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Abstract

Neuroimaging data analysis often requires purpose-built software, which can be difficult to
install and may produce different results across computing environments. Beyond being a
roadblock to neuroscientists, these issues of accessibility and portability can hamper the
reproducibility of neuroimaging data analysis pipelines. Here, we introduce the Neurodesk
platform, which offers a sustainable, flexible solution; harnessing software containers to
support a comprehensive and growing suite of neuroimaging software

(https://www.neurodesk.org/). Neurodesk includes both a browser-accessible virtual desktop

environment and a command line interface, mediating access to containerised
neuroimaging software libraries from multiple systems; including personal computers,
cloud computing, high-performance computers, and Jupyter notebooks. This
community-driven, open-source platform represents a paradigm shift for neuroimaging
data analysis, allowing for accessible, fully reproducible and portable data analysis

pipelines, which can be redeployed in perpetuity, in any computing environment, with ease.
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Introduction

Neuroimaging data analysis is a challenging enterprise. Aside from the
neuroscientific principles motivating the choice of analysis, building an analysis pipeline
requires advanced domain knowledge well beyond the researcher’s own topic area; for
example, signal processing, computer science, software engineering, statistics, and applied
physics. Researchers faced with this daunting task typically rely on multiple, specialised
software packages used in custom pipelines to suit a specific aim. These packages are often
developed using a not-for-profit model by researchers with limited resources, and so have
little dedicated technical support. As a result, packages are often difficult to install, and
inconsistently supported across computing environments” ‘. Consequently, researchers
often limit themselves to fewer, often less advanced or out of date tools, and spend
considerable time installing and compiling software, undermining both scientific
productivity and reproducibility. To address these issues, we developedan open-source and
community-oriented solution to enable neuroscientists to develop neuroimaging analysis
workflows in line with four guiding principles: Accessibility, Portability, Reproducibility, and
Flexibility.

Ideally, the software and code used in any scientific analysis workflow should be
easily accessible, such that the workflow can be deployed without substantial investment of
time or effort by users’, and portable, such that analysis workflows can be tractably shifted
between computing environments. Many researchers prototype analysis pipelines using
their own local computers and later switch to workstations and high-performance
computing clusters for processing their datasets at scale. Accessible and portable workflows
therefore allow for optimised allocation of computing resources while supporting shared
development workloads amongst collaborators®. Unfortunately, many neuroimaging data
analysis workflows are neither readily accessible nor portable for scalable computing”®.
This is because many workflows rely on specialised tools purpose-built by a small number
of skilled developers, often on short-term contracts, who are then burdened with the task

of continuously adapting their tools to evolving computing environments®,

Beyond the costs to productivity, the inaccessibility and instability of many
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neuroimaging tools poses a wider threat to reproducibility” . The transparency and

openness promotion (TOP) guidelines, which to date have over 5,000 journals and
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organisations as signatories, state that all reported results should be independently
reproduced before publication". In reality, this is impractical and too time consuming to
implement at review’. Where analysis pipelines can be ported, subtle differences in the
implementation of specific processing steps across computing environments can alter

18-21

results” ~. Thus, it is often not possible to precisely reproduce the results of a prior study,

even given the original data and analysis protocol.

Unfortunately, many existing solutions lack the required flexibility for research
applications of neuroimaging data analysis”. For example, single-install pre-programmed
analysis pipelines are a popular solution amongst clinicians, but researchers typically
custom tailor analysis pipelines toward specific research questions™ . The issues of
inaccessibility in neuroimaging software have been recognised by the NeuroDebian” and
NeuroFedora® projects, which provide a wide range of neuroimaging tools packaged for
Linux operating systems. However, the majority of neuroscientists do not use Linux on
their personal computers and thus still cannot easily access these packages®. To address this
barrier, researchers often use dual boot computers or virtual machines. These solutions are
resource intensive and force researchers to develop less flexible workflows due to the
practical limitations inherent to installing new tools. While compiled packages make
installations easier, applications still need to be installed on the host computer and suffer
the usual problems of conflicts between different software packages, software versions, or
the libraries they require to be installed (software “dependencies”). Many researchers are
also limited in flexibility by institutional restrictions imposed on the installation of new

software.

Applications with highly specific or conflicting dependencies are by no means
unique to neuroscience. This universal issue has led to the development of software
containers: lightweight, portable solutions for running and sharing individual applications.
Software containers package specific applications along with their dependencies. Container
engines such as Docker and Apptainer/Singularity allow containerised applications to run
on various host operating systems and computing environments, while keeping separate
containers isolated from each other and the host machine, eliminating concerns about

. L. . . . 27,28
conflicting or missing dependencies™

. These benefits make software containers ideally
suited to tackle the issues relating to the development of scientific analysis workflows

described above”. However, despite the benefits of containerisation, only a small number of
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integrated neuroscience-specific or adaptable workflow systems support containerised
distributed computing®**. While platforms such as OpenNeuro®, Brainlife* Flywheel®,
XNAT® and Qmenta® have drastically improved the accessibility and reproducibility of
Neuroimaging analyses, these platforms still lack portability. Indeed, no solution exists that
universally addresses the issues raised above. Our objective is to change this with the
development of Neurodesk: a community-driven open-source platform which harnesses
software containers to create an accessible and portable data analysis environment that
allows users to flexibly and reproducibly access a comprehensive range of neuroimaging

tools through both a user-friendly graphical desktop and command line interface.
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Results
Overview of the Neurodesk platform

Here we present Neurodesk; a platform facilitating Accessibility, Portability, Flexibility,
and Reproducibility for Neuroimaging data analysis (Figure 1). In developing Neurodesk, we
focussed strongly on the outcome of sustainability to ensure that workflows developed on
the Neurodesk platform remained consistent with these four guiding principles across
updates to users' local computing environments. In this section, we introduce the available
tools in the Neurodesk platform, discuss how these address the issues raised above and
report the results of an empirical evaluation of reproducibility in Neurodesk. For further
details of the rationale behind the approaches adopted to achieve these results, please see

the online methods.

At the core of Neurodesk are Neurocontainers; a collection of software containers
that package a comprehensive and growing array of versioned neuroimaging tools (Figure
1b). The build scripts for these software containers are stored in an open-access git
repository. Using continuous integration tools, new container build scripts contributed by
the community are automatically built as software containers and can be accessed
throughout the Neurodesk platform or as standalone tools (Figure 1a). Each individual
‘Neurocontainer’ includes the packaged tool as well as all of the dependencies required to
execute that tool, allowing it to run on various computing architectures (Figure 1c). As the
containers isolate dependencies, different Neurocontainers can provide different versions
of the same tool without conflicts. This allows researchers to seamlessly transition between
different versions of software across projects, or even within a single analysis pipeline. To
facilitate access to this software, we provide an accessibility layer, through which users can
access software directly through the cloud or download containers for offline use, all

without the need to install software or packages on the local system (Figure 1b).

We provide two options for interfacing with Neurocontainers. The first is
Neurodesktop, a remote-desktop and browser-accessible virtual desktop environment in
which any of the containerised tools can be easily launched from the application menu
(Figure 1d). As such, analysing neuroimaging data through Neurodesktop has the look and
feel of working on one’s local computer. For more advanced users and for HPC

environments, we developed Neurocommand, a tool for interfacing with Neurocontainers
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through the command-line (Figure 1d). Both of these interfaces can be deployed across
almost' any computing hardware and modern operating systems, meaning that analysis
pipelines developed using the Neurodesk platform are reproducible and can be scaled from
local computers to cloud and HPC environments. Neurocontainers can even be used inside
Jupyter notebooks, meaning that analysis pipelines developed using Neurodesk can be

easily shared alongside published manuscripts (Figure 1d).

' N.B. At the time of publication, Neurodesk is not supported for the ARM processors equipped in M1 Mac
computers. However, this is an area of active development for the Neurodesk team that will be addressed in a
future release.
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Neurodesk: An accessible platform for reproducible neuroimaging

a b MNE
. Python
Neurocontainers Conda
— \/scode
™ Bins/Libs

Jupyter
Notebooks

Figure 1. The Neurodesk platform. (a) The Neurodesk platform is built by, and for, the scientific community, such that
anyone can contribute recipes for new software containers to the repository. (b) Recipes contributed by the community
are automatically used to build software containers, which are stored in the Neurocontainers repository. (c) Each
software container packages a tool together with all of the required runtime dependencies. This means that the
packaged software is able to run identically in any supported computing environment. (d) Neurodesk provides two
layers of accessibility through which the software containers in the Neurocontainers repository can be run: 1.
Neurodesktop is a browser-accessible virtual desktop environment, allowing users to interact with the containerised
software. 2. Neurocommand is a command-line interface, which allows users to run the same software containersin a
programmatic way, suitable for HPC platforms and running software without a graphical user interface (GUI). Together,
these interfaces allow users to reproduce the same analysis pipelines across a range of computing environments.
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How to use Neurodesk: Accessibility, Flexibility & Portability

A core aim behind Neurodesk is to provide a platform that makes building and
running reproducible analysis pipelines easily accessible to all researchers. The platform

website (https://Neurodesk.org/) has been designed to be user-friendly and open to

community contributions. This includes automatically updating information about the
containerised software included with each new release directly from the Neurodesk
repository. As such, users are continuously presented with up-to-date documentation, lists
of currently available applications, and release history. The website hosts clear instructions
and guidance for how to access and interact with Neurodesk from a variety of computing

environments.

Besides ensuring that users always have access to thorough, clear, and up-to-date
documentation, we have taken additional steps to ensure that Neurodesk makes
reproducible neuroimaging data analysis accessible. Neurodesk can be accessed from almost
any computing environment; because the tools have been containerised, they have access to
exactly the same dependencies no matter where they are run. This mobility extends to the
Neurodesktop graphical user interface (GUI), which provides the same desktop
environment across all supported computing environments. This allows containerised
analyses to look, feel, and run exactly the same way across all supported computing
environments. Thus, researchers reading or reviewing manuscripts with open-source data
and code can use Neurodesk to replicate the exact pipeline using the reported tool versions
without having to install any additional software, thus avoiding the risk of interfering with

existing versions of the tools that they use for their own data analysis.

For a data analysis environment to be portable, such that it can easily shift between
computing environments, it also needs to be light-weight with a small storage footprint. To
this end, our accessibility layer harnesses the CERN Virtual Machine File System
(CVMFS)*. The CVMFS layer allows software to be accessed and run locally from a remote
host without installation, such that only those parts of a container which are actively in use
are sent over the network and cached on the user's local computer. Practically, this means
that users can access terabytes of software without having to download or store it. The
Neurodesk platform has a number of CVMFS nodes across the world providing low latency,

direct access to Neurocontainers. Thus, to use Neurodesk, users need only to install the

10
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required container engine and access the Neurocontainer of their choice. For
Neurodesktop, which facilitates access to all tools in the Neurocontainers repository, the

download is only ~1GB in total.

Anticipating that the installation of a third-party container engine software may be a
barrier to entry for some researchers, we have developed an entirely cloud-based
Neurodesktop service; ‘Neurodesk Play’ (http://play.neurodesk.org). Neurodesk Play is
accessible globally, allowing anyone around the world to access a cloud-based graphical
desktop environment for neuroimaging data analysis. While computing resources in
Neurodesk Play are limited, Neurodesktop can also be hosted on institutional or cloud
computing resources where more compute resources are available. For example,
Neurodesktop is freely available to all publicly funded researchers in Australia and New
Zealand on the Nectar Research Cloud Virtual Desktop Service provided by the Australian
Research Data Commons (ARDC).

Long Term Sustainability of the Neurodesk Platform

Neurodesk has a wide selection of tools available spanning many domains of
neuroimaging data analysis. Table 1 shows the tools available at the time of publication,
though this list is growing rapidly. A full up-to-date list can be found at

https://Neurodesk.org/applications/. Neurodesk employs a two-pronged approach to staying

up-to-date with new neuroimaging tools and new versions of already included software: a.)
The Neurodesk maintainers add tools as they become aware of them, or from requests and
contributions from the community. The Neurodesk GitHub repository

(https://github.com/NeuroDesk) has an active discussion forum where developers respond to

requests for new software containers. b.) In addition to this developer-centric route to new
software containers, we actively encourage contributions from the research community. A
core aim for the development of the Neurodesk platform was to develop a sustainable
community-driven project that is not contingent on a specific team of developers. As such,
we provide a template and detailed instructions for creating build scripts for new software
containers. Using continuous integration and deployment, community contributed build
scripts for new containers are automatically built, screened, and deployed with the daily

release of Neurodesk to be accessed by the global community.
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Table 1. Tools currently available in Neurodesk as of 21/12/22 (retrieved from

https://Neurodesk.org/applications/). Note that each tool has been listed under only one

category, though some may span multiple categories.

Category

Tool

Editors and Programming

VS Code, Gedit, Emacs, Vim, Python, Git, Julia, Matlab, ROQT,
RStudio

System Management

Lmod, Singularity, Htop

Data Synchronisation Tools

Rsync, Rclone, Nextcloud client, Owncloud client, Globus
personal connect

Browers and Networking

Firefox, OpenSSH client

Workflows

Nipype®, ASLPrep®, fMRIPrep*’, MRIQC*, QSMxT*?

Data Organisation

BIDScoin**, BIDStools*,Convert3D?*

Diffusion MRI

Diffusion Toolkit*’, DSI Studio®®, MRtrix*, MRtrix3Tissue®,
TrackVis*"’

Rodent Imaging

AIDAmri**, RABIES*?

Spectroscopy

LCModel**, MRSIProc™*

Structural and/or Functional
Imaging

AFNI>, ANTs™, ASHS”, BART™, CAT12”, CLEAR-SWI,
CLEAR-SWI6°, Connm, Connectome Workbench&, FatSegNetég,
FreeSurfer®, FSL®FSL, HD-BET®, LASHiS®, LayNii®, MINC®,
MRItools”, NiftyReg’', NiiStat’>, OSH-yX"*, Palm Alpha”*,
PhyslO”, ROMEQ’®, Slicer”’, Spinal Cord Toolbox’®, SPM”’,
TGvasm®

Electroencephalography (EEG)
and/or Magnetoencephalography
(MEG)

Brainstorm®!, EEGLAB®?, FieldTrip®*, MNE®, Sigviewer®”

Machine Learning and Statistics

R®, Deep Retinopy?’, Delphi®®

Visualisation and Image Editing

ImageMagick®, GIMP?, itk-SNAP*, MRIcron®!, MRIcroGL*,
SicerSALT®, Surf Ice®

12
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Reproducibility in Neurodesk

Scientific progress fundamentally depends on the peer review process, such that
scientists must be able to critically assess reported findings and conclusions based on a
clear and thorough methodological description™. Well-documented experimental code is
the most thorough description of any analysis pipeline. However, differences in computing
environments and dependencies mean that access to this source code does not guarantee
the same result’”. Reproducibility, defined as “running the same software on the same
input data and obtaining the same result””>* has therefore come to represent a minimum

standard by which to judge scientific claims™”"

. Unfortunately, scientific reproducibility
is often not attainable due to differences in the outcomes of neuroimaging pipelines across
different computing environments as previously documented'®””. Glatard et al. (2015)
demonstrated this effect for several fMRI analysis pipelines, showing that differences in the
implementation of floating-point arithmetic across operating systems accumulated over the
course of long analysis pipelines, and led to meaningful differences in the results'. The
Neurodesk platform solves this issue through its use of containerised software, which
guarantees the same runtime dependencies across computing environments. To evaluate

this claim, we replicated Glatard et al.’s analyses using Neurodesk vs locally installed

software across different operating systems.

Methodological approach. The widely used FMRIB Software Library (FSL) 6.0.5.1% was
installed both locally and within Neurodesk on two separate computers (System A, System
B) running different Linux distributions, resulting in four unique computing environments
(see Table 2). Glatard et. al’'s FSL-based analyses, namely the Brain Extraction Tool
(FSL-BET; see online methods), tissue classification (FMRIB’s Automated Segmentation
Tool [FSL-FAST]), image registration (FMRIB’s Linear Registration Tool [FSL-FLIRT]), and
subcortical tissue segmentation (FMRIB’s Integrated Registration and Segmentation Tool
[FSL-FIRST]) were replicated in each of these environments using 157 T1-weighted
magnetic resonance images (MRI) from the International Consortium for Brain Mapping
(ICBM)'. Each analysis was run twice within each environment to verify that there was no
intra-environment variability. To evaluate the reproducibility of the analysis environment
using locally installed vs Neurodesk software, we compared the outputs for each
installation type across computers (System A vs System B). For both intra- and

inter-environment comparisons, we begin by comparing file “checksums”; alphanumeric

13


https://www.zotero.org/google-docs/?FTGx97
https://www.zotero.org/google-docs/?ya1xOW
https://www.zotero.org/google-docs/?iW7DXy
https://www.zotero.org/google-docs/?dFzxzY
https://www.zotero.org/google-docs/?fjfs0G
https://www.zotero.org/google-docs/?fWQjaM
https://www.zotero.org/google-docs/?m5HlDP
https://www.zotero.org/google-docs/?SFgVc6
https://doi.org/10.1101/2022.12.23.521691
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.23.521691; this version posted December 23, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

values which uniquely represent the contents of a file, such that two identical files will

result in identical checksums. When two files produced different checksums, we quantified

the pairwise differences across systems by computing dice similarity coefficients across

images (Figure 2a). Note that there were never any intra-system differences in checksums

(i.e., all analyses were determinative, resulting in identical outcomes when run twice in the

same computing environment). The code used to implement these analyses is available and

can be run through Neurodesk Play at: https://osf.io/e6pw3/.

Table 2. Computing environments used to run analyses.

System A System B
Local Neurodesk Local Neurodesk
Applications FSL6.0.5.1 FSL6.0.5.1 FSL6.0.5.1 FSL6.0.5.1
Glibc version 231 2.23 2.28 2.23
(O Ubuntu 20.04 Ubuntu 16.04.7 Almalinux 8.5 Ubuntu 16.04.7
Hardware 12th Gen Intel(R) Core(TM) i7-12700

AMD EPYC 7542 32-Core Processor
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Figure 2. Discrepancies in image registration and tissue segmentation. (a) Calculation of the Dice
dissimilarity coefficients; for each image, the voxel-wise disagreement in image intensity (FLIRT) or
label (FIRST) calculated on System A vs System B was expressed as a proportion of the total number
of voxels for each participant. (b) Histograms of Dice dissimilarity coefficients for image intensity
calculated with FSL-FLIRT on Neurodesk vs. Local Install. To calculate these Dice coefficients,
“disagreement” meant a voxel had a different intensity after image registration on System A vs.
System B. Thus, the Dice coefficient of O for every single participant whose images were registered
using Neurodesk means that the image intensity of each of these participants was perfectly
matched across systems at every single voxel. (c) Histograms of Dice dissimilarity coefficients for
subcortical structure labels calculated using FSL-First on Neurodesk vs. Local Install. To calculate
these Dice coefficients, “disagreement” meant a voxel had different labels (e.g., amygdala,
hippocampus, etc.) after image segmentation on System A vs. System B. Note that these Dice
coefficients are, overall, much smaller than for image registration. This is to be expected as there
are 238 times more “classes” for the image registration task than the classification task. Notably,
however, while both Neurodesk and the local system show strong agreement across systems
overall, these distributions are completely non-overlapping, with Neurodesk showing much greater
reliability across systems.
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Image registration. FSL FLIRT was applied to register the images to the standard
MNI-152 T1 1 mm template using 12 degrees of freedom. When run through Neurodesk,
the outputs of this processing step had identical file checksums across computing systems
for all images. However, file checksums for local installations of FSL did not match across
systems. Dice dissimilarity coefficients for each image were computed to quantify the
pairwise differences in image intensity across systems (Figure 2a). Voxel-wise agreement in
image registration for Neurodesk was perfect (Dice dissimilarity coefficient; Range: 0.00, M
=0.00, SD = 0.00). However, there were many voxels with differing intensity across local
installations (Dice dissimilarity coefficient; Range: 0.19 - 0.90, M = 0.51, SD =0.17, Figure
2b). These high Dice dissimilarity coefficients for the local installation indicate differences
across many voxels, however, the magnitude of these differences in image intensity was
typically subtle (inter-system intensity difference; M = 1.88, SD = 1.97; where
intensity € Z: intensity €[0, 1903], Figure 3a, b).

Subcortical tissue segmentation. Differences in image intensity across local
installations were widespread, but subtle. In line with Glatard et. al’s approach, we next
asked whether these differences impacted subcortical tissue segmentation (using FSL
FIRST); the next step in the analysis pipeline. File checksums for the segmentation outputs
matched for 0% of images when run using the local installation and 93% of images when run
with Neurodesk. Computation of the Dice dissimilarity coefficients for each type of
installation revealed that while differences were small, overall, they had non-overlapping
ranges. Indeed, differences were much less prevalent for the Neurodesk installations (Dice
dissimilarity coefficient; Range: 0.00 - 2.20x10°, M = 3.43x10”, SD < 0.01) compared with the
local installations (Dice dissimilarity coefficient; Range: 5.80x10” - 4.59x10™ M = 1.46x10™,
SD < 0.01, Figure 2c). Notably, this means that on average, there was 426x more voxel-wise
disagreement across systems for the locally installed software than for neurodesk. This
difference can be visualised by comparing the 3D projections of the mean inter-system
differences in classification across participants (Figure 3c, d). These projections illustrate
that differences for locally installed software were widespread and spanned across all
subcortical structures (Figure 3c), while any subtle differences for Neurodesk were limited

to a few voxels (Figure 3d).
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Figure 3. Inter-system differences in image intensity in subcortical structures and subsequent
classification of these subcortical structures. (a,b) Absolute voxel-wise differences in image intensity
within subcortical structures after image registration with FSL-FLIRT on each system (i.e.
| Intensity,gem o — INtensityq.m s|), averaged across participants. Projections are shown for image
registration performed (a) using locally installed software and (b) using Neurodesk (for which there
were no intersystem differences). (c,d) Inter-system disagreement in subcortical structure labels
after image segmentation with FSL-FIRST, averaged across participants. Projections are shown for
image segmentation performed (c) using locally installed software and (d) using Neurodesk. (e)
Scatter plot showing, for each participant, the mean inter-system image intensity differences across
all voxels within the classified subcortical structures vs. the number of voxels subsequently classified
with different labels across systems. For analyses performed with locally installed software,
participants with larger differences in image intensity typically also had more prolific disagreement
in labels between systems (Pearson’s r = 0.61, p < 0.001). This trend could not be assessed for
neurodesk, as there were no differences in image intensity across systems.
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Understanding inter-system differences in image registration and tissue classification.
Differences in tissue classification were at least partially attributable to differences in
registered image intensity earlier in the pipeline. Indeed, there was a strong positive
correlation between the magnitude of each participant’s inter-system differences in
registered image intensity and inter-system classification mismatches (Pearson’s r = 0.608, p
<.001, Figure 3e). Thus, larger inter-system differences after the FSL FLIRT analysis were

associated with larger inter-system differences after the subsequent FSL FIRST analysis.

We next replicated Glatard et al.’s findings by showing that the remaining variability
in inter-system differences for tissue-classification, as well as the differences for image
registration, could be attributed to a combination of differences in floating point
representation and differences in underlying dependencies across systems. Tracing the calls
to dynamically linked system libraries revealed many differences for the local installations,
but complete congruence between Neurodesk installations (Figure 4, see online methods).
This begs the question - why were there still minor differences in the classification of
subcortical structures for Neurodesk? The most likely explanation is that floating point
calculations can produce different results on different processors due to different
implementations of the floating point arithmetic instructions'"'. One source of these
differences is the presence or absence of fused multiply-add (FMA) instructions, which
allow a processor to perform a floating point multiplication and addition in a single
instruction. FMA instructions can improve the accuracy and performance of floating point
calculations, but their use can also lead to differences in the results of those calculations on
different processors, even if they use the same version of the shared library and compiler.
Critically, these differences are very small, which is likely why the differences in

classification across systems for Neurodesk were so subtle.

Overall, these results demonstrate that differences in dependencies across
computing environments can lead to subtle differences in the outcomes of computational
analyses, which can snowball across successive processing steps to cause potentially
meaningful differences in results across computing environments, especially when
investigating subtle effects. By minimising differences at each stage of the analysis, we can
enhance the accuracy and reliability of the overall analysis. Critically, Neurodesk eliminates
this source of variability by facilitating access to containerised software; thus allowing

researchers to reproduce the same result from different computing environments.
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Figure 4. Cumulative difference in the numbers of system library calls between System A and
System B for the analysis run using the (a) locally installed and (b) Neurodesk version of FSL FIRST.
Note that calls to floorf() were excluded from the plot as they occur earlier in time and the

discrepancies for floorf() far outnumbered those for any other function from the locally installed
tool.
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Discussion

Neuroimaging data analysis pipelines are often challenged with limitations in
accessibility, portability, flexibility, and reproducibility. Neuroscientists may hold back from
exploring new tools and/or spend excessive amounts of time installing software (and
dependencies) in new computing environments, only to find that the same analysis pipeline
produces different results. We developed Neurodesk to address these challenges by building
an open-source and community-driven platform for reproducible neuroimaging data
analysis. By containerising neuroimaging software, Neurodesk allows scientists to flexibly
create fully reproducible and accessible data analysis pipelines which can be run in various
computing environments without depreciating over time. By providing an accessibility
layer for software containers, the Neurodesk platform allows for convenient portability
across computing environments without local software installations. Finally, by keeping the
platform open-source and utilising continuous integration and deployment, we have
democratised the Neurodesk platform and set a path toward a sustainable ecosystem for

neuroimaging data analysis.

The Neurodesk platform has the potential to revolutionise neuroimaging data
analysis, not only because it allows for truly reproducible data analysis, but because of how
accessible it makes this process. As a group, scientists strive to uphold the scientific
principles to the highest possible standard. However, looming deadlines and the pressure to
publish often force individual researchers to find a balance between these ideals and the
practical constraints imposed by resource limitations. Neurodesk can allow all researchers
to adhere to the highest possible standards of reproducibility with minimal changes to their
typical development pipelines. Neurodesk enables researchers to not only access a
comprehensive suite of neuroimaging data analysis software, but also contribute
developments into the future for an ever-increasing suite of packages. Hence, researchers
can flexibly take advantage of open datasets, reproduce reported analyses, switch between
neuroimaging modalities across projects, and apply complementary analysis methods
alongside their primary approach. By harnessing Neurodesk together with cloud computing
technologies, published manuscripts can also include links to Jupyter notebooks,
democratising reproducibility of key analyses. The ease with which Neurodesk allows
analysis pipelines to be shared and reproduced across computing environments also has

particular relevance for distributed research groups and collaborative, multi-site projects.
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Thus, the Neurodesk platform not only facilitates access to reproducible neuroimaging data

analysis, but also makes developing and sharing these workflows less burdensome.

Neurodesk is not the first platform to recognise and seek to address the limited
accessibility and reproducibility available for many neuroimaging data analysis tools.
Indeed, software distribution mechanisms like Neurodebian® have made great progress in
making neuroimaging software more accessible, while platforms such as OpenNeuro™,
Brainlife®, Flywheel®, XNAT* and Qmenta® have greatly improved the accessibility and
reproducibility of Neuroimaging analyses. However, to date, all existing solutions have
lacked portability and flexibility. Many existing solutions require users to upload datasets to
their platforms, and developing custom pipelines on these platforms requires substantial
platform-specific knowledge. However, even users already accustomed to these specifics
may still benefit from the Neurodesk project as Neurodesk's containers are interoperable

with other platforms.

Neurodesk has primarily been developed as a research tool to facilitate the analysis
of neuroimaging data. However the platform may have a significant impact as an
educational tool for workshops, summer schools, and ‘hackathons’'””. The Neurodesk
platform was first conceptualised during a ‘hackathon’ event, during which neuroscientists
from around the globe gathered in hubs to collaborate on short-term projects, attend
workshops, and develop critical research skills. One of the greatest hurdles for organisers
and attendees of such events is the diversity in computing environments across researchers.
When delivering a workshop or tutorial, facilitators often spend a large portion of the
allocated time troubleshooting installations or issues specific to unique computing
environments. Neurodesk addresses these issues by allowing broad access to identical
computing environments with the requisite tools pre-installed. This functionality allows
groups of researchers to efficiently tackle complex problems by eliminating Sisyphean
troubleshooting. The Galaxy platform, for example, has made a significant impact in this
way by providing a containerised solution for bioinformatics and social science'”. Aside
from educational applications, Neurodesk can also aid research software developers
wishing to make their tools more accessible and efficient to support. The effort to
containerise and add one's software to Neurodesk may be minimal compared to the burden
of testing across multiple computing platforms and fielding support queries from end-users

running software in diverse environments.
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Although Neurodesk is already widely used in the community, there are still some
potential limitations that warrant discussion. The first is that many of the software
containers in the Neurodesk platform currently do not support the ARM CPU architecture,
which will become increasingly common in coming years as Mac users update their
hardware. This stems from limitations in the underlying software applications, which
currently lack support for this processor architecture. However, tool developers are rapidly
adapting tools for this architecture and we are convinced that this problem will be
addressed for the most commonly used applications in the near future. Further limitations
may arise as Neurodesk is applied across more diverse use-cases by the broader research
community. A pertinent example relates to the use of proprietary and licensed software.
This is an area of active development as the Neurodesk community investigates how such
software could be integrated without compromising the accessibility principle. A strength
of Neurodesk is that the community-driven, continuous integration model provides a
powerful and flexible way to address such expanded use-cases without depending on a
single development team. Indeed, this relates to a potential limitation of any such platform:
the long term sustainability of the project. The Neurodesk platform was funded with the
goal to be sustainable and supported by the community, but for this to be successful the
project needs constant maintenance. We therefore developed multiple pathways for
sustainability, including the federated support of the underlying hosting infrastructure,
flexibility in the continuous integration and deployment infrastructure, and a potential for a

commercial model to offer tailored support for institutions and workshops.

The challenges to accessibility and reproducibility posed by neuroimaging data
analysis software are not unique to neuroscience. While we have chosen to containerise
software designed for neuroimaging datasets, the principles governing the design of the
Neurodesk platform need not be restricted to this field of research. This open-source
platform could be used to deploy software specific to any other discipline, and it is our
sincere hope that this platform is adapted to other disciplines struggling with similar
issues. The Neurodesk platform has the potential to profoundly improve the way scientists
analyse their data and communicate their results. For the first time, this platform allows
any scientist, anywhere in the world, to conveniently access their data analysis tools and
apply these tools in a fully reproducible manner from any computing environment. We are

excited to see what new insights such technology can enable.
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Online methods
Neurodesk’s open-access code and documentation

All stages of development from the initial conception as a hackathon project, through to the
most current iteration of Neurodesk, with up-to-date community-built Neurocontainer

recipes, are documented publicly:

https://www.neurodesk.org/ - Platform website which includes ‘Getting Started’ tutorials for

new users of various skill-levels

https://github.com/NeuroDesk - Public GitHub repository, where Issues can be logged, and

contributions can be made by any community member with a GitHub account and the

eagerness to create pull requests.

Frequently Asked Questions

Will running my analyses on Neurodesk be slower than if they were run locally, especially if ’'m

on a slower internet connection?

The internet bandwidth will only affect the speed of your analysis the first time you
use a new tool. Neurodesk uses the Cern Virtual File Management system (CVMFS), which
means that only the specific part of a container which is currently used will be downloaded
over the internet. Once downloaded, these will be cached locally, meaning that software
will operate at the same speed as it would when running locally (see table S1). Although
there is a container initialization time that could impact performance in comparison to a
non-containerized workflow, there is evidence that in some cases containerised analysis
pipelines may run even faster than locally installed software due to efficiency gains in

: 104
accessing files " .

Where are Neurodesk containers stored, and will the performance differ from country to

country?

Neurodesk containers are distributed globally via CVMFS and accessed from the

fastest server according to your location. Our goal is to get mirror servers as close as
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possible to all users, so that CVMFS can automatically switch to another mirror server if

one fails.

Are there any security concerns regarding using the Neurodesk platform in a web browser? For

example, could there be any risks that compromise data processed on Neurodesk?

The underlying container technology in Neurodesk ensures that applications are
isolated with least privileges, to minimise the impact of malware attacks. Interacting with
the web from within a Neurodesktop poses a similar risk to any system with access to the
internet, so all similar precautions would apply. Neurodesktops can be shut down, deleted
and started fresh with minimal effort, which means recovery is significantly simpler than a
native installation in a similar scenario. To ensure data security, it is important for users
who run Neurodesk on a cloud provider to follow security best practices. For an in depth
review of the potential security concerns involved in containerising scientific data analysis

software, see Kaur et al (2021)'®.

Can I store processed data in Neurodesk?

Neurodesktop allows host directories to be mounted for internal data access, and
these directories can then be accessed from the Neurocontainers. Data can also be accessed

via data access clients and the web inside a Neurodesktop instance.

Can you provide more technical detail on how the Neurodesk desktop virtual environment has

been built?

Neurodesktop is a Docker container packaging a linux desktop environment that
delivers neuroscience applications via CVMFS, wrapped up as singularity containers. It
uses Apache Guacamole with underlying remote-desktop protocol (RDP) or virtual network
computing (VNC) remote desktop protocols to deliver a desktop experience in the browser,

with copy, paste and file transfer functionality.

Why are there different types of containers (i.e. Docker, Singularity) in Neurodesktop? Are there

any conflicts between Docker and Singularity?

Docker and Singularity containers are both used in Neurodesktop for different,
complementary purposes. Docker is used to containerise the Neurodesktop environment

due its cross-platform support and ability to run singularity containers within. Singularity,
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which is used for the individual application containers (Neurocontainers) is preferred by
most high performance computing (HPC) platforms, where multi-user security and
scheduling are of particular concern) and can also be used indirectly via wrapper scripts and
Imod; a system which manages environment configurations for different software

packages.

Are there any financial costs associated with keeping Neurodesk running, and if so, how will

these be met for the foreseeable future?

The long term sustainability of Neurodesk has been planned according to three
possible financial scenarios. 1) No further funding: In this case, Neurodesk will be minimally
maintained such that all the open access containers will still be accessible. However,
Neurodesk Play (the cloud-based no-install version of Neurodesktop) will no longer be
accessible and the software distribution via CVMFS Neurodesk may run more slowly
outside of Australia. 2) Marginal Funding. Neurodesk will be maintained with its current
functionality, but with less focus on development of new features. 3) Sufficient funding. The
Neurodesk team is working on a not-for-profit business model in which additional financial
costs involved in increasing Neurodesk’s current functionality could be covered by charging
a nominal fee to manage the resources required to deploy Neurodesk in the cloud for
organisations or for workshop and teaching purposes. Note that Neurodesk (Neurodesktop,
Neurocommand, and the Neurocontainers) will always remain open-source and open-access
under the MIT licence, which enables commercial use. Any fee would be used to reduce the
administrative load and technical challenges for workshop organisers and participants,
such that workshop participants can access a fully maintained and cloud-based

Neurodesktop environment.

Neurodesk is open-source, such that anyone is able to contribute containerised software to the
platform. Are there any protocols in place to verify that this software is working as expected

before it is made available to the community?

There is a feature to include a functional test within each tool’s container. This test
can be run automatically after each container is built. However, such automated tests can
only cover a subset of potential problems and we also rely on issues reported by users on

GitHub and manual testing of new containers when releasing new versions.
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The software I need is not available in Neurodesk, and I don'’t feel confident in my ability to

contribute a container to the Neurodesk repository. Is there a way I can request that it be

added?

Users can submit a GitHub issue to request new tools by providing the following
information: name and version of the tool, preferred Linux distribution, Linux commands
for installing the tool, any GUI applications and commands to start them, test data to

include, reference to paper, link to documentation, and commands for testing the tool.
How do I get help if I encounter an issue with Neurodesk?

There is an active discussion forum on GitHub with a Q&A section. If your question

has not already been addressed there, please raise a new issue.
Reproducibility in Neurodesk

To investigate our claims that the Neurodesk platform’s containerised tools lead to
more reproducible results than locally installed software, we sought to conceptually
replicate the results reported by Glatard et al. (2015) using Neurodesk vs locally installed
software across different operating systems. The first steps in Glatard et als analysis

pipeline were brain extraction and tissue classification.

Brain extraction and tissue classification. We began by running FSL BET and FAST on
raw MRI images to extract voxels containing brain tissue and classify tissue types,
respectively. The file checksums for the outputs of these processing steps were identical
across all computing environments, verifying that the implementation of the processing
pipeline was reproducible across systems for both Neurodesk and local installation. After
these steps, we performed image registration and tissue classification with FSL-FLIRT and
FSL-FIRST, respectively. These analysis steps did lead to differences in results across

systems, and are thus reported in the main text.

Understanding inter-system differences in image registration and tissue classification. Given
that the image registration and tissue classification steps led to inter-system differences, we
sought to understand the cause of these differences. FSL utilises dynamic linking to shared
system libraries such as libmath and LAPACK, which are loaded at runtime. Thus, while the
same version of FSL was installed in all four computing environments, differences in image

processing still emerge for analyses run on locally installed software. This is due to
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differences in dependencies across systems, a problem circumvented by Neurodesk. To
better understand how such differences might emerge, calls to these libraries were recorded
for a representative image using ‘ltrace’. The libraries called during the FLIRT and FIRST
analyses could be categorised into four main classes: mathematical operations, matrix
operations, memory allocation, and system operations. Interestingly, Glatard et al., who
used older software versions than we investigated here, found that image processing
differences across systems resulted largely from differences in floating point representation
in the mathematical functions expf(), cosf(), and sinf(). They also found inter-system
differences in the control-flow of the programs, indicated by differences in the number of
library calls to mathematical functions such as floorf(). Here, differences in floating point
representation were less severe, as these were only present for the sinf() function. However,
the number of calls made to several functions differed across the local FSL installations,
indicating that the inter-system differences in the control flow of the processing pipeline
remain an issue for reproducibility (Table S1). The floorf() function represented the most
prevalent difference in library calls. There were over 13 thousand additional calls to this
function made on System B relative to System A for the FLIRT analysis, and approximately
5.5 million additional calls for the FIRST analysis. Overall, the FIRST analysis had greater
discrepancy in calls overall. After accounting for the additional calls to floorf(), which
occurred early in the FIRST analysis pipeline, mismatches in the sequence of system calls to
several other functions remained (Figure 4a). However, all remaining mismatches across
systems occurred in memory allocation functions. Importantly, there was no difference in
floating point representation or the number of system calls to shared libraries across
systems for the Neurodesk implementation of FSL (Figure 4b), while maintaining a similar

runtime as local installation on the same hardware (Table S1).
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Table S1. Differences in execution of tissue segmentation (FIRST) and image registration (FLIRT)

pipelines.
Local Neurodesk

FIRST (# of calls) System A System B System A System B
floor 553,308 553,962 553,341 553,341
floorf 48,406,500 53,942,784 51,928,356 51,928,356
log 2,820 3,138 3,024 3,024
FLIRT (# of calls) System A System B System A System B
floorf 41,347,920 41,334,549 41,342,544 41,342,544
Runtime (n=9) System A System B System A System B
Average (mins) 1.57 3.89 1.69 3.59
Standard Deviation 0.03 0.13 0.04 0.11
(mins)

Understanding the practical implications of inter-system differences. The local installations led to
inter-system differences in tissue classification orders of magnitude larger than Neurodesk.
However, it is difficult to know how voxel-wise differences of this scale might actually
affect test statistics i.e. could I actually come to a different conclusion about my research
question if I ran the same analysis on the same data on a different computer? To address
these questions, we performed a permutation test to examine the impact of inter-system
differences in tissue classification (using FSL FIRST) on correlations between subcortical

structure volumes and age.

On each system (A,B), for both Neurodesk and local installations, we computed the volume
of each subcortical structure in the left hemisphere, right hemisphere, and the whole
structure by participant. We performed Monte Carlo permutation tests for each of these

volumes (9999 permutations each). On each permutation, we performed a Pearson
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correlation of volume vs. participant age, and calculated the differences in the values of the
correlation coefficient’s across the two systems. These permutation tests were repeated for
three different sample sizes (n=10, 30, 50), such that each permutation for each sample-size
represented a different randomly selected group of participants. Critically, for each
sample-wise permutation, the same sample was used for each of the two systems, such that
the test-statistic difference always represented inter-system differences rather than
inter-sample differences. Thus, the distribution of test statistic differences for each sample
size represents 219978 permuted samples (8 subcortical structures (Putamen, Amygdala,
Thalamus, Pallidum, Caudate Nucleus, Hippocampus, Brain-Stem, Accumbens.) x 3

methods (left hemisphere, right hemisphere, both) x 9999 subject-wise permutations).

The analysis showed that as sample size decreased, the inter-system coefficient differences
for the local installations increased in magnitude (Local installation: N=50, Ar = -0.02 - 0.02 |
N=30, Ar =-0.04 - 0.03 | N=10, Ar = -0.08 - 0.11; Figure S1). By contrast, the inter-system test
statistic differences for Neurodesk were negligible, and did not scale with sample size
(Neurodesk: N=50, Ar = -1.74x10”° - 2.59x10*| N=30, Ar = -3.75x10” - 1.89x10* | N=10, Ar =
-1.52x10"° - 0; Figure S1). Thus, the minor differences in image processing with locally
installed software can meaningfully impact the reliability of test statistics, especially when
statistical power is already low. It is therefore crucial to consider both sample variability

and system when conducting these types of analyses.
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Age vs. Subcortical Volume

Local Install
Neurodesk

n=50

n=30

n=10

-0.10 -0.05 0.00 0.05 0.10
Inter-system differences in r-value (Ar)

Figure S1. Permutation test results showing inter-system differences in r-values for the correlation
between age and volume of subcortical structures, organised by sample-size (n = 10, 30, 50).
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