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Abstract14

Existing methods for simulating synthetic genotype and phenotype datasets have limited scalability,15

constraining their usability for large-scale analyses. Moreover, a systematic approach for evaluating16

synthetic data quality and a benchmark synthetic dataset for developing and evaluating methods17

for polygenic risk scores are lacking. We present HAPNEST, a novel approach for efficiently gener-18

ating diverse individual-level genotypic and phenotypic data. In comparison to alternative methods,19

HAPNEST shows faster computational speed and a lower degree of relatedness with reference pan-20

els, while generating datasets that preserve key statistical properties of real data. These desirable21

synthetic data properties enabled us to generate 6.8 million common variants and nine phenotypes22

with varying degrees of heritability and polygenicity across 1 million individuals. We demonstrate23
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how HAPNEST can facilitate biobank-scale analyses through the comparison of seven methods to24

generate polygenic risk scoring across multiple ancestry groups and different genetic architectures.25

1 Introduction26

With the emergence of large-scale biobanks, methods to analyse common genetic variants (single27

nucleotide polymorphisms, or SNPs) across diverse human populations are in growing demand.28

This is especially the case for polygenic risk scoring (PRS) methods, which quantify an individual’s29

genetic risk for a disease or other phenotypic trait [1]. Derived from one’s genotype, well-calibrated30

PRSs have the potential to be used for risk stratification and prognostic prediction [1]. PRS’s utility31

has been demonstrated for certain common diseases among European ancestries, on which most32

genome-wide association studies (GWAS) were carried out [2], but some studies have highlighted33

limitations in PRS’s transferability across ancestries and different socio-demographic groups [3].34

Thus, the development of methods that can improve the generalisability of PRSs is needed. At the35

same time, only a few accessible large-scale biobank datasets exist and most previous PRS methods36

have been tested and compared in UK Biobank [4]. More diverse biobank datasets are needed, but37

due to the highly sensitive nature of genetics data, accessing and sharing individual-level data raises38

privacy concerns. This makes publicly accessible synthetic data a welcome alternative for methods39

developers.40

Broadly, two main approaches have been used to simulate individual level genetic data. Coalescence-41

based methods, such as Hudson’s ms and msprime [5, 6], use demographic models to generate42

genomes including both rare and common variants. Reference-based approaches use real genomic43

data (e.g. 1000 genomes or HGDP) to generate synthetic data, but they are not suitable to gen-44

erate realistic rare variants. There are also methods, such as simGWAS[7], that directly simulate45

GWAS summary statistics. However, many times they do not meet modern demands for methods46

development based on individual level data. We will focus on reference-based approaches since for47

PRSs we are mostly interested in common genetic variation, which forms the bulk of complex trait48

heritability [8]. Moreover, common SNPs, especially Hapmap3 SNPs [9], are widely recommended49

for PRS computation [10]. HAPGEN2 [11] is a widely used tool for genotype and phenotype sim-50

ulation, which preserves linkage disequilibrium (LD) patterns of real data through a resampling51
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approach based on the Li and Stephens model [12]. However, HAPGEN2 lacks computational scal-52

ability and flexibility to simulate certain scenarios of interest for biobank-scale PRS and SNP-based53

methods development. Recent alternatives include G2P [13] and Sim1000G [14]. Sim1000G is an54

integrated R package, but is limited to genotype simulation. G2P encompasses both genotype and55

phenotype simulation, and is highly customisable, but this setup can be challenging for non-expert56

users. Without an integrated approach for parameter selection and evaluation of synthetic data57

quality, it is difficult for end-users to understand the statistical guarantees and reliability of the58

generated datasets. To the best of our knowledge, there does not exist a software tool implementing59

an end-to-end pipeline for synthetic data generation, evaluation and optimisation.60

To address these limitations, we introduce HAPNEST, a user-friendly tool for generating syn-61

thetic datasets for genotypes and phenotypes, evaluating synthetic data quality, and analysing62

the behavior of model parameters with respect to the evaluation metrics. HAPNEST simulates63

genotypes by resampling a set of existing reference genomes, according to a stochastic model that64

approximates the underlying processes of coalescent, recombination and mutation. It is, in spirit,65

similar to HAPGEN2, but we introduce some innovations to reduce relatedness between synthetic66

individuals and the reference panel. Phenotypes are subsequently assigned to each sample by67

integrating user-specified genetic, covariate, and environmental effects. Genetic effects are mod-68

elled in terms of heritability and polygenicity. HAPNEST enables efficient simulation of diverse69

biobank-scale datasets, as well as simultaneously generating multiple genetically correlated traits70

with population specific effects under different pleiotropy models. Moreover, the HAPNEST soft-71

ware includes an extensive workflow for evaluating synthetic data fidelity and generalisability, as72

well as approximate Bayesian computation (ABC) techniques for analysing the posterior distribu-73

tions of model parameters to aid model selection.74

We compare the performance of HAPNEST with current state-of-the-art genotype and pheno-75

type simulation tools in terms of data quality and computational speed. Furthermore, as a demon-76

stration of the utility of our tool, we show the application of our diverse, biobank-scale synthetic data77

for evaluating the performance of various PRS methods under different disease models. Our open-78

source software tool is available at https://github.com/intervene-EU-H2020/synthetic_data,79

and has also been distributed as Docker and Singularity containers. We have generated 6.8 million80

common variants and 9 phenotypes with varying degrees of heritability and polygenicity across 181
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million individuals and made this large synthetic dataset available at https://www.ebi.ac.uk/82

biostudies/studies/S-BSST936 to encourage standardised evaluation of new statistical methods83

by the genomic research community.84

2 Results85

2.1 Overview of genotype generation methods86

Synthetic haplotypes are constructed as a mosaic of segments of various lengths imperfectly copied87

from real haplotypes (Figure 1, Panel a). HAPNEST uses an approximate model inspired by the88

sequential Markovian coalescent model [15], which makes simplifying assumptions about the coales-89

cence and recombination processes. The real haplotypes to copy from are sampled uniformly from a90

reference dataset, Ds, limited to individuals belonging to a certain ancestry group s. Alternatively,91

users can specify the proportion of real haplotypes to sample from each ancestry group. We refer92

to the Discussion section of the paper regarding the complications in interpreting admixed samples.93

Segments of length ℓ (in centimorgans) are sampled from the real haplotypes (Figure 1, Panel b)94

based on a simplified stochastic model of the coalescent and recombination processes,95

ℓ ∼ Exp(2Tρs), T ∼ Gamma(2, Ns/Ne,s), (1)

where ρs is the population-specific recombination rate, Ne,s is the population-specific mean effective96

population size, and Ns is the number of reference samples for population s. The simulation of97

varying, rather than constant, coalescence time T , is one of two main aspects in which HAPNEST98

differs from previous methods such as HAPGEN2. Another feature we introduce is that to reduce99

close copying of genotypes from the reference, the presence of a genetic variant at position i is only100

copied if T ≤ mi, where mi is the variant’s age of mutation (obtained from [16]). Two synthetic101

haplotypes, hi, i ∈ {1, 2}, constructed in this way are added element-wise to create a synthetic102

genotype, g (Figure 1, Panel c). For experiments in this text, we consider a reference dataset of103

4,062 phased genotypes derived from the publicly available 1,000 Genomes Project and Human104

Genome Diversity Project datasets for 6 major discrete ancestry groups [17].105
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Figure 1: a. A reference set of real haplotypes, from which segments (colored) are imperfectly
copied to construct a synthetic haplotype. b. Detailed view of an individual segment. The segment
length, ℓ, and coalescence time, T , are sampled from a stochastic model. The presence of a genetic
variant at position i is only copied if T ≤ mi, where mi is the variant’s age of mutation. Variants
that are not copied are shown in red. c. Synthetic genotypes, g, are constructed as pairs of
synthetic haplotypes, hi, i ∈ {1, 2}. d. Once the genotype is generated, liability of phenotype will
subsequently be assigned to each sample as a summation of genetic effect, covariate effect (if any)
and environmental noise.

2.2 Posterior distributions of model parameters106

While there is no consensus on universal metrics for evaluating synthetic datasets, the literature107

tends to emphasise the general properties of fidelity (the ability to preserve statistical properties108

of the real data) and generalisability (the extent to which synthetic samples are not direct copies109

of the real data) [18, 19]. For downstream applications such as GWAS and PRS, it is important to110

preserve realistic LD patterns in the synthetic data (fidelity objective). In this work we measure111

generalisability in terms of genetic relatedness (defined by the kinship coefficient), to ensure that112

the samples in large synthetic datasets are not close copies of samples from the much smaller113

reference dataset. We use Approximate Bayesian Computation (ABC) (as explained in the Methods114

section) to estimate model parameters which balance both the fidelity and the generalisability115

objectives. Figure 2 shows the posterior distributions of the parameters that best satisfy these116

criteria. We observe a tradeoff between optimising the fidelity objective (Supplementary, Figure117

10) and optimising the generalisability objective (Supplementary, Figure 11). This tradeoff can118

affect the results of downstream analyses such as GWAS (Supplementary, figure 12, table 6).119
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Figure 2: Posterior distributions plotted as marginal and bivariate kernel density estimates for the
effective population size, Ne,s, and recombination rate, ρs, for six superpopulation groups, s 1. The
experiment setup used 500 simulations for Nsyn = 1000 synthetic samples based on a reference of
chromosome 21 HapMap3 variants, with uniform priors and a 20 percent rejection rate.

2.3 Comparison of synthetic genotype quality120

Synthetic data quality is evaluated based on a workflow implemented in the HAPNEST software121

tool for measuring the fidelity, diversity and generalisability of synthetic datasets. Briefly, fidelity122

is measured as the similarity between the real (reference) and synthetic datasets for 4 properties:123

minor allele frequency (MAF) distribution, population structure in terms of alignment of the prin-124

cipal components (PCs), LD decay and nearest neighbour adversarial accuracy (as explained in125

the Methods section). Diversity is measured by the degree of genetic relatedness (kinship) within126

the synthetic dataset and generalisability is measured by the degree of genetic relatedness between127

the real and synthetic datasets. HAPNEST is compared with three alternative methods (HAP-128

GEN2, G2P and Sim1000G) for Nsyn = 1, 000 synthetic samples, based on a reference dataset129

of Nref = 775 European-ancestry individuals. In this section we compare two parameter sets for130

HAPNEST: HAPNEST-abc, as determined by the ABC procedure for balancing the LD and relat-131

edness objectives (Figure 2) and HAPNEST-equivalent, that is more equivalent to the parameter132

configurations used by the other tools (which do not have built-in optimisation procedures). The133

6

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 22, 2022. ; https://doi.org/10.1101/2022.12.22.521552doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.22.521552
http://creativecommons.org/licenses/by-nd/4.0/


rest of the text generally considers the ABC parameters, unless otherwise stated.134

2.3.1 Fidelity135

The full fidelity results are reported in Supplementary Table 1. The HAPNEST-equivalent and136

G2P methods had the lowest divergence in MAF between the synthetic and reference datasets,137

followed by HAPNEST-abc, Sim1000G and HAPGEN2. The HAPNEST-equivalent method also138

had the LD decay that least diverged from the reference, followed by the G2P and HAPGEN2139

methods. However, we observe that HAPNEST-abc has a faster LD decay (Figure 3, Panel b) and140

more generally, our posterior analysis indicates there is a tradeoff between optimizing the LD and141

relatedness objectives (Supplementary, Figure 10, 11). Nevertheless, GWAS results presented later142

still indicate realistic LD structure at genome-wide significant loci. We evaluate preservation of143

population structure by comparing the PC alignment score, defined as the cosine distance between144

the first 20 PCs obtained from real and synthetic data within European individuals. HAPGEN2 has145

the highest PC alignment score, followed by HAPNEST-equivalent. HAPNEST can also generate146

datasets that preserve population structure across multiple populations (Figure 4, Panel a). Finally,147

we consider privacy-preserving metrics, by calculating the nearest neighbour adversarial accuracy148

score, which averages the true positive rate and true negative rate for distinguishing real and149

synthetic data. Adversarial accuracy scores closest to 0.5 are observed for the G2P and HAPNEST-150

abc methods, indicating that these synthetic samples are more indistinguishable from the real data.151

Our analysis indicates that no one method performs best across all evaluation metrics, but instead152

there are tradeoffs that end users should consider, depending on the priorities of their use case.153

2.3.2 Generalisability and diversity154

HAPNEST-abc reached the best generalisability and diversity of all methods evaluated (Supplemen-155

tary, Table 2, 3) when considering Nsyn = 1000 synthetic samples. However, it is more appropriate156

to measure generalisability and diversity on larger and more realistic sample sizes. As there is157

a limited number of haplotypes in the reference dataset, one might expect that when generating158

thousands of synthetic samples, some generated genomes might eventually be copies of or highly159

related with genomes in the reference set. As shown in the next section, scalability is an issue160

for Sim1000G and G2P, so in this experiment we only consider HAPNEST and HAPGEN2. To161
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Figure 3: a. LD correlation for 500 contiguous SNPs selected at random from chromosome 21
HapMap3 variants, for the European-ancestry reference dataset (Nref = 775); b. Comparison of
LD decay for Nsyn = 1000 European-ancestry synthetic samples; c. Comparison of LD correlation
(for same 500 SNPs shown in reference panel) for Nsyn = 1000 European-ancestry synthetic samples

evaluate the impact of the size of the reference panel, we consider both the full reference (N = 775)162

and a smaller reference (N = 100). We observe that HAPNEST outperforms HAPGEN2 for both163

generalisability and diversity on larger sample samples (Figure 5). These results are not a function164

of the synthetic data sample size for either method, due to simplifying assumptions of the statistical165

models used by these methods. However, the generalisability and diversity performance is affected166
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Figure 4: a. PCA projection plot for Nsyn = 10000 synthetic samples generated by the HAP-
NEST method, for chromosome 21 HapMap3 variants; b. Comparison of PCA projection plots
and bivariate densities for Nsyn = 1000 European-ancestry synthetic samples. The highest PC
alignment score for preservation of population structure is 0.311 for HAPGEN2, followed by 0.243
(HAPNEST-equivalent), 0.222 (G2P), 0.182 (HAPNEST-abc) and 0.043 (Sim1000G)

by the size of the reference data. We also demonstrate that for both methods, generalisability and167

diversity can be improved by increasing the number of reference samples.168

2.4 Scalability analysis for large sample sizes169

The scalability of HAPNEST is validated by measuring the computational speed of generating170

genotype datasets for a range of sample sizes, compared with the widely used HAPGEN2 software171

tool. The other two methods (Sim1000G and G2P) are excluded from this comparison as they did172

not scale to the large sample sizes considered here. We observe that while generation times are173

similar for small sample sizes, HAPNEST is increasingly faster than HAPGEN2 for larger sample174

sizes (Figure 6) which approach the size of modern biobank-scale genetic datasets. This gain175

in computational speed is achieved by a more efficient algorithm and its efficient multi-threaded176

implementation in the Julia programming language.177

2.5 Overview of phenotype generation methods178

A continuous or binary phenotype can be assigned to each sample as an aggregation of genetic effect,

user-input covariate effect (if any) and environmental noise. The genetic component is generated as

9
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Figure 5: The a. generalisability and b. diversity scores for two reference sizes (Nref = 100 and
Nref = 775) and various sample sizes, averaged across five trials for chromosome 21 HapMap3 vari-
ants, and the HAPNEST and HAPGEN2 methods. The ratio N/Ne is fixed to ensure a fair compar-
ison with the same average segment lengths. Generalisability is calculated as (1− Ncross

Nsyn∗Nref
)×100,

where Ncross is the number of closely related pairs (i.e. twins or first-degree relatives, as determined
by the kinship coefficient) between the reference and synthetic datasets. Diversity is calculated as

(1− Npairs

N2
syn−Nsyn

)× 100, where Npairs is the number of closely related pairs in the synthetic dataset.

Figure 6: Simulation times for genotype datasets for HAPNEST and HAPGEN2 (other methods are
excluded from this comparison due to scalability and compatibility issues), averaged for five trials
with error bars plotted, for chromosome 21 HapMap3 variants. The comparison was performed
on Intel Xeon Gold 6230 2.1 GHz processors with 8 cores and 32GB RAM. Since the simulation
time depends on the input configuration, the experiment is controlled by setting ρ to the average
recombination rate used by HAPGEN2 (ρ = 2.185 for chromosome 21), and using Ne = 500 for
both methods (to eliminate bias from mutations).
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a weighted sum of causal allele counts (Figure 1, Panel d). For each causal SNP βi, the effect size

is drawn from a Gaussian distribution with 0 mean and variance determined by three well-studied

factors impacting heritability of the variants, the minor allele frequency (MAF) pi, local linkage

structural ri, and the functional annotation si of the SNP:

βi ∼ N(0, [pi(1− pi)]
arbi s

c
i ).

Power parameters a, b, and c reflect strength of negative selection on each aspect and we used179

extensive empirical observations [20, 21, 22] to chose the default parameters. HAPNEST allows180

SNP’s effect sizes to be drawn from a mixture of distributions with different width, corresponding181

to variable level of heritability. Our model also allows flexible assignment of individual components’182

contribution to the phenotype (heritability), as well as the number of causal variants constituting183

the genetic risk (polygenicity). We run GWASs for 50,000 synthetic individuals and 1,049,096184

HapMap 3 SNPs based on phenotypes generated under different genetic architectures. The Man-185

hattan plots visually resemble Manhattan plots obtained on real data with similar heritability and186

polygenicity (Figures 7, 13 and 14). Figure 7 shows exemplary GWAS results for traits under187

two extreme scenarios: low heritability, low polygenicity, and high heritability, high polygenicity.188

The former resembles phenotypes such as atrial fibrillation and flutter (Figure 13), and the latter189

resembles typically more heterogeneous traits, such as body pain (Figure 14). Our approach allows190

us to specify genetic correlations between phenotypes within and, importantly, between ancestry191

groups.192

2.6 Application: Comparison of polygenic risk scoring methods193

We demonstrated the utility of HAPNEST by comparing 7 PRS methods using synthetic data194

from 5 ancestry groups. We first generated a synthetic training dataset of 100,000 individuals of195

European ancestries, and performed a standard GWAS using software plink2 [23], correcting for top196

20 PCs. We subsequently used the summary statistics to build PRSs in a separate synthetic test set197

of 25,000 individuals (5,000 samples from each ancestry group). To demonstrate variability across198

genetic architectures, GWAS summary statistics are computed for nine continuous phenotypic199

traits, with varying heritability (0.03, 0.1, 0.5) and polygenicity (0.0001, 0.005, 0.1). We assumed200
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Figure 7: Example GWAS Manhattan plots for phenotypes under various genetic archi-
tectures. Colored in green are causal SNPs on trait liability under each setup. a. Phenotype with
low heritability (0.1) and low polygenicity (0.0001, i.e. approximately 0.01% of total SNPs having
causal effects on trait liability); b. Phenotype with high heritability (0.9) and high polygenicity
(0.1, i.e. approximately 10% of total SNPs having causal effects on trait liability).

a genetic correlation of 1 across all ancestry groups.201

The evaluation of the PRS methods is based on the reference-standardised framework of Pain202

et al. [4], where for continuous traits, the PRS performance is measured in terms of Pearson203

correlation between the predicted and observed values. The optimal parameters for each PRS204

method are identified using cross validation (CV), or pseudovalidation (PseudoVal), if CV is not205

available.206

Better predictive performance is observed for higher heritability, lower polygenicity architectures207

(Supplementary, Figure 15). No single PRS method was observed to perform best across all genetic208

architectures. Methods with sparsity-inducing shrinkage priors (e.g. PRScs) were observed to209

perform better for higher heritability, lower polygencity architectures, where genetic effects on most210
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SNPs are zero (Figure 8, Panel c), while other approaches such as MegaPRS performed better for211

lower heritability, higher polygenicity architectures (Figure 8, Panel a). Multi-ancestry results212

replicate known issues with transferability of polygenic risk scores based on European-ancestry213

summary statistics (Figure 8, Panels b and d).214

Figure 8: PRS results for two genetic architectures, averaged across 3 experiment trials with error
bars showing the range of outcomes, for HapMap3 variants across 22 chromosomes. a. Pearson
correlation between predicted and observed values, for various PRS methods and a European-
ancestry phenotype with heritability 0.1 and polygenicity 0.005. b. Pearson correlation for various
target ancestry groups for the best-performing PRS method (MegaPRS) for the heritability 0.1 and
polygenicity 0.005 phenotype. c. Pearson correlation between predicted and observed values, for
various PRS methods and a European-ancestry phenotype with heritability 0.5 and polygenicity
0.0001. d. Pearson correlation for various target ancestry groups for the best-performing PRS
method (PRScs) for the heritability 0.5 and polygenicity 0.0001 phenotype.
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3 Discussion215

In this study, we proposed HAPNEST, a new algorithm to generate realistic individual-level ge-216

netic and phenotypic data and provide an efficient implementation. HAPNEST meets the demand217

for diverse, biobank-scale genomic data by improving scalability compared to existing methods.218

Users can customise population parameters or use parameter estimates derived from the reference219

dataset. Previous studies have been inconsistent in their approach to evaluating the quality of the220

generated synthetic data. We provide a comprehensive set of measures to be used for data quality221

evaluation that have been proposed in the statistical genetics and differential-privacy literature [24].222

Genotype generation, phenotype generation and evaluation modules are wrapped in user-friendly223

Docker or Singularity containers, where each module can be run independently.224

Synthetic genotypes are generated by copying and assembling haplotype segments from the refer-225

ence genome, with distribution of segment length determined by specifics of the target population,226

including recombination rates, effective population size and samples in the reference panel. Pa-227

rameters are optimised through the ABC algorithm, which typically results in an output dataset228

well-balanced across fidelity and generalisability metrics. On top of that, we introduced mutations229

to the synthetic genome to reduce similarity across individuals. Our approach is, in spirit, similar230

to HAPGEN2, but to improve computational scalability and generalisability we have introduced231

modeling of varying, rather than constant, coalescence time, and the use of mutation ages to de-232

termine if mutations are present in synthetic samples.233

From our systematic evaluations and experiments, we noticed some general trade-offs in synthetic234

data quality and in the parameter selection. One trade-off occurs between the preservation of pop-235

ulation LD structure and synthetic sample relatedness when constructing large synthetic datasets236

from much smaller reference datasets. Our observations indicated that parameters optimising the237

preservation of LD usually result in higher levels of sample relatedness, as LD typically comes with238

larger average segment length copied from the reference. On the other hand, shortened segments239

allow more combinations and higher sample level variability, which results in samples that are less240

related to each other but increased fragmentation in the LD structure. Furthermore, smaller seg-241

ments lead to more computational input/output operations when constructing synthetic data files242

and a slight increase in running time. Segments copied from the reference genome in our algorithm243
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can be conceptually viewed as identity-by-descent (IBD) segments in population genetics [25, 26].244

As can be seen in equation 2, recombination events (ρs) happen over time (T ) in the population.245

Thus, IBD segments degrade over time, which also shows an impact on LD [27, 28]. Our algorithm246

also provides an implementation of generating “admixed” samples by sampling from multiple ref-247

erence populations under user defined compositions. However, we would like to note that this248

approach does not accurately reflect the process of multi-population diverging and intermixing,249

therefore it should be used and interpreted carefully.250

Compared to other methods, HAPNEST-generated genotypes demonstrated better diversity and251

generalisability which are essential features when scaling to large sample sizes. While the genetic252

relatedness analysis indicated that the genotypes are sufficiently different from the reference data,253

a nearest-neighbour adversarial accuracy close to 0.5 indicates that statistically speaking, it would254

be difficult to discern a synthetic genotype from a real genotype. These properties of synthetic255

datasets are desirable in the context of data privacy, where we may want to create a synthetic twin256

of sensitive data that preserves key statistical properties of the real data, but cannot be traced257

back to real individuals. However, we note that the criteria used in our analysis are not sufficient258

for differential privacy guarantees, and we advise to use HAPNEST, or any of the reference-based259

generation methods, only on publicly-available genomics datasets.260

Once individual level genotypes have been generated, we can subsequently assign phenotypes to261

each sample as an aggregation of polygenic effects, non-genetic effects and environmental noise. We262

also implemented population-specific phenotypic effects by assuming shared causal variants across263

populations with distinct but correlated effect sizes, and multi-trait simulation allowing for different264

genetic correlation and pleiotropy models.265

We believe our tool can benefit the community especially for GWAS related method development,266

for which one of the examples can be PRS computation and evaluation. HAPNEST allows re-267

searchers to assess the validity of genetic scoring methods under a broad variety of setups, including268

cross-ancestry, trans-diagnostic, and different genetic architectures. Here, as a demonstration of its269

utility, we applied PRSpipe2 to synthetic data generated by HAPNEST and found that our results,270

to a great degree, replicated what has been observed by Pain et. al [4]. As widely discussed, we271

2PRSpipe is a Snakemake pipeline developed to calculate and evaluate polygenic risk scores from GWAS summary
statistics. It implements and extends the GenoPred [4] pipeline, a reference standardized framework for the prediction
of PRS using various state-of-the-art methods.
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found lower cross-ancestry portability of PRSs derived in a single ancestry. For a given phenotype,272

we set genetic correlations between ancestry groups to 1 and this might be higher than what is273

observed in real settings and result in slightly inflated trans-ethnic PRS prediction performance.274

Nevertheless, we still observed reduced prediction accuracy in non-European samples, indicating275

the synthetic genotype captured the differences of MAF and LD structures across populations. Re-276

sults under different genetic architectures are concordant with the general expectation: we observe277

better performance of PRS for phenotypes with higher heritability and lower polygenicity due to278

the existence of few variants with larger effect that explain large amounts of phenotypic variance.279

We also noticed that the best performing method can depend on different genetic architecture,280

reflecting the need for careful considerations when choosing a PRS method. As more studies come281

online that examine the clinical utility of PRSs, it will be important to have a reference dataset282

where old and new PRS methods can be compared and their robustness can be assessed as a func-283

tion of the genetic and phenotypic architecture. We used HAPNEST to create one of the largest284

genomics synthetic datasets today including 1 million individuals across 6 major continental ances-285

try groups, 6.8 million variants and 9 phenotypes. We hope this dataset can generate a reference286

set for deriving and testing PRS methods within a unified framework.287

4 Data availability288

We have made available a pre-simulated synthetic dataset for 1,008,000 individuals and 9 continuous289

phenotypic traits for over 6.8 million SNPs and 6 ancestry groups at https://www.ebi.ac.uk/290

biostudies/studies/S-BSST936. There is also a smaller example dataset available at this link.291

5 Code availability292

The HAPNEST software is available at https://github.com/intervene-EU-H2020/synthetic_293

data. The software can be used to simulate synthetic datasets and evaluate synthetic data quality.294
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