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ABSTRACT  

Patient-derived xenograft (PDX) models of cancer, developed through injection of patient tumour cells 

into immunocompromised mice, have been widely adopted in preclinical studies, as well as in precision 

oncology approaches. However, the extent to which PDX models represent the underlying genetic 

diversity of a patient9s tumour and the extent of on-going genomic evolution in PDX models are 

incompletely understood, particularly in the context of heterogeneous cancers such as non-small cell 

lung cancer (NSCLC). To investigate the depiction of intratumour heterogeneity by PDX models, we 

derived 47 new subcutaneous multi-region PDX models from 22 patients with primary NSCLC enrolled in 

the clinical longitudinal cohort study TRACERx. By analysing whole exome sequencing data from primary 

tumours and PDX models, we find that PDX establishment creates a genomic bottleneck, with 76% of 

PDX models being derived from a single primary tumour subclone. Despite this, multiple primary tumour 

subclones were capable of PDX establishment in regional PDX models, indicating that PDX libraries 

derived from multiple tumour regions can capture intratumour heterogeneity. Acquisition of somatic 

mutations continued during PDX model expansion, and was associated with APOBEC- or mismatch 

repair deficiency-induced mutational signatures in a subset of models. Overall, while NSCLC PDX models 

retain truncal genomic alterations, the absence of subclonal heterogeneity representative of the 

primary tumour is a major limitation. Our results emphasise the importance of characterising and 

monitoring intratumour heterogeneity in the context of pre-clinical cancer studies. 
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INTRODUCTION 

In patient-derived xenograft (PDX) models, human tumours are propagated by transplantation into 

immunocompromised mice1. PDX models have become important models in cancer biology as they are 

thought to mimic tumour biology more closely than traditional cell lines as a consequence of their in 

vivo cell-cell and/or cell-matrix interactions, 3D architecture and relatively recent derivation2. Many 

reports have suggested that the responses of PDX models to drug treatment are concordant with those 

observed in patients, either at the level of histological subtypes or at the level of individuals. The former 

has led to the use of PDX models in pre-clinical drug trials prior to patient investigations3, while the 

latter has provided a personalised medicine approach, in which PDX models are used as 8avatars9 for 

individual patient responses to therapy in 8co-clinical9 trials4,5. 

For pre-clinical oncology applications, the fidelity of PDX models is of major importance. Across cancer 

types, including non-small cell lung cancer (NSCLC)6, PDX models bear histological similarity to the 

tumours from which they were derived. However, recent high-resolution analyses of breast cancer PDX 

models suggest that PDX models, like patient tumours, can comprise multiple genetically defined 

subclones7 and that these undergo dynamic changes in their relative abundance during PDX 

engraftment and expansion8. Moreover, analysis of PDX model copy number profiles has cast doubt 

upon their representation of tumour molecular heterogeneity, specifically with regard to genomic 

evolution within the mouse9,10. While some of these differences may be attributable to technical issues 

surrounding the estimation of copy number profiles from RNA sequencing data, disagreement about the 

extent and importance of PDX copy number divergence remains when considering DNA sequencing 

data10,11. While some studies have included examples of matched patient-PDX pairs or the derivation of 

multiple PDX models from the same tumour, the genomic evolution during PDX model establishment 

and propagation has not been systematically assessed, the role of spatial sampling is unexplored in this 

context and no study to date has been performed in the context of multi-region patient sequencing data 

to formally establish how well PDX models represent the complex subclonal nature of primary tumours 

and their metastases. 

Lung TRACERx is a prospective cohort study that aims to characterise the evolutionary dynamics of 

NSCLC through a multi-region deep whole-exome sequencing (WES) approach12. Here, we derive PDX 

models from multiple regions of primary NSCLC from patients enrolled in lung TRACERx to determine 

the histological and genetic fidelity of the PDX approach. By subjecting these PDX models to deep WES 
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and comparing this dataset to multi-region WES data from matched primary tumours, we investigate 

key unresolved issues in the use of PDX models, including the extent of genomic bottlenecking upon 

engraftment, the reproducibility of PDX derivation across spatially distinct replicate samples and the 

emergence of de novo genetic alterations in PDX models over time during propagation in mice. 
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RESULTS 

PDX model establishment is variable in multiply-sampled NSCLC tumours 

Primary NSCLCs from patients enrolled in the lung TRACERx study undergo multi-region WES using a 

defined sampling protocol12. To characterise tumour evolution during PDX model engraftment and 

propagation, we obtained matched region-specific tumour material and created patient-matched PDX 

models from a representative patient subset (Figure 1A; Supplementary Figure 1). 145 specimens from 

44 patients undergoing surgical resection of their primary NSCLC were injected subcutaneously in 

NOD/SCID/IL2Rg-/- (NSG) mice, generating 63 xenografts from a cohort representing most NSCLC clinical 

and molecular subtypes (Figure 1B). Either fresh or cryopreserved tumour material was used to initiate 

xenografts, with no observed effect of prior cryopreservation on engraftment efficiency (p = 0.686, Chi-

square test; Supplementary Figure 2A). Quality control for the presence of human lymphocytic 

tumours13,14 revealed that 16 xenografts were human CD45-expressing lymphoproliferations rather than 

keratin-expressing NSCLCs (Supplementary Figure 2B). One case (CRUK0885 Region R3) lacked 

expression of either keratin or hCD45 but was deemed NSCLC as the immunophenotype and tumour 

morphology was consistent with the diagnosed primary tumour subtype of carcinosarcoma. hCD45-

expressing cells were absent from first generation NSCLC PDX models in all cases except CRUK0816 R2, 

where the number of CD45+ cells declined over passages (Supplementary Figure 2C). Thus, our NSCLC 

PDX cohort consisted of 47 xenografts from 22 patients with a successful engraftment rate of 50% at the 

tumour level and 32.4% at the region level (Figure 1B, lower panel). A bootstrapping approach 

suggested that single region sampling within our cohort would have resulted in PDX models for a 

median of 14 patients (Supplementary Figure 2D). Multiple, spatially distinct NSCLC PDX models were 

established for 9 patients (median = 4 regional PDX models per patient; Figure 1B). Mice with no 

apparent xenograft were terminated after a median of 306 days (range 37-402 days; Supplementary 

Figure 2E). Each region-specific PDX model was propagated by transfer of xenograft fragments to naïve 

hosts, maintaining the models independently, exclusively in vivo and generating a large biobank of 

cryopreserved PDX tissue. PDX models could be re-established following cryopreservation 

(Supplementary Figure 2F). Initial P0 PDX models took a median of 91 days before tumour harvest 

(range 37 - 440 days; Figure 1C), with no effect of primary tissue cryopreservation observed. In 

subsequent passages, PDX growth was more rapid, with a median time to harvest of 54 days across 

passages P1-P3 (median values for P1, P2 and P3 were 53.5, 56.5 and 51.0, respectively; Figure 1C).  
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Figure 1: Lung TRACERx pa4ent-derived xenogra: (PDX) cohort overview. 

A) Schema*c of study protocol to derive and expand PDX models within the lung TRACERx study. 

B) Outcomes of regional xenograEs with pa*ent characteris*cs.

C) Time from tumour injec*on to PDX harvest by passage number. Only PDX models for which complete P0-P3 data were available are shown. Bar shows 

median *me for all models. P values obtained using a Friedman test with Dunn9s test for mul*ple comparisons. **** p < 0.001 compared to P0. 

D) The propor*on of pa*ents who were disease-free over a 1600 day period following tumour resec*on is shown grouped by the genera*on (PDX) or not 

(no PDX) of at least one regional PDX model for each pa*ent.
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We observed a trend towards shorter disease-free survival in patients for whom at least one PDX model 

was established (Figure 1D). Although there was a trend towards higher engraftment from tumours with 

a higher T stage (Chi-square test, p=0.077), univariate analysis of clinical characteristics showed no 

significant differences in sex, smoking pack years, pleural invasion, vascular invasion, N stage or TNM 

stage, but showed that patient age and lesion size were significantly associated with PDX engraftment 

(Supplementary Figure 3A-3I). Seven of 24 (29.2%) lung adenocarcinoma (LUAD) tumours engrafted 

compared to ten of 16 (62.5%) lung squamous cell carcinoma (LUSC) tumours (p = 0.053, two-tailed 

Fisher9s exact test; Supplementary Figure 3J), consistent with literature reports of greater engraftment 

rates for LUSC histology NSCLCs15322. However, this patient-level analysis is complicated by our multiple 

sampling of tumours; when considering engraftment by tumour region, 14/52 LUAD (24.5%) and 18/60 

LUSC (30.0%) regions formed PDX models (p = 0.835, two-tailed Fisher9s exact test; Supplementary 

Figure 3J). 

 

Leveraging primary tumour sequencing data of the 44 patient PDX cohort, we found no  differences in 

the overall number of mutations, the proportion of truncal and subclonal mutations, the proportion of 

truncal and subclonal copy number alterations, or mutational signatures in primary tumours which 

yielded at least one PDX model compared to those which did not (Figure 2; Supplementary Figure 4A-

4D). Assessing the presence or absence of specific driver mutations revealed that TP53 mutations were 

enriched in tumours that gave rise to PDX models compared to those that did not (Fisher9s exact test, 

p=0.015; Figure 2; Supplementary Figure 4E). The tumour purity of engrafted regions was higher than 

for non-engrafted regions in patient tumour exome sequencing data (Supplementary Figure 4F) and 

correspondingly, T cell infiltration of the primary tumour regions was lower for engrafted regions as 

estimated using the T cell ExTRECT tool23 (Supplementary Figure 4G), supporting the view that tumour 

sampling (likely the absolute viable tumour cell number injected) is a major factor determining 

engraftment success24. Additionally, when considering copy number metrics, we find that tumours that 

gave rise to PDX models had a higher fraction of the genome subject to loss of heterozygosity 

(Supplementary Figure 4H), although there was no difference in weighted genome instability index 

(Supplementary Figure 4I). 

For a majority of region-specific PDX models, there were strong histological similarities between the 

patient sample and both the early and late PDX tissues (Supplementary Figure 5A), suggesting stability 

during serial engraftment. However, in some cases, we noted histological variation. Some models 
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Figure 2: Genomic characteris4cs of primary tumours. 

Pa*ent primary tumours are split based on whether a PDX model was engraEed from any tumour region (PDX) or not (no PDX). Within each category, 

tumours are ordered according to their total muta*on burden. Top panel: total number of coding and non-coding muta*ons including SNVs, 

dinucleo*de and indel altera*ons. Bars are coloured by the clonality status of altera*ons. Second panel: propor*on of truncal and subclonal muta*ons. 

Third panel: propor*on of truncal and subclonal copy number altera*ons. Fourth panel: propor*on of muta*onal signatures as es*mated across all 

muta*ons. BoWom panel: driver altera*ons on a per tumour basis. The muta*ons shown are the 20 most frequently mutated genes in this pa*ent 

cohort. Muta*ons are coloured by the clonal status of altera*ons.
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diverged immediately; for example, CRUK0949 R1 and R3 showed more widespread clear cell 

differentiation than was present in the corresponding patient samples for those regions, and CRUK0816 

R2 and R5 PDX models presented more epithelioid differentiation than the parent tumour 

(Supplementary Figure 5B). Other models varied between early and late passage with the P0 xenograft 

more closely resembling the patient region than the P3 xenograft; for example, CRUK0941 R2 PDX 

model showed prominent rhabdoid differentiation in hematoxylin and eosin stained sections at the later 

time point that had not been present in either the patient or early passage samples (Supplementary 

Figure 5C), though this is consistent with the cytological pleomorphism seen in this poorly differentiated 

pleomorphic carcinoma. In different CRUK0606 regional PDX models, variation between either tumour 

and P0 PDX models, or P0 and P3 PDX models were observed. Glandular features were a minor 

component of the patient9s regional tissue but became more prominent in PDX models, either in both 

early and late passage models (R5, R8) or in the late passage model only (R1, R6; Supplementary Figure 

5C). 

Genomic bottlenecks associated with engraftment lead to monoclonality of PDX models 

We performed WES on PDX models once at their first establishment in mice (<passage zero=, P0; median 

of 91 days after initial injection) and again at passage three (a median of 279 total days since P0 initial 

injection; Figure 1C), for comparison to primary regions in the TRACERx study. WES data were filtered to 

remove contaminating mouse reads using the bamcmp tool25,26 and, initially, the mouse GRCm38 

(mm10; C57BL/6J strain) reference genome. This resulted in mouse strain-dependent erroneous 

inclusions in mutation calling, which could not be confirmed by Sanger sequencing, leading us to 

develop an NSG-adapted reference genome that improved the accuracy of mouse read removal. 

 

In the knowledge that primary tumour regions generally consist of multiple subclones, we inferred the 

subclonal composition of P0 PDX tumours relative to their primary tumour region of origin. If a single 

subclone was shared between the primary tumour region and the P0 PDX, we defined this as 

monoclonal PDX engraftment; if multiple subclones were found, we defined this as polyclonal PDX 

engraftment (Figure 3A). In PDX models for which the clonality status of the region of origin was known, 

21 of 26 models from heterogenous primary tumour regions were monoclonal, suggesting a major 

bottleneck during PDX engraftment (Figure 3B; Supplementary Figure 6A). A further five monoclonal 

PDX models arose from homogenous primary tumour regions, while 10 PDX models from heterogenous 

showed polyclonal engraftment (Figure 3B; Supplementary Figure 6A). 
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To explore how representative multi-region NSCLC PDX models are of intratumoural heterogeneity, we 

calculated a mutational distance score (see Methods) for each PDX model compared to its region of 

origin and to all other spatially distinct regions from the same tumour. We also calculated the 

mutational distance between regions for each primary tumour in TRACERx421 data. PDX models were 

significantly more similar to their region of origin than to spatially distinct tumour regions within the 

same tumour with the distance to non-region of origin comparable to that between primary tumour 

regions (Figure 3C; median non-region of origin-P0 = 0.486 [IQR 0.414-0.555] versus median region of 

origin-P0 = 0.266 [IQR 0.216-0.417]; p = 7.8x10-7, two-sided Wilcoxon rank sum test). However, we 

observed notable variability in the extent of similarity to the region of origin in different cases. At one 

extreme, the CRUK0606 R2 P0 PDX model was highly similar to its region of origin, with the lowest 

mutational distance within the cohort; the majority of clusters were shared, with only a small number of 

mutations differing between the two (Figure 3D, upper panel). Conversely, the mutations shared 

between the CRUK0995 R3 primary tumour region and the matched P0 PDX were low frequency within 

the primary tumour, and both the primary tumour region and P0 PDX contained many additional 

mutations that were not shared within WES data (Figure 3D, lower panel). This highlights that PDX 

models are more representative of their region of origin than other regions from the primary tumour 

and validates the approach of multi-region PDX generation. Consistently, we observed that mutational 

distance was correlated with a copy number distance metric (see Methods; Supplementary Figure 6B; 

Pearson9s correlation, R = 0.68, p = 6.3e-06). Next, we linked the mutational distance to PDX 

engraftment clonality and found that, by virtue of harbouring more clones from their primary regions of 

origin, PDX models subject to polyclonal engraftment exhibited a lower mutation distance to their 

respective region of origin than models that exhibited monoclonal engraftment (Supplementary Figure 

6C; median monoclonal = 0.29 [IQR 0.23-0.45] versus median polyclonal = 0.238 [IQR 0.182-0.262] ; p = 

0.053, two-sided Wilcoxon rank sum test). We assessed the maximum cancer cell fraction (CCF) of 

clusters across all primary tumour regions to determine the size of the clones that engrafted in PDX 

models, finding that engrafted clones had higher CCF values than non-engrafted clones (Figure 3E; 

median seeding = 0.76 [IQR 0.322-0.905] versus median non-seeding = 0.51 [IQR 0.27-0.832]; p = 0.026, 

two-sided Wilcoxon rank sum test).  

 

In order to classify PDX models whose bottleneck event upon engraftment was characterised by 

predominantly mutation versus copy number events, both distances were z-transformed for 
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Figure 3: Genomic comparison of primary tumour region-early passage PDX pairs.

A) Schema*c representa*on of dissemina*on paWerns.

B) Overview of dissemina*on paWerns (monoclonal, green; polyclonal, blue) for each early passage (P0) PDX sample for which WES data were available. 

Data are ordered by total number of PDX samples.

C) Muta*onal distance between regions within each primary tumour in the lung TRACERx421 cohort, P0 PDX models and other regions of their primary 

tumour and P0 PDX models and their respec*ve region of origin. P values obtained by two-sided Wilcoxon rank sum test.

D) Examples of comparisons of P0 PDX models and their region of origin. The upper panel is the CRUK0606 R2 PDX model, the lower panel is the CRUK0995 

R3 PDX model. These were selected as the greatest and lowest muta*onal distances within the cohort, respec*vely. 

E) Maximum cancer cell frac*on (CCF) of the primary tumour across all regions for PDX engraEing clusters and non-engraEing clusters. P values obtained by 

two-sided Wilcoxon rank sum test.
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normalisation. PDX models from the upper and lower quartiles of the difference between mutation and 

copy number distances were classified as higher mutation or copy number diversity, respectively 

(Supplementary Figure 6D). One regional PDX model from CRUK0748 (R1) was found in the higher 

mutational diversity category, while three other regions (including R6) had higher copy number 

diversity. Consistent with this, more substantial copy number differences, including mirrored subclonal 

allelic imbalance (MSAI) on chromosome 3q, were observed between the CRUK0748 R6 primary region 

and P0 PDX model (Supplementary Figure 6E). 

 

Overall, these data suggest a model in which PDX engraftment induces a genomic bottleneck that 

commonly results in a single tumour subclone engrafting in PDX models. By inference, it is clear that PDX 

models do not represent the full subclonal diversity of the primary tumour. Therefore, since models are 

similar to their regions of origin, collections of PDX models might go further towards fully recapitulating 

intratumour heterogeneity for individual patients through attempts at multi-region PDX engraftment 

(e.g. CRUK0606; Figure 4). 

 

Propagation of PDX models involves on-going genome evolution 

 

The phylogenetic analysis of PDX models also revealed multiple clusters of PDX unique mutations (Figure 

4), suggestive of on-going evolution distinct from the primary tumour region from which the PDX model 

was derived. Comparison of 8late9 passage P3 models and initial P0 models revealed that nine of ten 

polyclonal P0 models were monoclonal with respect to the primary tumour at P3 (Figure 5A), indicating 

that PDX models often do not retain subclonal complexity reflective of the primary tumour region. 

Consistent with this, comparing the mutational distance between the region of origin and P0 PDX pairs 

with P0-P3 PDX pairs showed that P3 PDX models were more similar to P0 than P0 were to the region of 

origin (Figure 5B; median region of origin-P0 = 0.265 [IQR 0.216-0.361] versus median P0-P3 = 0.192 [IQR 

0.154-0.234]; p = 1e-04, two-sided Wilcoxon rank sum test), likely due to the substantial initial genetic 

bottleneck (Figure 3). PDX models where sequential WES was performed supported the notion that 

initial engraftment represented a strong bottleneck in terms of both mutational (Supplementary Figure 

7A) and copy number (Supplementary Figure 7B) diversity, but PDX models were stable once 

established.  
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Figure 4: Phylogene4c tree for CRUK0606 with trees for individual PDX models.
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Some models had sufficient numbers of unique mutations to perform mutational signature analysis for 

both the primary tumour region of origin and PDX models. The CRUK0935 primary tumour regions were 

mismatch repair deficient and both R5 P0 PDX- and R5 P3 PDX-unique mutations showed evidence of an 

on-going MMR signature (Figure 5C). Similarly, we found that CRUK0995 R1 had evidence of APOBEC 

signature mutations in both the primary tumour and the matched late passage PDX model, indicative of 

APOBEC-induced mutagenesis during PDX expansion (Figure 5D).   
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Figure 5: On-going evolu4on in NSCLC PDX models.

A) Overview of dissemina*on paWerns rela*ve to the primary tumour of early (P0) and late (P3) PDX models.

B) Comparison of muta*onal distance between P0 PDX models and the region of origin, and P3 PDX models with the corresponding P0 PDX model. P values 

obtained by two-sided Wilcoxon signed rank test.

C) Matched primary tumour region, early (P0) PDX and late (P3) PDX muta*onal signature analysis for CRUK0935 R5. On the phylogene*c tree (leE), shared 

clusters between the primary tumour and PDX model are coloured blue, those found in the primary tumour region only are coloured green, shared muta*on 

clusters between early and late PDX models are coloured red, while those found in the P0 or P3 PDX models only are coloured orange or yellow-white, 

respec*vely, with diûerent gradient colours deno*ng diûerent muta*onal clusters. Analysis of muta*onal context revealed a signature reminiscent of mismatch 

repair deüciency in primary tumour region-unique, P0 PDX-unique and P3 PDX-unique muta*ons.

D) Matched primary tumour region and P3 PDX muta*onal signature analysis for CRUK0995 R1. On the phylogene*c tree (leE), shared clusters between the 

primary tumour and PDX model are coloured blue, those found in the primary tumour only are coloured green, shared muta*ons between early and late PDX 

models are coloured red, while those found in the P0 or P3 PDX models only are coloured orange or yellow, respec*vely. Analysis of muta*onal context 

revealed a signature consistent with APOBEC mutagenesis in primary tumour region-unique and P3 PDX-unique muta*ons. There were insuûcient P0 PDX-

unique muta*ons to perform this analysis at that *me point.
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DISCUSSION 

 

Here we have investigated the genomic evolution of NSCLC during subcutaneous engraftment and 

propagation in immunocompromised mice. Although a recent pan-cancer WES study found ~10% 

discordance in driver mutations in patient-PDX pairs, indicative of clonal evolution during engraftment27, 

previous studies based on gene expression profiling, SNP array, panel sequencing and/or whole-genome 

sequencing have demonstrated widespread conservation of the genomic landscape in PDX models from 

a range of cancer types6,8,28. However, these studies have been limited in their ability to detect subclonal 

events by a lack of patient tumour multi-region sampling. There have also been conflicting reports about 

the extent of on-going genomic evolution within PDX models, with authors concluding that genetic drift 

in PDX models is either minimal3,11,29 or substantial9,10. To better address these issues, we prospectively 

developed a new PDX collection within the context of a NSCLC patient cohort for whom detailed 

annotation including multi-region whole exome sequencing was available for comparison. 

 

Quality control to ensure model and data validity are key components of PDX model pipelines. Our 

findings regarding the formation of B lymphoproliferations are mirrored in previous PDX studies in 

NSCLC13 and other cancer types30. These are thought to arise from EBV-transformed B cells within 

transplanted material whose expansion is prevented by host surveillance but enabled following 

transplantation in immunocompromised mice31. Measures to ensure authentic engraftment of the tissue 

of interest in xenograft studies are therefore essential, and, since murine lymphomas can also be 

transferred during subsequent passaging32, regular surveillance for CD45+ xenografts is required. For 

sequencing data analysis, PDX workflows typically include a step to remove contaminating mouse reads 

(e.g. using bamcmp25, Xenome33 or other tools34336). We identify mutation calls that arise in PDX samples 

as a result of NSG mouse DNA contamination that are not identified by filtering using the mm10 

reference genome, which is based on the C57Bl/6J strain and has a divergent SNP profile to the NSG 

strain. By adapting the mm10 reference genome by spiking in these SNPs, we generated an improved 

filtering method but ultimately our data support the need for the derivation of a complete NSG 

reference genome assembly for use in xenograft studies. 

 

Few previous studies have investigated multiple PDX models per primary tumour in the context of 

matched patient tumour sampling, so our multi-region tumour sampling data help to reframe the 

interpretation of data derived from single region PDX studies. One assumption of previous PDX studies 
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has been that the success or failure of a single tumour region represents the behaviour of the tumour 

overall. However, we find that distinct spatial regions of the same tumour can have divergent outcomes 

in PDX models, and that engraftment is correlated with tumour purity and inversely associated with T 

cell infiltration, consistent with a study of breast cancer PDX models37. Prior studies also suggest that 

lung squamous carcinomas more readily give rise to PDX than lung adenocarcinomas16319. While we 

found evidence to support this at the patient level, the proportion of regions giving rise to PDX models 

was similar between the two histologies, suggesting that sampling biases (e.g. higher tissue availability 

from larger tumours) may play a role in apparent histology-dependent changes in engraftment rates. 

TP53 mutations have been associated with better engraftment of EGFR-mutant lung adenocarcinomas 

in PDX models38, and we now provide evidence that this extends more broadly within NSCLC. Since 

tumours with higher chromosomal instability were more likely to give rise to PDX models, we speculate 

that this might represent an advantage in adapting to novel environments. 

 

Previous studies using WES or WGS have typically found the conservation of a majority of tumour 

mutations in PDX models but are often limited in their ability to call subclonal mutations by a low depth 

of coverage. Here, using a sequencing approach sufficient to confidently identify subclonal mutations, 

we identify major genomic bottlenecks upon establishment of NSCLC PDX models, consistent with the 

findings that minor tumour subclones can dominate breast cancer xenografts8. In our NSCLC cohort, this 

rendered the majority of PDX models monoclonal with respect to a polyclonal primary tumour. Such 

bottlenecking represents a limitation of single region PDX models, particularly in personalised therapy 

approaches where fully representative tumour sampling is likely to be crucial to determine the 

behaviour of a tumour and somatic events that drive the acquisition of drug resistance. Consistent with 

findings in a recent study that compared PDX samples from the same tumour biopsy with those from 

independent models derived from the same patient (e.g. two metastases)27, PDX models more closely 

represented the tumour region from which they were derived than more distant tumour regions, 

suggesting that developing multiple PDX models per patient might be useful for personalised 

approaches to capture intratumour heterogeneity in a PDX collection. In contrast to data from repeated 

transplantation of established PDX models8, our data suggest that multiple primary tumour subclones 

are capable of PDX engraftment in different engraftment attempts, giving hope that primary tumour 

heterogeneity can be captured within NSCLC PDX libraries. 

 

PDX engraftment and early passaging largely resulted in PDX models that were monoclonal with respect 
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to the patient tumour, and initially polyclonal PDX models became monoclonal over time. However, we 

noted that the clonal architecture of late passage PDX models could still be complex as a result of PDX-

unique mutations that are not found in the primary tumour. These mutations suggested that genomic 

evolution was on-going in the PDX models, and we identified models that were defined by specific 

mutational signatures, such as mismatch repair deficiency and APOBEC mutagenesis. Such PDX models 

might be useful in studies aiming to reduce the mutational rates in these contexts. However, overall, the 

on-going accumulation of mutations over approximately 9 months of expansion in mice contributed less 

to the overall genomic distance of PDX models from primary tumours than did initial bottlenecking 

events. Nevertheless, this finding has implications for long-term modelling using PDX models and 

suggests the value of generating large banks of low passage PDX models and regular screening of the 

cohort for acquired genomic changes. It also represents an important consideration in approaches that 

use PDX models to derive cell lines or organoids for further study7,39,40. 

 

In summary, our study tracking cancer mutations through primary NSCLC engraftment and expansion in 

PDX models reveals a genomic bottleneck during engraftment that often means an individual PDX model 

is representative of only one subclone of the primary tumour. The full representation of truncal tumour 

alterations in PDX models supports their use in cohort level studies and for testing therapeutics 

targeting truncal events. However, the underrepresentation of subclonal heterogeneity in PDX models 

suggests that care should be taken in extrapolating data from single region PDX models in personalised 

medicine approaches41, where the models may not be fully representative of the primary tumour. We 

observed on-going evolution in PDX models but models were generally stable over passage, with de 

novo events contributing less to genomic divergence than initial bottlenecking events, supporting the 

expansion and banking of models, although it should be noted that we have not assessed at the 

cumulative effect of more than three xenograft passages. 
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METHODS 

Generation and maintenance of multi-region NSCLC PDX models 

Ethical approval to generate patient-derived models was obtained through the Tracking Cancer 

Evolution through Therapy (TRACERx) clinical study (REC reference: 13/LO/1546; 

https://clinicaltrials.gov/ct2/show/NCT01888601). Animal studies were approved by the University 

College London Biological Services Ethical Review Committee and licensed under UK Home Office 

regulations (project license P36565407). 

Tissue from patients undergoing surgical resection of NSCLCs was immediately transported on ice from 

the operating room to a pathology laboratory where it was dissected for diagnostic and then research 

purposes. Tumour samples were dissected by a consultant pathologist such that the tissue used to 

generate patient-derived xenograft (PDX) models was considered to be within the same tumour region 

as material sequenced in the TRACERx study. In cases where region-matched tissue could not be 

collected for PDX studies, inter-region (IR) tumour tissue was used. Tumour samples for PDX studies 

were transported to the laboratory in transport medium consisting of MEM alpha medium (Gibco) 

containing 1X penicillin/streptomycin (Gibco), 1X gentamicin (Gibco) and 1X amphotericin B (Fisher 

Scientific, UK). Samples were minced using a scalpel and either resuspended in 180 ul growth factor-

reduced Matrigel (BD Biosciences) for fresh injection, or frozen in ice-cold foetal bovine serum plus 10% 

DMSO, first to -80°C in a CoolCell (Corning) before long-term storage in liquid nitrogen. 

Mice were kept in individually ventilated cages under specific pathogen-free conditions and had ad 

libitum access to sterile food and water. To generate PDX tumours, male non-obese diabetic/severe 

combined immunodeficient (NOD/SCID/IL2Rg-/-; NSG) mice were anaesthetized using 234% isoflurane, 

the flank was shaved and cleaned before tumour tissue in Matrigel was injected subcutaneously using a 

16G needle. Mice were observed during recovery, then monitored twice per week for tumour growth. 

When xenograft tumours formed, tumour measurements were taken in two dimensions using callipers 

and mice were euthanized before tumours reached 1.5 cm3 in volume. Mice without xenograft tumours 

were terminated after a median of 306 days (range 37-402 days). Successfully engrafted tumours were 

propagated through four generations of mice, with banking of histology tissue, OCT-embedded frozen 
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tissue and xenograft DNA at each generation. Cryopreservation of living xenograft tissue was also 

performed at each tumour transfer as per patient tissue. 

Histopathological characterisation 

Paraffin-fixed tissue sections were routinely obtained at PDX passage by fixation of tumour fragments 

(approx. 3x3x3 mm in size) in 4% paraformaldehyde. Samples were fixed overnight at 4°C and stored in 

70% ethanol at 4°C before being processed through an ethanol gradient using an automated pipeline 

and embedded in paraffin. Formalin-fixed paraffin-embedded tissue sections of PDX tumours and their 

equivalent primary tumour region were subjected to hematoxylin and eosin (H&E) staining or 

immunohistochemistry with the following antibodies; anti-CD45 (Clone HI30; Dilution 1:200; Cat No 

304002); anti-keratin (Clone: AE1/AE3; Dilution: 1:100; Cat No: 13160); anti-CD3 (Clone: LN10; Dilution: 

1:100; Cat No: NCL-L-CD3-565); anti- CD20 (Clone L26; Dilution: 1:200; Cat No: M0755). Optimization of 

the antibodies was carried out on sections of human tonsil tissues. Immunostaining was performed 

using an automated BOND-III Autostainer (Leica Microsystems, UK) according to protocols described 

previously42. 

Genomic profiling 

DNA was extracted from PDX models at each transfer using either the PureLink Genomic DNA Mini Kit 

(Invitrogen) or the DNA/RNA AllPrep Kit (Qiagen). For each PDX sample, exome capture was performed 

on 200 ng DNA using a customised version of the Agilent Human All Exome V5 Kit (Agilent) according to 

the manufacturer9s protocol, as previously reported 43. Following cluster generation, samples were 100 

bp paired-end multiplex sequenced on the Illumina HiSeq 2500 and HiSeq 4000 at the Advanced 

Sequencing Facility at The Francis Crick Institute, London, U.K.  

Bioinformatics pipeline 

Alignment 

Initial quality control of raw paired-end reads (100bp) was performed using FastQC (0.11.8, 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and FastQ Screen (0.13.0, 

https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/, flags: --subset 100000; --aligner 
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bowtie2). Subsequently, fastp (0.20.0, flags: --length_required 36; --cut_window_size 4; --

cut_mean_quality 10; --average_qual 20) was used to remove adapter sequences and quality trim reads. 

Trimmed reads were aligned to the hg19 genome assembly (including unknown contigs) using BWA-

MEM (0.7.17)44,45. Alignments were performed separately for each lane of sequencing and then merged 

from the same patient region using Sambamba (0.7.0)46 and deduplicated using Picard Tools (2.21.9, 

http://broadinstitute.github.io/picard/). Local realignment around INDELs was performed using the 

Genome Analysis Toolkit (GATK, 3.8.1)47. Further quality control following alignment was performed 

using a combination of Somalier (0.2.7, https://github.com/brentp/somalier), Samtools (1.9)48, Picard 

Tools, and Conpair (0.2). 

 

For PDX samples, the steps above were repeated twice, aligning once to the hg19 genome assembly and 

once to the mm10 genome assembly. Subsequently, bamcmp25 was used to identify contaminating 

mouse reads in our xenograft data. Only reads aligning solely to hg19 or better to hg19 compared to 

mm10 were included in subsequent downstream processing steps. 

Subsequent processing 

The downstream steps of somatic mutation calling and somatic copy number alteration detections, as 

well as manual quality control were performed analogously to the methods described in the TRACERx 

100 manuscript43.   

Distinguishing multiple independent tumours from a single patient 

To determine whether multiple samples were genomically related, we performed a clustering step on 

the mutations identified in each region. Firstly, all ubiquitous mutations were determined that had a 

VAF greater than 1% in all regions. If more than 10 such mutations existed, the regions were deemed 

genomically related. Conversely, if 10 or less mutations were shared across all regions, a clustering step 

using the R function hclust was performed on the mutation VAFs across all regions. Subsequently, the 

resulting clustering tree was separated into two groups to determine the regions associated with two 

distinct tumours. This step was repeated on the two distinct tumours, respectively to yield a maximum 

of four distinct tumours.  
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Weighted genomic instability index 

The weighted genomic instability index (wGII) score was calculated as the proportion of the genome 

with aberrant copy number relative to the median ploidy, weighted on a per chromosome basis49.  

Fraction of the genome subject to loss of heterozygosity 

The fraction of the genome subject to loss of heterozygosity (fLOH) score was defined as the percentage 

of LOH identified in the genome.  

TRACERx mutation clustering and tree building 

To reconstruct tumour phylogenetic trees of each tumour from the identified somatic mutations, we 

developed a novel computational method to address three key challenges in phylogenetic 

reconstruction: (1) scaling to a high number of primary tumour and metastasis regions per patient, (2) 

correcting for complex evolutionary events, including mutation losses50, (3) removing biologically 

improbable clusters that either are driven by subclonal copy number or are not biologically compatible 

with the inferred evolutionary tree. This novel method has been extensively benchmarked and a 

manuscript detailing the steps as well as its application is currently in preparation. The key steps are 

briefly outlined below. 

 

Firstly, mutations were clustered based on their presence/absence across regions to determine which 

somatic mutations likely occurred in the same tumour subclone during tumour evolution. This pre-

clustering step allows the method to scale to a large number of tumour regions and improves the 

accuracy of identifying mutations that are present in specific samples. Mutations are defined as absent 

in a given region if at least 1 mutant read is observed and are grouped together when they occur in the 

same set of regions. Groups containing less than five mutations are not clustered further, while all other 

mutation groups are subsequently clustered using PyClone (v0.13.1)51. This clustering step is performed 

analogously, as described in the TRACERx 100 manuscript43. 

 

Secondly, tumour phylogenetic trees were reconstructed using the identified mutation clusters. The 

method aims to iteratively enumerate all possible nestings of mutation clusters based on the established 

pigeonhole principle and the crossing rule52. Often a phylogenetic tree cannot be reconstructed due to 

the presence of erroneous clusters that are either due to artefactual mutations or errors in the called 

overlapping SCNAs. Therefore, the method can identify and remove these clusters to allow the 
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reconstruction of a phylogenetic tree. Specifically, our method aims to remove clusters whose genomic 

location is indicative of errors in SCNAs (i.e. mutations co-localised in the genome). Additionally, in order 

to obtain a phylogenetic tree that meets our criteria defined above, clusters are removed such that the 

smallest number of mutations possible are removed from the tree, (under a principle of parsimony). This 

step returns the 8default9 phylogenetic tree.  

Classifying clonality of individual clusters in tumour regions 

Mutation clusters were classified as clonal, subclonal, or absent in every tumour region based on 

comparison with the phyloCCF estimates of the clonal cluster.  

 

In every tumour region, the phyloCCF of mutations for each cluster of interest was compared to the 

clonal cluster. If no significant difference between the cluster of interest and the clonal cluster was 

observed (one-sided Wilcoxon test, p-value = 0.05), this cluster was defined as clonal within that region. 

Additionally, a lower threshold of the clonal cluster was calculated as the lower bound of the 95% 

confidence interval of the clonal cluster phyloCCF, up to a minimum of 0.9. If the upper bound of the 

95% confidence interval phyloCCF of the cluster of interest overlapped with this lower threshold, the 

cluster was also defined as clonal. Conversely, if the phyloCCF estimates of the cluster of interest were 

significantly lower than the estimates of the clonal cluster (p-value < 0.05), and the upper bound of the 

95% confidence interval of the cluster of interest was lower or equal to the lower threshold of the clonal 

cluster, the cluster of interest was defined as not clonal. Finally, if the mean phyloCCF of the cluster of 

interest was greater than 0 this cluster was defined as subclonal, otherwise the cluster was defined as 

absent from the tumour region. 

 

Based on these definitions of clonality for individual clusters in all tumour regions, clonality of individual 

clusters could be defined within the primary tumour and across all PDX samples. Clusters that were 

clonal in all regions of interest (i.e. all primary regions, or PDX samples) were defined as clonal within 

the primary tumour or PDX samples, respectively. Clusters that were subclonal or absent from at least 

one region of interest were defined as subclonal, while clusters that were absent from all regions of 

interest were defined as absent at the tumour level. 
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Analysis 

Classifying dissemination patterns 

Within each primary tumour we identified which cancer clone(s) were involved in PDX engraftment and 

classified the dissemination pattern as monoclonal, if only a single clone of the primary tumour was 

engrafted in PDX samples, or polyclonal, if multiple cancer clones were involved in engraftment. 

Specifically, for each individual PDX sample, if all mutation clusters shared between the primary tumour 

and the sample were found to be clonal within the PDX, the dissemination pattern was defined as 

monoclonal. Conversely, if any cluster defined as subclonal within the PDX sample was also present in 

the primary tumour, the divergence was classified as polyclonal.  

 

If only a single PDX sample was considered for a patient, the patient level dissemination pattern 

matched the PDX level dissemination pattern. If multiple PDX models were sampled and the 

dissemination pattern of any individual PDX sample was defined as polyclonal, the patient level 

dissemination pattern was also defined as polyclonal. Conversely, if all PDX samples followed a 

monoclonal dissemination pattern all shared clusters between the primary tumour and each PDX were 

extracted. If all shared clusters overlapped across all PDX samples, the patient level dissemination 

pattern was classified as monoclonal, while if any PDX sample shared additional clusters with the 

primary tumour, the overall dissemination pattern was defined as polyclonal. 

 

Furthermore, the origin of the seeding clusters was determined as monophyletic, if all clusters appear 

along a single branch, and polyphyletic if clusters were spread across multiple branches of the 

phylogenetic tree. Therefore, if a PDX sample was defined as monoclonal, the origin was necessarily 

monophyletic. For polyclonal PDX models, the clusters were mapped to branches of the evolutionary 

tree. If multiple branches were found, the origin was determined to be polyphyletic, while if only a 

single branch gave rise to all shared clusters the origin was defined as monophyletic. 

 

For patient level definitions a similar approach was used. If any PDX was defined as polyphyletic, the 

overall origin was also defined as polyphyletic. Conversely, if all PDX samples were monophyletic in 

origin, all branches containing shared clusters were counted. If only a single such branch existed, the 

patient level origin was classified as monophyletic.  
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Defining the seeding clones 

The seeding clone is defined as the most-recent shared clone between the primary tumour and PDX 

model. Any cluster present in the primary tumour (defined as clonal or subclonal) and absent from the 

PDX sample was defined as primary specific, any cluster present solely in the PDX and absent from the 

primary tumour was defined as PDX specific, while all clusters present in both the primary tumour and 

PDX were defined as shared.  

 

The shared clusters were mapped to the phylogenetic tree to determine the most recent shared cluster 

using a leaf-up approach. If the shared clusters could be mapped to a single branch of the phylogenetic 

tree, the clonality of the most recent shared cluster was determined in the PDX sample. If the most 

recent shared cluster was clonal in the PDX sample, this cluster was defined as the only seeding cluster 

for the PDX sample. On the other hand, if the most recent shared cluster was subclonal within the PDX, 

the parent cluster was also considered. This was done iteratively until the first shared cluster which was 

clonal in the PDX was found. Clusters along this path were defined as seeding if their phyloCCF value was 

greater than the phyloCCF of the child cluster. 

 

If the shared clusters mapped to multiple branches of the phylogenetic tree, each branch was 

considered separately in the manner described above. If a parent cluster was shared between multiple 

branches, CCF values of both branches were added together and the iterative approach continued until 

the first cluster was found to be clonal in the PDX sample.  

Mutational distance 

The mutational distance gives an approximation of mutational similarity between two regions, and also 

accounts for any large bottlenecks. Specifically, the distance will be large if few mutations are shared, or 

shared mutations occur at very different cellular frequencies; while the distance will be small if most 

mutations occur at similar frequencies across two regions. 

 

Given two regions ! and ", and # being the total number of mutations present in either one or the other 

region, excluding all truncal mutations; the mutation distance is calculated as: 

 

1
#	 &

'

(	)	*
|,,-.,( 2 ,,-1,(| 
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Where ,,-.,(  and ,,-1,(  are the CCF of mutation 2 in region ! or ", respectively. 

 

To calculate a distance for each region, the pairwise distance to each other region of interest is 

calculated and the average across all pairwise distances computed. 

Copy number distance 

The copy number distance gives an approximation of similarity between two regions relating to relative 

gains and losses of segments. If gains/losses of segments relative to ploidy are consistent across two 

regions the copy number distance is small; whereas when they diverge, e.g. a loss in one region and 

neutral copy number state in the other, the distance increases. 

Statistical information 

Statistical tests were performed in R (versions 3.6.3 & 4.1.1) or Prism 9.2.0. No statistical methods were 

used to predetermine sample size. Details of all statistical analyses are provided within figure legends. 

For all statistical tests, the number of data points included are plotted or annotated in the 

corresponding figure; and all statistical tests were two-sided unless otherwise specified.  

Data Availability 

The whole exome sequencing data (from the TRACERx study and from PDX models derived from 

patients enrolled in TRACERx) used during this study have been deposited at the European Genome3

phenome Archive (EGA), which is hosted by The European Bioinformatics Institute (EBI) and the Centre 

for Genomic Regulation (CRG) under the accession codes XXXXX; access is controlled by the TRACERx 

data access committee. Details on how to apply for access are available at the linked page. Biological 

materials, including PDX models generated within this study, will be made available to the community 

for academic non-commercial research purposes via standard MTA agreements upon publication. 

 

Code Availability 

All code to reproduce figures can be found here. All code, unless already publicly available, will be made 

accessible upon publication. 

(https://zenodo.org/record/7434888?token=eyJhbGciOiJIUzUxMiIsImV4cCI6MTY4MzkzMjM5OSwiaWF0

IjoxNjcwOTY4Nzg3fQ.eyJkYXRhIjp7InJlY2lkIjo3NDM0ODg4fSwiaWQiOjI4NDI3LCJybmQiOiIxMjQ1ZmI1NC
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J9.EzByesRNyzrcLt13JI-6_3EKZ5v4u1O-q13d6q7Q75mK-0bIgQRHBAGBaFa9k-

CpA72ghCV6hgwiYhhut_ifaw). 
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