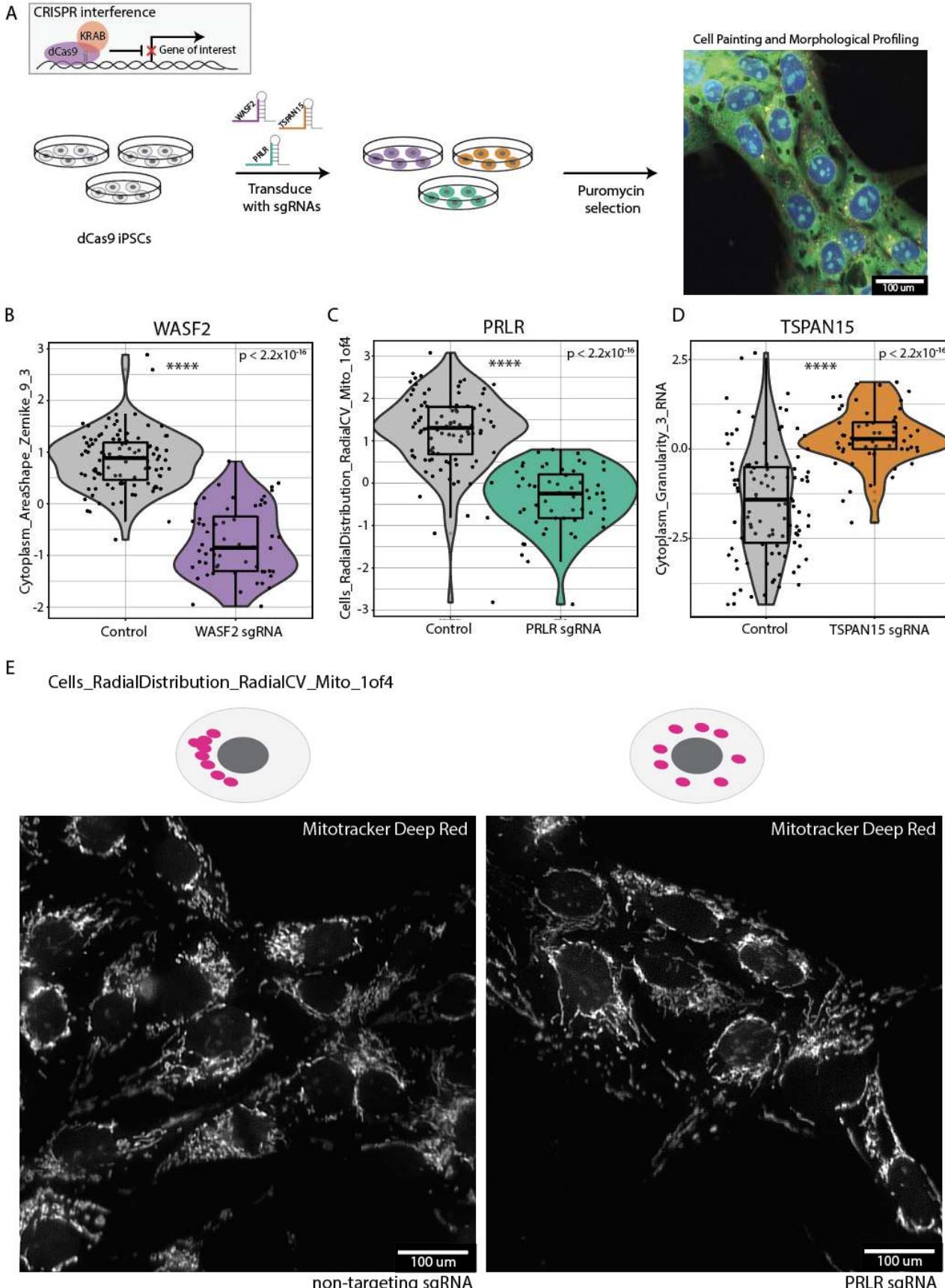
367 (A) Manhattan plot showing association between morphological traits (n=246) and rare variant
368 burden in candidate genes (n=9105). Black dotted line represents the p-value threshold after
369 Bonferroni correction for the number of tested traits and genes ($P = 0.05/246 \times 9105$, i.e.
370 2.2×10^{-8}). Grey dotted line represents the p-value threshold for suggestive evidence of
371 association ($P = 10^{-6}$).

372 (B-D) Box plots displaying the association between the Zernike_9_3 cytoplasm shape metric
373 and rare variant burden in *WASF2* gene (B), distribution of mitochondria around the nucleus and
374 rare variant burden in *PRLR* gene (C) and cytoplasmic granularity measure in the RNA channel

375 and rare variant burden in *TSPAN15* gene. We provide the effect size (β estimate) and raw p-
376 value of the association for each trait.

377

378



380

381

382 **Fig 4. Functional validation of rare-variant burden associations**

383 (A) Workflow for knockdown of rare-variant genes using CRISPR interference in iPSCs
384 expressing constitutive dCas9-KRAB.

385 (B-D) Violin plots displaying quantification of traits between control non-targeting sgRNAs and
386 sgRNAs targeting *WASF2*, *TSPAN15*, and *PRLR* on a per-well level ($n = 56$ non-target
387 sgRNAs, $n = 56$ targeting sgRNAs, $P < 2.2 \times 10^{-16}$, Welch's Two-Sample T-Test). Effect on the
388 trait score is consistent with what we observed in our rare-variant burden association.

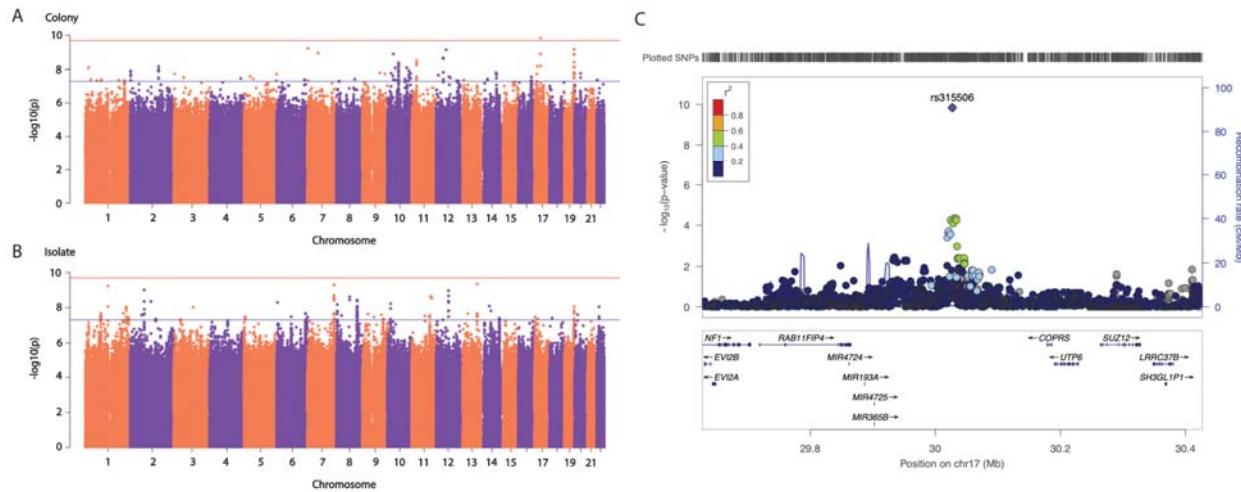
389 (E) Representative image of an observable gene-trait association for *PRLR*.
390 Cells_RadialDistribution_RadialCV_Mito_1of4 relates to the asymmetric distribution of
391 mitochondria in the ring right around the nucleus. In the non-targeting controls (left) we
392 observed clustering of mitochondria on a particular side of the nucleus, whereas in the *PRLR*
393 knockdown sgRNA (right) we observed a more distributed presence of mitochondria around the
394 nucleus.

395

396

397

398



399

400

401 **Fig 5. Common variant analysis**

402 (A) Manhattan plot for trait association test in colony cells. Red line represents the p-value
403 threshold after Bonferroni correction for the number of tested traits and genes ($P < 2 \times 10^{-10}$) Blue
404 line represents the p-value threshold for hits with suggestive evidence ($P < 4.1 \times 10^{-8}$)
405 (B) Manhattan plot for trait association test in isolate cells. Red line represents the p-value
406 threshold after Bonferroni correction for the number of tested traits and genes ($P < 2 \times 10^{-10}$) Blue
407 line represents the p-value threshold for hits with suggestive evidence ($P < 4.1 \times 10^{-8}$)
408 (C) LocusZoom plot for the association signal at chr17q11.2. rs315506, was significantly
409 associated with spatial distribution of cytoplasm
410 (Cytoplasm_RadialDistribution_RadialCV_ER_3of4) in colonies (MAF = 0.08, effect size (se) = -
411 0.52 (0.08), $P = 1.4 \times 10^{-10}$)
412

413 **Supplementary Materials**

414 **Online Methods**

415 **Material and iPSC generation**

416 Our dataset comprised 297 donors from the iPSC repository of California Institute for
417 Regenerative Medicine (CIRM) (Supplementary Table 1). Either B cells or Fibroblasts were
418 taken from each donor from which iPSC lines were generated using non-integrating episomal
419 vectors. Cells were cultured in StemFlex (ThermoFisher; cat#A334901) culture media and
420 passaged for expansion with 1mM EDTA (Gibco; cat#15575020) and 10uM Y-27632
421 (StemcellTech; cat#72304). Each iPSC sample underwent Global Screening Array (GSA) for
422 karyotype analysis to ensure chromosomal integrity, as well as 30X whole-genome sequencing
423 to determine genome-wide variants for each donor. Each iPSC line was cultured between
424 passages 12 and 15 before use in the experiment.

425 **Cell seeding and staining**

426 For each batch of imaging, cells were detached from 6-well NUNC plates using Accutase
427 (StemcellTech; cat#07920) for generating single-cell suspensions. Following detachment, cells
428 were centrifuged at 1000 rpm x 5:00 and re-suspended in StemFlex medium supplemented with
429 ROCK inhibitor. After each cell line was counted to determine cell solution concentration and
430 viability, the desired cell solution volume was aliquoted into a 96-deep well low attachment
431 plate. To disperse a high number of cell lines across a 384-well plate in a semi-random fashion,
432 we optimized the use of an Agilent Bravo liquid handling device. Here, using an 8-channel head,
433 cell solutions were transferred from the 96-well low attachment plate and distributed into a
434 geltrex-coated Perkin Elmer Cell Carrier 384-well plate.

435 **Cell Painting and imaging**

436 Cells were staining and imaged with minor adaptations to procedures described previously^{4,5}.
437 Six hours post seeding in 384-well plates, cells were treated for 30 min with 0.5 uM MitoTracker
438 Deep Red FM - Special Packaging (Thermo Fisher cat#: M22426) dye at 37°C. Following the
439 MitoTracker treatment, cells were fixed with 16% paraformaldehyde diluted to a final
440 concentration of 4% (Thermo Fisher cat#: 043368.9M) for 20 minutes in the dark at RT. After
441 three washes with 1X HBSS cells were permeabilized and stained using a solution of 1X HBSS
442 (Thermo Fisher cat#: 14175095), 0.1% Triton-X-100 (Sigma Aldrich cat#: X100-5ML), 1%
443 Bovine Serum Albumin, 8.25nM Alexa Fluor 568 Phalloidin (Thermo Fisher cat#: A12380),
444 0.005mg/ml Concanavalin A, Alexa Fluor 488 Conjugate (Thermo Fisher cat#: C11252), 1ug/ml
445 Hoechst 33342, Trihydrochloride, Trihydrate (Thermo Fisher cat#: H3570), 6uM SYTO 14
446 Green Fluorescent Nucleic Acid Stain (Thermo Fisher cat#: S7576), and 1.5ug/ml Wheat Germ
447 Agglutinin, Alexa Fluor 555 Conjugate (Thermo Fisher cat#: W32464) for 1hr at RT in the dark.
448 Following the staining, plates were washed 3X with 1X HBSS and sealed until imaging. Cell
449 Painted plates were imaged on a Perkin Elmer Phenix Automated Imaging system under a
450 standardized protocol. All 297 cell lines were dispersed across seven plates which were imaged
451 in four separate batches.

452 **Quantification of cellular morphology traits and their quality control**

453 The segmentation of individual cells in the image into its cellular compartments (whole cell,
454 cytoplasm and nuclei) and subsequently quantification of morphology traits for each cellular
455 compartments was done using CellProfiler 3.1.8⁵³; pipelines are available at
456 [https://github.com/broadinstitute/imaging-platform-](https://github.com/broadinstitute/imaging-platform-pipelines/tree/master/cellpainting_ipsc_20x_phenix_with_bf_bin1)
457 [pipelines](https://github.com/broadinstitute/imaging-platform-pipelines/tree/master/cellpainting_ipsc_20x_phenix_with_bf_bin1). Analysis of CRISPR
458 experiments was done in CellProfiler 4.2.4 with pipelines available at
459 [https://github.com/broadinstitute/imaging-platform-](https://github.com/broadinstitute/imaging-platform-pipelines/tree/master/cellpainting_ipsc_20x_phenix_with_bf_bin1)

460 [pipelines/tree/master/cellpainting_ipsc_20x_phenix_with_bf_bin1_cp4⁵⁴](#). Subsequently, cells
461 missing measurement for more than 5% of traits were removed. Morphology traits *a priori*
462 known to be problematic, not measured across all cells or non-variable across cells were
463 removed using Caret v6.0-86 package. QC-ed cells were then segregated in two groups based
464 on the number of neighbors: isolated cells having no neighbors and colony cells having one or
465 more neighbors. Individual morphology traits were then summarized to well level measurement
466 by averaging them across all cells per well, resulting in a well by trait matrix. Following this,
467 each morphology trait was gaussianized across all 7 plates using inverse normal transformation
468 (INT) method.

469 **Selection of traits for association analysis**

470 A set of morphology traits for association analysis (with both common variants and rare variant
471 burden) was selected by considering their pairwise correlation across colony and isolate cells in
472 the following steps: Step 1. Calculate Pearson correlation matrix for colony and isolate cells at
473 donor level (total 2 correlation matrices). Step 2. Identify that single trait having the *Pearson r* \geq
474 0.9 with the largest number of other traits across both correlation matrices. We specifically
475 chose *Pearson r* \geq 0.9 as cutoff here because most traits (93.7% and 91.2% traits in colony
476 and isolated cells, respectively) had a correlation *Pearson* \geq 0.9 with at-least one other trait
477 (Fig S7). Step 3. Include that individual trait for association analysis. Remove it and other traits
478 having *Pearson* \geq 0.9 with it from correlation matrices. Step 4. Repeat step 1 to 3 until there
479 are no more traits to include in association analysis.

480 **Whole genome sequencing (WGS), variant calling and genes to test**

481 DNA was obtained from cell line pellets with the Qiagen Quick-Start DNeasy Blood and Tissue
482 Kit (cat. no. 69506). DNA samples were submitted to the Genomics Platform at the Broad
483 Institute of MIT and Harvard. Whole genome sequencing (30x) was performed for all individuals

484 (n=297) at the Broad Institute Genomics Platform using Illumina Nextera library preparation,
485 quality control, and sequencing on the Illumina HiSeq 2500 platform. Raw sequences were QC-
486 ed and sequencing reads (150 bp, paired-end) were aligned to the hg38 reference genome
487 using the BWA alignment program. Variants were called and annotated (VQSLOD filter) using
488 HapMap reference.

489 **WGS data quality control for common variant association analysis**

490 The QC-ed WGS VCF file was processed using plink v1.90b3 to remove sex chromosomes,
491 multi-allelic variants, variants with duplicated positions, and small insertions and deletions larger
492 than 5bp. Of 38,239,223 variants loaded from the VCF file, 33,348,914 passed these filters.
493 Donor-level genotype missingness rates were checked to exclude donors with genotype
494 missingness rates > 10%. All 297 individuals passed this filter. Finally, variants with minor allele
495 frequency (MAF) < 5%, missingness > 5%, and Hardy-Weinberg equilibrium p-value < 10⁻⁵ were
496 excluded, following which, 7,020,633 remained for common variant association analysis.

497 **Principal components analysis (PCA)**

498 Plink v1.90b3 was used on common (MAF > 5%) and post-QC variants to remove regions with
499 known long-range linkage disequilibrium (LD) and variants in high LD ($r^2 > 0.1$ in a window of
500 50 kb and a sliding window of 10 kb) (Price A. L. Am. J. Hum. Genetics 2008). The remaining
501 291,493 variants were loaded to GCTA v1.91.1 to generate a genetic relatedness matrix (GRM)
502 using the --make-grm command with default options. The resulting GRM was used to generate
503 20 PCs using GCTA v1.91.1 --pca command with default options.

504 **Variance component analysis**

505 Variance component of fixed (cell neighbor density and donor's age) and random effects (iPSC
506 source tissue, cell line ID, plate and well of imaging, donor's sex, and disease status) was

507 estimated for selected traits using linear mixed model (lmer function in lmerTest package). We
508 included the first 4 PCs derived from genetic variation, corresponding to the elbow in scree plot,
509 for ancestry/population stratification. The p-value of each factor was Bonferroni corrected for the
510 number of traits.

511 **Common variant association analysis**

512 The linear regression framework implemented in GCTA v1.91.1 (--fastGWA-lr command) was
513 used to test the association of common (MAF > 5%), post-QC variants with 246 post-QC, INT
514 traits that were described above. Like the rare variant association analysis, plate and sex were
515 included as categorical and four genotyping PCs, number of cell neighbors (for cells in colony)
516 and the edge variable were included as quantitative variables in the model. Associations were
517 considered statistically significant if they passed the genome-wide significance threshold for 246
518 tests ($P < 5 \times 10^{-8}/246$).

519 **Rare variant burden test**

520 The variants that were autosomal, passed the VQSLOD filter and called in >95% individuals
521 were retained and annotated for their functional effect using SnpEff v5.0. To perform the rare
522 variant burden test, the variants which were autosomal, passed the VQSLOD filter and called in
523 >95% individuals and had MAF < 1% were retained. These variants were annotated for their
524 functional effect using SnpEff v5.0. After annotation, those variants were kept which resided in
525 the protein-coding region and had high or moderate effects on encoded protein. For each gene,
526 multiple rare variants were grouped and coded as present or absent. The association between
527 individual morphology traits and the presence of rare variants in a gene was investigated using
528 linear regression models. The p-values of associations were corrected for both the number of
529 tested traits and the number of genes using Bonferroni correction method.

530 **CRISPRi sgRNA design, cloning, and virus production**

531 To functionally validate the rare-variant burden associations, we designed sgRNAs targeting the
532 transcriptional start site (TSS) for each gene using CRISPRick software (Doench, 2016, Sanson,
533 2018). sgRNA oligonucleotides were cloned into the CROPseq vector using a Golden Gate
534 cloning protocol (Juong, 2017). To validate sequence insertion, DNA plasmids were sequenced
535 by a 3rd party provider. Plasmids with successful insertion were packaged for lentivirus
536 generation using *TransIT-293* reagent (Mirus Bio cat#: MIR 2704) and packaging plasmids
537 VSV-G and DVPR (need to confirm these). HEK239T (ATCC cat#: CRL-3216) cells were
538 transfected with sgRNA packaging plasmid and incubated for 48hrs. HEK239T media
539 supernatant was collected, and lentivirus was concentrated using LENTI-X concentrator
540 (Takara) per manufacturer's instructions. Virus supernatant was then aliquoted and stored at -
541 80C.

542 **sgRNA transduction in dCas9-iPSCs**

543 An iPSC line, WTC11_TO-NGN2_dCas9-BFP-KRAB (gift from Michael Ward), was seeded at
544 250k cells per well in a 12 well plate and 50ul of sgRNA lentivirus was added to each
545 designated well. The following day, 1mL of mTeSR1 complete media was added on top of the
546 existing media. 48hrs post transduction, cells underwent a full media change with the addition of
547 1 ug/ml puromycin (Sigma Aldrich cat#: P8833) for chemical selection of cells which did not
548 uptake the sgRNAs. Puromycin is supplemented in the feeding media for the duration the cell
549 line is in culture to avoid uninfected cells from populating the dish.

550 **qPCR analysis**

551 RNA isolation was performed with the Direct-Zol RNA miniprep kit (ZYMO: cat# R2051)
552 according to the manufacturer's instructions. To prevent DNA contamination, RNA was treated
553 with DNase I (ZYMO: cat# R2051). The yield of RNA was determined with a Denovix DS-11

554 Series Spectrophotometer (Denovix). 200 ng of RNA was reverse transcribed with the iScript
555 cDNA Synthesis Kit (Bio-Rad, cat# 1708890). For all analyses, RT-qPCR was carried out with
556 iQ SYBR Green Supermix (Bio-Rad, cat# 1708880) and specific primers for each gene (listed
557 below) with a CFX384 Touch Real-Time PCR Detection System (Bio-Rad). Target genes were
558 normalized to the geometric mean of control genes, *RPL10* and *GAPDH*, and relative
559 expression compared to the mean Ct values for non-targeting control sgRNAs and gene
560 targeting sgRNAs, respectively.

561

562 The following primers were used:

563 WASF2_forward 5'-TAGTAACGAGGAACATCGAGCC-3'
564 WASF2_reverse 5'-AAGGGAGCTTACCCGAGAGG-3'
565 PRLR_forward 5'-TCTCCACCTACCCTGATTGAC-3'
566 PRLR_reverse 5'-CGAACCTGGACAAGGTATTCTG-3'
567 TSPAN15_forward 5'-TCCCTCCGTGACAACCTGTA-3'
568 TSPAN15_reverse 5'-CCGCCACAGCACTTGAAC-3'
569 RPL10_forward 5'-GCCGTACCCAAAGTCTCGC-3'
570 RPL10_reverse 5'-CACAAAGCGGAAACTCATCCA-3'
571 GAPDH_forward 5'-GGAGCGAGATCCCTCCAAAAT-3'
572 GAPDH_reverse 5'-GGCTGTTGTCATACTTCTCATGG-3'

573

574 **Data Availability**

575 Images and preprocessed profiles that are augmented with gene and compound annotation are
576 available in the Cell Painting Gallery on the Registry of Open Data on AWS
577 (<https://registry.opendata.aws/cellpainting-gallery/>) as dataset `cpg0022-cmqtl` at no cost and
578 no need for registration. Whole genome sequencing for cell lines used in this study are hosted

579 on Terra <https://app.terra.bio/#workspaces/anvil->
580 datastorage/AnVIL_NIMH_Broad_ConvergentNeuro_McCarroll_Eggan_CIRM_GRU_WGS

581

582 **Code Availability**

583 Source code to reproduce and build upon the presented results is available at
584 <https://github.com/broadinstitute/cmQTL>

585

586 **References**

587 1. "Sickle-Cell Anemia: Haplotype." n.d. Accessed November 29, 2022.
588 <https://www.nature.com/scitable/topicpage/sickle-cell-anemia-a-look-at-global-8756219/>.

589

590 2. Andrews, Nancy C. 2009. "Genes Determining Blood Cell Traits." *Nature Genetics* 41
591 (11): 1161–62.

592

593 3. Astle, William J., Heather Elding, Tao Jiang, Dave Allen, Dace Ruklisa, Alice L. Mann,
594 Daniel Mead, et al. 2016. "The Allelic Landscape of Human Blood Cell Trait Variation
595 and Links to Common Complex Disease." *Cell* 167 (5): 1415–29.e19.

596

597 4. Cimini, Beth A., Srinivas Niranj Chandrasekaran, Maria Kost-Alimova, Lisa Miller, Amy
598 Goodale, Briana Fritchman, Patrick Byrne, et al. 2022. "Optimizing the Cell Painting
599 Assay for Image-Based Profiling." *bioRxiv*. <https://doi.org/10.1101/2022.07.13.499171>.

600

601 5. Bray, Mark-Anthony, Shantanu Singh, Han Han, Chadwick T. Davis, Blake Borgeson,
602 Cathy Hartland, Maria Kost-Alimova, Sigrun M. Gustafsdottir, Christopher C. Gibson,
603 and Anne E. Carpenter. 2016. "Cell Painting, a High-Content Image-Based Assay for
604 Morphological Profiling Using Multiplexed Fluorescent Dyes." *Nature Protocols* 11 (9):
605 1757–74.

606

607 6. Rohban, Mohammad Hossein, Shantanu Singh, Xiaoyun Wu, Julia B. Berthet, Mark-
608 Anthony Bray, Yashaswi Shrestha, Xaralabos Varelas, Jesse S. Boehm, and Anne E.
609 Carpenter. 2017. "Systematic Morphological Profiling of Human Gene and Allele
610 Function via Cell Painting." *eLife* 6 (March): e24060.

611

612

613 7. Caicedo, Juan C., John Arevalo, Federica Piccioni, Mark-Anthony Bray, Cathy L.
614 Hartland, Xiaoyun Wu, Angela N. Brooks, et al. 2022. "Cell Painting Predicts Impact of
615 Lung Cancer Variants." *Molecular Biology of the Cell* 33 (6): ar49.

616

617 8. Yamasaki, Amanda E., Athanasia D. Panopoulos, and Juan Carlos Izpisua Belmonte.
618 2017. "Understanding the Genetics behind Complex Human Disease with Large-Scale
619 iPSC Collections." *Genome Biology* 18 (1): 135.

620

621 9. Lin, Stephen S., Susan DeLaura, and Eugenia M. Jones. 2020. "The CIRM iPSC
622 Repository." *Stem Cell Research* 44 (April): 101671.

623

624 10. Baxi, Emily G., Terri Thompson, Jonathan Li, Julia A. Kaye, Ryan G. Lim, Jie Wu, Divya
625 Ramamoorthy, et al. 2022. "Answer ALS, a Large-Scale Resource for Sporadic and

626 Familial ALS Combining Clinical and Multi-Omics Data from Induced Pluripotent Cell
627 Lines." *Nature Neuroscience* 25 (2): 226–37.

628

629 11. Streeter, Ian, Peter W. Harrison, Adam Faulconbridge, The HipSci Consortium, Paul
630 Flicek, Helen Parkinson, and Laura Clarke. 2017. "The Human-Induced Pluripotent Stem
631 Cell Initiative-Data Resources for Cellular Genetics." *Nucleic Acids Research* 45 (D1):
632 D691–97.

633

634 12. Warren, Curtis R., John F. O'Sullivan, Max Friesen, Caroline E. Becker, Xiaoling Zhang,
635 Poching Liu, Yoshiyuki Wakabayashi, et al. 2017. "Induced Pluripotent Stem Cell
636 Differentiation Enables Functional Validation of GWAS Variants in Metabolic Disease."
637 *Cell Stem Cell* 20 (4): 547–57.e7.

638

639 13. Pashos, Evanthia E., Yoson Park, Xiao Wang, Avanthi Raghavan, Wenli Yang, Deepti
640 Abbey, Derek T. Peters, et al. 2017. "Large, Diverse Population Cohorts of hiPSCs and
641 Derived Hepatocyte-like Cells Reveal Functional Genetic Variation at Blood Lipid-
642 Associated Loci." *Cell Stem Cell* 20 (4): 558–70.e10.

643

644 14. Carcamo-Orive, Ivan, Ngan F. Huang, Thomas Quertermous, and Joshua W. Knowles.
645 2017. "Induced Pluripotent Stem Cell-Derived Endothelial Cells in Insulin Resistance and
646 Metabolic Syndrome." *Arteriosclerosis, Thrombosis, and Vascular Biology* 37 (11):
647 2038–42.

648

649 15. DeBoever, Christopher, He Li, David Jakubosky, Paola Benaglio, Joaquin Reyna,
650 Katrina M. Olson, Hui Huang, et al. 2017. "Large-Scale Profiling Reveals the Influence of

651 Genetic Variation on Gene Expression in Human Induced Pluripotent Stem Cells." *Cell*
652 *Stem Cell* 20 (4): 533–46.e7.

653

654 16. Kilpinen, Helena, Angela Goncalves, Andreas Leha, Vackar Afzal, Kaur Alasoo, Sofie
655 Ashford, Sendu Bala, et al. 2017. "Common Genetic Variation Drives Molecular
656 Heterogeneity in Human iPSCs." *Nature* 546 (7658): 370–75.

657

658 17. Tegtmeyer, Matthew, and Ralda Nehme. 2022. "Leveraging the Genetic Diversity of
659 Human Stem Cells in Therapeutic Approaches." *Journal of Molecular Biology* 434 (3):
660 167221.

661

662 18. Vigilante, Alessandra, Anna Laddach, Nathalie Moens, Ruta Meleckyte, Andreas Leha,
663 Arsham Ghahramani, Oliver J. Culley, et al. 2019. "Identifying Extrinsic versus Intrinsic
664 Drivers of Variation in Cell Behavior in Human iPSC Lines from Healthy Donors." *Cell*
665 *Reports* 26 (8): 2078–87.e3.

666

667 19. Schiff, Lauren, Bianca Migliori, Ye Chen, Deidre Carter, Caitlyn Bonilla, Jenna Hall,
668 Minjie Fan, et al. 2022. "Integrating Deep Learning and Unbiased Automated High-
669 Content Screening to Identify Complex Disease Signatures in Human Fibroblasts."
670 *Nature Communications* 13 (1): 1–13.

671 20. Schrenk-Siemens, Katrin, Hagen Wende, Vincenzo Prato, Kun Song, Charlotte Rostock,
672 Alexander Loewer, Jochen Utikal, Gary R. Lewin, Stefan G. Lechner, and Jan Siemens.
673 2015. "PIEZO2 Is Required for Mechanotransduction in Human Stem Cell-Derived
674 Touch Receptors." *Nature Neuroscience* 18 (1): 10–16.

675

676 21. Insall, Robert H., and Laura M. Machesky. 2009. "Actin Dynamics at the Leading Edge:
677 From Simple Machinery to Complex Networks." *Developmental Cell* 17 (3): 310–22.

678

679 22. Takenawa, T., and H. Miki. 2001. "WASP and WAVE Family Proteins: Key Molecules for
680 Rapid Rearrangement of Cortical Actin Filaments and Cell Movement." *Journal of Cell
681 Science* 114 (Pt 10): 1801–9.

682

683 23. Kiger, A. A., B. Baum, S. Jones, M. R. Jones, A. Coulson, C. Echeverri, and N.
684 Perrimon. 2003. "A Functional Genomic Analysis of Cell Morphology Using RNA
685 Interference." *Journal of Biology* 2 (4): 27.

686

687 24. Bole-Feysot, C., V. Goffin, M. Edery, N. Binart, and P. A. Kelly. 1998. "Prolactin (PRL)
688 and Its Receptor: Actions, Signal Transduction Pathways and Phenotypes Observed in
689 PRL Receptor Knockout Mice." *Endocrine Reviews* 19 (3): 225–68.

690

691 25. Sackmann-Sala, Lucila, Jacques-Emmanuel Guidotti, and Vincent Goffin. 2015.
692 "Minireview: Prolactin Regulation of Adult Stem Cells." *Molecular Endocrinology* 29 (5):
693 667–81.

694

695 26. Viengchareun, Say, Nathalie Servel, Bruno Fève, Michael Freemark, Marc Lombès, and
696 Nadine Binart. 2008. "Prolactin Receptor Signaling Is Essential for Perinatal Brown
697 Adipocyte Function: A Role for Insulin-like Growth Factor-2." *PLoS One* 3 (2): e1535.

698 27. Tian, Run-Hui, Yang Bai, Jing-Yang Li, and Kai-Min Guo. 2019. "Reducing PRLR
699 Expression and JAK2 Activity Results in an Increase in BDNF Expression and Inhibits
700 the Apoptosis of CA3 Hippocampal Neurons in a Chronic Mild Stress Model of
701 Depression." *Brain Research* 1725 (December): 146472.

702

703 28. Grimm, Amandine, and Anne Eckert. 2017. "Brain Aging and Neurodegeneration: From

704 a Mitochondrial Point of View." *Journal of Neurochemistry* 143 (4): 418–31.

705

706 29. Obashi, Kazuki, and Shigeo Okabe. 2013. "Regulation of Mitochondrial Dynamics and

707 Distribution by Synapse Position and Neuronal Activity in the Axon." *The European*

708 *Journal of Neuroscience* 38 (3): 2350–63.

709

710 30. Lin, Hung-Yu, Chia-Wei Liou, Shang-Der Chen, Te-Yao Hsu, Jiin-Haur Chuang, Pei-

711 Wen Wang, Sheng-Teng Huang, et al. 2015. "Mitochondrial Transfer from Wharton's

712 Jelly-Derived Mesenchymal Stem Cells to Mitochondria-Defective Cells Recaptures

713 Impaired Mitochondrial Function." *Mitochondrion* 22 (May): 31–44.

714

715 31. Pernas, Lena, and Luca Scorrano. 2016. "Mito-Morphosis: Mitochondrial Fusion, Fission,

716 and Cristae Remodeling as Key Mediators of Cellular Function." *Annual Review of*

717 *Physiology* 78: 505–31.

718

719 32. Cataldo, Anne M., Donna L. McPhie, Nicholas T. Lange, Steven Punzell, Sarah Elmiligy,

720 Nancy Z. Ye, Michael P. Froimowitz, et al. 2010. "Abnormalities in Mitochondrial

721 Structure in Cells from Patients with Bipolar Disorder." *The American Journal of*

722 *Pathology* 177 (2): 575–85.

723

724

725 33. GTEx Consortium, Laboratory, Data Analysis & Coordinating Center (LDACC)—Analysis

726 Working Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEx

727 (eGTEX) groups, NIH Common Fund, NIH/NCI, NIH/NHGRI, et al. 2017. "Genetic Effects
728 on Gene Expression across Human Tissues." *Nature* 550 (7675): 204–13.

729

730 34. Jouannet, Stéphanie, Julien Saint-Pol, Laurent Fernandez, Viet Nguyen, Stéphanie
731 Charrin, Claude Boucheix, Christel Brou, Pierre-Emmanuel Milhiet, and Eric Rubinstein.
732 2016. "TspanC8 Tetraspanins Differentially Regulate the Cleavage of ADAM10
733 Substrates, Notch Activation and ADAM10 Membrane Compartmentalization." *Cellular
734 and Molecular Life Sciences: CMLS* 73 (9): 1895–1915.

735

736 35. Karczewski, Konrad J., Laurent C. Francioli, Grace Tiao, Beryl B. Cummings, Jessica
737 Alföldi, Qingbo Wang, Ryan L. Collins, et al. 2020. "The Mutational Constraint Spectrum
738 Quantified from Variation in 141,456 Humans." *Nature* 581 (7809): 434–43.

739

740 36. Li, Xin, Yungil Kim, Emily K. Tsang, Joe R. Davis, Farhan N. Damani, Colby Chiang,
741 Gaelen T. Hess, et al. 2017. "The Impact of Rare Variation on Gene Expression across
742 Tissues." *Nature* 550 (7675): 239–43.

743

744 37. Serra, Gregorio, Vincenzo Antona, Giovanni Corsello, Federico Zara, Ettore Piro, and
745 Raffaele Falsaperla. 2019. "NF1 Microdeletion Syndrome: Case Report of Two New
746 Patients." *Italian Journal of Pediatrics* 45 (1): 138.

747

748 38. Shih, Yu-Tzu, Tzyy-Nan Huang, Hsiao-Tang Hu, Tzu-Li Yen, and Yi-Ping Hsueh. 2020.
749 "Vcp Overexpression and Leucine Supplementation Increase Protein Synthesis and
750 Improve Fear Memory and Social Interaction of Nf1 Mutant Mice." *Cell Reports* 31 (13):
751 107835.

752 39. Elsayed, Abdelrahman M., Emine Bayraktar, Paola Amero, Salama A. Salama,
753 Abdelaziz H. Abdelaziz, Raed S. Ismail, Xinna Zhang, et al. 2021. "PRKAR1B-AS2 Long
754 Noncoding RNA Promotes Tumorigenesis, Survival, and Chemoresistance via the
755 PI3K/AKT/mTOR Pathway." *International Journal of Molecular Sciences* 22 (4).
756 <https://doi.org/10.3390/ijms22041882>.

757

758 40. Feng, Zhen-Hua, Lin Zheng, Teng Yao, Si-Yue Tao, Xiao-An Wei, Ze-Yu Zheng, Bing-
759 Jie Zheng, et al. 2021. "EIF4A3-Induced Circular RNA PRKAR1B Promotes
760 Osteosarcoma Progression by miR-361-3p-Mediated Induction of FZD4 Expression."
761 *Cell Death & Disease* 12 (11): 1025.

762

763 41. Marbach, Felix, Georgi Stoyanov, Florian Erger, Constantine A. Stratakis, Nikolaos
764 Settas, Edra London, Jill A. Rosenfeld, et al. 2021. "Variants in PRKAR1B Cause a
765 Neurodevelopmental Disorder with Autism Spectrum Disorder, Apraxia, and Insensitivity
766 to Pain." *Genetics in Medicine: Official Journal of the American College of Medical
767 Genetics* 23 (8): 1465–73.

768

769 42. Kunkle, Brian W., Michael Schmidt, Hans-Ulrich Klein, Adam C. Naj, Kara L. Hamilton-
770 Nelson, Eric B. Larson, Denis A. Evans, et al. 2021. "Novel Alzheimer Disease Risk Loci
771 and Pathways in African American Individuals Using the African Genome Resources
772 Panel: A Meta-Analysis." *JAMA Neurology* 78 (1): 102–13.

773

774 43. Lehmkuhl, Erik M., Suvithanandhini Loganathan, Eric Alsop, Alexander D. Blythe, Tina
775 Kovalik, Nicholas P. Mortimore, Dianne Barrameda, et al. 2021. "TDP-43 Proteinopathy
776 Alters the Ribosome Association of Multiple mRNAs Including the Glycan Dally-like
777 Protein (Dlp)/GPC6." *Acta Neuropathologica Communications* 9 (1): 52.

778

779

780

781 44. Filmus, Jorge, and Mariana Capurro. 2008. "The Role of Glypican-3 in the Regulation of
782 Body Size and Cancer." *Cell Cycle* 7 (18): 2787–90.

783

784 45. Veugelers, M., B. De Cat, H. Ceulemans, A. M. Bruystens, C. Coomans, J. Dürr, J.
785 Vermeesch, P. Marynen, and G. David. 1999. "Glypican-6, a New Member of the
786 Glypican Family of Cell Surface Heparan Sulfate Proteoglycans." *The Journal of
787 Biological Chemistry* 274 (38): 26968–77.

788

789 46. Liang, Dan, Angela L. Elwell, Nil Aygün, Oleh Krupa, Justin M. Wolter, Felix A. Kyere,
790 Michael J. Lafferty, et al. 2021. "Cell-Type-Specific Effects of Genetic Variation on
791 Chromatin Accessibility during Human Neuronal Differentiation." *Nature Neuroscience*
792 24 (7): 941–53.

793

794 47. Panopoulos, Athanasia D., Matteo D'Antonio, Paola Benaglio, Roy Williams, Sherin I.
795 Hashem, Bernhard M. Schuldt, Christopher DeBoever, et al. 2017. "iPSCORE: A
796 Resource of 222 iPSC Lines Enabling Functional Characterization of Genetic Variation
797 across a Variety of Cell Types." *Stem Cell Reports* 8 (4): 1086–1100.

798

799 48. Wells, Michael F., James Nemesh, Sulagna Ghosh, Jana M. Mitchell, Curtis J. Mello,
800 Daniel Meyer, Kavya Raghunathan, et al. 2021. "Natural Variation in Gene Expression
801 and Zika Virus Susceptibility Revealed by Villages of Neural Progenitor Cells." *bioRxiv*.
802 <https://doi.org/10.1101/2021.11.08.467815>.

803

804 49. Jerber, Julie, Daniel D. Seaton, Anna S. E. Cuomo, Natsuhiko Kumasaka, James
805 Haldane, Juliette Steer, Minal Patel, et al. 2021. "Population-Scale Single-Cell RNA-Seq
806 Profiling across Dopaminergic Neuron Differentiation." *Nature Genetics* 53 (3): 304–12.

807

808 50. Finucane, Hilary K., Yakir A. Reshef, Verner Anttila, Kamil Slowikowski, Alexander
809 Gusev, Andrea Byrnes, Steven Gazal, et al. 2018. "Heritability Enrichment of Specifically
810 Expressed Genes Identifies Disease-Relevant Tissues and Cell Types." *Nature Genetics*
811 50 (4): 621–29.

812

813 51. Caicedo, Juan C., Sam Cooper, Florian Heigwer, Scott Warchal, Peng Qiu, Csaba
814 Molnar, Aliaksei S. Vasilevich, et al. 2017. "Data-Analysis Strategies for Image-Based
815 Cell Profiling." *Nature Methods* 14 (9): 849–63.

816

817 52. Haghghi, Marzieh, Juan C. Caicedo, Beth A. Cimini, Anne E. Carpenter, and Shantanu
818 Singh. 2022. "High-Dimensional Gene Expression and Morphology Profiles of Cells
819 across 28,000 Genetic and Chemical Perturbations." *Nature Methods*, November, 1–8.

820

821 53. McQuin, Claire, Allen Goodman, Vasiliy Chernyshev, Lee Kamentsky, Beth A. Cimini,
822 Kyle W. Karhohs, Minh Doan, et al. 2018. "CellProfiler 3.0: Next-Generation Image
823 Processing for Biology." *PLoS Biology* 16 (7): e2005970.

824

825 54. Stirling, David R., Madison J. Swain-Bowden, Alice M. Lucas, Anne E. Carpenter, Beth
826 A. Cimini, and Allen Goodman. 2021. "CellProfiler 4: Improvements in Speed, Utility and
827 Usability." *BMC Bioinformatics* 22 (1): 433.

828

829

830 **Acknowledgements**

831 We thank members of the Nehme, Carpenter-Singh, and Raychaudhuri labs for insightful
832 discussions and critical reading of the manuscript, and Anna Neumann for project management.
833 This work was supported by a Broad Institute Variant to Function (V2F) Initiative grant, the
834 National Institutes of Health (NIMH U01 MH115727 to RN/KE/SAM and NIGMS MIRA R35
835 GM122547 to AEC), the Chan Zuckerberg Initiative DAF, an advised fund of the Silicon Valley
836 Community Foundation (grant number 2020-225720 to BAC), as well as the Stanley Center for
837 Psychiatric Research at the Broad Institute. The authors also gratefully acknowledge the use of
838 the PerkinElmer Opera Phenix High-Content/High-Throughput imaging system at the Broad
839 Institute, funded by the S10 Grant NIH OD-026839-01.

840

841 **Author contributions**

842 M.T., J.A., S.A., A.E.C., S.S., R.N., and S.R., conceived the work and wrote the manuscript.
843 R.N. obtained cell lines from CIRM and coordinated the sequencing. M.T., with support from
844 E.P. and D.L., performed cell culture data generation and CRISPRi knockdown validation. J.A.,
845 S.A., performed genetic association analyses. B.A.C., S.S., G.W., M.H., E.W., processed and
846 analyzed Cell Painting data. A.E.C., S.S., R.N., and S.R. supervised the work and analyses.

847

848 **Competing interests**

849 The authors declare no competing interests.

850

851 **Correspondence**

852 E-mail: rnehme@broadinstitute.org; shsingh@broadinstitute.org; soumya@broadinstitute.org

853

854

855 **Supplemental Figures**

Data cleaning

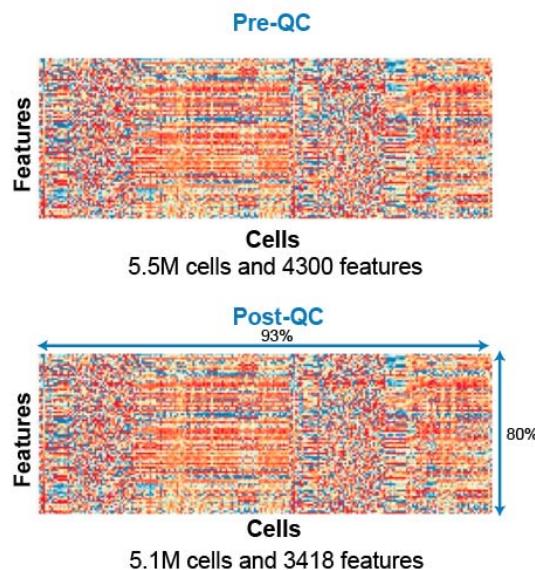
Pre-QC dataset contained measurement of 4,300 features for 5.5 million cells imaged across 7 plates

Step 1. Remove a priori known problematic features, costes, correlations and non-numeric features (n=690)

Step 2. Remove features which are not measured in all cells (n=38) or are non-variable (n=9)

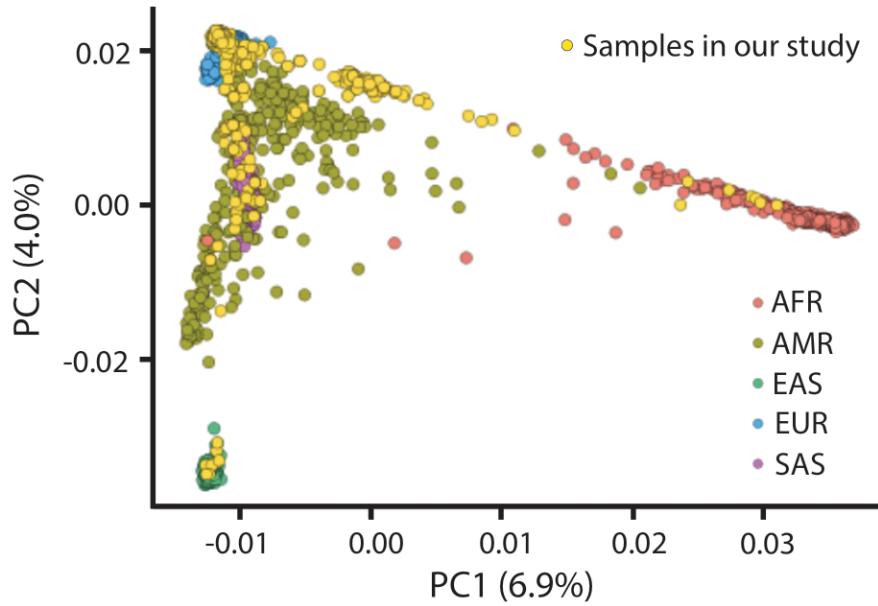
Step 3. Remove features which are missing in >5% of cells (n=145)

Step 4. Remove cells which are missing >5% of all features (~400k)



856
857 Fig S1. Data filtering and quality control for the traits measured across iPSC cells

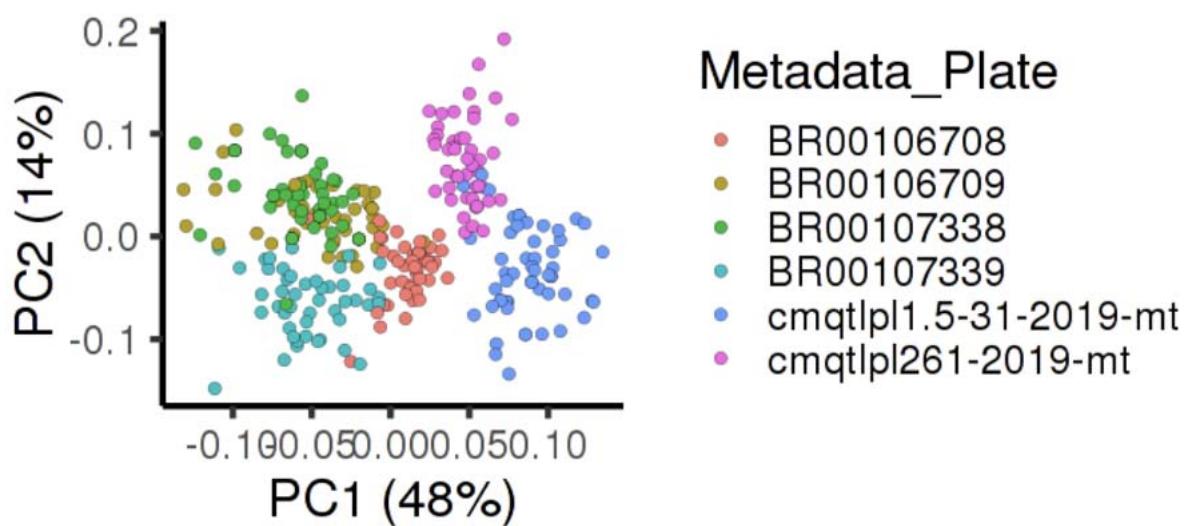
858 A total of 4318 cell morphology traits were quantified across all 5.5 million iPSCs cells from 297
859 donors. Morphology traits a priori known to be problematic, not measured across all cells or
860 non-variable across cells were removed. Also, cells missing measurement for >5% of traits were
861 removed, yielding 3418 traits across 5.1 million cells.



862

863 Fig S2. Principal component analysis (PCA) of donors

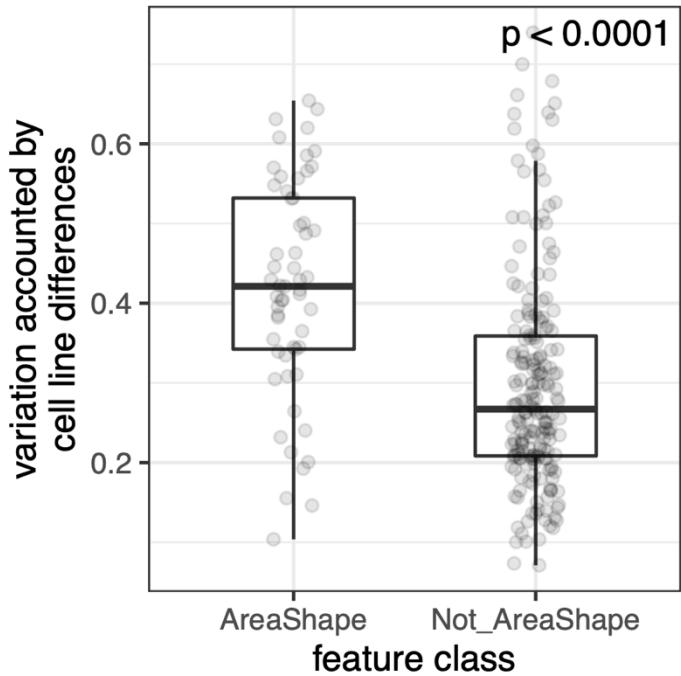
864 Distribution of 297 donors (yellow dots) laid over individuals from 1K genomes on PC1 and PC2
865 calculated from common variants (maf > 5%). Of 297 donors, 207 self-reported their ancestry as
866 European.



867

868 Fig S3. Batch effects in measurement of morphology traits

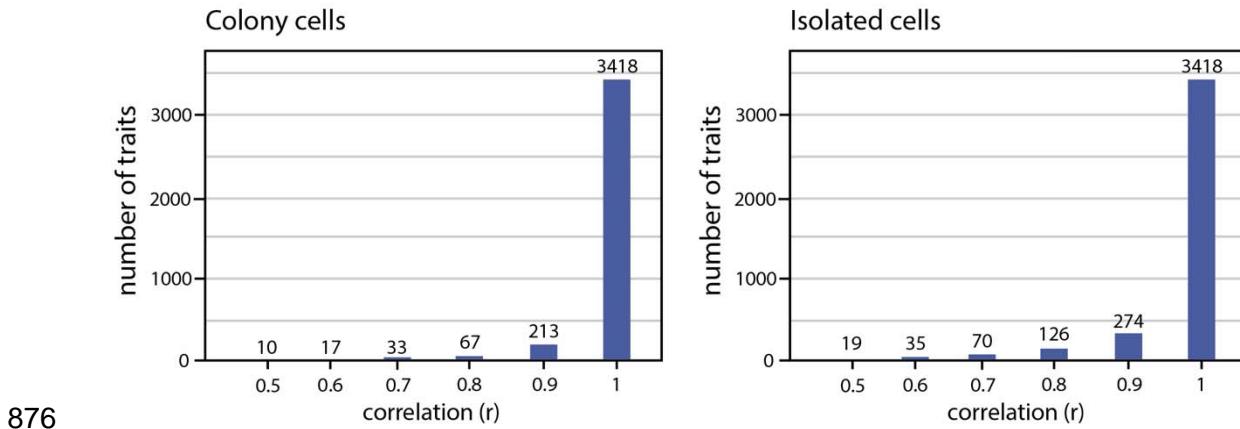
869 Distribution of 297 donors on PC1 and PC2 calculated from morphology traits (n=3418) color by
870 7 plates on which iPSCs from donors were imaged, showing the batch (plate) effect in the
871 measurement of morphology traits.



872

873 Fig S4. Variation in traits explained by genetic difference among donors

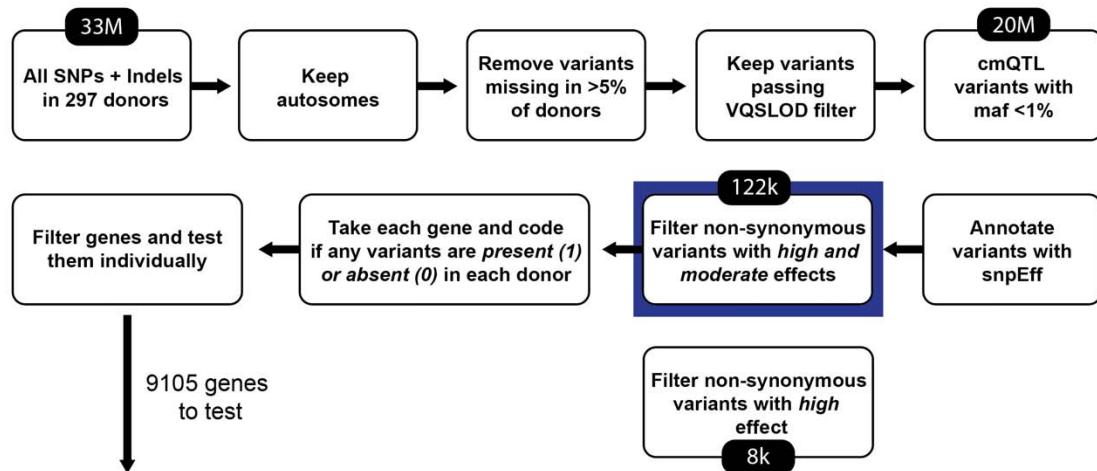
874 The comparison of variation explained by genetic difference among donors in traits belonging to
875 Area and Shape category and other categories. P-value from Wilcoxon rank sum test is shown.



876

877 Fig S5. Correlation among morphology traits

878 The number of traits having correlation (Pearson r) of up to 0.5, 0.6, 0.7, 0.8, 0.9 and 1 (on x-
879 axis) with at-least one other trait is shown for cells in colonies and cells which are isolated.

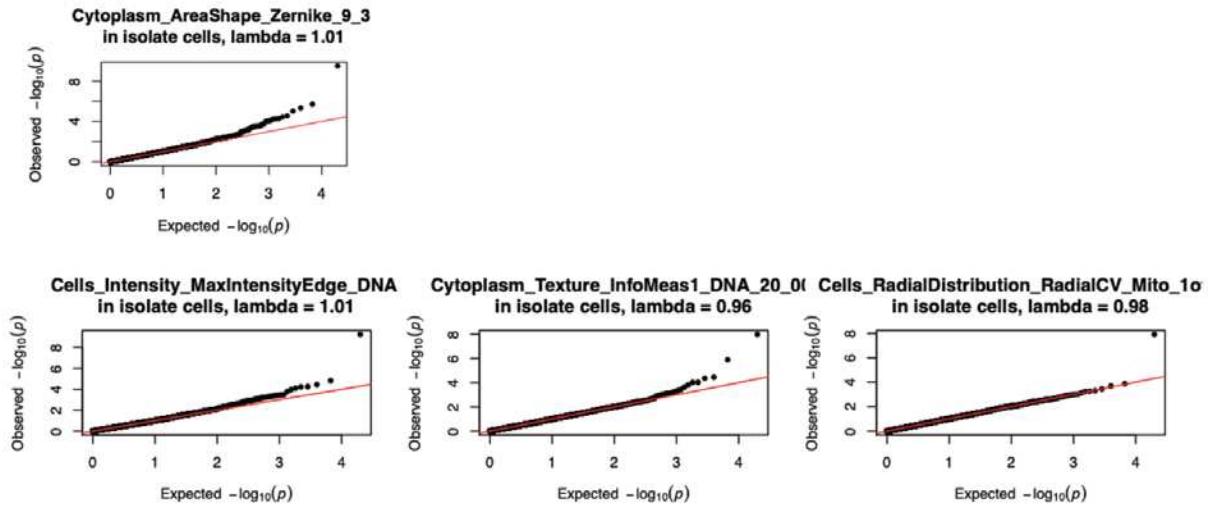


880

$\text{Gaussianised trait} \sim \text{Gene (0/1)} + \text{Sex} + \sum \text{PC}_{i=1..4} + \text{Plate} + \text{Neighbor count}_{\text{if non-isolate cells}} + \text{CellLine}_\text{Replicates_onEdge}$

881 Fig S6. Rare variant workflow

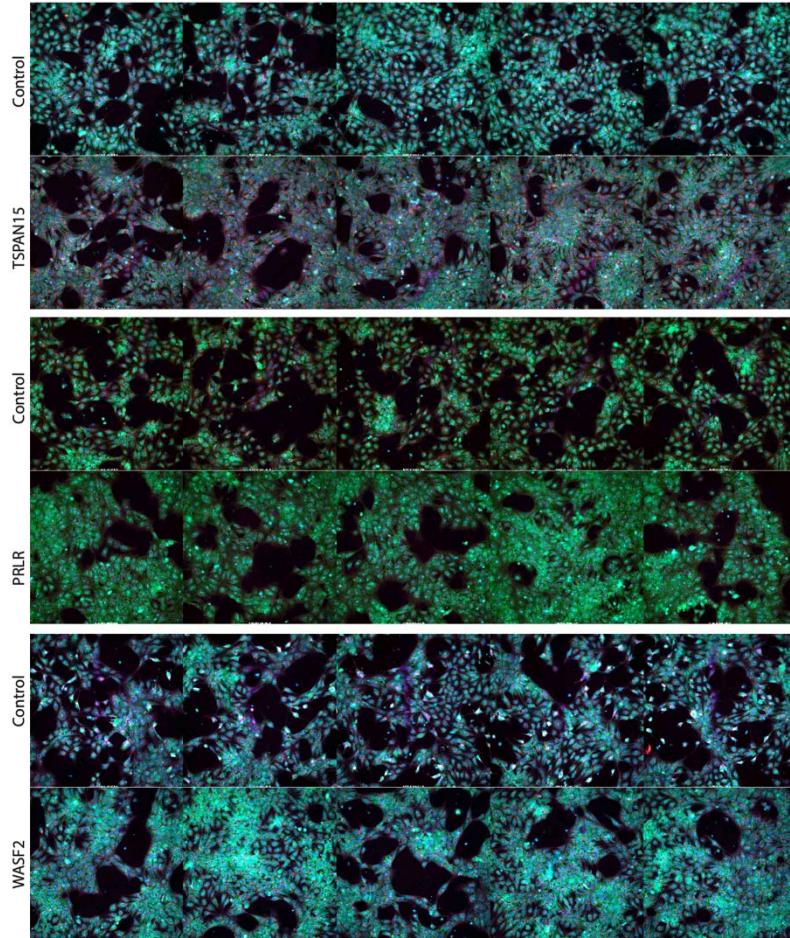
882 Step by step workflow for QC and selection of rare variants for the association analyses.



883

884 Fig S7. Quantile-quantile (QQ) plots for associated traits

885 QQ plots show the distribution of expected and observed p-value of association with all tested
886 genes for 4 morphology traits. Each dot is a tested gene. Lambda statistic (λ), a measure of
887 inflation in observed p-values, is shown.



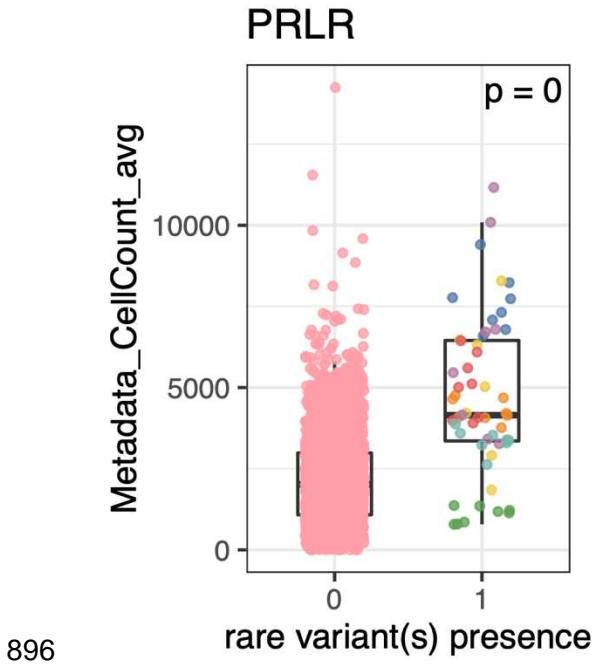
888

889 Fig S8. Representative images from cell lines with rare variants in WASF2, PRLR, and
890 TSPAN15.

891

892 Randomly selected representative images from wells containing cell lines harboring rare
893 variants in *WASF2*, *PRLR*, and *TSPAN15* compared to reference cell lines with no detected
894 variants.

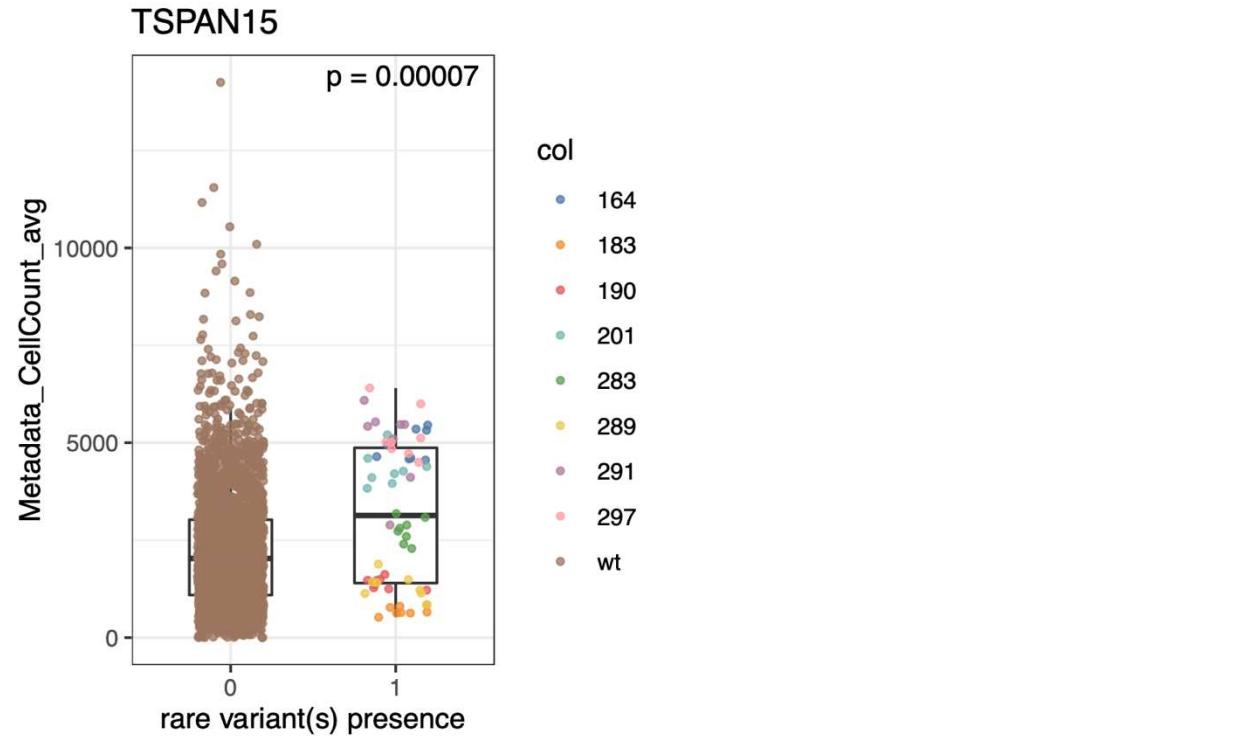
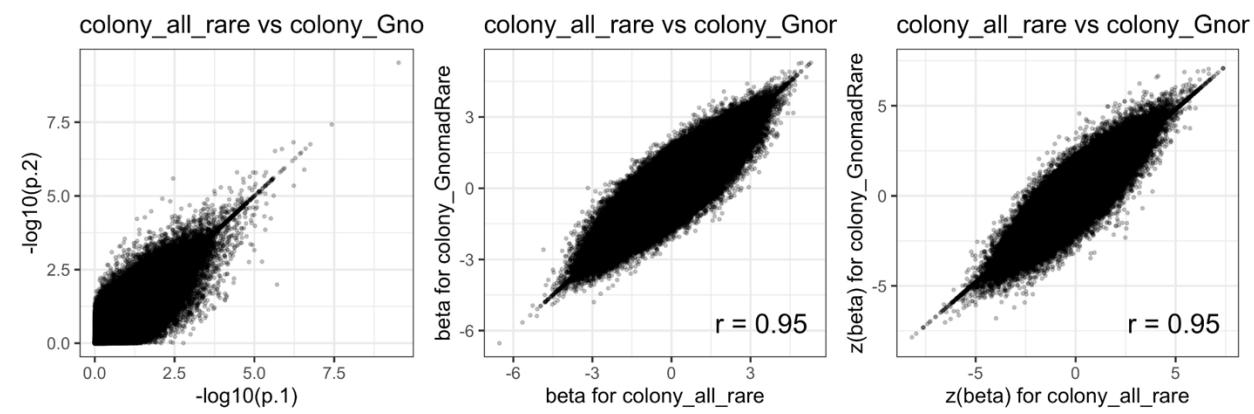
895



897 Fig S9. Cell count for *PRLR* cell lines compared to others

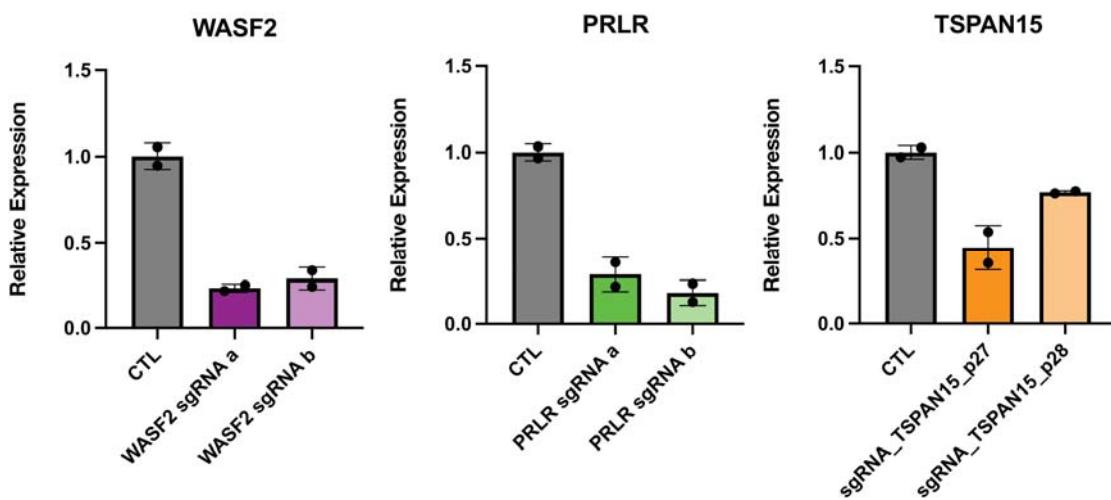
898 Boxplots displaying per well cell count between cell lines harboring rare variants in *PRLR*
899 compared to reference cell lines

900



908 Fig S11. Associations using rare variants present in Gnomad
909 Comparison of p-value and z-score of effect size (beta) of associations between individual
910 morphology traits and rare variant burden in individual genes using all rare variants in our
911 dataset and those rare variants (out of all) which are also present in Gnomad dataset is shown
912 for colony cells (A) and isolated cells (B). The orange colored dots represent significant
913 associations from Fig 3A where we used all rare variants. Pearson r is shown.

914



915

916 Fig S12. qPCR knockdown of rare-variant associations using CRISPR interference
917 Relative expression of sgRNA target genes compared to *GAPDH* and *RPL10* between iPSCs
918 transfected with gene targeting sgRNAs and non-targeting control sgRNAs.

919

920 Supplemental Tables

921 Table S1. Cell line metadata
922 Demographic characteristics for all 297 iPSC lines used in this study.

923 Table S2. All morphological traits

924 All 3418 morphological traits which passed QC

925 Table S3. Composite morphological traits

926 246 traits which were used for the association tests.

927 Table S4. Morphology trait associations with rare variant burden in *WASF2*

928 Morphological traits which meet nominal significance with association to rare variant burden in
929 *WASF2*.

930 Table S5. Morphology trait associations with rare variant burden in *PRLR*

931 Morphological traits which meet nominal significance with association to rare variant burden in
932 *PRLR*.

933 Table S6. Morphological traits with suggestive evidence of association with rare variants in our
934 study

935 Morphological traits which show suggestive evidence for association with rare variants in our
936 study.

937 Table S7. CRISPRi sgRNA sequences

938

939 Oligonucleotide sequences for all sgRNAs used in this study.

940 Table S8. Morphological traits with suggestive evidence for association to common variants in
941 our study.

942

943 Morphological traits which show suggestive evidence for association with common variants in
944 our study.

945

946

947

948

949

950

951

952

953