
How collectively integrated are ecological communities?

Yuval R. Zelnik∗1, Nuria Galiana∗2, Matthieu Barbier3, Michel Loreau4, Eric
Galbraith5,6, and Jean-François Arnoldi†4

1Department of Crop Production Ecology, Swedish University of Agricultural
Sciences (SLU), Uppsala, Sweden

2Department of Biogeography and Global Change, National Museum of
Natural Sciences (CSIC), 28006 Madrid, Spain.

3Plant Health Institute CIRAD, Montpellier, France
4Theoretical and Experimental Ecology Station, CNRS Moulis, France

5Department of Earth and Planetary Science, McGill University, Montreal,
Quebec, Canada
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Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain

∗
Authors contributed equally

†jean-francois.arnoldi@cnrs.fr

Abstract

Are the population dynamics of species mainly determined by direct interactions with
predators, preys and conspecifics? Or, instead, are those dynamics more dependent on
indirect feedbacks that ripple across the whole interaction network?

Here we show that, from a basic spectral feature of the interaction network, we can
predict the length of indirect interaction pathways that contribute to community-level
dynamical patterns, such as the depth of a perturbation’s reach, or the contribution of
biotic processes to realized species niches. In doing so, we propose a measure of collectiv-
ity that integrates existing approaches to community complexity, collective integration
and indirect interactions.

By revisiting classic concepts of theoretical community ecology, our work proposes an
original perspective on the question of to what degree communities are more than loose
collections of species or simple interaction motifs. This perspective can help clarify when
reductionist approaches, focusing on particular species and small interaction motifs,
ought to suffice or fail when applied to ecosystems.

Keywords: Reductionism, holism, interaction networks, indirect interactions, Lotka-Volterra
models, complexity, stability, perturbations, eigenvalues.
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Introduction

”The Scientific Revolution of the seventeenth century legitimated the idea of a
mechanical nature in which the behavior of every element can be explained by
laws, within a totality seen as the sum of its parts and the interactions of those
elements.”

Philippe Descola, Beyond Nature and Culture.

Ecological communities comprise vast networks of interacting species, that greatly vary
in their richness and connectivity (Pimm, 1984; Montoya et al., 2006; Agrawal, 2001; Brown
et al., 2001). To understand and predict the behaviour of ecological systems it is tempting to
break them down into small parts that are individually much easier to study (predator-prey
pairs, competitors within a same niche, etc.). How useful this approach can be depends on
how easy it is to scale-up knowledge about individual pieces to understand features of the
whole. For instance, we might hope that, to understand the population dynamics of a given
species, it would be sufficient to consider only the other species with which it interacts directly,
and most strongly. But this is far from self-evident. In fact, it could be just as reasonable to
think that a species response to environmental change strongly depends on responses of the
whole ecosystem in which it is embedded (Patten, 1982).

Explicitly or implicitly, for decades ecologist have argued about whether reductionist or
holistic perspectives are most appropriate (Loreau, 2020). This contrast in approaches to
ecosystems is often traced back to the opposition, regarding plant communities, between
the holistic view of Clements, to the parsimonious individualistic perspective of Gleason.
Clements argued that plant associations should be understood as high-level biological entities,
comparable to actual organisms, so that species are best understood through their functions
within a whole (Clements, 1916). Gleason claimed that plant communities are mere collections
of individual species and gave little importance to the interactions between them (Gleason,
1926). This dichotomy has carried on, with notable ideas such as Lovelock’s Gaia theory
proposing that the biosphere should be viewed as a super-organism (Lovelock & Margulis,
1974), a perspective on ecological systems that profoundly contrasts with Hubbell’s neutral
theory, which explains biodiversity patterns via random effects of migration and extinctions
alone (Hubbell, 2001), or Species Distribution Models that predict species ranges from a few
key environmental variables (Soberón, 2007).

The epistemological difficulty lies in the fact that, by focusing on clearly identifiable in-
dividual mechanisms, individual genes, individual species, and using controlled experiments,
the reductionist approach has arguably led to the greatest advances of biology. Yet, given
the complexity, and interwoven levels of organization present in ecological systems, it seems
overly optimistic to think that decomposing communities into small, clearly defined and well
studied parts, will suffice to understand the whole (Levins & Lewontin, 1982; Lewontin, 1996;
Bergelson et al., 2021).

In fact, a clear challenge to the individualitic view point is the existence of many indirect
interactions between species. These interactions are mediated via one or several intermediate
populations (Wootton, 1994). They form long, and numerous, pathways across the interaction
network (Puccia & Levins, 2013) – the indirect interaction between bees and sheep, due to the
grazing of sheep on forbs the bees feed on, or the indirect interactions between fish and plants
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via dragon-flies whose larvae are eaten by fish and whose adults prey on plant pollinators
(Knight et al., 2005). Indirect interactions thus generate intricate interconnections across
communities, and could make them behave differently than if they were independent collection
of populations or basic interaction motifs (Loreau, 2020; Liautaud et al., 2019).

The interest in indirect interactions is not new (Bender et al., 1984; Schmitz & Suttle,
2001). Their importance for community structure (Menge, 1995; Abrams et al., 1996; Sim-
mons et al., 2019) and response to perturbations (Yodzis, 2000; Montoya et al., 2009; Pires
et al., 2020) has been demonstrated on many occasions. Yodzis (1988) showed that the ability
to predict the long-term ecological impact of a single-species perturbation (a cull on some fish
population for instance) is tightly linked with the strength, and length, of indirect interactions
present in the ecosystem. Knight et al. (2005) showed how indirect species interactions can
couple terrestrial and aquatic ecosystems, while more recently, indirect interactions have been
proposed as determinants of co-evolution in mutualistic networks (Guimarães et al., 2017) and
the diversity of natural communities (Bairey et al., 2016).

Here, we take a step back to revisit and formalize the notion of indirect interactions. We
compare direct interactions –the direct effect of species abundances on the growth rate of
others, to net interactions – the long-term net impact that a change in demographic param-
eters of a population has on the abundance of another. We explain how indirect interactions
connect these two notions by showing when and how a net interaction between two species
integrates all indirect interaction pathways between them. But more importantly, formalizing
these intuitive ideas leads us to a novel measure of collectivity that embraces the somewhat
disconnected existing approaches to community complexity, organizational integration and
indirect interactions.

Concretely, from a basic spectral feature of the matrix of pair-wise species interactions,
we propose a measure of the general importance, in a given community, of indirect interac-
tions. This measure determines the length of indirect pathways that contribute to community
dynamics and patterns, a length that we call ”the interaction horizon” and that mirrors the
”environ” concept proposed by Patten (1982) from the era of theoretical ecosystem ecology.

We will illustrate, using simulations of community models, that our notion of collectivity
explains the occurrence of intuitive signatures of collective community behavior, such as the
depth of a perturbation’s reach, the degree of temporal unpredictability or the contribution
of biotic processes to realized species niches.

Our work revisits classic theoretical notions such as indirect interactions (Bender et al.,
1984; Menge, 1995), press perturbations, loop analysis (Puccia & Levins, 2013), complexity
and stability (May, 1973). It clarifies when reductionist perspectives, focusing on particu-
lar species and small interaction motifs can, at least in principle, reliably scale-up to the
community-level, or on the contrary, when there are fundamental obstacles facing such ap-
proaches (Bergelson et al., 2021; Orr et al., 2021). Our aim is to shed new light and inspire
future work on the determination of the dynamical nature of ecological communities, or other
complex systems, and their degree of organizational integration.
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Collectivity and the interaction horizon

In this section we provide a heuristic introduction to a collectivity parameter, skipping tech-
nical details and focusing on intuitions. The reader interested in a direct derivation from
general dynamical community models can skip this section and instead focus on the content
of Box 1.

Let us encode the interaction network associated with a community as a matrix A = (Aij),
with Aii ≡ 0. Aij is a non-dimensional number that quantifies the direct interaction of species
j on species i. It is crucial to see Aij as a relative interaction strength: the ratio of inter- over
intra-specific interactions. We emphasise this seemingly technical detail because it is key to
properly define a notion of indirect interactions (see Box 1). In fact, if interactions had units,
indirect interactions of different orders would themselves have different units, making them
incomparable.

We define an indirect interaction of second order between species j and i through a third
species k as Aik ×Akj, the product of the direct interaction of species j on species k with the
direct interaction of species k on species i. More generally, following (Puccia & Levins, 1991)
an interaction pathway of length n between species i and j is Aikn−1

× ...×Ak2k1 ×Ak1j, where
the intermediate species k1, ..., kn need not all be different (there could be loops). Importantly,
the sum over all such interaction pathways coincides with the element of the matrix An:

(An)ij =
∑

k1,...,kn−1

Aikn−1
× ...× Ak2k1 × Ak1j (1)

We may note that if all the numbers Aij are strictly smaller than one, the magnitude of
indirect interactions will decay exponentially as their order n grows. But on the other hand,
if the interaction network is sufficiently connected, the number of interaction pathways be-
tween species i and j (the number of terms in the sum shown in eq. 1) could also increase
exponentially. It is therefore not clear if the sum of all indirect interactions will necessarily
vanish, even if direct interactions are individually weak.

The concept of an indirect interaction is intuitive. But to understand why it precisely
manifests in community models as Eq. (1), it is enlightening to consider the specific example
of the equation verified by the steady state of a Lotka-Volterra system (see Box 1 for the
general case):

Ni = Ki +
S∑

j=1

AijNj; i = 1, ..., S (2)

Here Ki denotes the carrying capacity of species i, encoding the environmental conditions
as perceived by that species, in the absence of the other species from the community. If we
introduce the vectors K = (Ki) and N = (Ni), Eq. (2) can be written in compact form as

N = K + AN ⇔ N = (I− A)−1K (3)

Thus the carrying capacities of all species intertwine via the the matrix (I−A)−1 to determine
the actual species abundances in the community context. For instance, a favourable environ-
ment (a large Ki) will not imply a large abundance if the environment is also favourable
to a competitor. The matrix (I − A)−1 encodes all such effects, that is, all net interactions
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between species. On the other hand, if we had instead repeatedly applied Eq. (2) on itself we
would have written a series highlighting the contribution of indirect interactions pathways, as
defined in Eq. (1):

Ni = Ki +
∑

j

AijKj

︸ ︷︷ ︸

order 1

+
∑

j,k

Aik × AkjKj

︸ ︷︷ ︸

order 2

+... +
∑

j,k1,...kn−1

Aikn−1
× ...× Ak1jKj

︸ ︷︷ ︸

ordern

+...

Since this last expression should be equivalent to Eq. (3), and this for all K, we arrive at a
classic matrix identity, known as Neumann’s series (Reed et al., 1972),

I + A + A2 + ... + An + ... = (I− A)−1 (4)

This series converges only under some specific conditions. When it does not converge, this
means that we cannot meaningfully decompose the net interaction between two species (their
effective interaction in the community context) as a sum of indirect interaction pathways.

The criteria for convergence gives us both a measure of the importance of indirect inter-
actions, and a definition of collective integration. To make this idea more concrete, we first
need to measure the magnitude of the various terms of the series, representing the overall
strength of indirect interactions of all orders. This amounts to defining a matrix norm ||An||.
We then want to understand how this norm changes with the order n. Consider

φ = lim
n→∞

||An||1/n, (5)

that is, the rate of growth of the norm ||An|| as n grows. If φ < 1, as n grows, the overall
contribution of indirect pathways will eventually decrease exponentially as φn. If φ > 1, the
sum over arbitrarily long pathways can be arbitrarily large (cf. Fig. 1).

Remarkably, φ does not depend on the particular choice of matrix norm. It is an intrinsic
feature of the interaction matrix A: its spectral radius, the largest absolute value of its
eigenvalues (Trefethen & Embree, 2020).

Here we propose an ecological interpretation of the spectral radius φ of a given interaction
matrix. We call φ the collectivity parameter, because it determines the interaction horizon
of species: the maximal length of interaction pathways that contribute to their net interac-
tions(see Fig. 1). For systems for which φ > 1, the interaction horizon is infinite, signaling
the breakdown of the reductionist method of decomposing net effects into indirect interaction
pathways, which we see as a reflection of the highly collective integration of such communities.

Signatures of collective integration

We now introduce four different, intuitive signatures of collective integration, which could
conceivably be observed empirically. Not all four would be indicative of collectivity in a given
system, but taken together they apply to a broad spectrum of ecological scenarios. All are
driven by the collectivity parameter φ.

We use a large ensemble of Lotka-Volterra model communities, where community assem-
bly starts from a random species pool, and leads to a steady state of coexisting species.
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Figure 1: The interaction horizon is the maximal length of indirect interactions pathways that sub-
stantially contribute to net interactions (illustrated here in a hypothetical yeast-bacteria community). The
horizon is directly determined by the collective parameter as log ε/logφ, where ε < 1 is an arbitrary threshold
value. The horizon gives the lowest order of interactions for which the maximal contribution is negligible
(that is, smaller than ε), and it diverges as φ approaches 1. Beyond this point it no longer makes sense to
decompose net interactions as a sum of indirect pathways.

Conveniently, in Lotka-Volterra models the interaction matrix A is a set of parameters. So
by prescribing an ensemble of matrices to pick from, we can easily generate systems along a
gradient of collective integration.

We will consider a gradient of interaction strength (and heterogeneity), with 50 different
values of overall interaction strength along the gradient, each with 100 random communities,
making up 5000 communities in total. Each community starts with S = 50 species, and we set
80% of the interactions to zero, so that we have a sparse interaction matrix. To specify the
interactions between connected species, we follow the tradition of Random Matrix Theory
applied to ecology (May, 1972; Allesina & Tang, 2012; Bunin, 2017; Barbier et al., 2018).
Let y be the control parameter that we vary to create a gradient of interaction strength,
with values ranging, in uniform intervals, between 0.02 and 1. We define three parameters
of random interactions: std(Aij) = y/

√
S; mean(Aij) = −y/S; and corr(Aij, Aji) = −1.

This gives us asymmetrical interactions between species, that are increasingly negative and
at the same time more varied. With this protocol we generate communities with a collectivity
parameter φ ranging between 0 and 2, thus allowing us to showcase different, generic, aspects
of low and high collective integration in communities.
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Increase in effective connectance

If a community is collectively integrated, substantial net interactions should connect any two
species, even if these species do not directly interact. In other words, the effective connectance
of the community should be much larger than the one of the direct interaction network. To
illustrate this idea we define effective connectance as the Shannon diversity of net interactions
(the off-diagonal elements of the matrix (I − A)−1) relative to the one of direct interactions
(the matrix A). Values larger than one indicate an increase in connectance when considering
net interactions instead of direct ones. We see in Figure 2 that the collective parameter φ is
indeed closely related with the factor that relates effective and direct connectance (left panel).
As collectivity grows, net interactions become more and more uniformly distributed leading
to a larger and larger effective number of connections between species (Fig. 2 right panel).

Figure 2: Growth in the effective number of net interactions, relative to the number of direct
ones, as collectivity increases. Left panel shows the effective connectance – the ratio between the Shannon
diversity index of the direct interactions and net interactions, as defined in the main text. Black circles
highlight several communities that are considered in the right panels. The right panels show the histograms
of direct and net interactions, overlayed, for these communities. Note the logarithmic scale on the y-axis and
the changes across panels of the x-axis.

Perturbation depth

Collective integration means that species are interdependent. As a consequence, a pertur-
bation targeted on a given species will likely propagate deep into the interaction network
(Bender et al., 1984). Experimentally one could remove a species, and monitor the long term
response of others, as a functions of their interaction distance d(i, j) from species removed
(d(i, j) = 1 if j interacts with i, d(i, j) = 2 if i and j are indirectly connected via a third
species, and so on). Denoting Nj\i the long term abundance of species j after the removal of
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species i, this leads us to the notion of perturbation depth

PD =

∑

j d(i, j)
∣
∣
∣N∗

j\i −N∗
j

∣
∣
∣

∑

j

∣
∣
∣N∗

j\i −N∗
j

∣
∣
∣

(6)

which we can average over all species removal experiments in that community. Perturbation
depth equals 1 when only directly interacting species are affected by the removal, and has
higher values the more species further away in the interaction network are heavily impacted.

In Fig. 3 (left panel) we demonstrate a good agreement between this observable signature
of collective integration and the collectivity parameter φ. As collectivity grows, the brunt of
the perturbation effect is shared with more distant species, and not only supported by those
directly in contact with the removed node (right panel). An obvious caveat of perturbation
depth is that it only applies to sufficiently sparse networks –if all species are connected, this
notion is useless.

Figure 3: Perturbation depth and collectivity. For various communities, the effect of removing a single
species is seen across the community. Left panel shows the perturbation depth, a measure of how deep into
the network of species interactions does the perturbation reach. Right panel shows the average effect on
the species in the community (all except the one species removed), partitioned into three groups: black for
species directly interacting with removed species, dark gray for species directly interacting with the species
in the black group, light gray for all other species. As collectivity increases the average effect on a given
species becomes equal, regardless of its grouping (i.e. its position in the community structure), and therefore
the perturbation depth increases (i.e. the effect of the perturbation if felt throughout the community). See
Appendix for more details.
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Temporal unpredictability

Indirect interactions between species require some time to take effect. Thus, collective in-
tegration is expected to leave a signature in the relationship between short- and long-term
response to a perturbation. Consider a persistent change in abiotic conditions. At the mo-
ment the perturbation is applied, a given species’ population will react to the induced change
in its intrinsic growth rate. At slightly longer time scales, direct interactions between species
will take effect. With time, longer and longer interaction pathways can start to play a role in
a population’s response. However, if the strenght of indirect intercations rapidly decays with
their lenght, the latter will not substantially change the course of population dynamics; the
long term outcome could have been extrapolated from the short term response. In this view,
the more collectively integrated the community, the less predictable the long-term response
of a species should be. This leads us to a notion of temporal unpredictability, which quantifies
the decorrelation, across species in a perturbed community, between long-term predictions
based on short-term responses, and the actual long-term dynamics of the community.

We test this idea by considering a community at equilibrium in which a perturbation
changes the intrinsic growth rates of all species randomly. We then measure the correlation
between a vector of short-term response extrapolation RS and a vector of the actual long-term
response RL (see Appendix), and define temporal unpredictability as the complement of that
correlation:

TU = 1 − corr(RS, RL) (7)

In Fig. 4 we confront this notion to our collectivity parameter φ. We see that the two are
closely related, with unpredictability increasing steadily as collectivity grows, reflecting the
fact that trajectories can, as indirect interactions come into play, change tendencies through
time (right panel). As always there is a caveat. If direct interactions are mediated by slow
latent variables, such as unobserved species or modified environmental variables, time and
length of interaction pathways need not be related. Collectivity thus leaves a univocal sig-
nature in temporal trends only if a separation of time scales exists between the factors that
mediate direct interactions, and the population dynamics.

Biotic contribution to the realized niche

If species do not interact, only the abiotic environment (i.e. what cannot be attributed to the
rest of the community) determines the growth and abundance of a species. In general however,
species change the environmental conditions perceived by other species. Intuitively, we can
expect that the stronger the collective integration of the community, the more important
and intricate this biotic contribution becomes (Levine et al., 2017). As a final illustration of
observable consequences of collective integration, we propose a simple formalization of this
expectation. In our simulations, we first quantify the extent to which the abundance of a
species Ni, expressing its realized niche, is explained by its carrying capacity Ki, expressing
the fundamental niche, i.e. the environmental conditions perceived by this species, in the
absence of the other species from the considered community. In an experimental setting this
would amount to comparing mono-cultures to polycultures (second column of Fig. 5).

Conversely, we can quantify the extent to which the biotic environment alone (i.e. species
interactions) explains species abundance. To do so, we compare Ni to the abundance that it
would have if all species perceived the exact same environmental conditions (third column of
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Figure 4: Temporal unpredictability between short-term and long-term response to perturba-
tion. For various communities, the ability to predict the long-term response of a community to a perturbation
from its short-term response is evaluated and shown. Left panel shows the temporal unpredictability, which
gives a score of 0 for a perfect correspondence between short-term and long-term response. Black circles show
the collectivity and temporal unpredictability for two communities, with the corresponding dynamics shown
in the right panels. Right panels show the change in abundance for 6 species in each community, where the
dashed lines show the extrapolated dynamics based on the short term fit (using the first 0 to 0.5 time units),
whereas the solid lines show the actual dynamics. With higher collectivity the long-term behavior becomes
less predictable, see Appendix for more details.

Fig. 5). This amounts to asking whether a species abundance is explained by its centrality
within the interaction network (Sharkey, 2017).

To synthesize the two above perspectives, we start from the relative yield of a given species,
ηi = Ni/Ki. The absolute difference between relative yield and unity is a measure of the net
effect, on species i, of the biotic environment. We measure this effect integrated over the
community by summing this difference over all species. To make the result comparable across
communities we normalize by the sum of relative yields. This gives a quantification of the
Biotic Contribution to species realized niches:

BC =

∑

i (ηi − 1)2
∑

i η
2
i

(8)

which is similar to the relative Euclidean distance ||N −K||/||N || between the realized com-
munity state N and what it would have been without interactions, K.

In the first panel of Fig. 5, we see that the collectivity parameter and the strength of
the biotic niche, defined in Eq. 8, closely follow one another. Furthermore, we see that for
communities with collectivity parameter close or larger than 1, species abundances are not
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at all explained by the abiotic environment that they perceive, but instead they are almost
entirely controlled by the biotic environment set by the whole community. The major caveat
here is the requirement of a notion of carrying capacity, which makes senses for, say, plants
but is ill-defined when considering consumer species.

Figure 5: Biotic Contribution to species realized niches.The determinants of the community’s species
abundance at equilibrium are evaluated. (a) the biotic contribution to the realized niche (eq. 8), with black
circles highlighting several communities that are considered in the right panels. (b)-(d) Species equilibrium
abundance for different communities (corresponding to black circles in panel a), compared with its carrying
capacity (left in blue), or by contrast, with its abundance if all species had the same carrying capacities, so
that differences in abundances are caused by species interactions only (on the right in red). Dashed black line
shows the 1:1 line. See Appendix for more details.

Collectivity, complexity and stability

If collectivity determines the contributions of indirect interactions in shaping long-term pop-
ulation dynamics, what are the factors that drive collectivity? Clearly, the connectivity of
the interaction network as well as the strength of interactions must be determining factors.
This is indeed the case and by making this intuition more precise we can relate collectivity
to the complexity notion of May (1973) and further clarify its relatedness and difference with
a central notion of theoretical ecology: stability.

From its definition Eq. (5) (or Eq. 20 in Box 1), φ is essentially1 the norm of the interaction
matrix A. In fact, it always holds that φ ≤ ||A||, where the norm in question is the spectral-
norm, still an abstract quantity, defined as the maximal amplification of vectors by that matrix

1Exactly for normal matrices, such as symmetrical (Aij = Aji) or anti-symmetrical (Aij = −Aji) matrices.
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(Reed et al., 1972). However, we can relate the spectral-norm to a much simpler notion via
the following equivalence relation, valid for any matrix (Reed et al., 1972):

√

1/r||A||F ≤ ||A|| ≤ ||A||F (9)

where r is the rank of the matrix, which for us will always be the number of coexisting species
S, and ||A||F is the Frobenius norm of A: the sum of its squared elements. Then, if C is
the connectance of the network and ξ2 the second moment of interactions between connected
species, we get that √

1/S||A||F =
√

C(S − 1)ξ2 ≡ C,
which is the measure of complexity, that we note C, proposed by May (1972). From this
observation, and using the fact that Aii ≡ 0, we can transform the general equivalence re-
lationship Eq. (9) to deduce a similar relationship between complexity and collectivity (see
appendix):

C . φ ≤ C
√
S − 1 (10)

The upper bound is sharp while the lower bound is an approximate one (i.e. sharp and
impossible to cross only for normal matrices, such as symmetric matrices). The upper bound
states that May’s complexity, once scaled by

√
S − 1, sets the collectivity potential that

the structure of the interaction network can achieve. Distributing all interactions evenly
across species saturates the upper bound, thus maximizing collectivity2. The interpretation
of the approximate lower bound is a bit more subtle. If the interaction matrix is perfectly
symmetrical Aij = Aji (or perfectly anti-symmetrical Aij = −Aji), then φ = ||A|| and it
follows that the bound is sharp, setting the minimal collectivity that can be achieved while
maintaining complexity. But in general, this lower bound can be breached and should rather
be be seen as the collectivity that ’comes for free’ if the matrix was fully random. Interaction
structure can can reduce collectivty far bellow the random baseline. A simple example is that
of a triangular (i.e. perfectly nested) interaction structure (as in the competition-colonization
trade-off model of Tilman (1994)). One species affects all others but is affected in return by
no one, and so on until the last species that is affected by all but that affects no one. In this
case, due to the impossibility of feedbacks up the species hierarchy, the interaction horizon
remains finite no matter how strong or varied the direct pair-wise interactions are.

But, if φ is associated with May’s complexity measure, should it not be directly related to
stability, at least sensu May (1972)? Are we not rediscovering the same notion and giving it
a different name? The linear stability criterion is that all eigenvalues of the Jacobian matrix
at the steady-state must have a negative real part (Lyapunov, 1892). This is essentially
equivalent to all eigenvalues of A having a real part smaller than 1. Collectivity φ is the
largest eigenvalue modulus. As is made clear once represented graphically (see middle inset
of Fig. 6), if the system is unstable φ is necessarily larger than 1. However, even if φ is large,

2Consider a model, where all species interact with equal strength−a < 0. The eigenvalues of this interaction
matrix are −(S − 1)a and a. The stability criterion here becomes that a < 1. If there are only two species,
instability is reached when a = 1 (mutual exclusion) and corresponds to a φ = 1. Collectivity and instability
go hand in hand. For larger S the stability criterion remains that a < 1 but now φ = (S−1)a. Thus, the more
species in the community the more collectively integrated it becomes, and can exceed the critical value of 1,

while remaining stable. Here ||A||F =
√

S(S − 1)a =
√

S
S−1

× φ = φ√
1−1/S

. This shows that this example

saturates the upper bound in Eq. (10), demonstrating that it is indeed sharp.
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the real part of the associated eigenvalue can still be arbitrarily small. So instability implies a
high degree of collective integration but the converse is not true. Large collective integration
does not imply instability (right panel of Fig. 6).

Figure 6: Left: May’s complexity C sets the bounds of collectivity, illustrated here for 242 random
stable matrices (out of 1000 generated) of size 5× 5 to 15× 15, representing interaction matrices A of various
connectance, interaction strength, variance, and pair-wise symmetry (notice the log-log scales). In purple the
sharp upper bound C

√
S − 1 where S is the size of the community (purple points are always above the one:one

line in black). In blue the approximate lower bound C (blue points mostly remain below the one:one line).
Middle inset: Stability is here a distance to instability 1−max<{λ}, where max<{λ} is the maximal real
part over all eigenvalues λ ∈ C of the interaction matrix. If this real part attains 1, the community is unstable
–shaded region is the instability domain. Collectivity is instead the radius of the smallest disc centered on 0
that contains all eigenvalues. Right: collectivity and (in)stability are not equivalent. Same matrices
as on the left panel. We see that large values of collectivity are allowed even if we restrict to stable systems.
The edge of the grey region represents y = 1− x which is what would be expected if collectivity and stability
where associated to the same eigenvalue.

Discussion

Species are embedded in complex networks of interactions, but this does not tell us how truly
interdependent they are, and on what time scales. To understand the dynamics of a species,
is it enough to account for the dynamics of its direct interaction partners (prey, predators or
direct competitors)? The answer to this question lies in the analysis of indirect interactions,
and we proposed that this analysis amounts to measuring the degree of collective integration
of ecological communities.

In nature, the inter-dependency between species occurs not only though direct interac-
tions, via predation, facilitation or competition, but through potentially much longer indirect
interaction pathways. The question is not whether long indirect pathways exist. Most of the
time, an indirect interaction pathway can connect any two species. The question is whether
or not those indirect pathways significantly contribute, over relevant time-scales, to popu-
lation dynamics. If they do matter, the effective interaction between two species indirectly
involves many others: the state of a species is dependent on many (if not all) other species
in the community. Since interaction pathways are long, perturbations may also propagate
further: a perturbation targeted on a single species can have far-reaching consequences in
the community. In such collectively integrated communities the abundances of species will be
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only faintly related to what they would have been if grown in isolation; in other words, biotic
effects (by opposition to the abiotic environment) could play a predominant role in shaping
abundance distributions patterns.

Here, we quantified the dynamical importance of indirect interaction pathways as the
spectral radius φ of the direct interaction matrix. This synthetic feature of the interaction
network determines the rate of growth of the contribution of indirect interactions as their
length (or order) increases. If φ is smaller than one, long indirect interactions pathways are
negligible. By contrast, if φ is larger than one, arbitrary long interaction pathways can have
as much importance as shorter ones. This signals the breakdown of the reductionist method
of decomposing net interactions into a few dominant direct or indirect interaction pathways.

This measure of collective integration φ drives empirically relevant phenomena. Using a
broad set of simulation models we showed that the collectivity parameter φ is strongly cor-
related with Perturbation depth, defined as the network distance covered by perturbations
initially affecting only a single species. We also showed that φ increases Temporal unpre-
dictability, defined as the discrepancy between species long-term behaviour after a change in
environmental conditions, and the extrapolation of their dynamics based on their short-term
response to the environmental change. We finally related the value of the collectivity pa-
rameter with a measure of Biotic Contribution to species realized niches, defined to quantify
the degree to which abundances of species grown in monocultures predict species abundances
when grown in the presence of other species.

There is a direct connection between complexity sensu May (1972), which is essentially a
measure of total, absolute, interaction strength in the system, and collectivity. Complexity
sets the collectivity potential that network structure can realize. In this sense, collectivity
encapsulates two intertwined notions: random and structured complexity. The former sets
the baseline from which the latter will depart: we identified structures that push towards
maximal collectivity: evenly distributing interactions do just that, as well as increasing pair-
wise symmetry. By contrast, highly nested interactions can reduce collectivity drastically,
and even completely (in the case of a triangular interaction matrix (Tilman, 1994)). These
examples suggest a novel perspective on the impact of network structure for dynamical pat-
terns, that could help move beyond the long-lasting complexity-stability debate (May, 1972)
by instead asking whether ecological network structures tend to make communities more or
less collectively integrated than if they had been randomly assembled.

In network studies, there is a growing interest in higher order interactions, which generalize
pair-wise interactions to include more than two interacting partners at once. This notion
challenges the relevance of viewing communities as a graph, with nodes connected by directed
edges (Battiston et al., 2021), since now the existence and/or weight of an edge between
two nodes is conditioned on the status of other nodes. For example, planktivorous fish i
might prey on zooplankton j if predatory fish k is not present, but the presence of k prevents
i from preying on j. Our focus here was indirect interactions, and despite a very similar
terminology, they are not equivalent to higher-order interactions. The latter occur when
considering non linear extensions of Lotka-Volterra models, so that the coupling terms between
dynamical variables depend on the product of several variables at once. Studying higher
order interactions amounts to understanding the effects of such non-linearities. For us, this
implies that the interaction matrix, as defined in Box 1 could be state-dependent, and not
just dependent on the species composition (as is the case for Lotka Volterra models). As
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is made clear in the formal derivation proposed in Box 1, this does not affect the definition
of collective integration. From this perspective, our work may offer a novel direction of
investigation: understand how higher order interactions affect the collectivity of steady sates.

In collectively integrated communities, long indirect pathways between species, whose
importance unfolds over variable time scales, do not favour predictive power. As has been
shown before (Yodzis, 1988, 2000; Barabás et al., 2014), this is certainly true if one wishes to
accurately predict the effect that a perturbation will have, in the long-term, on a given species
when the latter is embedded in a complex ecosystem. But this typical sensitivity of individual
variables need not imply that all properties of a community or ecosystem are sensitive and/or
unpredictable (Daugaard et al., 2022). We know, in particular, that many aggregate features
of complex models are robust to uncertainty in parameters (Barbier et al., 2018). From our
work, we can predict when those long indirect interaction pathways cannot be ignored or even
simply added up. In such instances there is no choice but to change perspective, and focus our
efforts towards robust ecosystem or community-level properties of the natural system under
study (Goldford et al., 2018; Bergelson et al., 2021; Sanchez et al., 2022).

Perspectives

Our measure of collective integration is defined on isolated community models, where species
populations are dynamical variables that deterministically change through time. This is a
drastic simplification of real communities, that are open to migration, structured spatially,
and neither deterministic nor stable (Hastings, 2004).

It is not obvious how to translate our mathematical analysis to transient, far-from-equilibrium
dynamics or draw conclusions on the role played by spatial structure – and spatial-scale – in
determining the degree of collective integration of ecological systems. For the latter, this con-
nects with the research program surrounding the meta-community concept (Holyoak et al.,
2005) and the quest to better understand and theorise the spatial scaling of ecological inter-
actions (Gravel et al., 2016; Galiana et al., 2018, 2022). This is a promising direction, that
could help better formulate the scale transitions of ecological patterns, as it is commonly
thought that at large scales, ecological systems are mostly determined by abiotic drivers, such
as long-term climate patterns, thus suggesting (if only vaguely) a negative collectivity-scale
relationship.

Extending our theory of collective integration to transient states is certainly challenging.
Powerful dynamical theories do exist to tackle transients in complex systems (Roy et al., 2019).
But even without abandoning the notions of stationarity or equilibria, we could expand our
formalism to address the time-scale dependency of collectivity. A way forward may be the
study of power-spectra of ecological time-series: decomposing the temporal fluctuations of
populations over various times scales to infer the interaction structures that generate such
signals (Krumbeck et al., 2021). Here we suspect that variations over longer time scale reflect
the collective nature of communities more than those at much shorter time scales, as the
latter would not allow for indirect interactions to manifest, as already illustrated by the
results shown in Fig. 4.

Even in stationary states, and without spatial structure, there are other forms of inter-
esting collective behaviour that we did not consider. Communities could be structured by
interactions between mutually excluding species (Fried et al., 2016) which may lead to rich
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patterns (the ghost of competition past) and highly non trivial collective behaviour (Bunin,
2021).

Nonetheless, the idea that collective dynamical behaviour should manifest through indirect
interactions, and that a high degree of collective integration implies the impossibility for causal
links between variables to be decomposed in smaller parts, is a general one. Our contribution
was to show how this idea can make way to a quantitative theory, at least in simplified
settings.
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Box 1: direct, net and indirect interactions in stable community models

Consider a model that specifies the growth rate gi of all species, as a function of their joint abundances
N = (Ni) :

1

Ni

dNi

dt
= gi(N) (11)

In Lotka-Volterra (L-V) models gi(N) = ri +
∑

j aijNj , with a = (aij) representing per-capita interac-
tions and r = (ri) the vector of species intrinsic growth rates. We assume that the community is in a
steady state N∗, so that gi(N

∗) = 0. In that state, we want to define direct and net species interactions,
relate them to one-another, and show in what sense net interactions emerge as a sum of indirect ones,
a claim that we use to quantify the collective integration of the community.

Direct interactions reflect the sensitivity of the growth rate of one species, to a change in abun-
dance of another. In mathematical terms, this amounts to defining the matrix of partial derivatives

∂g

∂N
:=

(
∂gi
∂Nj

)

(12)

which for L-V models, coincides with the matrix a = (aij).

Net interactions are the reciprocal of direct interactions: the long-term sensitivity of the abun-
dance of a species, to a permanent shift in the growth rate of another (Novak et al., 2016; Montoya et al.,
2009). In matrix form, net interactions can be written as

∂N∗

∂g
:=

(
∂N∗

i

∂gj

)

(13)

To clarify the meaning of Eq. (13), imagine applying a small press perturbation δg on the species’ growth
rates. In contrast with the way direct interactions are defined, we now let community dynamics play out,
ultimately leading to a shift in equilibrium abundances δN∗, so that

g (N∗ + δN∗) + δg = 0 ⇔ ∂g

∂N
· δN∗ + δg = 0 (14)

This expression can be inverted to show that the matrix of net interactions is indeed the inverse of the
matrix of direct interactions:
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∂N∗

∂g
=

(

− ∂g

∂N

)−1

(15)

In L-V models this matrix also determines the steady state N∗ = (−a−1) · r.

Indirect interactions and the collectivity parameter. Direct and net interactions have
reciprocal units. Furthermore, if we multiply the direct interaction between species i and j, with the
direct interaction between species j and k this would change dimensions, and define an indirect interaction
between species i and k that cannot be compared to neither direct nor net interactions. However, by
defining direct interactions relatively to self-regulation, defined for any species i as − ∂gi

∂Ni

, we can revisit
the connection between direct and net interactions such that a coherent notion of indirect interaction
emerges. Let direct, non-dimensional interactions be

Aij :=
∂gi
∂Nj

/(− ∂gi
∂Ni

); i 6= j; (Aii = 0) (16)

In L-V models this corresponds to Aij := aij/(−aii). If D is the diagonal matrix encoding species
self-regulation, and I the identity matrix, direct interactions can be written as

∂g

∂N
= D · (−I+A)

︸ ︷︷ ︸

non−dimensional direct interactions

(17)

which indeed have the same units as D. From Eq.(15), it follows that

∂N∗

∂g
= (I−A)−1

︸ ︷︷ ︸

non−dimensional net interactions

·D−1 (18)

If the elements of A are small, the non-dimensional net interaction matrix (I−A)−1 can then be written
as a convergent infinite series

(I−A)−1 = I+A+A2 + ... (19)

This series enables us to define indirect interactions of order k as the elements of Ak. Indeed (Ak)ij
is the sum of all non-dimensional interaction pathways of length k that lead from species j to i (allowing
for loops), drawn in the interaction network. It is in the precise sense of Eq.(19) that net interactions
emerge as a sum of indirect ones. Our measure of collectivity φ is the spectral radius of A (Trefethen &
Embree, 2020), namely:

φ = max {|λ|; λ ∈ spect (A)} (20)

which controls the rate of convergence of the series Eq.(19), and thus the order of indirect interactions
that contribute to net interactions.

18

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 30, 2022. ; https://doi.org/10.1101/2022.12.29.522189doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.29.522189
http://creativecommons.org/licenses/by-nc/4.0/


References

Abrams, P.A., Menge, B.A., Mittelbach, G.G., Spiller, D.A. & Yodzis, P. (1996). The role of
indirect effects in food webs. In: Food webs. Springer, pp. 371–395.

Agrawal, A.A. (2001). Phenotypic plasticity in the interactions and evolution of species.
Science, 294, 321–326.

Allesina, S. & Tang, S. (2012). Stability criteria for complex ecosystems. Nature, 483, 205–208.

Bairey, E., Kelsic, E.D. & Kishony, R. (2016). High-order species interactions shape ecosystem
diversity. Nature communications, 7, 1–7.
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Supplementary Material

S1: On the arbitrary bounds of communities

By ‘community’, we mean a set of interacting species, which could represent part or all of
an ecosystem (Levins, 1974). It is most likely that the community does not exhaust the
whole ecosystem in which it is embedded (in fact the latter would be hard to define). An
ecologist might consider a community of plant species in a grassland, knowing of course that
this grassland also contains insect species, fungi, bacteria, birds and larger herbivores that
do have an influence on the plants. Those unobserved species (or abiotic compartments)
will mediate the interactions between the species that we do consider explicitly, so that the
interaction between two species is not an intrinsic characteristics of these populations, but is
context-dependent. Thus, each interaction term is a property of the system, in a given state,
rather than a fixed property of a given species pair.

The notion of ”carrying capacity” –the abundance of a species if alone– must also be
understood as context-dependent and not at all intrinsic to the focal species (Loreau, 2010).
Carrying capacity changes as we change the scope of the community we are considering. If we
only consider a single species, it must have a positive carrying capacity, otherwise it would be
absent. But this carrying capacity might be an emergent feature of the myriad other species
and abiotic compartment that we did not consider. As we increase the scope of the community
under consideration, carrying capacity might become more intrinsic, but will most likely also
decline. In the limit of all organisms on Earth, the notion itself ceases to make sense.

S2: Lotka-Volterra community assembly

Following is a description of the simulations and calculations used to make the figures in the
main text. This includes the creation of model communities, simulations of their equilibrium
and temporal dynamics, and calculation of different measures based on these simulations.

The presentation of signatures of collective integration in Figures 2-5 are all based on the
same set of model communities. This is a set of generalized Lotka-Volterra communities with
random carrying capacities and interactions. The equations simulated are given by eq. 21

dNi

dt
= Ni(Ki +

∑

j

AijNj) (21)

We consider a gradient of interaction strength, with 50 different values of average interac-
tion strength along the gradient, each with 100 random communities, making up 5000 commu-
nities in total. Each community starts with 50 species (stronger interaction leads some species
to extinction in the equilibrium state), and we set 80% of the interactions to zero, so that we
have a sparse interaction matrix. For defining the interaction matrix, we follow Barbier et al.
(2018) and define the three parameters of random interactions as µ = −y; σ = y; γ = −1,
where y is the above-mentioned gradient, with values ranging between 0.02 and 1.0, in uniform
intervals.

This translates to the following relations. The carrying capacities Ki are taken from a
random uniform distribution centered on 1, with a standard deviation of 0.2 (within the span
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of 1−
√

3/5 to 1 +
√

3/5). The interactions matrix Aij is taken from a Gaussian distribution,
except for the diagonal which is set to −1. For the off diagonal values, we constrain the
values to keep three conditions: i) asymmetrical interactions, so that Aij = −Aji; ii) we use
a sparsity of ρ = 0.8, i.e. 80% of of the interactions values are set to 0; iii) the average
and standard deviation of the interaction values (including the values set to 0, but not the
diagonal values) are −y · S, −y ·

√
S, respectively (S = 50 is the number of species in the

community).
These constraints are achieved by building a matrix in the following order: 1) take a matrix

A1 of size S from a random Gaussian distribution; 2) Get a new matrix by subtracting the
original matrix from its transpose: A2 = A1 − AT

1 ; 3) normalize the matrix by its standard
deviation: A3 = A2/std(A2); 4) use the normalized matrix to get a certain average and
standard deviation: A4 = A3 · y ·

√

S(1 − ρ)− y ·S(1− ρ); 5) Choose at random a fraction of
ρ of the upper triangualar part of the matrix, and set it to 0, as well as its lower triangualar
counterpart.

This gives us asymmetrical interactions between species (γ = −1), and interactions that
are increasingly negative (due to µ) and at the same time more varied (due to σ). Using this
definitions, along the gradient we find communities with a collectivity parameter φ ranging
between 0 and 2, allowing us to showcase different aspects of low and high collective integration
in communities.

For each of the 5000 communities, we use the carrying capacity vector Ki and interaction
matrix Aij to assemble a community. We run a simulation until reaching an equilibrium (as
detailed in the next subsection) with the starting conditions that all 50 species abundances
equal 1. Depending on the location along the gradient, all species survive for low values of
y, or at least 30 species survive at high y values. For any given community, we consider only
the extant species for calculations and presentation (e.g. φ is calculated for the Aij matrix
where all rows and columns of extinct species are taken out).

S2.1 Simulations

The simulations of the ordinary differential equations (ODEs) given by eqs. 1 were preformed
using the ode45 solver of Matlab (R2019a). To reach an equilibrium we start with a simulation
time span of T = T0, and iteratively run a simulation for longer time spans of T (doubling
T ) until the equilibrium condition defined below is reached, or until we reach a maximal
simulation time Tmax. The equilibrium condition is that at the last quarter of the simulation
the maximal change in species abundance is below the threshold z, scaled by the time span T ,
max(abs(Ni(T )−Ni(0.75T ))) < 2zT . We choose the numerical parameters T0 = 102, Tmax =
104, z = 10−6, ensuring that the abundances no longer change in any noticeable way once
reaching the threshold.

Presentation of Signatures

We describe here in detail the calculations and simulations used for the presentation of sig-
natures of collective integration in Fig. 2-5.
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Effective connectance

The signature of effective connectance is defined using aratio between two Shannon diversity
index, applied on two matrices that describe the interactions within the community. We
use the set of communities as described in the previous subsections, and make use of two
matrices:the direct interactions matrix Aij , and the net interactions matrix, Vij = (1−Aij)

−1.
To calculate the effective connectance we use the ratio between the Shannon diversity of these
matrices, calculated as follows.

For each matrix we calculate a diversity of interactions by: 1) taking all interactions except
self-interactions (i.e. diagonal values), giving us S(S−1) values; 2) computing the prevalence
of each unique value as a fraction ρ = x/S(S − 1), where x is the number of occurrences
of each value; 3) calculating the Shannon diversity on these values as H = −ρ · log(ρ). We

then define effective connectance as the ratio of the two indices H(A)
H(V )

. Note that for our

definition of unique values, we round all values by 10−3 (e.g. all values between 0 and 10−3
are considered the same, all values between 10−3 and 2 ∗ 10−3 are considered the same, and
so on), as otherwise all random values will be effectively unique and the definition of Shannon
diversity would be rendered meaningless. The result of this calculation is used for the y-axis
measure of Fig. 2a. For Fig. 2b-d we show the histograms of off-diagonal values for both Aij
and Vij, for three specific communities along the y gradient.

Perturbation depth

The signature of perturbation depth is tied to the response of the community to an external
perturbation, and we therefore calculate it using a dynamical simulation (as described in the
previous subsections). For a given community at its equilibrium abundance N∗

j , we consider
S different scenarios, in each of which we eliminate one species from the community, and
observe the effect on the the remaining S − 1 species. We simulate the community dynamics
until it reaches a new equilibrium, and then measure the change in abundance for all S − 1
species, N∗

j\i. For this community, we also note the link distance d(i, j) between two species
i and j, where a distance of 1 is for directly interacting species, distance 2 is for species that
do not directly interact but that both interact directly with the same third species, and so
forth. We these ingredients we calculate the perturbation depth as:

PD =
1

S

∑

i

∑

j d(i, j)
∣
∣
∣N∗

j\i −N∗
j

∣
∣
∣

∑

j

∣
∣
∣N∗

j\i −N∗
j

∣
∣
∣

(22)

Note that in these summations over j we go through all species except for the removed
species, whereas the summation over i is essentially over different removal experiments. The
result of this calculation is used for the y-axis measure of Fig. 3a. For Fig. 3b we calculate the
relative impact of the perturbation of three groups of species, the ones directly interacting with
the removed species (red), the one that interact with a directly interacting species (green),
and the rest of the species in the community that are at a distance of 3 or more (blue). This
relative impact is the ratio between the change in abundance within the group, and the change
in abundance for all the species in the community (except the removed one), and all of this
is averaged over the different removal experiments.
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RIk =
1

S

∑

i

∑

j δd(i,j),k

∣
∣
∣N∗

j\i −N∗
j

∣
∣
∣

∑

j

∣
∣
∣N∗

j\i −N∗
j

∣
∣
∣

(23)

Temporal unpredictability

The signature of temporal unpredictability relates to the difference between short-term and
long term response, and as such we use dynamical simulations both up to equilibrium, and
also within a short timescale.

We look at how the community responds to perturbations by changing the carrying ca-
pacity of each species at random: K̃i = Ki + ζ where ζ is chosen at random from a uniform
distribution centered around 0, ranging from −0.25 to 0.25. We then run a simulation twice,
first over a short time span ∆T = 0.5, and then until the system reaches a new equilibrium
Ñi. From the first simulation, for each species separately, we extract 10 time points (regularly
spaced) within ∆T , and fit the points to a linear function. We use the slope αi from the
fit to extrapolate what the long term response is expected to be: RS = αi/(KiNi). This is
compared to the actual long term response RL = Ñi−Ni, giving us our signature of temporal
unpredictability, as defined by eq. 24.

TU = 1 − cov(RS, RL)

std(RS)std(RL)
(24)

The result of this calculation is used for the y-axis measure of Fig. 4a. For Fig. 4b-c
we also demonstrate the dynamics of three communities along the y gradient. Fig. 4b-c we
show the actual long tern dynamics (solid lines), compared with the predicted long term
dynamics, extrapolated from the short term (dotted line). The extrapolated curves shown
are: ∆Ñi = (1 − exp(NiKit)) ·NiKi/αi.

Biotic contribution to the realized niche

Biotic contribution (BC) measures how much the abundances are determined by the commu-
nity as a whole, rather than by the abiotic conditions alone. We measure it using the relative
yield of species ηi = Ni/Ki, where we use the equilibrium abundances Ni. This gives us the
signature, used for the y-axis of Fig. 5a, as

BC =

∑

i (ηi − 1)2
∑

i η
2
i

(25)

For Fig. 5b-d, we use for the x-axis the carrying capacities Ki (blue), and the term < K >
∑

j Vij which represents the effects of the community on the species (red), where we sum over

the matrix of net interactions V = (1 − A)−1.

S3: Spectral radius and Frobenius norm of real zero-

trace matrices

Lemma 1. Let A ∈ Mn (R) (a real square matrix) such that TrA = 0. Let λ0, λ1, ...λn−1 ∈
C, i = 0, ..., n − 1 are its n eigenvalues (possibly repeated), ordered in decreasing order of
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Figure S1.1: Test of conjecture 4: for a wide array of randomly generated matrices of
size n × n with n = 3, ..., 10. We could never find any matrix for which the inequality
∑n

i=1 |λi|2 ≤
∑n

i=1 s
2
i (and we know it holds for n = 2).

modulus, so |λ0| ≥ |λ1| ≥ ... ≥ |λn−1|. It then holds that

|λ0|2 ≤
(

1 − 1

n

) n−1∑

i=0

|λi|2

Proof. If λ0 has an imaginary part, then it comes as a conjugate pair with λ1 = λ̄0, and the two
have equal modulus. In this case

∑n−1
i=0 |λi|2 ≥ 2|λ0|2. Note that that 1

2
≤ 1− 1

n
for all n ≥ 2, so

in this case the upper bound holds. Now suppose λ0 is real. Due to the fact that TrA = 0, and
that A is real, we have

∑n−1
i=0 <λi = 0. The maximal configuration for the rest of eigenvalues

is that they all have the same real part, equal to − λ0

n−1
. In this case

∑n−1
i=0 |<λi|2 = n

n−1
|λ0|2.

This shows that, when λ0 is real, it always hold that |λ0|2 ≤ (1 − 1
n
)
∑n−1

i=0 |<λi|2 which is

obviously smaller that (1 − 1
n
)
∑n−1

i=0 |λi|2.

Definition 2. Let M̃n (R) be the non-empty subset of Mn (R) comprised of matrices A such
that

∑n−1
i=0 |λi|2 ≤

∑n−1
i=0 s2i , where s20 ≥ s21 ≥ ... ≥ s2n−1 ≥ 0 are the eigenvalues of the

positive-definite matrix A>A.

For normal matrices, |λi| = si, so clearly M̃n (R) is not empty as it contains normal
matrices.

Lemma 3. For any A ∈ M̃n (R) such that TrA = 0, it holds that

|λ0| ≤
√

1 − 1

n
||A||F

where ||A||F =
√∑

i,j A
2
ij is the Frobenius norm of A.
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Proof. From lemma 1 we have that |λ0|2 ≤
(
1 − 1

n

)∑n−1
i=0 |λi|2 and if the matrix is in M̃n (R)

then it follows that |λ0|2 ≤
(
1 − 1

n

)∑n−1
i=0 s2i . On the other hand, we may note that

∑
s2i =

TrA>A =
∑

i(A
>A)ii =

∑

i

∑

j A
2
ij = ||A||2F . We get the equivalent expression but written in

terms of May’s complexity measure by noting that C = ||A||2F/
√
n.

Conjecture 4. M̃n (R) is a generic set. This means that, if there exists a real square matrix
not in M̃n (R) , arbitrarily small perturbations of this matrix will be.

We can show by a direct computation that M̃2 (R) ≡ M2 (R). In higher dimensions
extensive simulations (some shown in figure) support the idea that it is, if not impossible,
very unlikely that a real matrix does not belong to M̃n (R).
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