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32 Abstract

33 The endothelial blood-brain barrier (BBB) strictly controls immune cell trafficking into the central 

34 nervous system (CNS). In neuroinflammatory diseases such as multiple sclerosis, this tight control is 

35 however disturbed leading to immune cell infiltration into the CNS. The development of in vitro 

36 models of the BBB combined with microfluidic devices has advanced our understanding of the 

37 cellular and molecular mechanisms mediating the multi-step T-cell extravasation across the BBB. A 

38 major bottleneck of these in vitro studies is the absence of a robust and automated pipeline suitable 

39 for analyzing and quantifying the sequential interaction steps of different immune cell subsets with 

40 the BBB under physiological flow in vitro.

41 Here we present the Under-Flow Migration Tracker (UFMTrack) framework and a pipeline built 

42 with it to study the entire multi-step extravasation cascade of immune cells across brain 

43 microvascular endothelial cells under physiological flow in vitro. UFMTrack achieves 90% track 

44 reconstruction efficiency and allows for scaling due to the reduction of the analysis cost and by 

45 eliminating experimenter bias. This allowed for performing an in-depth analysis of all behavioral 

46 regimes involved in the multi-step immune cell extravasation cascade. The study summarizes how 

47 UFMTrack can be employed to delineate the interactions of CD4+ and CD8+ T cells with the BBB 

48 under physiological flow.

49

50 Author summary

51 Immune cells continuously travel through our body to perform immune surveillance. They travel 

52 within blood vessels at a very high speed, and slow down upon reaching their target organ by the 

53 sequential interaction with different adhesion and signaling molecules on the vascular endothelial 

54 cells. 

55 The study of molecular mechanisms mediating this multi-step extravasation of immune cells has 

56 been significantly advanced by in vitro cultures of microvascular endothelial cell monolayers. The 
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57 dynamic interaction of the immune cells with endothelial monolayers can be imaged over time in 

58 vitro in microfluidic devices under physiological flow. The manual analysis of the acquired imaging 

59 data is time-consuming and prone to experimenter error. Analysis automation is however hampered 

60 by the similar appearance of the unlabeled immune and endothelial cells, and by the flow causing 

61 rapid immune cell displacement.

62 Here we introduce UFMTrack, the under-flow migration tracker framework allowing for 

63 automated analysis of immune cell interactions with microvascular endothelial cells under flow in 

64 vitro. UFMTrack performs comparably to manual analysis of an experienced researcher, eliminates 

65 experimenter�s bias, and improves the accuracy of the immune cell tracking. Taken together, 

66 UFMTrack sets the stage for scalability of in vitro live cell imaging studies of immune cell 

67 extravasation.

68

69 Keywords

70 Automated analysis, blood-brain barrier, cell tracking under flow, deep learning, flow chamber, 

71 leukocyte trafficking, live cell imaging, machine learning, microfluidics, multiple sclerosis, T cell 

72

73

74
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75 Introduction

76 Immune cells continuously travel throughout our body as a means of immune surveillance. 

77 Moving within the bloodstream allows for their fast transport to even distant sites but requires 

78 extravasation once they have reached their target organ. Immune cell extravasation across the 

79 vascular wall is a multi-step process regulated by the sequential interaction of different signaling and 

80 adhesion molecules on the endothelium and the immune cells (1,2). These molecular interactions 

81 mediate distinct sequential steps, namely tethering and rolling to reduce travel speed, shear 

82 resistant arrest, polarization and crawling of the immune cell on the luminal surface of the 

83 endothelium, and finally immune cell diapedesis across the endothelial layer (1,3,4). 

84 The precise molecular mechanisms mediating the multi-step immune cell extravasation in each 

85 organ depend on the immune cell subset but also the specific characteristics of the vascular bed. For 

86 example, in the central nervous system, the endothelial blood-brain barrier (BBB), establishes a tight 

87 barrier that strictly controls the transport of molecules across the BBB, ensuring tissue homeostasis 

88 required for neuronal function. The BBB similarly controls immune cell trafficking into the CNS. Thus, 

89 accounting for these special barrier properties, unique characteristics of the multi-step T-cell 

90 migration across the BBB have been described. For instance, T cells crawl for very long distances 

91 against the direction of blood flow on the surface of the BBB endothelium in search of permissive for 

92 diapedesis locations (5�7). Research on T-cell interaction with the BBB has been already successfully 

93 translated into therapies in the clinic (8,9).

94 Exploring the entire multi-step extravasation of immune cells across the BBB has been 

95 significantly advanced by making use of in vitro BBB models maintaining their barrier properties and 

96 placing them into microfluidic devices. Combined with microscopic setups that allow for in vitro live-

97 cell imaging of the immune cell interaction with the brain endothelial monolayer under physiological 

98 flow over time, the molecular mechanisms mediating the sequential interaction of T cells during 

99 extravasation across the BBB have been delineated (1). These studies have shown that upon their 
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100 arrest, T cells polarize and either crawl at speeds between 3 to 10 µm/min over the brain endothelial 

101 monolayer or probe the endothelial monolayer by remaining rather stationary and sending cellular 

102 protrusions into the endothelial monolayer (10,11). Both processes can lead to diapedesis of the T 

103 cells across the brain endothelial monolayers, a process that lasts at least 3 to 5 minutes, with some 

104 immune cells observed to protrude and retract several times prior to finalizing a prolonged 

105 diapedesis process to the abluminal side of the brain endothelial monolayer (7,12). Finally, T cells 

106 that have successfully migrated across the brain endothelial monolayer usually continue to migrate 

107 underneath the endothelial monolayer (13,14).

108 The data analysis of these �in vitro flow assays� requires time-consuming offline frame-by-frame 

109 analysis of the imaging data by individual experimenters, in which the dynamic interactions of each 

110 individual immune cell has to be followed over the entire time of the assay manually and assigned to 

111 specific categories. Performing such analysis is tedious and an accurate assignment of the different 

112 T-cell behaviors requires experience. Thus, this manual analysis is prone to inevitable errors as well 

113 as to subjective judgments of the different experiments. Furthermore, the time-consuming manual 

114 T-cell tracking limits the number of events that can be studied and thus also the statistical power of 

115 the analysis. 

116 Automation of the analysis of the recorded multi-step T-cell extravasation across the BBB in the 

117 microfluidic device would thus be highly desirable. It is however hampered as these assays are 

118 usually performed with unlabeled cells and imaged by phase contrast, which poses a challenge due 

119 to the similar grayscales and morphology of the immune cells interacting with the brain endothelial 

120 cells. Further challenges include superfused T cells that in the presence of shear flow instantly 

121 appear within the field of view (FoV) and are either suddenly displaced over a certain distance or 

122 completely detached and washed away. Proper analysis of these events is mandatory for reliable T-

123 cell tracking but also with respect to the analysis of the overall avidity of the dynamic T-cell 

124 interaction steps with the underlying brain endothelium. Thus, it was compulsory to establish a 
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125 tracking solution that accounts for the effect of the flow on the migrating cells and the distinct 

126 migration regimes. 

127 Here we introduce the developed under-flow migration tracker (UFMTrack) framework that 

128 systematically addresses the above-mentioned hurdles, allowing it to perform automated tracking 

129 and analysis of cell-cell interactions. We also show a successful implementation of UFMTrack to 

130 build an analysis pipeline for T-cell interactions with brain microvascular endothelial cells in vitro 

131 under physiological flow. UFMTrack reaches 90% T-cell tracking efficiency, performing comparably to 

132 manual analysis while eliminating the experimenter�s bias and improving the accuracy of T-cell 

133 tracking. Therefore, it enables significant savings in the labor force and time for data analysis.

134
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Figure 1. In vitro analysis of the multistep cascade of T-cell migration across the BBB model under 

physiological flow. A. In vitro under-flow assay setup. T cells were superfused on the pMBMEC 

monolayer and their migration under flow was observed using phase-contrast imaging modality. 

Imaging was performed with a time step of 10 sec/timeframe. B. In vitro flow assay timeline. During 
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the accumulation phase under flow with the shear stress of 0.1 dynes/cm2 T cells adhered to the 

pMBMEC monolayer. After 5 min (timeframe 30) the shear stress was increased to 1.5 dynes/cm2, 

leading to rapid detachment of not firmly adhering T cells. Analysis of the post-arrest T-cell behavior 

was thus starting at 5.5 min (timeframe 33). tf = timeframe. C. Example of phase-contrast imaging 

data. Red arrow � crawling T cell; yellow arrow � fully transmigrated T cell; yellow arrow-head � 

transmigrated part of a partially transmigrated T cell; red V arrowheads � pMBMECs. D. Schematic 

representation of distinct T-cell behavior regimes that are detected and analyzed using the 

developed UFMTrack framework. Crawling cells migrate continuously, while probing cells interact 

with the pMBMECs and move around the interaction point within 2 cell-size (20 ��) as indicated 

by the arrows. Side and top views are shown.

135

136

137 Results

138 To design and develop the automated T-cell under-flow migration analysis framework UFMTrack 

139 framework presented here, we made use of in vitro imaging datasets following T-cell migration 

140 across primary mouse brain microvascular endothelial cells (pMBMECs) under physiological flow in 

141 vitro. The framework combines three components: T-cell segmentation and transmigration 

142 detection, T-cell tracking under flow, and analysis of each of the steps of the multistep T-cell 

143 migration cascade. Segmentation and transmigration detection of the T cells, migrating on the 

144 pMBMECs is performed with a 2D+T U-Net-like convolutional neural network (15). T-cell under-flow 

145 tracking algorithm was formulated as a constrained optimization problem.

146 Next, we describe the methods and algorithms employed to develop UFMTrack. Links to the code 

147 and the datasets used for model training can be found in the Data Availability section.

148
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149 I. T-cell segmentation

150 Reliable cell segmentation is crucial for reliable cell tracking. In the phase-contrast imaging 

151 modality, it was impossible to achieve reliable differentiation between T cells and endothelial cells of 

152 the pMBMEC monolayer based on pixel intensity. For detection of T-cell transmigration across 

153 pMBMEC monolayers (diapedesis), sufficiently reliable cell segmentation of the transmigrated T cells 

154 was also required. To achieve this, we have designed 2D and 2D+T U-Net like (15) fully convolutional 

155 neural network-based models for multitask learning. The models were trained for the prediction of 

156 three maps: cell probability, the probability that the T cell is below the pMBMEC monolayer, and cell 

157 centroids. The models performed predictions based on the gray-scale of the respective phase-

158 contrast images in the case of the 2D model, or sequences of 5 timeframes in the case of the 2D+T 

159 model. The models were implemented in TensorFlow (16). The training was performed using the 

160 annotation mask for T cells (�T cell mask�) and the mask of the transmigrated part of the T cells 

161 (�transmigration mask�), the centroids map, and the weight map (Figure 2).They have approximately 

162 3M and 8M parameters correspondingly and the model architectures are summarized in 

163 Supplementary Tables 1, 2. Details on models� implementation, training and image processing can be 

164 found in the �Segmentation models� section of the Supplementary Material.

Figure 2. Example of data used for training of the T-cell segmentation model. From left to right: 

Phase-contrast microscopy image of T cells migrating on top of the pMBMEC monolayer; 
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annotated T cell mask; annotated mask of transmigrated part of T cells; T cell centroids; ����� 
weight map. The bottom row shows zoom-in on the highlighted area.

165

166 For the prediction of the T cell mask the 2D+T model outperformed the 2D model by notable 9% 

167 according to the average precision (AP) metric (Table 1). At the same time for the transmigration 

168 mask, which is much more difficult to infer, the 2D model performance reached only 54% which is 

169 not sufficient for reliable detection of T cells that had migrated across the pMBMEC monolayer. In 

170 this task, the 2D+T model outperformed the 2D model by 32% AP. We observed that the 2D+T model 

171 was sensitive to frame misalignment, leading to false positive detection of transmigrated T cells. 

172 Thus, to generate the preliminary T-cell masks used for frame alignment and histogram 

173 normalization we employed the 2D model. Afterward, for the T-cell segmentation and 

174 transmigration detection, we employed the 2D+T model, followed by a watershed algorithm based 

175 on the inferred T cell mask and the cell centroids as seed points. A stitched phase-contrast image 

176 sequence can be seen in Supplementary Video 1, and overlayed with the segmented cells and 

177 highlighted transmigration mask in Supplementary Video 2.

178

179 Table 1. Comparison of the performance of the 2D and 2D+T-cell segmentation models. 

Performance, AP

2D 2D+T

T Cell mask 86.12% 95.26%

Transmigration mask 50.56% 82.74%

180

181 After segmentation we suppressed the noise by discarding small objects with an area below 30 

182 pixels (mean area of a T cell is about 400 pixels). For each T cell we evaluated its coordinates as 
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183 geometric mean coordinate, angle of the longer axis, and elongation �=
∑� (�′�― �′0)2∑� (��― �′0)2 ,where �′�, ��′ 

184 are projections of the �-th T cell mask pixel coordinates on the orthogonal long and short axes of the 

185 T cell, and �′0, �′0 are the corresponding projections of the geometrical center of the T cell, and the 

186 summation is performed over all T cell mask. Additionally we evaluated the mean T cell 

187 probability  ����� =
1����∑� �����, �, mean transmigration probability ��� =

1����∑� ���, �, and cell 

188 transmigration coefficient as �� =
1����∑�min (���, �, �����, �)�����, �   , where ���� is number if cell pixels and �����, �, 

189 ���, � are the T cell and transmigration probabilities for �-th pixel in the predicted T cell mask.

190

191 II. T-cell tracking

192 The presence of flow causes several types of discontinuous events that were managed with a 

193 specialized tracking algorithm. These are: 1) the sudden appearance of T cells in the field of view 

194 (FoV), 2) the sudden detachment of a T cell followed by its disappearance from FoV, and 3) the 

195 displacement over larger distances of T cells that do not adhere firmly to the pMBMECs. The primary 

196 inspiration for our approach was the Conservation Tracking algorithm (17). By performing global 

197 optimization constrained to controlled probabilities of T-cell appearance, disappearance, and 

198 displacement due to the flow at every time point, we could consistently reconstruct the T cell tracks. 

199 This procedure favors the reconstruction of long T-cell tracks, while at the same time allowing for 

200 tracking of the T cells which detach or are displaced by the flow (�accelerated T-cell movement�) 

201 over a longer distance ( > 8 ��) with speed significantly higher than their crawling speed. 

202 The tracking consists of four main steps: linking, search for track candidates, global track 

203 consistency resolving, and resolving the track intersections. At the linking step we identified all 

204 possible connections of T cells between the timeframes (Figure 3C). 
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205 Next, during the search for track candidates step, we aimed to find continuous track segments of 

206 T cells or under-segmented groups of T cells crawling on top of or below the pMBMEC monolayer 

207 without accelerated movement segments on the T cell track characterized by rapid T cell 

208 displacements. The whole dataset of T cells across all time points was represented as a graph. Each 

209 vertex corresponds to a T cell (multiplicity m=1), or a group of potentially under-segmented T cells 

210 (m>1). The vertices are connected according to links obtained at the linking step. Track segments 

211 were found by performing global optimization to find consistent connectivity of vertices across the 

212 time points (Figure 3D), by employing an approach inspired by the conservation tracking algorithm 

213 summarized in Schiegg et al. (17). Optimization was performed using the CP-SAT constrained 

214 optimization procedure using the open source OR-Tools library (18). 

215 Next, resolving global track consistency was performed. In this step, the scope of T cell tracking is 

216 shifted from individual nodes (representing T cells at individual timeframes as well as groups of 

217 under-segmented T cells) to the track segments � unambiguous sequences of nodes, and vertices at 

218 the endpoints of the segments. These are track start and end points, points of merging and 

219 separation of track segments in case of under-segmentation, as well as ambiguous points on a track. 

220 The latter was identified by sudden T cell displacement, which is a hallmark of detaching and 

221 reattaching T cells and T cells transitioning from properly segmented to under-segmented T cells or 

222 vice versa (Figure 3E). This was followed by the search for potential missing track segments due to 

223 accelerated T cell movement under flow as well as missing links in the track crossing points. Both are 

224 characterized by large displacement lengths such that they were not detected during the linking 

225 step, thus we will refer to both of them as �jumps� in this section. We have also eliminated short and 

226 thus unreliable segments, as well as segments which multiplicity was found to be �= 0 (Figure 3F). 

227 Afterward, we separated the segments into two categories, namely segments with multiplicity 

228 �= 1, i.e., tracks of isolated T cells, and segments with multiplicity �> 1 i.e. tracks of under-

229 segmented groups of T cells, where tracks of several T cells intersected. Finally, we extended the 
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230 tracks of isolated T cells into the intersection if the branching vertex had a multiplicity of � and was 

231 splitting in exactly � segments with multiplicity �= 1 (Figure 3G).

232 Lastly, to obtain reliable T cell tracks, we performed resolving the track intersections, i.e., 

233 identifying track segments corresponding to the same T cell before and after the under-segmented 

234 track region (Figure 3H). 

235 Detailed information on the developed under-flow T cell tracking algorithm is given in the �T-cell 

236 tracking� section of the Supplementary Material.

237 III. T-cell migration analysis

238 Next, we performed the T-cell migration analysis based on the reconstructed T cell tracks. We 

239 selected tracks which were inside the fiducial area of the FoV, namely coordinates of the T cell at all 

240 timepoints along the track were located at least 25 µm away from the bounding box enclosing all 

241 segmented T cells. Next, tracks of T cells that were touching another T cell at the end of the assay 

242 acquisition were excluded, since T cells directly adjacent to each other can hide the start of T cell 

243 transmigration across the pMBMEC monolayer and thus compromise correct detection and 

244 quantification of this step. Additionally, only tracks which had T cells assigned in at least 6 

245 timeframes during the physiological flow phase. We also require T cells to be assigned for at least 

246 75% of timeframes along the track. Under-segmented parts of T cell tracks were not considered. 

247 Examples of selected tracks can be seen in Supplementary Video 3. 
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Figure 3. The T-cell tracking pipeline. A. Segmentation and centroids of two migrating T cells under 

flow over time. B. Nodes corresponding to segmented T cells. Node sizes and colors correspond denote 

the multiplicity estimate of a node. C. Nodes together with links between adjacent in space and time 

nodes form graph. D. Selected links are obtained with global optimization on the graph. E. Graph of 

segments and vertices obtained according to node multiplicity. F. Resolving global segment multiplicity 

consistency with global optimization on the graph. Additionally search for rapid displacement of 

segmented T cell due under-segmentation or to presence of flow is performed. G. Extension of tracks of 

individual T cells into the track intersection. H. Resolving track intersections.

248

249 After exclusion of the tracks of the cellular debris which were misclassified as T cells during 

250 segmentation step using a dedicated �not-a-T-cell� classifier, we performed identification of 
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251 transmigration (Supplementary Figure 5), probing and crawling migration regimes, as well as 

252 accelerated movement along the T cell track. Detailed information on the analysis of the T cell tracks 

253 is given in the �T-cell migration analysis� section of the Supplementary Material.

254 Finally, for each track we evaluated motility parameters for each of the following migration 

255 regimes: probing before the transmigration, crawling before the transmigration, all crawling above 

256 pMBMECs monolayer including T cell crawling segments after first transmigration attempts, all 

257 crawling below pMBMECs monolayer, whole T-cell track excluding accelerated movement and 

258 tracking inefficiency regions, as well as whole T-cell track. Specifically, we evaluated the following T-

259 cell motility parameters: duration of each migration regime, the total vector and absolute 

260 displacements, the migration path length, the average migration speed (displacement over time), 

261 average crawling speed (path length over time), and finally the mean and standard deviation of the 

262 instantaneous speed. For the accelerated movement regime, we evaluated migration time, 

263 displacement, and average speed. 

264

265 IV. Analysis of trafficking datasets

266 Having developed a full pipeline based on the UFMTrack framework for automated analysis of 

267 the multi-step T-cell migration cascade across the BBB model, we next aimed to compare results of 

268 automated analysis with previous studies, assess the capacity of the framework to gain novel insight 

269 into T-cell migration under flow, and evaluate its performance as compared to manual analysis. 

270

271 1. CD4+ T cell analysis

272 To this end we first analyzed a total of 18 imaging datasets dedicated to understanding the multi-

273 step migration of CD4+ T cells across non-stimulated (n= 6), TNF stimulated (n=5) and IL1-β-

274 stimulated (n=7) pMBMEC monolayers under physiological flow with the developed pipeline. 
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275 In these in vitro live cell imaging datasets, the phase-contrast imaging was performed as 

276 described in the "Data acquisition� section above. The T-cell accumulation phase corresponding to 

277 the shear stress of 0.1 dynes/cm2 lasted for 32 timeframes (5min) followed by conditions of 

278 physiological flow (shear stress 1.5 dynes/cm2) for the subsequent 160 timeframes (27min). After 

279 increasing to physiological flow rates(10), a significant number of T cells detached from the pMBMEC 

280 monolayers, with higher numbers of T cell detaching from non-stimulated pMBMEC monolayers 

281 when compared to those stimulated with pro-inflammatory cytokines as detected by the distribution 

282 of the track ending times between 5 and 30 min. (Figure 4A). 

283 Analyzing these datasets with the established UFMTrack framework the type of T-cell behavior 

284 for each of the detected T-cell tracks and the aggregated T-cell behavior statistic was obtained for 

285 the non-stimulated and stimulated pMBMEC monolayers (Figure 4B). The data obtained with 

286 UFMTrack were found to be in accordance to our previous observations obtained by manual frame-

287 by-frame analysis (10,12,19). We further obtained the data for T-cell migration speed, T-cell 

288 displacement and T-cell path lengths for the crawling T cells, as these are the primary cell motility 

289 parameters. As shown in Figure 4C-H, we observed statistically significant differences in the mean T-

290 cell motility parameters depending on the pMBMECs stimulation condition. Furthermore, we 

291 observed differences in the shape of the distribution of T-cell crawling speeds which is consistent 

292 with our previous reports of underlying differences in the mechanisms mediating T-cell crawling on 

293 non-stimulated versus cytokine stimulated pMBMECs (19). While not statistically significant, we 

294 noted a trend towards an increased variance of the T cell instantaneous speed on stimulated 

295 compared to non-stimulated pMBMECs (Figure 4G). This suggests that T-cell crawling is often 

296 interrupted by T-cell recognizing specific cues on the stimulated endothelium. The T cell meandering 

297 index (MI) distribution was high on non-stimulated and lower on stimulated pMBMECs (Figure 4H) 

298 underscoring that cytokine stimulation enhances directed T-cell movement on the pMBMEC 

299 monolayer.
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300 Since the analysis was performed automatically with UFMTrack, it allowed for deeper insights 

301 into the T-cell migration behavior on the pMBMEC monolayers than obtained by manual frame-by-

302 frame analysis. Specifically, the detection of accelerated movement by UFMTrack enables the 

303 researcher to quantify the kinetics of individual T-cell detachment from the endothelium rather than 

304 simply quantifying a bulk T-cell detachment rate. These kinetics of detachment are reflected in the 

305 average speed experienced during accelerated movement, which is significantly lower for the IL1-b 

306 condition (Figure 4I) suggesting the need to break more bonds with the endothelium when pro-

307 inflammatory cytokines are present. 

308 As our UFMTrack workflow achieves sufficient segmentation efficiency to detect T cells below the 

309 pMBMEC monolayer as well as T-cell transmigration across the pMBMEC monolayer it also enables 

310 investigation of T-cell movement after the transmigration step. In Figure 4J we show the distribution 

311 of the migration speed for the transmigrated CD4+ T cells. Interestingly, cytokine stimulation of 

312 pMBMECs although applied from the luminal side also affected T-cell movement at the abluminal 

313 side of the pMBMEC monolayer. While in the microfluidic device used in the present study the 

314 migration of T cells below the pMBMEC monolayer may not be biologically relevant, this analysis 

315 option will be valuable for future studies involving multilayer in vitro BBB models including the 

316 vascular basement membrane in addition to pericytes and astrocytes to mimic the entire 

317 neurovascular unit (7,20). 

318 Importantly, our UFMTrack automatically detects and characterizes unusual events, such as 

319 reverse T-cell transmigration, that are easily overlooked with manual counting. We do not present 

320 the statistics here, as only a few such events were observed. When applied to the multilayer BBBs in 

321 forthcoming in vitro models however, systematic detection and analysis of these rare events will be 

322 important to understand T-cell migration in immune surveillance.
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Figure 4. Analysis of CD4+ T-cell tracks. A. Start and end time distribution of CD4+ T-cell tracks on 

non-stimulated or TNF or IL-1 stimulated pMBMECs. More T cells detach from the non-

stimulated pMBMECs after 5 minutes, when the flow is increased to physiological levels. B. 

Quantification of CD4+ T-cell behavior in the respective categories obtained on non-stimulated 

and TNF and IL-1 stimulated pMBMECs. Error bars show statistical error of the mean. (see text 

for details). C-H. Motility parameters of the crawling CD4+ T cells obtained for the three 

endothelial stimulatory conditions. Distributions of T-cell path length (C), displacement (D), 

crawling speed (path/time) (E), migration speed (displacement/time) (F), variability of 

instantaneous T-cell crawling speed along the track (standard deviation, G), and meandering index 

(H). I. Distribution of CD4+ T-cell accelerated movement (AM) speed is a proxy metric for the T-cell 

adhesion to the healthy or inflamed endothelium. J. Migration speed distribution of the 
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transmigrated CD4+ T cells. Stimulation applied to the luminal side of pMBMECs affects T-cell 

migration at the abluminal side of pMBMECs after their transmigration.

FT - T cells performed full transmigration, UT � T cells performed uncompleted transmigration. 

323

324 2. CD8+ T cells analysis 

325 As we have previously shown that the multi-step T-cell extravasation across pMBMEC 

326 monolayers differs between CD4+ and CD8+ T cells, we next analyzed 2 datasets studying the multi-

327 step migration of CD8+ T cells across non-stimulated (NS) and TNF/ interferon-gamma (TNF/IFN-) 

328 stimulated pMBMEC monolayers under physiological flow over 161 timeframes (27 min). The CD8+ T 

329 cells were slightly different in size and appearance when compared to the CD4+ T cells used for 

330 training of the segmentation model. To benchmark our established UFMTrack pipeline in this more 

331 difficult configuration, the datasets were first manually analyzed by 4 experimenters: one advanced 

332 experimenter with 4 years of experience (AdEx) and three unexperienced experimenters who 

333 received comparable 2-hour introduction and training (Ex1-Ex3). The analyses were performed on 

334 the subset of the acquisition, 161 timeframes long starting from timeframe 31.

335 Manual cell analysis and tracking was as described in the �Materials and Methods� section 

336 separately for each of the 8 tiles of the tiled acquisition. Next all crawling CD8+ T cells which did not 

337 perform any transmigration were manually tracked for the timespan after the flow was increased to 

338 the physiological level using the manual tracking in ImageJ. 

339
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Figure 5. Comparison of automated analysis with UFMTrack and manual analysis of the CD8+ T-

cell tracks. A-C: CD8+ T-cell behavior statistic obtained for non-stimulated (NS) and cytokine 

stimulated pMBMECs as obtained manually by four experimenters, as well as automatically with 

UFMTrack. A. Quantification of CD8+ T-cell behavior in the respective categories obtained on non-

stimulated and TNF/IFN- stimulated pMBMECs is consistent with results obtained by manual 

frame-by-frame analysis. Cytokine stimulation of pMBMECs increases T-cell probing behavior (B) as 

well as T-cell transmigration rate (C). Error bars show standard deviation of the manual analysis, 

and statistical error of the mean for automated analysis. Points correspond to individual 

experimenters. D. Counts of CD8+ T cells obtained manually by four experimenters as well as 
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automatically by UFMTrack. The T-cell detection efficiency is above 90%. Error bars show standard 

deviation of the manual analysis, and statistical error of the mean for the automated analysis. Points 

correspond to individual experimenters. E. Detection efficiency of crawling CD8+ T cell tracks 

between the manual and automated analysis. F-I. Comparison of CD8+ T-cell crawling speed 

(path/time) (F, G) and migration speed (displacement/time) (H, I) on non-stimulated (F, H) and 

cytokine stimulated (G, I) pMBMECs. The T-cell position assignment error in manual tracking leads 

to biased crawling speed estimation. J. Comparison of the analysis time (per cell) required for 

behavior analysis and tracking of CD8+ T cells. K. Total analysis time (per dataset) for behavior 

analysis and tracking of CD8+ T cells. Comparison shown for manual analysis with tracking of 

crawling cells only (Crawling manual), time estimate for manual analysis with tracking of all cells (All 

manual), and the in-depth automated analysis of all cell tracks with UFMTrack (All auto).

FT - T cells performed full transmigration, UT � T cells performed uncompleted transmigration, NT 

- T cells did not perform transmigration. 

340

341 First, we compared the CD8+ T cell behavior statistics obtained manually and by our automated 

342 analysis pipeline (Figure 5A-C). The results obtained by automated analysis were in full agreement 

343 with the manual analysis performed by the experienced experimenter. At the same time the data 

344 highlight the variability of the results from the unexperienced experimenters, confirming the 

345 potential for significant experimenter bias. 

346 We also show detection efficiency of T cells by the UFMTrack. To achieve this goal we combined 

347 the numbers of CD8+ T cells detected in each tile by manual analysis. Due to the overlap between the 

348 individual tiles, some CD8+ T cells are seen more than once. To obtain an estimate of the total CD8+ T 

349 cell count detected manually, we scaled the number of CD8+ T cells accordingly to the number of 

350 detected unique T-cell tracks (see below). By this approach we found T-cell detection efficiency to be 

351 above 90% (Figure 5D). Lower efficiency in the NS condition can be explained by the increased T-cell 

352 density. These findings set the appropriate T-cell density for automated analysis of their migration 
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353 behavior on pMBMEC monolayers to 200-300 cells per FoV of the size of 3.8 mm2, or 50-80 

354 cells/mm2.

355 Next, we compared the T-cells tracks as obtained manually by three experimenters as well as 

356 automatically by our UFMTrack. To this end we first matched the tracks in adjacent tiles to obtain 

357 the tracks on the whole imaging area avoiding multiple counts of the same track. This was achieved 

358 by pattern matching with initial offsets between tiles obtained by an automatic frame alignment 

359 procedure which was performed as part of the automatic analysis. We considered T-cell tracks 

360 observed in different tiles to be tracks of the same T cell if ��� >
1

2
����―0.8, where ��� is the fraction 

361 of timepoints along a track at which the distance between the T cells was below 17 µm and ���� was 

362 the fraction of timepoints along a track at which distance between cells was above 25 µm. We used 

363 the same approach to match the T-cell tracks obtained by each experimenter, as well as with the 

364 automated UFMTrack. To compare performance in an objective manner, we excluded manually 

365 obtained tracks which lay outside of the fiducial volume of the automated analysis, as well as T cells 

366 that were touching another T cell in the end of the acquisition as those were also excluded from the 

367 automated analysis. We then took as 100% the sum of all T-cell tracks detected manually and 

368 evaluated the fraction of the T-cell tracks detected by each experimenter as well as automatically by 

369 our UFMTrack. 

370 In Figure 5E, we show that our pipeline achieves a comparable T-cell tracking efficiency when 

371 compared to the manual analysis. While its performance was not superior to that of the 

372 experimenter with 4 years of expertise in analysis of the under-flow datasets, it does perform better 

373 than less experienced experimenters. 

374 We also compared the T-cell motility parameters obtained manually and automatically for the 

375 non-stimulated and stimulated pMBMECs (Figure 5F-I). Data obtained for the CD8+ T-cell migration 

376 speed on pMBMECs was comparable between all experimenters and the automated analysis. In 

377 contrast, results obtained for the T-cell crawling speed were significantly different between the 
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378 automated approach and manual analysis. Taking a closer look at the T-cell tracks (Supplementary 

379 Figure 6) we readily observed that the manual analysis contains significant errors in the assignment 

380 of the T-cell position. This leads to a jittery pattern in the T-cell migration tracks, and overestimation 

381 of T-cell path and thus T-cell crawling speed. Employing our novel automated analysis pipeline 

382 eliminated this systematic error in the measurements. 

383 To finally investigate the potential benefit in the time required for automated versus manual data 

384 analysis we investigated the time required for a given experimenter to analyze such datasets 

385 manually using the Clockify time tracker (21). In Figure 5J we show the average time spent for 

386 performing a full T-cell behavior analysis and T-cell tracking in each imaging tile, as well as on 

387 average. Clearly the experienced experimenter outperforms the inexperienced experimenters by a 

388 factor of 3. On average a researcher would thus spend 8.1 hours for analyzing a dataset with 300 T 

389 cells when only the tracks of crawling T cells (50%, i.e. 150 cells) are analyzed. If all T-cell tracks were 

390 to be analyzed this time would further increase to 12.9 hours. Given the fact that on average 10 

391 datasets can be produced per day, manual analysis becomes a bottleneck, leading to delays in 

392 exhaustive data analysis and thus ultimately in research progress. The UFMTrack framework enables 

393 analysis time reduction by a factor of 3 when analyzing only crawling cells and by a factor of 5 if all 

394 cell tracks are to be analyzed (Figure 5K). With average analysis time of 2.3 hours, the 10 

395 experiments carried out in one day can be fully analyzed within one day of machine-time. This 

396 enables scalability of flow-based immune cell migration experiments, while simultaneously lifting 

397 from the researchers the burden of tedious and time-consuming manual analysis.

398

399 Discussion

400 In this study, we have developed the under-flow migration tracker (UFMTrack) framework. It 

401 consists of independent modules and allows for segmentation, tracking, and motility analysis of T 

402 cells, migrating on, across, and below the monolayer of primary mouse brain microvascular 
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403 endothelial cells under physiological flow in vitro. The developed method relies exclusively on phase-

404 contrast imaging data. Therefore, it does not require to establish fluorescent labels of the migrating 

405 immune cell population to be studied, avoids potential photo-toxicity to be considered for 

406 fluorescent imaging modalities (22�24), and is thus the preferred choice for analyzing trafficking of 

407 sensitive cell types. T-cell segmentation and prediction of the transmigrated T cell areas is 

408 performed using custom 2D+T U-Net like convolutional neural network. It enables reliable 

409 segmentation of T cells both above and below the pMBMEC monolayer. The existing particle and cell 

410 tracking toolkits consider migration of one cell type, thus are not suitable for detection of distinct 

411 migration regimes and cell interactions (25�28). Furthermore, to the best of our knowledge none of 

412 the existing algorithms consider migration under flow causing rapid cell displacement. The tracking 

413 of T cells interaction with the pMBMECs during all migration regimes under physiological flow 

414 required designing of a new tracking algorithm considering rapid T-cell appearance, disappearance, 

415 and displacement in the field of view caused by the flow. We have also developed approaches that 

416 resolve track intersections, i.e. identifying track segments corresponding to the same T cell before 

417 and after under-segmented track regions, which are inevitable during T-cell migration. By 

418 establishing the detection of T-cell crawling, probing, transmigration, and accelerated movement 

419 combined with reliable T-cell tracking, we have enabled the in-depth analysis of distinct migration 

420 regimes on a cell-by-cell basis. By reducing the dataset analysis time by a factor of 5, UFMTrack 

421 allows for performing a thorough analysis of 10 experiments that can be carried out by a researcher 

422 in one day within one day of machine-time. We have demonstrated that the automated analysis 

423 performs on par with manual analysis while improving accuracy and eliminating experimenter bias, 

424 and enables scalability of flow-based immune cell migration experiments by and reducing the 

425 analysis cost and lifting the burden of time-consuming manual analysis.

426 In this work we have demonstrated the applicability of the developed framework to the analysis 

427 of the multi-step extravasation of CD4+ and CD8+ T cells across non-stimulated or cytokine 

428 stimulated pMBMEC monolayers under physiological flow. We have also demonstrated that the 
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429 developed framework allows for automated analysis of T-cell behavior statistics, and motility 

430 parameters of distinct T-cell migration regimes. Results of the automated analysis of CD4+ T-cell 

431 behavioral statistics performed with UFMTrack are in agreement with previous studies using manual 

432 data analysis (12). The automated analysis of datasets of CD8+ T-cell migration has shown 

433 comparable performance with manual analysis performed by one experimenter with 4 years of 

434 analysis experience and three less experienced experimenters. At the same time the variance of the 

435 results obtained manually showed significant experimenter bias that the automated analysis 

436 eliminated. Additionally, automated analysis allowed for in depth analysis of all T-cell migration 

437 categories and precise evaluation of T-cell motility parameters, which was not achieved by manual T-

438 cell tracking, even by the most experienced user.

439 Quantification of the fraction of transmigrated T cells is crucial for studying the molecular 

440 mechanisms governing infiltration of autoaggressive T cells across the BBB into the CNS parenchyma 

441 and the immune surveillance. The role of specific endothelial or T-cell adhesion molecules in 

442 influencing the dynamic interactions of T cells with pMBMECs can e.g. be probed by quantifying the 

443 ratio of T-cell crawling behavior to T-cell probing. With the analysis procedure established in the 

444 UFMTrack framework the number of times a T cell interrupts its crawling regime switching to short 

445 probing behavior on the endothelium can be evaluated, thus providing information on the 

446 distribution of �hot-spots� on the endothelium. Additionally, experiment scalability and the analysis 

447 on a cell-by-cell basis enables the search for distinct populations of T-cells, e.g., according to the 

448 distribution of probing to crawling behavioral ratios. The strength of T-cell adhesion to the 

449 endothelium can be probed with the developed framework using the measure of T-cell detachment 

450 rate, and the distribution of the previously overlooked T cell accelerated movement occurrences and 

451 accelerated movement speed. Finally, the possibility of quantifying the motility parameters of the 

452 transmigrated T cells enables future studies involving multilayer in vitro BBB models including the 

453 vascular basement membrane in addition to mural cells such as pericytes and astrocytes mimicking 

454 the entire neurovascular unit.
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455 While in this work we have focused on the analysis of mouse T cells interacting with pMBMEC 

456 under flow, the methods we present establish a foundation for a broad range of studies involving in 

457 vitro under-flow studies of immune cell trafficking. The tracking algorithm and motility analysis 

458 developed in the UFMTrack framework is also directly applicable for the analysis of immune cells 

459 interaction with recombinant protein under flow, employing either pure phase-contrast imaging or 

460 epi-fluorescent imaging when studying fluorescently labeled immune cells. The T-cell segmentation 

461 based on deep neural networks can be applied to studies of trafficking of other immune cell subsets 

462 on and across the pMBMEC monolayer. The application to immune cell trafficking across other 

463 endothelial monolayers including those from different species or vascular beds as well as lymphatic 

464 endothelial cells is possible but requires fine-tuning of the trained segmentation model. While 

465 training of the models presented here required a large dataset of annotated T-cell masks, and 

466 transmigration masks, this can be largely avoided for future development. Future models can be 

467 developed more efficiently by leveraging our existing annotated dataset of T-cell migration on the 

468 pMBMECs while employing transfer learning approaches in a multitask framework with weak 

469 supervision and fluorescent labels as auxiliary learning targets to adapt the model for segmentation 

470 of cells with different appearances. This can be further improved by adopting self-supervised 

471 contrastive learning methods which have demonstrated significant advancements for model 

472 pretraining in recent years. This is the subject of our future studies. By sharing the data and open-

473 source code of the UFMTrack framework, i.e. the training data used for the segmentation model 

474 training, trained models, as well as the model architecture, and full under-flow T-cell tracking and 

475 migration analysis pipeline, we hope to encourage the community to pursue these developments to 

476 advance the field.

477 One current limitation of the method is the performance reduction of the T-cell tracking when 

478 the density of migrating T cells significantly increases (>250 cells/dataset). Thus the recommended T 

479 cell concentration is about 100-150k/ml. However to avoid non-physiological interactions between 

480 migrating T cells, as well as T cell clumping, the T-cell density should be kept at moderate levels 
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481 anyway. Additionally, by analyzing data from 8 stitched fields of view allows obtaining comparable 

482 statistics. The current analysis of the behavioral statistics quantifies the fraction of different T-cell 

483 migration regimes with respect to the number of the adhered cells instead of the total T-cell count 

484 passing through the microfluidic device. While the number of fast-moving T cells during the 

485 accumulation phase cannot be directly counted using the imaging modality employed here, it can be 

486 potentially estimated indirectly from the imaging data with additional calibration experiments and a 

487 dedicated machine learning model. Another limitation is that currently we do not consider dividing 

488 immune cells. While cell division events happen rarely (<1% of T cells) and are not of primary events 

489 for the study of immune cell interaction with the BBB model, the modular architecture of our 

490 framework will facilitate future extension to detect cell division.

491 By enabling experiment scalability, unbiased analysis with advanced accuracy and an in-depth 

492 analysis of large datasets of T-cell dynamics under flow, the computational and analytical framework 

493 presented here contributes to the 3R principle when studying the interaction of cells derived from 

494 animal models by reducing the number of animals to be sacrificed. UFMTrack can be employed for 

495 fundamental research of the molecular mechanisms governing immune cell trafficking across a range 

496 of vascular beds, screening of pharmaceutical treatments, as well as for personalized medicine 

497 based on evaluation of treatment efficacy on patient derived T-cell migration behavior on patient 

498 derived endothelial monolayers. Eventually, the developed framework can be extended to real-time 

499 operation during image acquisition. Combined with transgenic photo-convertible immune cells 

500 allowing for photoconversion of immune cells according to their behavior will allow for subsequent 

501 fluorescent cell sorting and scRNA-Seq analysis. Such advanced studies are needed to reveal the role 

502 of genetic differences governing T-cell migration regimes.

503

504
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505 Materials and Methods

506 1. pMBMEC cell culture

507 Primary mouse brain microvascular endothelial cells (pMBMECs) were isolated from 8-12 weeks old 

508 C57BL/6J WT mice and cultured exactly as described before (10,29). Intact monolayers were 

509 stimulated or not with 10 ng/mL of recombinant mouse TNF, 20 ng/mL of recombinant mouse IL1- 

510 for, or 5ng/mL recombinant mouse TNF + 100 U/mL recombinant mouse IFN- 16-24 hours prior to 

511 the assays as previously described (19).

512

513 2. T cell preparation

514 Naïve CD4+ and CD8+ T-cell isolation: Peripheral lymph nodes and spleens from 2D2 and OT-I 

515 C57BL/6J mice were harvested and single cell suspensions were obtained by homogenization and 

516 filtration through a sterile 100 m nylon mesh. A second filtration was applied after erythrocyte lysis 

517 (0.83% NH4Cl, Tris-HCl). 2D2 and OT-I cells were isolated respectively with magnetic CD4+ and CD8+ T 

518 cell selection beads (EasySep, STEMCELL Technologies).

519 In vitro activation of naïve CD8+ T cells: OT-I CD8+ T cells were activated as described before (29,30). 

520 Activated CD8+ T cells were cultured in IL-2 containing media for 3 days post-activation.

521 In vitro activation of naïve CD4+ T cells: 2D2 CD4+ T cells were activated as described before (19). 

522 Activated CD4+ T cells were cultured in IL-2 containing media for 24 additional hours.

523

524 3. In vitro under-flow T-cell migration assay

525 We studied the multi-step T-cell migration across monolayers of primary mouse brain 

526 microvascular endothelial cells (pMBMECs) in a microfluidic device under physiological flow by in 

527 vitro live-cell imaging according to the previously established procedure (12,19). pMBMECs that 
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528 were previously cultured in Ibidi µ-Dish to confluency and a custom-made flow chamber was placed 

529 on top of the pMBMECs culture and connected to the flow system filled with migration assay 

530 medium (MAM) (10). During the accumulation phase, T cells at concentration between 55k/ml and 

531 166k/ml were superfused for 5 minutes under low shear stress of 0.1 dynes/cm2 allowing them to 

532 settle on top of the pMBMEC monolayer. We used lower T cell concentration as compared to 

533 previous studies to enable automated T-cell interaction analysis. Afterwards, the flow was increased 

534 to physiological levels with a flow shear stress of 1.5 dynes/cm2 to study post-arrest T-cell behavior 

535 on pMBMECs for 27 minutes (Figure 1A, B).

536

537 4. Data acquisition

538 The timelapse imaging was performed during both accumulation and physiological flow phases 

539 using phase-contrast imaging at a framerate of 6 frames/min, and resolution of 0.629um/pixel. In 

540 this modality the acquired images are gray scale, and the T cells, especially after the migration across 

541 the pMBMEC monolayer, have a similar appearance to the pMBMECs, making the T-cell 

542 segmentation task very challenging (Figure 1C). The data was acquired in tiles of 870 × 650 µm2 

543 (1389 × 1041 pixels) with an overlap of 100 µm, leading to a total acquired image area of 

544 3170 × 1220 µm2. For each experiment the dataset consists of 30 timeframes of T-cell accumulation 

545 and 162 timeframes of dynamic T-cell interactions with the pMBMEC monolayer under physiological 

546 flow. The timestep between sequential timeframes for each tile is 10 s. The total acquired area is 

547 thus limited by the acquisition speed, or by the flow chamber size.

548 5. Manual analysis of T-cell migration

549 Manual cell analysis and tracking was performed according to previously established procedure 

550 using ImageJ software (ImageJ software, National Institute of Health, Bethesda, MD, USA) (11). The 

551 number of arrested T cells was thus counted at timeframe 33 of the subset. The behavior of arrested 

552 T cells was defined and expressed as fractions of arrested T cells set to 100% as follows:
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553  T cells that detached during the observation time (�detached�)

554  T cells that migrated out of the FoV detached during the observation time (�out of FoV�)

555  T cells that continuously crawled on the pMBMEC monolayer (�crawling�)

556  T cells that remained in the same location (displacement less than twice the cell size) while 

557 actively interacting with pMBMEC monolayer (�probing�)

558  T cells that crossed the pMBMEC monolayer with or without prior crawling (�crawling full 

559 transmigration� and �probing full transmigration�). The event of T-cell transmigration across the 

560 pMBMECs monolayer became obvious due to the change of appearance of the transmigrated part of 

561 the T cells from phase bright (on top of the pMBMECs monolayer) to phase dark.

562  T cells that partially crossed the pMBMEC monolayer, then retracted the protrusions and 

563 continued to migrate above the monolayer (�crawling uncompleted transmigration� and �probing 

564 uncompleted transmigration�).

565

566 6. UFMTrack performance evaluation

567 The inference of T cell masks and transmigration masks was performed on a dual-CPU Intel(R) 

568 Xeon(R) CPU E5-2670 v3 @ 2.30GHz, 256GB RAM node equipped with 8 Graphical Processing Units 

569 (GPU) NVIDIA GeForce GTX TITAN X / GeForce GTX 1080. Frame alignment and segmentation were 

570 performed on an Intel(R) Core(TM) CPU i7-4771 @ 3.50GHz, 32GB RAM workstation with NVIDIA 

571 GeForce GTX TITAN GPU. Cell tracking was performed on a dual-CPU Intel(R) Xeon(R) CPU E5-2643 

572 v2 @ 3.50GHz, 256GB RAM workstation.

573
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583 https://github.com/neworldemancer/UFMSegm. This repository also contains win64 binaries used 

584 for the watershed-based segmentation of the predicted T cell probability maps and transmigration 
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587 scripts used for performance evaluation of the framework is available on GitHub at 

588 https://github.com/neworldemancer/UFMTrack.

589 The training phase-contrast data with manual annotations, the reference datasets for histogram 

590 normalization, as well as trained models are available on Zenodo: 
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592 The datasets used for evaluation of our framework are available on Zenodo: 
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692 Supporting information captions

693 Supplementary Table 1: Architecture of the 2D fully convolutional model for T-cell segmentation. 
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694 Supplementary Table 2: Architecture of the 2D+T fully convolutional model for T-cell 

695 segmentation

696 Supplementary Table 3: Node variables used in global optimization during link search.

697 Supplementary Figure 1. Training curves. A. Learning rate attenuation along model training. 

698 B. Loss value evolution along model training.

699 Supplementary Figure 2. Comparison of the 2D and 2D+T cell segmentation models 

700 performance for the T cell mask and transmigration mask prediction. F1, Jaccard index, and AP 

701 metrics are shown.

702 Supplementary Figure 3: Parametrization of nodes connections for tracking. A. Representation 

703 of nodes for track segment search. Connection multiplicity for each link is obtained with global 

704 optimization. B. Representation of vertices and segments for global multiplicity consistency 

705 optimization. Connection multiplicity for each segment attached to a vertex is obtained with global 

706 optimization.

707 Supplementary Figure 4: Under flow tracking parametrization. A. Negative log-likelihood ���0 of 

708 the potential T cell jump segments due to under-segmentation. B-D. Negative log-likelihood ���0 of 

709 the potential T cell jumps segments due to the flow. B: dt=1, C: dt=2, D: dt=3. E. Attenuation of the 

710 vertex �not-connected� weight with time allows accounting for T cell accumulation phase at 

711 timeframes 5 through 30 and increase of the flow to physiological level at timeframe 30. Blue curve 

712 shows attenuation factor on the left side, i.e. corresponding to track start, and orange curve shows 

713 attenuation factor on the right left side corresponding to the end of the track due to cell detachment 

714 under flow.

715 Supplementary Figure 5. Transmigration detection. Based on the filtered transmigration factor 

716 ��, � we obtained Boolean masks for partial and full transmigration. Next we obtained Boolean masks 

717 for T-cell migration before transmigration, during uncompleted, direct, full, and reverse 

718 transmigrations.
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719 Supplementary Figure 6. Comparison of reconstructed T cell tracks with result of manual 

720 analysis. Overlay of crawling CD8+ T-cell crawling tracks on top of non-stimulated (top) and TNF/ 

721 IFN-γ stimulated pMBMECs (bottom) tracked manually by three experimenters as well as 

722 automatically. Errors in manual tracking led to jittery pattern in the T-cell tracks. This lead in turn to 

723 overestimation of the T cell crawling speed.

724 Supplementary Video 1. Phase-contrast time-lapse image sequence of CD4 T cells interacting 

725 with IL-1 stimulated endothelium. 8 tiles of the imaging are aligned and stitched together.

726 Supplementary Video 2. Segmented T cells in phase-contrast time-lapse image sequence of CD4 

727 T cells interacting with IL-1 stimulated endothelium. Mask of the segmented T cell is overlayed in 

728 red. Transmigration probability map is overlayed in yellow. 

729 Supplementary Video 3. Tracks of T cells reconstructed in phase-contrast time-lapse image 

730 sequence of CD4 T cells interacting with IL-1 stimulated endothelium. Tracks after the increase of 

731 the flow to shear stress level of 1.5 dynes/cm2 are shown. Only tracks included in the analysis are 

732 show. *see text for details

733

734
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