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1« Abstract

5 Existing methods for simulating synthetic genotype and phenotype datasets have limited scalability,

-

16 constraining their usability for large-scale analyses. Moreover, a systematic approach for evaluating

7 synthetic data quality and a benchmark synthetic dataset for developing and evaluating methods

=

s for polygenic risk scores are lacking. We present HAPNEST, a novel approach for efficiently gener-

o

19 ating diverse individual-level genotypic and phenotypic data. In comparison to alternative methods,
20 HAPNEST shows faster computational speed and a lower degree of relatedness with reference pan-
a1 els, while generating datasets that preserve key statistical properties of real data. These desirable
» synthetic data properties enabled us to generate 6.8 million common variants and nine phenotypes

23 with varying degrees of heritability and polygenicity across 1 million individuals. We demonstrate
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22 how HAPNEST can facilitate biobank-scale analyses through the comparison of seven methods to

25 generate polygenic risk scoring across multiple ancestry groups and different genetic architectures.

» 1 Introduction

27 With the emergence of large-scale biobanks, methods to analyse common genetic variants (single
s nucleotide polymorphisms, or SNPs) across diverse human populations are in growing demand.
20 This is especially the case for polygenic risk scoring (PRS) methods, which quantify an individual’s
s genetic risk for a disease or other phenotypic trait [I]. Derived from one’s genotype, well-calibrated
st PRSs have the potential to be used for risk stratification and prognostic prediction [I]. PRS’s utility
32 has been demonstrated for certain common diseases among FEuropean ancestries, on which most
;3 genome-wide association studies (GWAS) were carried out [2], but some studies have highlighted
s limitations in PRS’s transferability across ancestries and different socio-demographic groups [3].
35 Thus, the development of methods that can improve the generalisability of PRSs is needed. At the
6 same time, only a few accessible large-scale biobank datasets exist and most previous PRS methods
57 have been tested and compared in UK Biobank [4]. More diverse biobank datasets are needed, but
33 due to the highly sensitive nature of genetics data, accessing and sharing individual-level data raises
39 privacy concerns. This makes publicly accessible synthetic data a welcome alternative for methods
20 developers.

a Broadly, two main approaches have been used to simulate individual level genetic data. Coalescence-
2 based methods, such as Hudson’s ms and msprime [0, [6], use demographic models to generate
a3 genomes including both rare and common variants. Reference-based approaches use real genomic
w data (e.g. 1000 genomes or HGDP) to generate synthetic data, but they are not suitable to gen-
s erate realistic rare variants. There are also methods, such as simGWASJ7], that directly simulate
6 GWAS summary statistics. However, many times they do not meet modern demands for methods
a7 development based on individual level data. We will focus on reference-based approaches since for
sz PRSs we are mostly interested in common genetic variation, which forms the bulk of complex trait
s heritability [§]. Moreover, common SNPs, especially Hapmap3 SNPs [9], are widely recommended
so for PRS computation [10]. HAPGEN2 [I1] is a widely used tool for genotype and phenotype sim-

s1 ulation, which preserves linkage disequilibrium (LD) patterns of real data through a resampling
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sz approach based on the Li and Stephens model [12]. However, HAPGENZ2 lacks computational scal-
53 ability and flexibility to simulate certain scenarios of interest for biobank-scale PRS and SNP-based
s« methods development. Recent alternatives include G2P [13] and Sim1000G [14]. Sim1000G is an
55 integrated R package, but is limited to genotype simulation. G2P encompasses both genotype and
ss phenotype simulation, and is highly customisable, but this setup can be challenging for non-expert
57 users. Without an integrated approach for parameter selection and evaluation of synthetic data
ss  quality, it is difficult for end-users to understand the statistical guarantees and reliability of the
so generated datasets. To the best of our knowledge, there does not exist a software tool implementing
60 an end-to-end pipeline for synthetic data generation, evaluation and optimisation.

61 To address these limitations, we introduce HAPNEST, a user-friendly tool for generating syn-
62 thetic datasets for genotypes and phenotypes, evaluating synthetic data quality, and analysing
63 the behavior of model parameters with respect to the evaluation metrics. HAPNEST simulates
64 genotypes by resampling a set of existing reference genomes, according to a stochastic model that
65 approximates the underlying processes of coalescent, recombination and mutation. It is, in spirit,
66 similar to HAPGEN2, but we introduce some innovations to reduce relatedness between synthetic
67 individuals and the reference panel. Phenotypes are subsequently assigned to each sample by
68 integrating user-specified genetic, covariate, and environmental effects. Genetic effects are mod-
60 elled in terms of heritability and polygenicity. HAPNEST enables efficient simulation of diverse
70 biobank-scale datasets, as well as simultaneously generating multiple genetically correlated traits
71 with population specific effects under different pleiotropy models. Moreover, the HAPNEST soft-
72 ware includes an extensive workflow for evaluating synthetic data fidelity and generalisability, as
73 well as approximate Bayesian computation (ABC) techniques for analysing the posterior distribu-
74 tions of model parameters to aid model selection.

75 We compare the performance of HAPNEST with current state-of-the-art genotype and pheno-
76 type simulation tools in terms of data quality and computational speed. Furthermore, as a demon-
77 stration of the utility of our tool, we show the application of our diverse, biobank-scale synthetic data
78 for evaluating the performance of various PRS methods under different disease models. Our open-
79 source software tool is available at https://github.com/intervene-EU-H2020/synthetic_datal
so and has also been distributed as Docker and Singularity containers. We have generated 6.8 million

g1 common variants and 9 phenotypes with varying degrees of heritability and polygenicity across 1
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g2 million individuals and made this large synthetic dataset available at https://www.ebi.ac.uk/
83 biostudies/studies/S-BSST936 to encourage standardised evaluation of new statistical methods

8¢ by the genomic research community.

s 2 Results

s 2.1 Overview of genotype generation methods

&7 Synthetic haplotypes are constructed as a mosaic of segments of various lengths imperfectly copied
ss from real haplotypes (Figure [I} Panel a). HAPNEST uses an approximate model inspired by the
o sequential Markovian coalescent model [15], which makes simplifying assumptions about the coales-
90 cence and recombination processes. The real haplotypes to copy from are sampled uniformly from a
a1 reference dataset, Dy, limited to individuals belonging to a certain ancestry group s. Alternatively,
92 users can specify the proportion of real haplotypes to sample from each ancestry group. We refer
93 to the Discussion section of the paper regarding the complications in interpreting admixed samples.
o Segments of length ¢ (in centimorgans) are sampled from the real haplotypes (Figure |1, Panel b)

95 based on a simplified stochastic model of the coalescent and recombination processes,

l~ Exp(2Tps), T ~ Gamma(2, Ns/Nes), (1)

s where ps is the population-specific recombination rate, N, s is the population-specific mean effective
o7 population size, and N, is the number of reference samples for population s. The simulation of
98 varying, rather than constant, coalescence time T, is one of two main aspects in which HAPNEST
90 differs from previous methods such as HAPGEN2. Another feature we introduce is that to reduce
w0 close copying of genotypes from the reference, the presence of a genetic variant at position i is only
w1 copied if T < m;, where m; is the variant’s age of mutation (obtained from [I6]). Two synthetic
w02 haplotypes, h;, i € {1,2}, constructed in this way are added element-wise to create a synthetic
103 genotype, g (Figure [1, Panel c¢). For experiments in this text, we consider a reference dataset of
104 4,062 phased genotypes derived from the publicly available 1,000 Genomes Project and Human

105 Genome Diversity Project datasets for 6 major discrete ancestry groups [17].


https://www.ebi.ac.uk/biostudies/studies/S-BSST936
https://www.ebi.ac.uk/biostudies/studies/S-BSST936
https://www.ebi.ac.uk/biostudies/studies/S-BSST936
https://doi.org/10.1101/2022.12.22.521552
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.22.521552; this version posted December 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

106

107

108

109

110

111

112

113

114

115

116

117

118

119

available under aCC-BY-ND 4.0 International license.

a. b. c.

Reference haplotypes: ivi y ic haplotyp:

o o 1 HINEEEEE - -  DEEEE

0101101100010 10101

1700111000001

1710011100001

001101011001

101000 ooo000 111 ’011210210101120102‘

d.
Phenotypes: [
| Heritability | IPolygenicityI
Environmental Other risk
011210210101120102 effect factors Phenotype liability

Genetic effect

Figure 1: a. A reference set of real haplotypes, from which segments (colored) are imperfectly
copied to construct a synthetic haplotype. b. Detailed view of an individual segment. The segment
length, ¢, and coalescence time, T', are sampled from a stochastic model. The presence of a genetic
variant at position i is only copied if T' < my;, where m; is the variant’s age of mutation. Variants
that are not copied are shown in red. c. Synthetic genotypes, g, are constructed as pairs of
synthetic haplotypes, h;, ¢ € {1,2}. d. Once the genotype is generated, liability of phenotype will
subsequently be assigned to each sample as a summation of genetic effect, covariate effect (if any)
and environmental noise.

2.2 Posterior distributions of model parameters

While there is no consensus on universal metrics for evaluating synthetic datasets, the literature
tends to emphasise the general properties of fidelity (the ability to preserve statistical properties
of the real data) and generalisability (the extent to which synthetic samples are not direct copies
of the real data) [I8,[19]. For downstream applications such as GWAS and PRS, it is important to
preserve realistic LD patterns in the synthetic data (fidelity objective). In this work we measure
generalisability in terms of genetic relatedness (defined by the kinship coefficient), to ensure that
the samples in large synthetic datasets are not close copies of samples from the much smaller
reference dataset. We use Approximate Bayesian Computation (ABC) (as explained in the Methods
section) to estimate model parameters which balance both the fidelity and the generalisability
objectives. Figure [2| shows the posterior distributions of the parameters that best satisfy these
criteria. We observe a tradeoff between optimising the fidelity objective (Supplementary, Figure
and optimising the generalisability objective (Supplementary, Figure [L1]). This tradeoff can

affect the results of downstream analyses such as GWAS (Supplementary, figure table @
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Figure 2: Posterior distributions plotted as marginal and bivariate kernel density estimates for the
effective population size, N, s, and recombination rate, ps, for six superpopulation groups, sH The
experiment setup used 500 simulations for Ng,,, = 1000 synthetic samples based on a reference of
chromosome 21 HapMap3 variants, with uniform priors and a 20 percent rejection rate.

2.3 Comparison of synthetic genotype quality

Synthetic data quality is evaluated based on a workflow implemented in the HAPNEST software
tool for measuring the fidelity, diversity and generalisability of synthetic datasets. Briefly, fidelity
is measured as the similarity between the real (reference) and synthetic datasets for 4 properties:
minor allele frequency (MAF) distribution, population structure in terms of alignment of the prin-
cipal components (PCs), LD decay and nearest neighbour adversarial accuracy (as explained in
the Methods section). Diversity is measured by the degree of genetic relatedness (kinship) within
the synthetic dataset and generalisability is measured by the degree of genetic relatedness between
the real and synthetic datasets. HAPNEST is compared with three alternative methods (HAP-
GEN2, G2P and Sim1000G) for Ny, = 1,000 synthetic samples, based on a reference dataset
of Nyef = 775 European-ancestry individuals. In this section we compare two parameter sets for
HAPNEST: HAPNEST-abc, as determined by the ABC procedure for balancing the LD and relat-
edness objectives (Figure [2) and HAPNEST-equivalent, that is more equivalent to the parameter

configurations used by the other tools (which do not have built-in optimisation procedures). The
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13a rest of the text generally considers the ABC parameters, unless otherwise stated.

15 2.3.1 Fidelity

136 The full fidelity results are reported in Supplementary Table The HAPNEST-equivalent and
137 G2P methods had the lowest divergence in MAF between the synthetic and reference datasets,
138 followed by HAPNEST-abc, Sim1000G and HAPGEN2. The HAPNEST-equivalent method also
139 had the LD decay that least diverged from the reference, followed by the G2P and HAPGEN2
1o methods. However, we observe that HAPNEST-abc has a faster LD decay (Figure (3| Panel b) and
11 more generally, our posterior analysis indicates there is a tradeoff between optimizing the LD and
12 relatedness objectives (Supplementary, Figure . Nevertheless, GWAS results presented later
13 still indicate realistic LD structure at genome-wide significant loci. We evaluate preservation of
e population structure by comparing the PC alignment score, defined as the cosine distance between
us  the first 20 PCs obtained from real and synthetic data within European individuals. HAPGEN2 has
s the highest PC alignment score, followed by HAPNEST-equivalent. HAPNEST can also generate
147 datasets that preserve population structure across multiple populations (Figure Panel a). Finally,
us we consider privacy-preserving metrics, by calculating the nearest neighbour adversarial accuracy
140 score, which averages the true positive rate and true negative rate for distinguishing real and
150 synthetic data. Adversarial accuracy scores closest to 0.5 are observed for the G2P and HAPNEST-
151 abc methods, indicating that these synthetic samples are more indistinguishable from the real data.
152 Our analysis indicates that no one method performs best across all evaluation metrics, but instead

153 there are tradeoffs that end users should consider, depending on the priorities of their use case.

15« 2.3.2 Generalisability and diversity

155 HAPNEST-abc reached the best generalisability and diversity of all methods evaluated (Supplemen-
156 tary, Table when considering Ny, = 1000 synthetic samples. However, it is more appropriate
157 to measure generalisability and diversity on larger and more realistic sample sizes. As there is
158 a limited number of haplotypes in the reference dataset, one might expect that when generating
150 thousands of synthetic samples, some generated genomes might eventually be copies of or highly
160 related with genomes in the reference set. As shown in the next section, scalability is an issue

161 for Sim1000G and G2P, so in this experiment we only consider HAPNEST and HAPGEN2. To
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Figure 3: a. LD correlation for 500 contiguous SNPs selected at random from chromosome 21
HapMap3 variants, for the European-ancestry reference dataset (N,.y = 775); b. Comparison of
LD decay for Ny, = 1000 European-ancestry synthetic samples; c. Comparison of LD correlation
(for same 500 SNPs shown in reference panel) for Ny, = 1000 European-ancestry synthetic samples

12 evaluate the impact of the size of the reference panel, we consider both the full reference (N = 775)
13 and a smaller reference (N = 100). We observe that HAPNEST outperforms HAPGEN2 for both
14 generalisability and diversity on larger sample samples (Figure |5). These results are not a function
165 of the synthetic data sample size for either method, due to simplifying assumptions of the statistical

166 models used by these methods. However, the generalisability and diversity performance is affected
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Figure 4: a. PCA projection plot for N, = 10000 synthetic samples generated by the HAP-
NEST method, for chromosome 21 HapMap3 variants; b. Comparison of PCA projection plots
and bivariate densities for Ny, = 1000 European-ancestry synthetic samples. The highest PC
alignment score for preservation of population structure is 0.311 for HAPGEN2, followed by 0.243
(HAPNEST-equivalent), 0.222 (G2P), 0.182 (HAPNEST-abc) and 0.043 (Sim1000G)

by the size of the reference data. We also demonstrate that for both methods, generalisability and

diversity can be improved by increasing the number of reference samples.

2.4 Scalability analysis for large sample sizes

The scalability of HAPNEST is validated by measuring the computational speed of generating
genotype datasets for a range of sample sizes, compared with the widely used HAPGEN2 software
tool. The other two methods (Sim1000G and G2P) are excluded from this comparison as they did
not scale to the large sample sizes considered here. We observe that while generation times are
similar for small sample sizes, HAPNEST is increasingly faster than HAPGEN2 for larger sample
sizes (Figure |§[) which approach the size of modern biobank-scale genetic datasets. This gain
in computational speed is achieved by a more efficient algorithm and its efficient multi-threaded

implementation in the Julia programming language.

2.5 Overview of phenotype generation methods

A continuous or binary phenotype can be assigned to each sample as an aggregation of genetic effect,

user-input covariate effect (if any) and environmental noise. The genetic component is generated as
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Figure 5: The a. generalisability and b. diversity scores for two reference sizes (N,.y = 100 and
Nyes = T775) and various sample sizes, averaged across five trials for chromosome 21 HapMap3 vari-
ants, and the HAPNEST and HAPGEN2 methods. The ratio N/N, is fixed to ensure a fair compar-
ison with the same average segment lengths. Generalisability is calculated as (1 — %) x 100,
where N¢poss is the number of closely related pairs (i.e. twins or first-degree relatives, as determined

by the kinship coefficient) between the reference and synthetic datasets. Diversity is calculated as
(1— %) x 100, where Njqrs is the number of closely related pairs in the synthetic dataset.
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Figure 6: Simulation times for genotype datasets for HAPNEST and HAPGEN2 (other methods are
excluded from this comparison due to scalability and compatibility issues), averaged for five trials
with error bars plotted, for chromosome 21 HapMap3 variants. The comparison was performed
on Intel Xeon Gold 6230 2.1 GHz processors with 8 cores and 32GB RAM. Since the simulation
time depends on the input configuration, the experiment is controlled by setting p to the average
recombination rate used by HAPGEN2 (p = 2.185 for chromosome 21), and using N, = 500 for
both methods (to eliminate bias from mutations).
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a weighted sum of causal allele counts (Figure [I} Panel d). For each causal SNP f;, the effect size
is drawn from a Gaussian distribution with 0 mean and variance determined by three well-studied
factors impacting heritability of the variants, the minor allele frequency (MAF) p;, local linkage

structural r;, and the functional annotation s; of the SNP:

Bi ~ N(0, [pi(1 — p))*ryss).

Power parameters a, b, and c reflect strength of negative selection on each aspect and we used
extensive empirical observations [20, 21, 22] to chose the default parameters. HAPNEST allows
SNP’s effect sizes to be drawn from a mixture of distributions with different width, corresponding
to variable level of heritability. Our model also allows flexible assignment of individual components’
contribution to the phenotype (heritability), as well as the number of causal variants constituting
the genetic risk (polygenicity). We run GWASs for 50,000 synthetic individuals and 1,049,096
HapMap 3 SNPs based on phenotypes generated under different genetic architectures. The Man-
hattan plots visually resemble Manhattan plots obtained on real data with similar heritability and
polygenicity (Figures and . Figure [7| shows exemplary GWAS results for traits under
two extreme scenarios: low heritability, low polygenicity, and high heritability, high polygenicity.
The former resembles phenotypes such as atrial fibrillation and flutter (Figure , and the latter
resembles typically more heterogeneous traits, such as body pain (Figure . Our approach allows
us to specify genetic correlations between phenotypes within and, importantly, between ancestry

groups.

2.6 Application: Comparison of polygenic risk scoring methods

We demonstrated the utility of HAPNEST by comparing 7 PRS methods using synthetic data
from 5 ancestry groups. We first generated a synthetic training dataset of 100,000 individuals of
European ancestries, and performed a standard GWAS using software plink2 [23], correcting for top
20 PCs. We subsequently used the summary statistics to build PRSs in a separate synthetic test set
of 25,000 individuals (5,000 samples from each ancestry group). To demonstrate variability across
genetic architectures, GWAS summary statistics are computed for nine continuous phenotypic

traits, with varying heritability (0.03, 0.1, 0.5) and polygenicity (0.0001, 0.005, 0.1). We assumed

11
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Figure 7: Example GWAS Manhattan plots for phenotypes under various genetic archi-
tectures. Colored in green are causal SNPs on trait liability under each setup. a. Phenotype with
low heritability (0.1) and low polygenicity (0.0001, i.e. approximately 0.01% of total SNPs having
causal effects on trait liability); b. Phenotype with high heritability (0.9) and high polygenicity
(0.1, i.e. approximately 10% of total SNPs having causal effects on trait liability).

a genetic correlation of 1 across all ancestry groups.

The evaluation of the PRS methods is based on the reference-standardised framework of Pain
et al. [4], where for continuous traits, the PRS performance is measured in terms of Pearson
correlation between the predicted and observed values. The optimal parameters for each PRS
method are identified using cross validation (CV), or pseudovalidation (PseudoVal), if CV is not
available.

Better predictive performance is observed for higher heritability, lower polygenicity architectures
(Supplementary, Figure. No single PRS method was observed to perform best across all genetic
architectures. Methods with sparsity-inducing shrinkage priors (e.g. PRScs) were observed to

perform better for higher heritability, lower polygencity architectures, where genetic effects on most
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a1 SNPs are zero (Figure |8, Panel c), while other approaches such as MegaPRS performed better for
212 lower heritability, higher polygenicity architectures (Figure [8] Panel a). Multi-ancestry results
a3 replicate known issues with transferability of polygenic risk scores based on European-ancestry

24 summary statistics (Figure 8] Panels b and d).

a b.
Heritability 0.1, Polygenicity 0.005 MegaPRS

0.025

0.020

0.015

0.010

0.005

| AFR I—
0.000
MegaPRS LDpred2 lassosum PRScs SBayesR pT+clump DBSLMM 0.000 0.005 0.010 0.015 0.020 0.025
2
c. d.
Heritability 0.5, Polygenicity 0.0001 PRScs

0.35

0.30

0.25
~ 0.20
~

0.15

0.10

0.05

0.00

PRScs lassosum pT+clump LDpred2 DBSLMM MegaPRS SBayesR 0.0 0.1 0.2 0.3

Figure 8: PRS results for two genetic architectures, averaged across 3 experiment trials with error
bars showing the range of outcomes, for HapMap3 variants across 22 chromosomes. a. Pearson
correlation between predicted and observed values, for various PRS methods and a European-
ancestry phenotype with heritability 0.1 and polygenicity 0.005. b. Pearson correlation for various
target ancestry groups for the best-performing PRS method (MegaPRS) for the heritability 0.1 and
polygenicity 0.005 phenotype. c. Pearson correlation between predicted and observed values, for
various PRS methods and a European-ancestry phenotype with heritability 0.5 and polygenicity
0.0001. d. Pearson correlation for various target ancestry groups for the best-performing PRS
method (PRScs) for the heritability 0.5 and polygenicity 0.0001 phenotype.

13


https://doi.org/10.1101/2022.12.22.521552
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.22.521552; this version posted December 22, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

a5 3 Discussion

26 In this study, we proposed HAPNEST, a new algorithm to generate realistic individual-level ge-
217 netic and phenotypic data and provide an efficient implementation. HAPNEST meets the demand
218 for diverse, biobank-scale genomic data by improving scalability compared to existing methods.
210 Users can customise population parameters or use parameter estimates derived from the reference
20 dataset. Previous studies have been inconsistent in their approach to evaluating the quality of the
21 generated synthetic data. We provide a comprehensive set of measures to be used for data quality
222 evaluation that have been proposed in the statistical genetics and differential-privacy literature [24].
23 Genotype generation, phenotype generation and evaluation modules are wrapped in user-friendly
24 Docker or Singularity containers, where each module can be run independently.

225 Synthetic genotypes are generated by copying and assembling haplotype segments from the refer-
26 ence genome, with distribution of segment length determined by specifics of the target population,
27 including recombination rates, effective population size and samples in the reference panel. Pa-
28 rameters are optimised through the ABC algorithm, which typically results in an output dataset
29 well-balanced across fidelity and generalisability metrics. On top of that, we introduced mutations
230 to the synthetic genome to reduce similarity across individuals. Our approach is, in spirit, similar
a1 to HAPGEN2, but to improve computational scalability and generalisability we have introduced
232 modeling of varying, rather than constant, coalescence time, and the use of mutation ages to de-
233 termine if mutations are present in synthetic samples.

234 From our systematic evaluations and experiments, we noticed some general trade-offs in synthetic
235 data quality and in the parameter selection. One trade-off occurs between the preservation of pop-
236 ulation LD structure and synthetic sample relatedness when constructing large synthetic datasets
237 from much smaller reference datasets. Our observations indicated that parameters optimising the
238 preservation of LD usually result in higher levels of sample relatedness, as LD typically comes with
230 larger average segment length copied from the reference. On the other hand, shortened segments
220 allow more combinations and higher sample level variability, which results in samples that are less
21 related to each other but increased fragmentation in the LD structure. Furthermore, smaller seg-
22 ments lead to more computational input/output operations when constructing synthetic data files

23 and a slight increase in running time. Segments copied from the reference genome in our algorithm
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214 can be conceptually viewed as identity-by-descent (IBD) segments in population genetics [25] [26].
25 As can be seen in equation [2) recombination events (ps) happen over time (7') in the population.
26 Thus, IBD segments degrade over time, which also shows an impact on LD [27, 28]. Our algorithm
27 also provides an implementation of generating “admixed” samples by sampling from multiple ref-
s erence populations under user defined compositions. However, we would like to note that this
29 approach does not accurately reflect the process of multi-population diverging and intermixing,
20 therefore it should be used and interpreted carefully.

251 Compared to other methods, HAPNEST-generated genotypes demonstrated better diversity and
22 generalisability which are essential features when scaling to large sample sizes. While the genetic
253 relatedness analysis indicated that the genotypes are sufficiently different from the reference data,
24 a nearest-neighbour adversarial accuracy close to 0.5 indicates that statistically speaking, it would
25 be difficult to discern a synthetic genotype from a real genotype. These properties of synthetic
26 datasets are desirable in the context of data privacy, where we may want to create a synthetic twin
257 of sensitive data that preserves key statistical properties of the real data, but cannot be traced
28 back to real individuals. However, we note that the criteria used in our analysis are not sufficient
20 for differential privacy guarantees, and we advise to use HAPNEST, or any of the reference-based
260 generation methods, only on publicly-available genomics datasets.

261 Once individual level genotypes have been generated, we can subsequently assign phenotypes to
262 each sample as an aggregation of polygenic effects, non-genetic effects and environmental noise. We
263 also implemented population-specific phenotypic effects by assuming shared causal variants across
264 populations with distinct but correlated effect sizes, and multi-trait simulation allowing for different
265 genetic correlation and pleiotropy models.

266 We believe our tool can benefit the community especially for GWAS related method development,
267 for which one of the examples can be PRS computation and evaluation. HAPNEST allows re-
268 searchers to assess the validity of genetic scoring methods under a broad variety of setups, including
269 cross-ancestry, trans-diagnostic, and different genetic architectures. Here, as a demonstration of its
a70  utility, we applied PRSpipeE| to synthetic data generated by HAPNEST and found that our results,

a1 to a great degree, replicated what has been observed by Pain et. al [4]. As widely discussed, we

2PRSpipe is a Snakemake pipeline developed to calculate and evaluate polygenic risk scores from GWAS summary
statistics. It implements and extends the GenoPred [4] pipeline, a reference standardized framework for the prediction
of PRS using various state-of-the-art methods.
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o2 found lower cross-ancestry portability of PRSs derived in a single ancestry. For a given phenotype,
713 we set genetic correlations between ancestry groups to 1 and this might be higher than what is
74 observed in real settings and result in slightly inflated trans-ethnic PRS prediction performance.
275 Nevertheless, we still observed reduced prediction accuracy in non-European samples, indicating
76 the synthetic genotype captured the differences of MAF and LD structures across populations. Re-
277 sults under different genetic architectures are concordant with the general expectation: we observe
as better performance of PRS for phenotypes with higher heritability and lower polygenicity due to
279 the existence of few variants with larger effect that explain large amounts of phenotypic variance.
280 We also noticed that the best performing method can depend on different genetic architecture,
251 reflecting the need for careful considerations when choosing a PRS method. As more studies come
282 online that examine the clinical utility of PRSs, it will be important to have a reference dataset
283 where old and new PRS methods can be compared and their robustness can be assessed as a func-
234 tion of the genetic and phenotypic architecture. We used HAPNEST to create one of the largest
285 genomics synthetic datasets today including 1 million individuals across 6 major continental ances-
286 try groups, 6.8 million variants and 9 phenotypes. We hope this dataset can generate a reference

257 set for deriving and testing PRS methods within a unified framework.

x 4 Data availability

280 We have made available a pre-simulated synthetic dataset for 1,008,000 individuals and 9 continuous
200 phenotypic traits for over 6.8 million SNPs and 6 ancestry groups at https://www.ebi.ac.uk/

201 [biostudies/studies/S-BSST936. There is also a smaller example dataset available at this link.

x» B Code availability

203 The HAPNEST software is available at https://github.com/intervene-EU-H2020/synthetic_

204 |datal The software can be used to simulate synthetic datasets and evaluate synthetic data quality.
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