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Abstract  
 
Regions in ventral temporal cortex (VTC) that are involved in visual recognition of 
categories like words and faces, undergo differential development during childhood. 
However, categories are also represented in distributed responses across VTC. How do 
distributed category representations develop and relate to behavioral changes in 
recognition? Here, we used fMRI to longitudinally measure the development of distributed 
responses across VTC to 10 categories in school-age children over several years. Our 
results reveal both strengthening and weakening of category representations with age, 
which was mainly driven by changes across category-selective voxels. Representations 
became particularly more distinct for words in the left hemisphere and for faces bilaterally. 
Critically, distinctiveness for words and faces across category-selective voxels in left and 
right lateral VTC, respectively, predicted individual children9s word and face recognition 
performance. These results suggest that the development of distributed VTC 
representations has behavioral ramifications and advance our understanding of 
prolonged cortical development during childhood. 
 
 

Recognizing faces and written words is important for our everyday life. While extensive 

experience with faces starts from birth1 extensive experience with written words typically 

begins around the age of 5-6 with the onset of formal reading education. Nonetheless, 

both skills continue to improve throughout childhood and adolescence2,3. Visual 

recognition is thought to involve the end stage of the human ventral visual processing 

stream – that is, ventral temporal cortex (VTC). Indeed, VTC contains both (i) clustered 

regions that are selective to and causally involved in the perception of ecological relevant 
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categories4–6 such as faces7, limbs8,9, places10, and words11, as well as (ii) distributed 

representations that are reproducibly unique to each category12–14. That is, stimuli from 

different categories generate distinct patterns of response across VTC, even stimuli that 

are not associated with clustered regions and when excluding category-selective regions 

altogether. However, it is unknown if and how distributed category representations in VTC 

develop longitudinally during childhood and if these developments are linked with 

behavioral improvements in visual recognition.  

 

Understanding the longitudinal development of distributed representations during 

childhood is important for three main reasons. First, to date, examinations of the 

development of distributed VTC responses has been largely confined to cross-sectional 

studies which compared representations in children to adults using a limited number of 

categories with inconsistent results15–18. Where some studies have reported that 

distributed responses to faces, objects and places in children are similar to adults15,17, 

other studies have reported that own-age face representations17 and word 

representations18 are enhanced from childhood to adulthood. Thus, to understand how 

distributed VTC representations change during childhood it is necessary to measure the 

longitudinal development of distributed representations within the same children and with 

many categories. Second, much of the prior developmental research has examined the 

development of category selectivity within clustered regions selective to ecologically-

relevant categories16,19–25. However, the development of distributed responses may be 

different than the development of category representations in clustered regions as 

different signals contribute to distributed compared to clustered responses. That is, the 

distributed pattern of response is determined by all values of responses (both high and 

low) across VTC, whereas in clustered regions the selectivity is driven by the highest 

responses26. Third, examining the relation between development of distributed VTC 

responses and development of face recognition and reading abilities will address a key 

debate in the field. Researchers argue whether the entire distributed pattern of response 

across VTC13 or the specific distributed responses over the selective voxels18,27–29 give 

rise to developmental improvements in visual recognition behavior.  
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How may distributed category representations in VTC develop during childhood? 

Prior research has found that clustered regions selective to faces and words become 

larger and more selective to their respective categories from childhood (4-7 year old) to 

adolescence (13-17 year old) to adulthood (>18)16,19–25. Recent longitudinal research in 

children has surprisingly found that these increases in face- and word-selectivity in lateral 

VTC are coupled with decreases in limb-selectivity and, in fact, regions that are limb-

selective earlier in childhood become selective to faces and words by adolescence23. 

These findings suggest that changes in category selectivity may affect the nature of 

distributed VTC representations. One possibility is that developmental increases in 

category-selectivity would lead to increases in the distinctiveness of distributed responses 

for categories associated with a clustered region in VTC. For instance, developmental 

increases in word- and face-selectivity would increase the distinctiveness of distributed 

responses to words and faces, making distributed responses both more consistent across 

items of their respective category and more different from distributed responses to items 

of other categories. This hypothesis also predicts that developmental decreases in limb-

selectivity would lead to decreases in the distinctiveness of distributed responses to limbs. 

A second possibility is that distributed responses in VTC develop for many categories 

beyond faces, limbs, and words, and also across voxels that don9t have a strong 

preference for any category. This hypothesis predicts that developmental changes will be 

observed also for categories, such as numbers, for which there is no clustered region in 

VTC and also across voxels that have no specific selectivity to any category. A third 

possibility is that because clustered regions selective to faces, words, and limbs only 

constitute a minority of VTC voxels18, changes in these regions will have little effect on 

large scale distributed patterns. Thus, this hypothesis predicts no significant development 

of distributed VTC responses during childhood, consistent with cross-sectional data 

reporting adult-like distributed responses to faces, objects, and scenes by age 715,17. 

 

These hypotheses also make different behavioral predictions. The first hypothesis 

predicts that if distributed representations for faces and words become more distinct over 

childhood development, then face recognition and reading performance will concurrently 

improve. This hypothesis also predicts that behavioral changes in face recognition and 
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reading will be coupled with specific increases in the distinctiveness of distributed 

responses over the category-selective voxels. The second hypothesis predicts that 

developmental increases in distinctiveness of distributed responses across the entire 

VTC rather than over category-selective voxels will be coupled with behavioral 

improvements in face recognition and reading, and this relationship may hold even when 

voxels of category-selective regions are excluded from the distributed response across 

VTC. In contrast, the third hypothesis does not predict a relationship between 

development of face recognition and reading performance and their respective distributed 

representations in VTC as the latter are predicted to stay stable during childhood 

development. 

 

Here, we tested these predictions using longitudinal measurements of distributed 

responses to many visual categories as well as behavioral assessments of face 

recognition and reading in the same school-age children over several years. These 

longitudinal measurements are crucial not only for tracking the development of brain and 

behavior within the same child over several years, but also for evaluating the rate of 

development of distributed responses both for categories with and without clustered 

regions of strong selectivity in VTC. Thus, we collected longitudinal functional magnetic 

resonance imaging (fMRI) and behavioral data in 29 school-age children over a span of 

1 to 5 years (mean±SD: 3.75±1.5 years, 4.4 ±1.92 sessions per child) totaling 128 fMRI 

sessions and 146 behavioral datasets (Fig. S1A). During the fMRI experiment, children 

viewed overall 1440 images from 10 categories spanning 5 domains of ecological 

relevance (Fig. S1B). These included characters (pseudowords, numbers), faces (adult 

faces, child faces), body parts (headless bodies, limbs), objects (cars, string instruments), 

and places (houses, corridors). We measured in each session distributed responses for 

each of the 10 categories across VTC and examined if they changed as children aged. 

To relate brain development to visual recognition performance, we measured in the same 

children their face recognition and reading performance outside the scanner (face 

recognition: 29/29 children, 2.83±1.0 sessions per child collected over 3.38±1.5 years, 

reading: 26/29 children, 2.21±1.1 sessions per child collected over 2.86±1.19 years). 

Then, we tested if there is a relationship between behavioral and brain development.  
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How do category representations in VTC develop longitudinally? 

To assess the nature of distributed category representations in children, we computed 

the distributed pattern of responses for each category. As face-, limb-, and word-selective 

regions are located in lateral aspect of VTC7,8,11,30 and development of word- and face-

selectivity varies across hemispheres16,18,21,31, we measured in each child and session 

distributed responses across lateral VTC (Fig. 1B, see Methods) to each of the 10 

categories, separately for the right and left hemispheres. Vectors of distributed responses 

to each category – also called multivoxel patterns (MVPs) – were computed 

independently for each of the two functional runs in each session in which participants 

viewed different images. We then calculated correlations between all pairs of MVPs (run-

1 to run-2), resulting in a 10x10 representational similarity matrix (RSM14, for each child 

and session (Fig. 1A). On-diagonal values in the RSM illustrate how similar distributed 

responses are across different images of the same category, and off-diagonals indicate 

how similar are distributed responses are to images of different categories. Examining 

individual RSMs revealed that even in young children there is category structure in 

distributed VTC responses as on-diagonal values are positive and higher than off-

diagonal values (Fig.1A).  

 

To quantify category information, we used the RSM to measure the distinctiveness of 

distributed responses for each category. The distinctiveness of a category is defined as 

the difference between within-category similarity and between-category similarity (Fig. 

1A, gray box); distinctiveness ranges from 0-2. Higher distinctiveness indicates that 

distributed responses to a category are highly similar across different images of the 

category and highly dissimilar from distributed responses to other categories. We 

measured distinctiveness separately for each category and hemisphere in each of the 

128 sessions. Then, we tested if category distinctiveness develops over childhood using 

linear mixed models (LMMs) relating category distinctiveness and age, with participant as 

a random factor (Fig. 1C). 
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Fig. 1. Differential longitudinal development of category representations in children’s lateral ventral temporal 
cortex (VTC).  (A) Representational similarity matrices (RSM) of left and right lateral VTC in individual sessions of two 
children at different ages. Gray box: Schematic illustrating how distinctiveness is computed for each category. (B) Left 
lateral VTC on the ventral inflated surface of an example participant. (C) Scatter plots illustrate the relationship between 
distinctiveness and age. Gray line: Linear mixed model (LMM) prediction of distinctiveness by age (random intercept 
model with subject as a random effect). Shaded gray: 95% confidence interval (CI). Participants are coded by color. 
Each dot is a session. Note that the statistics in the text and the data in (D) report developmental results from an LMM 
that includes two factors: age and tSNR. (D) LMM slopes indicating change in distinctiveness per year (LMM relating 
distinctiveness to age, with tSNR as an independent factor, and participant as random effect, n=128 sessions, 29 
children) for each category; for space, we refer to pseudowords as words. Error bars: 95% confidence interval (CI). If 
the CI does not cross the y=0 line, the change in distinctiveness is significantly different than 0. 
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To ensure that developmental effects are not driven by differences in scan quality across 

age, we first tested whether motion during scanning and timeseries signal-to-noise ratio 

(tSNR) contribute to measures of distinctiveness. Adding motion as a predictor to the 

LMM did not significantly contribute to the model fit except for distinctiveness for string 

instruments (no significant contribution of age to distinctiveness of string instruments with 

or without adding motion). Adding tSNR as a predictor to the LMM contributed to the 

model independent from age for several categories. Thus, we include tSNR as an 

additional predictor in the LMM (Table 1) and we report age-related changes in 

distinctiveness that are independent from tSNR.  

 

Example scatter plots show the distinctiveness for pseudowords (Fig. 1C-left) and adult 

faces (Fig. 1C-right) as a function of a child9s age. As you can see in these examples, 

distinctiveness for pseudowords in the left lateral VTC and distinctiveness for adult faces 

in the right lateral VTC steadily increases from age 5 to 17. The slope of the LMM 

summarizes the development of category distinctiveness with age. A positive slope 

indicates that category distinctiveness increases from age 5 to 17 and a negative slope 

indicates that category distinctiveness decreases across childhood. 

 

Results reveal differential development of category distinctiveness in lateral VTC that 

varied by category and hemisphere (Fig. 1D) and that was not limited to categories with 

a clustered region in lateral VTC. Consistent with the first hypothesis, we find increases 

in distinctiveness for pseudowords and faces and decreases in distinctiveness for limbs: 

Distinctiveness for pseudowords increased significantly with age in the left lateral VTC 

(βage=0.026, t(125)=3.49, pFDR=0.0038, Fig.1C,D), but not right lateral VTC (βage=0.009, 

t(125)=1.36, pFDR=0.32). Distinctiveness for both adult faces (left: βage=0.018, 

t(125)=2.72, pFDR=0.019; right: βage=0.02, t(125)=2.85, pFDR=0.015) and child faces (left: 

βage=0.029, t(125)=4.06, pFDR=0.0017; right: βage=0.025, t(125)=3.84, pFDR=0.002) 

increased significantly with age in both hemispheres (Fig.1C,D). In contrast to these 

developmental increases, distinctiveness for limbs decreased significantly with age in the 

right hemisphere (βage=-0.018, t(125)=-2.45, pFDR=0.035) while distinctiveness for bodies 

remained largely unchanged from age 5 to 17. Consistent with the second hypothesis, 
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we find increases in distinctiveness even for categories that do not have a clustered 

region in lateral VTC. Specifically, (i) distinctiveness for numbers increased significantly 

in the right lateral VTC (βage=0.023, t(125)=3.36, pFDR=0.004); while there was no 

significant development in left lateral VTC (βage=0.01, t(125)=1.39, pFDR=0.32) and (ii) 

distinctiveness for houses increased significantly bilaterally (left: βage=0.028, t(125)=3.45, 

pFDR=0.0038, right: βage=0.026, t(125)=2.98, pFDR=0.01). We find no evidence for other 

significant age-related changes (Table 1). Overall, these analyses reveal differential 

development of distributed category representation in lateral VTC from age 5 to 17.  

 

Which voxels drive the development of distributed representations? 

We next asked which voxels in lateral VTC drive the development of category 

representation: Is the development of distinctiveness driven by category-selective voxels, 

non-selective voxels, or both? We reasoned that if changes in distributed responses are 

driven by the development of category selectivity, then the development of category 

distinctiveness will be evident in the selective but not in the non-selective voxels of lateral 

VTC. Alternatively, voxels that are selective may be already developed, predicting that 

the non-selective voxels are driving the observed development of category 

distinctiveness. A third possibility is that category information is carried by the relative 

response across the entire neural population and in fact there is nothing special about the 

selective voxels (Haxby et al., 2001). This hypothesis predicts that development of 

category distinctiveness is driven by all voxels of lateral VTC, including both the selective 

and non-selective voxels.  

 

To test these predictions, we separated lateral VTC into two sets of voxels – those which 

were category selective, and the rest that were not selective to any category. That is, for 

each session, we first identified lateral VTC voxels which were selective (t>3, voxel-level, 

Methods) for each of the 10 categories, then took the union of these voxels across the 10 

categories to generate the set of all category-selective voxels. Non-selective voxels were 

defined as the remainder of lateral VTC voxels and were not selective to any of these 

categories. We next computed LMMs relating distinctiveness to age, with tSNR as an 

independent factor, in these two subsets of voxels (see Tables 2 & 3 for all model 
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parameters). We report the slope of the LMM indicating the effect of age for each category 

in Fig. 2. Although there are overall fewer selective voxels (left: 39.24%±11; right: 

34%±11%) than non-selective voxels (left: 60.76%±11; right: 66%±11%) we find a 

significant development of category distinctiveness across the union of selective voxels 

of lateral VTC (Fig. 2-maroon & pink bars), but no evidence for significant development 

of distinctiveness across the non-selective voxels of lateral VTC (Fig. 2-gray bars). These 

findings were not due to higher tSNR in the union of selective voxels compared to the 

non-selective voxels (no significant effect of voxel subset in left lateral VTC: 

βsubset_Selective=1.8, t(254)=1.34, p=0.18 and higher tSNR in non-selective vs. selective 

voxels in right lateral VTC: βsubset_Selective=-3.4, t(254)=-2.47, p=0.01, LMM with binary 

predictor voxel subset). 

 

In fact, the development of category distinctiveness in the subset of selective voxels 

largely replicates the findings when considering all lateral VTC voxels (compare Figs. 1D 

and 2). That is, in the union of selective voxels in the left hemisphere, we find a significant 

increase in the distinctiveness for pseudowords (βage=0.026, t(125)=3.99, pFDR=0.002), 

faces (adult: βage=0.026, t(125)=3.88, pFDR=0.002; child: βage=0.034, t(125)=4.39, 

pFDR=0.0009), and houses (βage=0.036, t(125)=3.69, pFDR=0.003. In the right hemisphere, 

we find a significant increase in the distinctiveness for numbers (βage=0.027, t(125)=3.08, 

pFDR=0.017), faces (adult: βage=0.020, t(125)=2.95, pFDR=0.02; child: βage=0.017, 

t(125)=2.75, pFDR=0.03), and houses (βage=0.034, t(125)=3.49, pFDR=0.005). The 

decrease in the distinctiveness for limbs was not significant in this subset of voxels (βage=-

0.01, t(125)=-1.67, pFDR=0.33). In contrast, we find no evidence for significant changes in 

distinctiveness for any category in the non-selective voxels of lateral VTC (Fig, 2-gray 

bars, Table 3). 
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Fig. 2. Development of distributed representation only in the selective voxels in lateral VTC. Bars indicate the 
change in category distinctiveness per year (LMM relating distinctiveness to age and tSNR, with participant as a random 
effect, n=128 sessions, 29 children) in different subsets of voxels. Maroon bars: the union of voxels in lateral VTC that 
were selective to one of the 10 categories. Category-selectivity was computed by contrasting responses to a category 
vs. all other categories except the other category from the same domain (e.g., numbers vs. all other categories except 
words). A voxel was defined as selective to a category when t>3. Overall ~36.5% of lateral VTC voxels were selective 
to one of the categories (see schematic in box). Gray bars: the remainder, the non-selective voxels of lateral VTC that 
were not selective to any of these categories. Darker colors: left hemisphere. Lighter colors: right hemisphere. Error 

bars: 95% CI. If the CI does not cross the y=0 line, the change in distinctiveness is significantly different than 0.  
 

 

How does the nature of the internal representational space change from childhood 

to adolescence? 

As there is a heterogeneous development of category distinctiveness both across 

categories and subsets of VTC voxels, it is interesting to consider how this relates to the 

internal representational space of these ten categories. To visualize the representational 

space and how it changes with age, we computed mean RSMs for 5-9-year-olds and 13-

17-year-olds (Fig. S2A). We then used multidimensional scaling (MDS) to visualize the 

representational space in 2D.  
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Fig. 3 Development of the representational space of the 10 categories in lateral VTC. Multidimensional scaling 
(MDS) embeddings for the category representation in different subsets of voxels for two age groups: 5-9-year-olds 
(n=16 participants, small circles) and 13-17-year-olds (n=13 participants, larger circles). One session per child is 
included per MDS of each age group. (A,D) MDS embedding of the representational space across the union of selective 
voxels in left (A) and right (D) lateral VTC. (B,E) MDS embedding the representational space of the remainder, non-
selective voxels of left (B) and right (E) lateral VTC. (C,F) Line plots depicting the change in representational spaces in 
individual children in left (C) and right (F) lateral VTC across the selective and non-selective voxels. The change in 
representation is the mean Euclidian distance between category positions in the MDS embedding of a child9s first 
session vs their last session. Each line is a participant (n=29); Gray: larger distances in the selective voxels; Red: larger 
distances in the non-selective voxels. 
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This visualization illustrates two key findings.  

First, distributed representations across both the union of selective voxels (Fig. 3,A,D, 

Supplemental movie 1) and non-selective voxels (Fig. 3B,E) reveal a categorical 

structure, however, the categorical representation over nonselective voxels is strongly 

diminished compared to that over the union of selective voxels (Fig. 3, compare A&D to 

B&E). That is, MDS embeddings over both the union of selective voxels (Fig. 3A,D) and 

over the non-selective voxels (Fig. 3B,E) reveal that representations of animate stimuli 

(faces, bodies) are largely separate from those of inanimate stimuli (objects, places, 

characters) in both children and adolescents. Yet, comparing the embeddings of the union 

of selective voxels (Fig. 3A,D) to that of the non-selective voxels (Fig. 3B,E) reveals that 

the representation of category information is much clearer and enhanced over the 

selective voxels.  

 

Second, examining the representational structure over the union of selective voxels from 

childhood (small circles) to adolescence (large circles) reveals developmental changes. 

In contrast the representational structure of the non-selective voxels remains largely 

unchanged. Examining the MDS embeddings over the union of the selective voxels 

reveals development of the categorical structure in several ways: (i) in both hemispheres 

representations of faces strengthen and become more separable from other categories 

from childhood to the teens (Fig. 3A,D, red arrows moving outward, see developmental 

trajectory in Supplemental Movie 1), (ii) representations of both pseudowords and 

numbers strengthen from age 5 to age 17, and this development is particularly 

pronounced in the left hemisphere (Fig. 3A,D, blue arrows moving outward, Supplemental 

Movie 1), and (iii) representations of limbs in the right hemisphere weaken from childhood 

to the teens (Fig. 3D, Supplemental movie 1, yellow arrow moving inward). In contrast, 

comparing representations over the non-selective voxels in children and adolescents 

suggests no substantial development. 

 

We quantified the development of the representational structure in both selective and 

non-selective voxels in each child (Fig. 3C,F, Methods). Thus, for each set of voxels we 

aligned the MDS embedding of each child9s first session to that of their last session and 
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measured the mean distance between the coordinates of each category in this shared 

embedded space. This analysis reveals that there is a significantly larger developmental 

change in the representation over the union of selective voxels than the non-selective 

voxels in both hemispheres (left: t(28)=6.40, p<0.001, t-test Fig. 3C, and right: t(28)=4.92, 

p<0.001, Fig. 3F). Importantly, this effect is visible in most individual children illustrating 

within-child development of distributed responses (Fig. 3C,F). In sum, these analyses 

reveal that while there is categorical structure in both sets of voxels (union of selective, 

non-selective), the representation in the union of selective voxels (i) is enhanced 

compared to that of the non-selective voxels, and (ii) undergoes stronger development. 

 

Is development of distributed responses linked to improvements in behavior? 

So far, accumulating evidence reveals the enhancement of distributed category 

representations in lateral VTC from age 5 to 17. Given that face recognition and reading 

also improve from age 5 to 17, we measured face recognition and reading ability in our 

longitudinal sample (Fig. S3) and tested if these developments are linked. We 

hypothesized that developmental increases in distinctiveness for faces and pseudowords 

may enhance recognition performance for these categories. We tested this hypothesis 

using LMMs relating behavioral performance to category distinctiveness, with participant 

as a random factor. 

 

We found a significant and positive relationship between reading performance of 

pseudowords and distinctiveness for pseudowords over the union of the selective voxels 

of left lateral VTC (Fig. 4A, βdistinctiveness =40.19, t(62)=2.94, p=0.005, LMM, random slope 

and intercept across participants). That is, better reading scores were associated with 

higher values of distinctiveness for pseudowords. The effect of distinctiveness predicting 

reading performance remained significant when age was added to the LMM 

(βdistinctiveness=28.92, t(61)=2.4, p=0.02; βage=2.45, t(61)=3.44, p=0.001), showing that the 

effect of distinctiveness was independent from the effect of age. Importantly, this link 

between reading scores and distinctiveness for pseudowords in left lateral VTC was 

specific, as no significant link was found between reading performance and (i) 

pseudoword distinctiveness over the non-selective voxels of left lateral VTC 
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(βdistinctiveness=14.96, t(62)=1.29, p=0.20), (ii) pseudoword distinctiveness over the 

selective voxels in right lateral VTC (βdistinctiveness=-6.90, t(62)=-0.50, p=0.62), or (iii) face 

distinctiveness over the selective voxels in either hemisphere (left: βdistinctiveness=6.0, 

t(62)=0.51, p=0.61; right: βdistinctiveness=0.72, t(62)=0.05, p=0.96). 

 

Fig. 4. Distinctiveness for words and faces in left and right lateral VTC, respectively, predict reading and face 
recognition performance in individual children. (A) Linear mixed model (LMM) with random slopes and intercepts 
relating reading performance of pseudowords (Woodcock Reading Mastery Test, WRMT) to pseudoword 
distinctiveness over the union of selective voxels of left lateral VTC. Model parameters indicated in the bottom. Each 
dot is a session; Dots are colored by participant. Colored lines: individual slopes and intercepts. Thick gray line: LMM 
prediction. Shaded gray: 95% CI.  (B) Left: Median error in predicting the reading performance of a left-out subject from 
their distinctiveness for pseudowords in left lateral VTC using the parameters derived from the LMM of the rest of the 
subjects (29-fold leave-one-out-cross validation). Higher values indicate worse model prediction. The bars show the 
prediction error for three different models: Selective: LMM predicting behavior from distinctiveness over the union of 
selective voxels. Non-selective voxels: LMM predicting behavior from distinctiveness over the non-selective voxels. 
Selective & age: LMM predicting behavior from distinctiveness over the union of selective voxels with age as an 
additional factor. Error bars: standard error across participants. Right: Swarm plots showing the difference between the 
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prediction error for selective vs. non-selective voxels. Each dot is a participant. Statistics (at bottom) test if the difference 
in error is significantly different than zero.  (C) Same as (A) but for LMM parameters for a model relating face recognition 
performance (Cambridge face recognition memory test (CFMT), adult faces) and distinctiveness for adult faces over 
the selective voxels of right lateral VTC.  (D) Same as (B) but for face recognition performance and distinctiveness for 
adult faces in right lateral VTC.  
 

We further reasoned that if distinctiveness predicts behavior, then this model can be used 

to predict reading performance in new subjects just from the distinctiveness of their lateral 

VTC selective voxels. We tested this prediction using a leave-one participant-out cross 

validation (LOOCV) approach. Results reveal that distinctiveness for pseudowords in the 

union of selective voxels in left lateral VTC successfully predicts reading performance in 

left out subjects with a median prediction error of 8.7% (Fig. 4B, purple bar). Adding age 

to the model did not further reduce the prediction error (Fig. 3B, black bar; no significant 

difference in performance, t(25)=0.47, p=0.64). In contrast, predicting reading 

performance from distinctiveness for pseudowords in non-selective voxels revealed a 

larger median prediction error of 11.5% (Fig. 4B, gray bar). Indeed, for most subjects the 

prediction error was larger for a model based on distinctiveness of the non-selective 

voxels than a model based on distinctiveness of the selective voxels (Fig. 4B-swarm plot, 

two-sided t-test comparing the difference in error to zero: t(25)=-2.11, p=0.045). 

 

Likewise, distinctiveness for adult faces in the union of selective voxels of right lateral 

VTC was significantly and positively related to face recognition performance (βdistinctiveness 

=31.49, t(80)=3.82, p=0.0003, LMM with random slope and random intercept across 

participants). That is, better face recognition performance was associated with higher 

values of distinctiveness for (Fig. 4C). When age was added to the LMM the effect of 

distinctiveness remained marginally significant (βdistinctiveness=16.41, t(79)=1.97, p=0.053; 

βage=3.94, t(79)=7.89, p<0.001). Crucially, the link between face recognition and face 

distinctiveness was specific to the selective voxels of right lateral VTC, as no such effect 

was found for (i) face distinctiveness in the non-selective voxels of right lateral VTC 

(βdistinctiveness=0.85, t(80)=0.09, p=0.93) or (ii) pseudoword distinctiveness in the selective 

voxels in right lateral VTC (βdistinctiveness=-8.7, t(80)=-1.18, p=0.24). While face recognition 

ability was also linked to distinctiveness for words in the left hemisphere 

(βdistinctiveness=24.56, t(80)=2.75, p=0.007), this link was driven by age, as there was no 

significant relationship when age was added to the model (βdistinctiveness=-2.69, t(79)=-0.36, 
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p=0.73, βage=4.18, t(79)=7.83, p<0.001). Similarly, while face recognition ability was 

marginally linked with distinctiveness for adult faces in the left lateral VTC 

(βdistinctiveness=17.79, t(80)=1.97, p=0.052), it was not significant when age was added to 

the model (βdistinctiveness=-1.67, t(79)=-0.24, p=0.81, βage=4.00, t(79)=7.35, p<0.001).  

 

Distinctiveness for adult faces over the selective voxels of right VTC also predicts face 

recognition performance in left out subjects (LOOCV, Fig. 4D-purple bar). Face 

recognition ability is predicted from face distinctiveness over the selective voxels of right 

lateral VTC in the left-out subject with a median prediction error of 10.93%. Again, adding 

age to the model did not significantly reduce the error (t(28)=-0.42, p=0.68, Fig. 4D-dark 

gray bar) and for most subjects, the prediction error was higher from  a model based on 

the non-selective voxels than a model based on the union of selective voxels (Fig. 4D-

light gray bar and swarm plot, t-test comparing the difference in error to zero: t(28)=-3.19, 

p=0.004). Together these data suggest distinctiveness of word and face representations 

in lateral VTC predict performance for these categories, and that developmental 

improvements in reading and face recognition abilities are linked to increases in word and 

face distinctiveness in the selective voxels of left and right lateral VTC, respectively. 

 

Discussion 

By combining longitudinal measurements of distributed VTC responses to multiple 

categories with behavioral data in children over several years, the present study reveals 

several novel findings regarding the functional development of category representations 

in children9s brains. First, our data reveals development of multiple category 

representations in lateral VTC from age 5 to age 17. This development consists of both 

enhancement and diminution of the distinctiveness of distributed category 

representations, as well as development of representations for categories that are not 

associated with clustered regions in this cortical expanse. Second, the development of 

distributed responses was driven mainly by changes in representations over the union of 

voxels that exhibited category selectivity. Third, importantly, the developmental increases 

of category distinctiveness to words and faces in the union of selective voxels in the 
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dominant hemisphere (left and right, respectively) predicted visual recognition ability of 

words and faces in left-out data. 

 

Our longitudinal and multivariate analyses of category distinctiveness in lateral VTC 

reveal increases of distinctiveness for faces, words, numbers, and houses as well as a 

decrease of distinctiveness for limbs. The increase in distinctiveness for faces and words 

in left lateral VTC is in line with prior findings showing that word- and face-selective 

regions grow with development and become increasingly more selective to their preferred 

category16,19,21,23,25,32 and with results from multivariate approaches showing increases in 

distinctiveness for words16,18. Further, the decrease in distinctiveness in distributed lateral 

VTC responses for limbs is consistent with findings that limb-selective regions shrink from 

childhood to the teens and lose their limb-selectivity23. Together this provides evidence 

that developmental changes in the degree of selectivity affect distributed responses. That 

is, developmental increases in selectivity lead to increases in category distinctiveness 

and developmental decreases in selectivity lead to decreases in distinctiveness.  

 

Our data also reveal increases in distinctiveness for numbers and houses with age in the 

right lateral VTC. The former finding is in line with the expectation that schooling not only 

enhances word but also number representations in VTC. As prior cross-sectional18 and 

univariate23 approaches did not detect development of number responses in lateral VTC, 

these data highlight the higher sensitivity of longitudinal, multivariate approaches to 

measure functional development in the brain. The latter finding of developmental 

increases in distinctiveness for houses in lateral VTC was unexpected as place-selective 

regions are located in the medial part of VTC10,12. As both voxels with strong positive and 

a negative preference contribute to category information (e.g., words18, the increase in 

distinctiveness for houses may be driven both by increases in the number of house-

selective voxels in lateral VTC23, as well as increases in the number of voxels with a 

negative preference to houses, like face-selective voxels.  

 

In addition to the changes in category distinctiveness, we also examined changes in the 

nature of the representational space of the 10 categories across lateral VTC. Like prior 
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cross-sectional studies15,17 we find that representations of faces are already separated 

from those of other categories at age 5 (Fig. 3) and yet our data show that they continue 

to be enhanced into adolescence. Our results also show that representations for words 

and numbers in the left hemisphere are not yet separated from those of other categories 

in the younger age group of 5-9-year-olds, but become enhanced by adolescence. As 

such, these data suggest (i) that the development of distributed face representations 

starts earlier than that of character representations, which appears to start later in 

childhood and (ii) that schooling and learning how to read changes category 

representational space in VTC. This idea is consistent with findings that extensive 

experience playing Pokémon during childhood also affects category representations in 

VTC 33.  

 

In addition to the enhancement of character and face representations during childhood, 

our data also reveal that representations for limbs weakened from childhood to 

adolescence in the right hemisphere. That is, representations for limbs move towards the 

center of the MDS space as children get older (Fig. 3D). While the reason for this 

developmental change is currently unclear, it is possible that changes in visual experience  

with limbs during childhood contribute to this change. Future longitudinal studies can test 

this prediction empirically. These findings also raise questions on how the 

representational space for visual categories may be affected in individuals with altered or 

deprived visual experience such as children with cataracts34,35, illiterate individuals, or 

late-literate individuals who only learned how to read when they were adults36.  

 

The present results also have important theoretical implications for the debate on how 

distributed13 vs. modular28 category representations in VTC contribute to behavior. On the 

one hand, our data reveal that representations of animate (faces and bodies) categories 

are separable from representations of the other inanimate categories in both selective 

and non-selective voxels (Fig. 3), consistent with the predictions of the distributed 

hypothesis13. On the other hand, we find significant development of category 

distinctiveness across the union of the selective voxels in lateral VTC, but no evidence 

for development of category distinctiveness in the non-selective voxels, contrary to the 
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predictions of the distributed hypothesis13. Crucially, however, we find that distinctiveness 

over the union of selective voxels, but not the non-selective voxels, predicts recognition 

behavior. That is, distinctiveness for pseudowords over the union of selective voxels in 

left lateral VTC predicted pseudoword reading; likewise, distinctiveness for faces over the 

union of selective voxels in right lateral VTC predicted face recognition. These longitudinal 

measurements are consistent with our prior cross-sectional data that found that better 

reading ability in adults than children is coupled with higher distinctiveness in word-

selective voxels18. Together, the present data support a sparsely distributed account of 

VTC functional organization (Weiner and Grill-Spector 2010). That is, while we find that 

distributed responses across both selective and non-selective voxels contain category 

information, development of the selective voxels is more enhanced and better predicts 

behavioral outcomes. 

 

The described link between category distinctiveness in the union of selective voxels and 

recognition ability has important ramifications for studying the neural basis of atypical 

development and developmental disorders. For instance, future research can examine if 

children with dyslexia have lower distinctiveness for words in left lateral VTC than age-

matched typically-developing children and whether distinctiveness for words contributes 

to explaining reading ability independent of other predictors such as phonological 

awareness37, socio-economic status38,39, white matter properties40, gyrification in auditory 

cortex41, or perceptual decision-making42. Similarly, future research can test if adults and 

children with developmental prosopagnosia43,44 show lower distinctiveness for faces, 

compared to typical age-matched controls, and conversely if super-face-recognizers45,46, 

show higher distinctiveness for faces in right lateral VTC than typical age-matched 

controls.  

 

In sum, our results not only provide novel insights on the development of category 

representations in VTC, but also elucidate how this development relates to behavioral 

changes in visual recognition of faces and written words during childhood and 

adolescence. Future studies can test the hypothesis that this link between category 
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distinctiveness and behavior generalizes to the representation of other categories and 

skills involving visual recognition, such as number representations and math. 

 

 

Methods 

Participants 

Children aged 5-12 years with normal or corrected-to-normal vision were recruited for this 

study. This age range was selected for two reasons: First, face recognition and reading, 

the two behavioral measures assessed in this study, improve during this age range. 

Second, prior studies investigating the functional development of VTC have shown 

development in this age range16,23.  

Children were recruited from schools in and around Palo Alto, Ca. The diversity of the 

participants reflects the makeup of the region: 62.5% of children were Caucasian, 20% 

were Asian, 5% were Native Hawaiian, 5% were Hispanic, and 7.5% were multiracial or 

from other racial/ethnic groups. We collected fMRI data from 40 (26 female) children 

(onset age=5-12 years, M=8.66 years, SD=2.34 years). Data from 4 children had to be 

excluded because they dropped out of the study after participating only once, thus 

providing no longitudinal fMRI data. Data from 7 children were excluded because their 

data did not pass inclusion criteria (see below, Method details). In the remaining 29 

children, 29 functional sessions were excluded due to motion, 1 session due to a technical 

error during acquisition, and 1 session due to aliasing artifacts during acquisition. The 

fMRI data has previously been reported in23. 

Therefore, in this study we report data of 29 neurotypical children (18 female, 11 male), 

who were between 5 to 12 years old (mean=9.19, SD=2.13) when they enrolled in the 

study. Children participated in the study for 1 to 5 years. When possible, children 

completed 1 to 2 functional scans and a structural scan each year. Each child participated 

in at least 2 and up to 10 fMRI sessions (mean=4.41, SD=1.92) with the time interval 

between the first and last fMRI scan ranging from 10 months to 5 years (mean=45 

months, SD=18 months). We also report behavioral data collected on a subset of 

sessions of the same children (see below, behavioral data collection). 
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Statement on ethical regulations 

This study was approved by the Institutional Review Board of Stanford University. Prior 

to the start of the study, parents gave written consent, and children gave written assent 

for their participation. Children received $30 per hour for scanning, $10 per hour for 

behavior, and a small toy for their participation. 

 

Procedure 

Before taking part in the actual fMRI session, children completed a training with a mock 

scanner to enhance the quality of pediatric neuroimaging data. During the mock scanner 

training children were acclimated to the scanner environment in a child-friendly way: 

Children practiced laying still while watching a short movie and receiving live feedback on 

how much they were moving. After the mock scanner training the child participated in the 

actual MRI session. Functional and anatomical scans were typically conducted on 

different days to avoid fatigue. Face recognition and reading tests were typically 

completed after one of the scanning sessions.  

 

Magnetic resonance imaging 

Structural imaging 

We collected neuroimaging data at the Center for Cognitive Neurobiological Imaging at 

Stanford University using a phase-array 32 channel head coil and a 3 Tesla GE Discovery 

MR750 scanner (GE Medical Systems). Anatomical scans were collected using 

quantitative MRI (qMRI47). Here, we used a spoiled gradient echo sequence with multiple 

flip angles (�=4°, 10°, 20°, 30°), TR=14ms and TE=2.4ms. The scan resolution was 

0.8x0.8x1.0mm3 (which was later resampled to 1mm isotropic). For T1-calibration spin-

echo inversion recovery scans were acquired with an echo-planar imaging read-out, 

spectral spatial fat suppression and a slab inversion pulse. These scans were collected 

at TR=3s, inplane resolution=2mmx2mm, slice thickness=4mm and 2x acceleration, echo 

time=minimum full. 
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Functional imaging 

The functional data was acquired with the same scanner and head coil as the structural 

images. We oriented slices parallel to the parieto-occipital sulcus. Data were collected 

using a simultaneous multi-slice, one-shot T2* sensitive gradient echo EPI sequence with 

a multiplexing factor of 3. This sequence had a FOV=192mm, TR=1s, TE=30ms, and flip 

angle=76°, a resolution of 2.4 mm isotropic and near whole brain coverage (48 slices). 

 

10 category experiment 

During functional imaging, children completed three runs of a 10-category experiment 

23,48. In each functional run, participants watched images from 10 categories which can 

be grouped into 5 domains (Supplemental Fig. 1B): faces (child faces, adult faces), 

characters (pseudowords, numbers), body parts (headless bodies, limbs), places 

(houses, corridors) and objects (cars, string instruments). Images contained category 

stimuli, which were placed on a phase-scrambled background generated from randomly 

selected images. All stimuli were grayscale. Images were presented at a rate of 2 Hz and 

did not repeat across the course of the experiment. Images were presented in 4 s blocks, 

which were intermixed with baseline blocks showing gray luminance screen. Blocks were 

counterbalanced across categories and baseline blocks. Participants were instructed to 

view the images while fixating on a central dot and perform an oddball task. The oddball 

task required participants to press a button whenever an image comprising only the 

phase-scrambled background appeared. Behavioral responses of the oddball task were 

recorded in 98 out of 128 sessions due to occasional button malfunction. Performance on 

the oddball task performed during scanning was overall high (median performance=91%, 

SD=18%). 

 

Behavioral data collection 

Assessing reading ability 

In a subset of sessions participants also completed the word identification and word attack 

tests from the Woodcock Reading Mastery Test (WRMT). Reading assessment was 

performed outside the scanner. In the word identification task, participants are asked to 

read a list of words as accurately as possible. In the word attack task, participants are 
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supposed to read a list of pseudowords as accurately as possible. Tests do not have a 

time limit, but end when the participant makes 4 consecutive errors or has read the 

complete list. The reading score for each test was obtained by dividing the number of 

words read correctly by the total number of words and multiplying the result by 100. 

 

Assessing face recognition ability 

In a subset of sessions participants also completed the Cambridge Face Memory Test 

(CFMT49) using adult male faces and a version of the CFMT using male child faces50. The 

CFMT is a self-paced face recognition test. In the learning phases, participants learn the 

identity of six target unfamiliar faces. In the test phase, in each trial they are shown a 

triplet of faces, and are asked to identify the learned faces amongst distractor faces.  The 

test constitutes 72 trials that become increasingly difficult as faces appear in unknown 

views, lighting, and with superimposed noise. Accuracy was measured as the percent 

correct responses made during the test phase. 

 

Data analysis 

We used MATLAB version 2017b (The MathWorks, Inc.) and the mrVista software 

package (https://github.com/vistalab/vistasoft/wiki/mrVista) to analyze the data. Swarm 

plots in Fig. 4 were created using MATLAB version 2020b. 

 

Inclusion criteria  

There were two criteria relevant for inclusion of the fMRI data into the analysis. First, there 

needed to be at least 2 (out of 3) runs per session with within-run motion < 2 voxels and 

between-run motion < 3 voxels. Second, the child participated in at least two fMRI 

sessions that were at least 6 months apart. Because in several sessions only 2 out of 3 

functional runs passed the motion quality criteria, final analyses include 2 runs per 

session to ensure equal amounts of data across participants and functional sessions. For 

sessions with 3 runs surviving motion quality thresholds, the 2 runs with lowest within-run 

motion were selected. 

For analyses that relate fMRI data to behavioral data, behavioral datasets (face 

recognition and reading tests) were included in the analysis if the time between 
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acquisition of the behavioral data and the acquisition of fMRI data was < 1 year (Fig. 

S1A). 

 

Analysis of structural MRI data and individual template creation 

We processed quantitative whole brain images of each child and timepoint with the mrQ 

pipeline (https://github.com/mezera/mrQ47) to generate synthetic T1 brain volumes. For 

each child, we then used the synthetic T1 brain volumes from their multiple timepoints to 

generate a within-subject brain volume template. The individual template of each child 

was generated using the FreeSurfer Longitudinal pipeline implemented in FreeSurfer 

version 6.0. (https://freesurfer.net/fswiki/LongitudinalProcessing51). We then manually 

edited the gray-white matter segmentations of each participant9s within-subject brain 

template to fix segmentation errors (like holes and handles) to generate an accurate 

cortical surface reconstruction. The functional data from each child9s multiple timepoints 

(see below) was then aligned to the within-subject template. The reasons for this 

procedure were to: (i) minimize potential biases which can occur from aligning longitudinal 

data to the anatomical volume from a single timepoint51 and to (ii) enable using the same 

anatomical regions of interest (ROIs) across different timepoints in the same brain volume 

for each participant. On average 2.48 (SD=0.69) synthetic T1s were used to generate the 

within-subject-template (min=2, max=5). In 17 participants the last fMRI session that was 

included was conducted after the within-subject template had been created. These 

functional sessions were acquired on average 11± 2 months after acquisition of the last 

synthetic T1 that was included in the within-subject-template (excluding 2 participants 

whose last synthetic T1 could not be used because of technical error during acquisition 

and subject motion). 

 

Definition of lateral VTC Regions of Interest (ROIs) 

We defined lateral VTC ROIs based on anatomical landmarks on the inflated cortical 

surface in each hemisphere of each participant as in prior publications18,23. The posterior 

border of the lateral VTC ROI was defined along the posterior transverse collateral sulcus 

(ptCoS). The anterior border was aligned to the posterior end of the hippocampus, which 

typically aligns with the anterior tip of the mid fusiform sulcus (MFS). The medial border 
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of the ROI was placed along the mid-fusiform sulcus (MFS) and the lateral border of the 

ROI was along the inferior temporal gyrus (ITG).  

Analysis of functional MRI data 

Functional data from each session were aligned to the individual subject brain template 

(see above). Data was motion corrected both within and across functional runs. We 

applied no spatial smoothing and no slice-timing correction. Time courses were 

transformed into percentage signal change. To this end, each timepoint of each voxel9s 

data was divided by the average response across the entire run. A general linear model 

(GLM) was fit to each voxel by convolving the stimulus presentation design with the 

hemodynamic response function (as implemented in SPM, 

https://www.fil.ion.ucl.ac.uk/spm/) to estimate the contribution of each of the 10 

conditions. 

 

Multivariate pattern analysis 

For each category multivoxel patterns (MVPs) of responses are vectors of response 

amplitudes across all voxels in each ROI (left and right lateral VTC).  Amplitudes were 

estimated from the GLM run at each voxel. Response amplitudes were transformed into 

z-scores to remove between voxels differences in amplitudes (e.g., because of distance 

from coil) and to down-weight noisy voxels (see18,52,53. Next, we calculated all pair-wise 

correlations between MVP pairs from one functional run to the other resulting in a 10 x 10 

representational similarity matrix (RSM14) for each session.  

 

Assessment of category distinctiveness 

For each session9s RSM, we computed the distinctiveness for each of the 10 categories. 

The distinctiveness of a category is defined as the within-category minus between-

category similarity of distributed responses leaving out the between-category similarity 

with the other category from the same domain. This is illustrated in the gray box in Fig. 

1A: In the RSM the values on the diagonal represent the within-category similarity, while 

the off-diagonal values represent the between-category similarities. For instance, to 

compute the distinctiveness for words, the between-category similarities for all categories 

except numbers are subtracted from the within category similarity for words. The reason 
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for leaving out the other category from the same domain is that for some domains the two 

categories are very similar to each other (such as adult and child faces) while for other 

domains the two categories differ from each other to a greater extent (such as cars and 

string instruments) so we chose a procedure that would be least biased and will not 

differently affect stimuli from various domains.  

 

Definition of voxel subsets: the union of selective voxels across all categories and of non-

selective voxels 

To define the union of selective voxels in each session, we first computed the selective 

voxels for each category and then took the union of selective voxels across all 10 

categories. Selective voxels for each category were defined by contrasting responses to 

a given category vs. all other categories except the other category from the same domain 

(i.e., words vs. all other categories except numbers). Category-selectivity was defined as 

a t-value > 3 (voxel-level) for the contrast of interest. Then, we took the union of the 

selective voxels across all 10 categories. Non-selective voxels were the remainder of 

voxels in lateral VTC, that were not selective of any of the 10 categories. 

 

Visualizing changes in the representational space  

We used multidimensional scaling (MDS) to visualize the representational space in lateral 

VTC and determine how it changes with age (Fig. 3 A,B,D, E & Supplemental movie 1). 

As visualizing how the representational space changes longitudinally is challenging, we 

show MDS embeddings for young children (5-9-year-olds) and teenagers (13-17-year-

olds). Supplemental movie 1 is a video that shows the developmental trajectory of the 

MDS embedding across age. These age groups are used for visualization only; statistics 

are run on the whole longitudinal sample (see below). For the MDS embedding shown in 

Fig. 3 A,B,D,E we first computed mean RSMs for 5-9-year-olds and 13-17-year-olds 

separately for the union of selective voxels and for the non-selective voxels in each 

hemisphere (Fig. S2B,C). The RSMs were then turned into dissimilarity matrices. We next 

applied classical multidimensional scaling (MDS) to visualize the representational space 

in 2D (Fig. 3 A,B,D,E). To facilitate visual comparison of different MDS embeddings 

across hemispheres and sets of voxels, we aligned all MDS embeddings of 13-17-year-
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olds to the embedding of 13-17-year-olds across all voxels in left lateral VTC using the 

Procrustes transformation. We next used the Procrustes transformation to align the 

embedding of 5-9-year-olds to that of 13-17-year-olds. Procrustes analysis was used 

without scaling in both cases. 

 

Assessing changes in the representational space  

The line plots in Fig. 3C,F quantify the change that is visualized in the MDS embeddings 

(Fig. 3A,B,D,E). The goal of this analysis was to assess how the representational 

structure changes in the union of selective voxels compared to in the non-selective voxels 

in each child. To this end, we applied MDS to the RSM of each child9s first session in the 

study and to the RSM of their last session. We next used Procrustes transformation 

without scaling to align the embedding of the first session to that of the last session. In 

each child we then measured the Euclidian distance for each category between the first 

to the last session, in the shared MDS embedding space and report the mean distance 

across all categories. This analysis was performed for both hemispheres and for both sets 

of voxels (union of selective voxels, non-selective voxels). 

Statistics 

Unless stated otherwise, tests reported in this manuscript are two-tailed. 

We used linear mixed models (LMM) to test whether distinctiveness develops with age 

because LMMs can account both for the hierarchical data structure with multiple sessions 

being nested within each participant and for the uneven distribution of sessions across 

time (Supplemental Fig. 1A). 

Statistical analyses related to Fig. 1 

LMMs were fitted using the 8fitlme9 function in MATLAB version 2017b (The MathWorks, 

Inc.). In these models, category distinctiveness was predicted by age using participant as 

a random factor. We first tested whether a random intercept or random slopes model fit 

the data best. In a random intercept model, intercepts are allowed to vary across 

participants, while in a random slope model both intercepts and slopes can vary across 
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participants. Since in the majority of cases random intercept models fit the data best, we 

used random intercepts for all analyses presented in Fig. 1 to enable comparability across 

models.  

We next tested whether motion during scanning and tSNR contributed to the model fit. 

Adding motion as a predictor to the LMM did not significantly contribute to the model fit 

except for distinctiveness for string instruments. Importantly, adding motion in the model 

for distinctiveness for string instruments did not influence the result: There was no 

significant contribution of age to string instruments distinctiveness with or without adding 

motion. We next tested whether tSNR contributed to the model fit. Since adding tSNR 

contributed to the model fit independently from age in several cases, we included tSNR 

as an additional factor into the model. The bars in Fig. 1D show the slopes for the effect 

of age on category distinctiveness taking into account tSNR. LMMs related to Figure 1D 

can be expressed as: category distinctiveness ~ age in years + tSNR + (1|participant), in 

which category distinctiveness is the response variable, age and tSNR are the predictors 

and the term (1|participant) indicates that intercepts vary by participant. False-discovery 

rate (FDR) correction following the procedure by Benjamini and Hochberg54 as 

implemented in MATLAB version 2017b (The MathWorks, Inc.) was applied to account 

for multiple comparisons for analyses shown in Fig. 1D. 

Statistical analyses related to Fig. 2 

The analyses in Fig. 2 were performed similar to those in Fig.1D and can be expressed 

as: category distinctiveness ~ age in years + tSNR + (1|participant). LMMs were run 

separately for each category, hemisphere, and voxel subsets (union of the selective 

voxels, non-selective voxels). Here, tSNR was obtained for each voxel and then averaged 

across voxels within each voxel subset (union of the selective voxels, non-selective 

voxels). In addition, we ran a LMM to test whether there are differences in tSNR in the 

subset of the union of the selective voxels and the non-selective voxels. This model can 

be expressed as: tSNR ~ voxelSubset + (1|participant), where voxelSubset is a binary 

predictor (selective/non-selective). For analyses shown in Fig. 2 FDR correction was 

performed as described for Fig. 1. 
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Statistical analyses related to Fig. 3 

We used paired t-tests to evaluate the change in representation in the union of selective 

voxels and the non-selective voxels in each hemisphere (Fig. 3C,F). That is, in each 

hemisphere and voxel subset we first computed the mean Euclidian distance across all 

categories from each child9s MDS embedding of their first session to the embedding of 

their last session. We then compared the mean distances across the union of selective 

voxels to that in the non-selective voxels. 

Statistical analyses related to Fig. 4 

For the analysis in Fig. 4A,C, we used LMMs to test if distinctiveness in the union of 

selective voxels is related to behavior.  

Fig. 4A: While we acquired reading scores for both real words and pseudowords in our 

participants, we used the reading scores for pseudowords to test for a link between 

distinctiveness and behavior, because pseudowords were also used in the fMRI 

experiment. We used a random slopes model that can be specified as: Pseudoword 

reading score (%) ~ distinctiveness for pseudowords + (distinctiveness for pseudowords 

| participant). A random slopes model was used because (i) it fitted the data better 

compared to the random intercept model and (ii) the individual subject9s slopes (random 

effects) visualize that there is a positive link between distinctiveness for pseudowords and 

reading score in most individuals.  

Fig. 4C: In this analysis we tested if there is a link between distinctiveness for adult faces 

in the union of selective voxels in lateral VTC and face recognition scores as assessed 

with the CFMT using adult faces. While we had also acquired data of a version of the 

CFMT using child faces (CFMT-child), we used data of the CFMT-adults to link it to 

distinctiveness for two reasons. First, performance on the CFMT-child was overall higher 

resulting in ceiling effects in some subjects. Second, as the CFMT-adults is a widely used 

test it enables comparison across studies. As such, for the data presented in Fig. 4C we 

used a random slopes model that can be specified as: Face recognition score in CFMT-

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2022. ; https://doi.org/10.1101/2022.12.23.521732doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.23.521732
http://creativecommons.org/licenses/by-nd/4.0/


 30 

adults (%) ~ distinctiveness for adult faces + (distinctiveness for adult faces | participant). 

While the random slopes model did not fit the data significantly better than the random 

intercept model, it enables visualizing the effect between face distinctiveness and face 

recognition in individual subjects. There are no significant differences to the results of the 

present analysis when a random intercept model is used instead of the random slopes 

model. 

Predicting behavior from brain data 

We used a leave-one participant-out-cross validation (LOOCV) approach to test if we can 

predict behavior from brain data. That is, we computed a LMM that predicts behavior 

using distinctiveness on all sessions except for one subject that was left out in each 

iteration. Then, we used the LMM estimates to compute the predicted behavioral score 

for each session of the left-out subject. The prediction error was defined as the difference 

between the predicted and the actual behavioral score. We then repeated this procedure 

for all subjects. 

The bar plots in Fig. 4 B,D show the prediction error for three different models: (i) 

Selective: LMM predicting behavior from distinctiveness over the union of selective voxels 

(B: Pseudoword reading score ~ distinctiveness for pseudowords across the union of 

selective voxels + (distinctiveness for pseudowords | participant); D: Face recognition 

score across the union of selective voxels ~ distinctiveness for adult faces + 

(distinctiveness for adult faces | participant). (ii) Non-selective voxels: LMM predicting 

behavior from distinctiveness over the non-selective voxels. (B: Pseudoword reading 

score ~ distinctiveness for pseudowords across the non-selective voxels + 

(distinctiveness for pseudowords | participant); D: Face recognition score ~ 

distinctiveness for adult faces across the non-selective voxels + (distinctiveness for adult 

faces | participant). (iii) Selective & age: LMM predicting behavior from distinctiveness 

over the union of selective voxels with age as an additional factor (B: Pseudoword reading 

score ~ distinctiveness for pseudowords across the union of selective voxels + age + 

(distinctiveness for pseudowords | participant); D: Face recognition score ~ 

distinctiveness for adult faces across the union of selective voxels + age + (distinctiveness 

for adult faces | participant). 
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In the analyses in the scatterplots in Fig. 4 B,D we calculated the difference in prediction 

error using a model that predicts behavior based on distinctiveness in the union of the 

selective vs. in the non-selective voxels. Next, we used one-sample t-tests to evaluate if 

the difference was significantly different from zero. 
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