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Abstract (up to 150 words, unreferenced) 

Genetic dissection of neuropsychiatric disorders can potentially reveal novel therapeutic 

targets. While genome-wide association studies (GWAS) have tremendously advanced our 

understanding, we approach a sample size bottleneck (i.e., the number of cases needed to 

identify >90% of all loci is impractical). Therefore, computationally enhancing GWAS on existing 

samples may be particularly valuable. Here, we describe DeepGWAS, a deep neural network-

based method to enhance GWAS by integrating GWAS results with linkage disequilibrium and 

brain-related functional annotations. DeepGWAS enhanced schizophrenia (SCZ) loci by ~3X 

when applied to the largest European GWAS, and 21.3% enhanced loci were validated by the latest 
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multi-ancestry GWAS. Importantly, DeepGWAS models can be transferred to other 

neuropsychiatric disorders. Transferring SCZ-trained models to Alzheimer9s disease and major 

depressive disorder, we observed 1.3-17.6X detected loci compared to standard GWAS, among 

which 27-40% were validated by other GWAS studies. We anticipate DeepGWAS to be a powerful 

tool in GWAS studies. 

 

 

Neuropsychiatric disorders carry high public health burden including tremendous morbidity, 

mortality, lessened quality of life, and financial costs1,2. For example, schizophrenia (SCZ) is a 

highly heritable and debilitating psychiatric disorder affecting about 0.28% of the global 

population and is associated with high morbidity, mortality, as well as personal and public health 

costs3. During the past 15 years, GWAS have greatly advanced our understanding of the genetic 

basis underlying these disorders4,5. For example, SCZ started with 1 locus reaching genome-wide 

significance in a GWAS with 3,322 cases in 20096 to 287 loci in the most recent meta-analysis5 of 

~75K cases. The tremendous advancement is largely attributable to increased sample size, which 

is of undisputed value in GWAS for many complex diseases7. However, increasing sample size by 

another order of magnitude in GWAS becomes increasingly challenging, particularly for SCZ and 

other neuropsychiatric disorders. Therefore, enhanced GWAS on existing samples via 

computational approaches would be particularly valuable for genetic dissection of 

neuropsychiatric disorders. 

 

Standard GWAS associates genotypes with phenotypes usually assumes that all variants are a 

priori equally likely to be associated7. This assumption was initially proper as priors were either 

unavailable or debated. However, we have now accumulated rich genomic and epigenomic 

evidence and the continuation of this assumption may represent a tremendous, missed opportunity 

to leverage and integrate standard GWAS results with functional annotations to effectively up-

weight variants that are more likely to play functional roles. For example, GWAS variants have 

been reported to enrich in regulatory regions8,9, and explain a larger than expected amount of 

disease and trait heritability10,11. Therefore, leveraging functional annotations could enhance 

statistical power to identify causal variants. Researchers have employed similar integration ideas 
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for related purposes, including phenotypic prediction, gene-gene interaction detection and post-

GWAS prioritization of genetic variants and their target genes12-16 but not for GWAS per se.  

 

Here, we apply machine learning to integrate summary statistics from standard GWAS with 

functional annotation information for enhancing GWAS findings. Specifically, we develop 

DeepGWAS, a 14-layer deep neural network to enhance GWAS signals without increasing sample 

size. The input predictors include GWAS summary statistics, linkage disequilibrium (LD) 

information, and brain related functional annotations. We first trained our DeepGWAS model with 

SCZ GWAS summary statistics, finding that our DeepGWAS model outperformed other state-of-

the-art machine learning and traditional statistical methods, including XGBoost17 and logistic 

regression. Encouraged by these results, we further transferred our DeepGWAS model trained on 

SCZ to enhance GWAS for two other neuropsychiatric diseases. 

 

Results 

Overview of the DeepGWAS model 

DeepGWAS infers the probability of a variant associated with the phenotype of interest by 

modeling a vector of 33 input features in a 14-layer fully connected deep neural network ( 1 and 

Online Methods). In DeepGWAS models, genetic variants are observations, and for each 

observation, the input features include GWAS summary statistics, basic population genetics 

statistics, and brain-related functional annotations (Online Methods). Training a DeepGWAS 

model entails label information (i.e., the binary label indicating whether a variant is associated 

with the phenotype of interest). In reality, gold-standard true labels typically do not exist. 

Therefore, we recommend training a DeepGWAS model using results from two GWA studies 

where the smaller and less powerful GWA study provides the input features while the more 

powerful one provides label information. The trained DeepGWAS models can be applied to 

enhance the more powerful GWAS (which only provides input features), enhance another 

GWAS for the same phenotype, or enhance GWAS for another brain-related disease (for 

examples, see <DeepGWAS enhancement reveals hundreds of novel SCZ loci=, <Enhancing 

AD GWAS= and <Enhancing MDD GWAS= sections below). 
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Fig. 1 Overview of the DeepGWAS model. The blue circle X denotes the 33 input features, 

which serve as predictors in DeepGWAS model; the blue circle Y denotes the true binary input 

label indicating whether a variant is associated with the disease. During training, Y is obtained 

from a larger-sample-size study, serving as the working truth; n denotes the number of genetic 

variants; the black and gray solid circles denote the neural network nodes of the deep learning 

architecture within the DeepGWAS model; the yellow circle denotes DeepGWAS output �": 

estimated probabilities for each of the n variants being associated with the disease. 

 

Systematic evaluation of DeepGWAS using SCZ GWAS data  

We first compared the ability of DeepGWAS to enhance GWAS signals with two alternative 

methods, logistic regression and XGBoost17. The former is a classic statistical method, and the 

latter is a widely-used machine learning method. Results show that DeepGWAS achieves the 

best performance at both variant and locus-level (Fig. 2). Using GWAS summary statistics from 

64 SCZ GWAS cohorts5, we were able to design careful experiments (Table S1 and Table S2) 

for systematic evaluation. Since neural networks are prone to a trivial solution due to a highly 

imbalanced data such as GWAS summary statistics, DeepGWAS adopts an under-sampling 

strategy for non-significant variants when selecting a subset of variants for training (detailed in 

<Under-sampling insignificant variants for model training= in Supplementary Materials). 

For logistic regression and XGboost, we consider models trained on the full sample of variants as 
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well as models trained on the subset sample of variants as input into the DeepGWAS model 

(indicated by <_subset=). Each of the five models takes the same 33 features as input. With the 

default prediction probability threshold value of 0.5, DeepGWAS achieved first place (at variant 

level) and second place (at locus level) for capturing true positives and had an overall best and 

second best F1 score balancing sensitivity and specificity at the variant level and locus level, 

respectively (Fig. 2). For example, at the locus level, the F1 score of XGBoost (0.07) was less 

than half that of DeepGWAS (0.16). Although logistic regression applied to all variants had the 

highest F1 score, DeepGWAS approximately doubled the power (TPR: 0.28 vs 0.55). Thus 

DeepGWAS provided the best balance between power and overall performance (Fig. 2). At the 

variant level, DeepGWAS (red curve) outperforms all other models and is the clear winner in 

terms of power (TPR) with a range of 40-60%, the only range where methods have reasonable 

power and acceptable false positive control (Fig. 2). 
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Fig. 2 Model comparison in SCZ data. a, Comparison of TPR and F1 at both variant and 

locus level for 5 methods; b, ROC curve for comparison at variant-level of logistic 

regression, XGBoost and DeepGWAS models for evaluation. Logistic is the logistic 

regression model based on all variants, while logistic_subset uses the same variants selected 

by DeepGWAS9 insignificant variant under-sampling strategy. Similarly for XGBoost and 

XGBoost_subset; c, Precision recall curve for comparison at variant-level of logistic 

regression, XGBoost and DeepGWAS models for evaluation. PPV: positive predictive value. 

Marked points in the lines denote results using prediction probability threshold value of 0.5. 

Abbreviations: FPR=false positive rate; TPR=true positive rate; ROC=receiver operating 

characteristic curve; F1=TP/(TP+½(FP+FN)).  

 

DeepGWAS enhancement reveals hundreds of novel SCZ loci  

After systematically comparing DeepGWAS with alternative methods using 64 SCZ GWAS 

cohorts, we trained a DeepGWAS model using data from two recent European SCZ GWA 
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studies, applied to the latest European SCZ GWAS, and investigated the enhancement results. 

Specifically, we trained a DeepGWAS model using GWAS summary statistics from Ripke et al. 

2014, the 2nd largest European ancestry SCZ GWAS meta-analysis4, as input features, and using 

genome-wide significance (p-value < 5e-8) from Pardiñas et al. 2018 (the largest European SCZ 

GWAS)18, as the input Y label. Once trained, the DeepGWAS model was applied to the GWAS 

summary statistics from Pardiñas et al. 2018, and the results show that DeepGWAS, with the 

default threshold of 0.5, enhanced 413 loci compared to the input GWA study from Pardiñas et 

al. 201818. Importantly, 88 out of 413 were validated by Trubetskoy et al. 2022, the most recent 

and largest multi-ethnic SCZ GWA study5 (Fig. 3). 

 

Fig. 3 DeepGWAS enhanced Pardiñas et al. 2018 SCZ GWAS. Significant loci detected by 

each method/study are shown with an upset plot. The orange bar represents loci not in the input 

Pardiñas et al. 2018 GWAS results, enhanced by DeepGWAS, and validated by Trubetskoy et al. 

2022; the purple bar corresponds to lower hanging fruit loci detected by all methods/studies, i.e., 

significant in the original input of Pardiñas et al. 2018, remain significant after DeepGWAS 

enhancement, and also significant in Trubetskoy et al. 2022. 
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DeepGWAS9s enhancement via transfer learning suggests novel loci for AD and 

MDD  

We have shown above that the DeepGWAS model trained using SCZ data has demonstrated 

satisfactory performance in enhancing SCZ GWAS. Importantly, we found that DeepGWAS 

could transfer the knowledge learned from SCZ data to enhance GWAS for additional 

neuropsychiatric disorders including Alzheimer9s disease (AD) and major depressive disorder 

(MDD) (<Transfer learning using deepGWAS=, Online Methods). Specifically, we fixed the 

model parameters for DeepGWAS learned from two recent European SCZ GWAS data 

described above, and applied the pre-trained DeepGWAS model to AD and MDD GWAS 

results. 

 

Enhancing AD GWAS via transfer learning 

We applied the SCZ-trained DeepGWAS model to three AD GWA studies: Jansen et al. 201919, 

Kunkle et al. 201920, and Schwartzentruber et al. 202121. There are three other AD GWA studies: 

Lambert et al. 201322, Wightman et al. 202123, and Bellenguez et al. 202224. When applying the 

DeepGWAS model to each study, we used five other published AD GWAS to validate loci 

enhanced by DeepGWAS. From Fig. 4 and Fig. S1a-c, 30% 3 40% enhanced loci can be 

validated by other AD GWA studies, while few loci that were significant in the original input 

GWAS were missed by DeepGWAS. Taking the enhanced results based on Jansen et al. 201919 

as an example, we observe that DeepGWAS identified the APP locus which was not identified as 

a significant locus in the original Jansen et al., but was detected as a GWAS locus by several 

larger AD studies recently published21,23,24 (Fig. 5). APP is a well-established AD gene and 

previous studies have reported that mutations in APP can lead to ³3amyloid protein 

accumulation and early-onset AD25,26. 

 

The APP gene serves as a positive control validated by earlier rare variant studies and more 

recent larger GWAS. In addition to APP, DeepGWAS identified other genes not, or not yet, 

validated by independent AD GWAS. Multiple genes have also been reported to be relevant to 

AD. For example, the locus marked by EIF4G3, the closest gene to a DeepGWAS index variant 

(i.e., the variant with the highest DeepGWAS predicted association probability at the locus) 

when applied to Jansen et al. 201919, was reported as an AD locus in Naj et al. (2022)27. As 
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another example, NDUFAF6, the closest gene to another DeepGWAS index variant, when the 

DeepGWAS model was applied to Kunkle et al. (2019)20 and Schwartzentruber et al. (2021)21, 

was reported to be associated with AD in a previous study using gene-wide analysis28. Fig. S1d 

summarizes DeepGWAS enhanced AD loci and the number of validated studies. Variants with 

higher DeepGWAS predicted probability are more likely to be validated by a larger number of 

studies. Interestingly and equally important, DeepGWAS also seems to be able to rectify 

potential false positives from standard GWAS. For example, one locus on chr18:56.18 MB, was 

significant in Jansen et al. 2019 but became non-significant after DeepGWAS. This anti-

enhancement finding was confirmed by non-significance in three larger AD GWAS (Wightman 

et al. 202123, Schwartzentruber et al. 202121 and Bellenguez et al. 202224. 

 

Fig. 4 DeepGWAS performance when transferred to AD and MDD GWAS. a, Enhanced AD results 

when applied to Jansen et al. 201919; b, Enhanced AD results when applied to Kunkle et al. 201920; c, 

Enhanced AD results when applied to Schwartzentruber et al. 202121; d, Enhanced MDD results when 

applied to Wray et al. 2018 (excluding 23andMe results)29. <Validated_loci= denotes DeepGWAS 

enhanced loci that can be validated by GWAS other than the input study. 
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Fig. 5 The APP locus enhanced by DeepGWAS. a, Manhattan plot to show the original GWAS 

results from Jansen et al. 201919, and b, zoom in from a for chr21; c, Manhattan plot to show 

enhanced results by DeepGWAS. Y-axis is the prediction probability from DeepGWAS, and the 

red horizontal line marks 0.5. d, zoom in from c for chr21. 

 

Enhancing MDD GWAS via transfer learning 

We applied SCZ-trained DeepGWAS model to a MDD GWAS Wray et al. (2018)29 (excluding 

23andMe due to their policies). We evaluated DeepGWAS enhanced results using a more recent 

MDD GWAS from Howard et al. 201930, as well as Wray et al. 2018 full results including results 

from 23andMe. Results show that 22 out of 83 (~26.5%) enhanced loci can be validated (Fig. 4d, 

6), further demonstrating the transferability of the DeepGWAS model. For example, KLF7, the 

closest gene to a DeepGWAS index variant, when the DeepGWAS model was applied to Wray 

et al. (2018)29, was reported to be within a new MDD GWAS locus in Howard et al. 201930. 

KLF7 as the target gene is further supported by adult cortex Hi-C data where the region 

harboring the DeepGWAS index variant (rs6717413) forms a significant chromatin loop with the 

promoter region of KLF731 (Fig. S2). We note that there are 57 loci reported only by Howard et 

al. 201930 (Fig. 6). These 57 loci remained non-significant even after DeepGWAS enhancement 

was applied on Wray et al. 2018 results, suggesting that increasing sample size is a power 

enhancer complementary to DeepGWAS9s computational enhancement for identifying additional 

variant-disease associations. 
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Fig. 6. DeepGWAS results when transferred to MDD. The results are visualized by this upset 

plot, where the orange bars denote the validated loci which means the enhanced loci by 

DeepGWAS and validated by other studies; and the purple bar denotes the common loci 

identified by DeepGWAS, Wray et al. (2018) and Howard et al. (2019).  

 

Discussion 

We proposed here a novel deep neural network to enhance GWAS signals without increasing 

sample size for neuropsychiatric disorders. Systematic evaluation using SCZ GWAS data and 

real GWAS enhancement showed DeepGWAS achieved the best performance compared to other 

two state-of-the-art deep learning methods. 

 

Although DeepGWAS and fine-mapping methods are similar in terms of prioritizing variants, 

they are different in at least two aspects. First, DeepGWAS allows more complex relationships 

between loci and disease phenotype including non-linear relationships by employing a deep 

learning model. Second, DeepGWAS naturally accommodates both qualitative and quantitative 

annotations, while most fine-mapping methods only allow qualitative annotations. Among 33 

features of interest, initial GWAS p-value is the most important feature, followed by super FIRE 
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in adult annotations and LD score for known GWAS variants and eQTLs (Fig. S3). Specifically, 

approximately 69% ~ 87% enhanced variants have initial p-values < 1e-5 in the input GWAS. In 

addition, DeepGWAS enhanced variants are more likely to reside in super FIRE regions, exhibit 

higher LD score for known GWAS variants, and are more likely to be eQTLs (details in 

<Feature importance= in Supplementary Materials and Fig. S4). 

 

By default, we used DeepGWAS9s prediction probability 0.5 as the threshold, for screening 

purposes where our goal is to maximize power while tolerating false positives. Investigators may 

desire more stringent thresholds to shortlist variants or to reduce false positives. We investigated 

other threshold values from 0.5 to 0.95 with an increment of 0.05. We found 0.5-0.75 would be a 

good calibration threshold value interval and adapted to the user's preferences based on our 

calibration on SCZ, AD and MDD studies (Fig. S5a-e). With higher or more stringent 

thresholds, DeepGWAS would detect fewer variants. For example, the number of DeepGWAS 

enhanced loci decreased from 413 to 39 for the testing SCZ GWAS dataset from Pardiñas et al. 

2018 (Fig. 3 and Fig. S6) when the threshold was increased from the default 0.5 to 0.9. 

Accordingly, the number of enhanced loci that can be validated by the independent Trubetskoy 

et al. 2022 decreased from 88 to 17. Similar trends were observed for MDD (Fig. 6 and Fig. S7). 

Users therefore should choose thresholds that suit their purposes. 

 

In this work, we trained our DeepGWAS model using two GWA studies on SCZ. Future efforts 

are warranted to train a <meta= DeepGWAS model with GWAS data from multiple genetically-

correlated diseases, as different neuropsychiatric disorders like SCZ, MDD, and bipolar disorder 

are known to share some common genetic determinants as do certain neurological diseases (e.g., 

APOE in Alzheimer9s and Parkinson9s disease32. The immediate advantage of combining GWAS 

across diseases is to increase sample size for training, which in principle often improves the 

performance of neural network performance. 

 

Importantly, DeepGWAS had the ability to transfer knowledge from one disease (SCZ) to other 

diseases (AD and MDD). DeepGWAS model can potentially transfer knowledge from one 

neuropsychiatric disorder to other neuropsychiatric disorders such as bipolar, autism, and 

Parkinson's disease. It is also worthwhile to assess whether DeepGWAS model can transfer 
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knowledge to other non-neuropsychiatric diseases or traits, because increasing sample size is 

generally expensive for GWAS of almost any trait. For disorders or traits not directly brain-

related, annotation matching by tissue and cell type would be a non-trivial task that warrants 

separate future studies. Nevertheless, we believe our DeepGWAS model is a generalizable and 

valuable approach to enhance GWAS with additional knowledge that may be relevant to the 

diseases or traits under study. Careful training with SCZ data and applications to SCZ, AD and 

MDD GWAS presented in this work have demonstrated DeepGWAS9s enhanced power as well 

as the potential to remove false positives in the original study, by integrating GWAS results with 

relevant annotations in a deep learning framework.  

 

Online Methods 

DeepGWAS model 

DeepGWAS is a fully connected deep neural network model, which aims to enhance GWAS 

results (Fig. 1), by discovering additional candidate loci relevant for complex diseases or traits. 

The structure of DeepGWAS model utilizes 33-dimensional vectors as predictors (input), 

including GWAS summary statistics such as p-value and odds ratios as well as population 

genetics metrics such as MAF and two different LD scores (specifically, the regular LD score 

[summing across all variants] and LD score with significant variants in the input GWAS), which 

could also be calculated from a matching reference panel if no individual level data available. 

MAF and LD scores calculation require a matching ancestry reference panel otherwise it may 

affect the performance of DeepGWAS model. While for the 28 annotation-related features 

including brain open chromatin regions and eQTLs, users can use the released annotations or 

complement more annotations and assemble those 28 categories to apply DeepGWAS model.  

The output of DeepGWAS is each variant9s predicted probability of being associated with the 

trait/disease of interest. We denote the DeepGWAS model as F, the input SNP feature matrices 

as X, the input binary label as Y, and the predicted probability �" as F(X) (Fig. 1). Binary cross 

entropy loss is adopted in the training process. The goal of training is to learn F that minimizes 

the binary cross entropy (details <DeepGWAS model= in Supplementary Materials). 

������ 2 1

�*[�!����(�!) + (1 2 �!)log	91 2 �(�!):
"

!#1

] 
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We aimed to release the pre-trained DeepGWAS model using the latest European SCZ GWAS 

summary statistics. To achieve the aim, we trained DeepGWAS model using Ripke et al. 2014, 

the 2nd largest European SCZ GWAS4 that identified 108 loci with 36,989 cases and 113,075 

controls and using Pardiñas et al. 2018, the largest European SCZ GWAS18 that identified 145 loci 

with 40,675 cases and 64,643 controls (Table S3). Both sets of European GWAS summary 

statistics could be downloaded from https://www.med.unc.edu/pgc/download-results/. The SCZ-

trained DeepGWAS model is released on Github https://github.com/GangLiTarheel/DeepGWAS. 

 

GWAS summary statistics 

DeepGWAS performs analysis on GWAS summary statistics. In this work, we used the 

following summary statistics for SCZ, AD, and MDD GWAS. 

Schizophrenia (SCZ) GWAS data 

We assembled SCZ GWAS summary statistics from a total of 64 European cohorts, all 

contributing to the latest SCZ GWAS meta-analysis5. The sample sizes in each cohort range from 

389 to 12,310, with 204 to 5,370 SCZ cases, and the number of pre-imputation variants released 

varies from 225,788 to 813,688. Detailed information of 64 cohorts is listed in Table S1. The 

released DeepGWAS model was trained using the two largest European SCZ GWAS summary 

statistics4,18 (Table S3). 

 

Alzheimer9s disease (AD) GWAS data  

Six most recent Alzheimer9s disease (AD) GWAS data were used in our study19-24 (Table S3), 

which identified 20~75 loci with sample size from 54,162 to 1,126,563  for AD and/or proxy 

AD. Since we can only download restricted GWAS summary statistics when we performed 

DeepGWAS analysis due to provisions in the data-sharing agreement, we only applied SCZ-

trained DeepGWAS model to 3 studies instead of all AD studies, specifically Jansen et al. 

201919, stage I summary statistics in Kunkle et al. 201920, and Schwartzentruber et al. 202121 

separately, and then used the rest of the five AD studies to validate enhanced loci.  

 

Major depressive disorder (MDD) GWAS data 

Two most recent major depressive disorder (MDD) GWAS data were used in our study29,30 

(Table S3), each identified 44 loci with sample size of 480,359 and 102 loci with sample size of 
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807,553. Since only GWAS summary statistics excluding 23andMe in Wray et al. 2018 and 

Howard et al. 2019 can be downloaded from (https://www.med.unc.edu/pgc/download-results/), 

we only applied the SCZ trained-DeepGWAS model to Wray et al. 2018 excluding 23andMe 

study, and then used Howard et al. 2019 to validate the enhanced loci.  

 

Input features  

GWAS summary statistics and population genetics metrics 

Basic predictors included GWAS summary statistics and population genetics metrics in the 

DeepGWAS model. GWAS summary statistics included -log10(p-value), odds ratio (OR); and 

population genetics metrics included minor allele frequency (MAF) and LD scores. MAF was 

extracted from European ancestry individuals in the 1000 Genomes Project33. We calculated two 

LD scores for each variant: overall LD score and LD score with known variants where the known 

variants were defined as the significant variants in standard GWAS analysis. The regular LD scores 

were calculated by summing up LD r2 between the target variant and all other variants located 

within 1Mb of each target variant based on European individuals from 1000 Genomes Project. 

Similarly, LD scores with known variants were calculated the same way but only summing over 

LD pairs involving significant variants in the input GWAS, again within 1Mb of each target variant. 

 

Functional annotations  

Functional annotations were collected from rich resources. We briefly introduce each annotation 

feature below and detailed information is summarized in Table S4. 

Brain eQTLs - Brain-related eQTLs were collected from three sources including eQTLs from 13 

Brain regions from GTEx v834; brain eQTLs from PsychENCODE; and eQTLs from Qi et al. 

201835. We combined these eQTLs and filtered at nominal p-value < 1.0e-6. 

Pathogenic annotation - Pathogenic annotations included phyloP scores derived from vertebrate 

mammals model36-38, Fathmm-XF score39, and CADD-phred score40. 

Open chromatin regions - Open chromatin regions were taken union of the open chromatin 

regions for adult and fetal from several published studies12,41-44. 

FIREs and super FIREs - Frequently Interacting Regions (FIREs, 40KB resolution) and super 

FIREs were downloaded from45.  
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Selective sweep regions - We also collected selective sweep regions in European detected in 1000 

Genomes Project using S/HiC46,47.  

ENCODE3 cCREs - The candidate cis-regulatory elements (cCREs) from ENCODE3 were 

collected based on DHS (DNase I-hypersensitive sites), H3K27ac, H3K4me3, CTCF and 

transcription factors (TF)48,49 and were downloaded from https://www.vierstra.org/resources/dgf.  

Additional epigenomic annotations - We also collected 30 additional epigenomic annotations 

from 12. Since we have multiple similar open chromatin and histone features collected from 12, 

we adopted data-driven strategy to merge similar annotations and used the Jaccard similarity 

index (bedtools v2.29.0) to group them into 11 meta-annotations (details in <Data-Driven 

Clustering for epigenetics annotations= in Supplementary Materials) which was shown in 

Fig. S8, and merged the annotations within the one sub-annotations using bedtools (v2.29.0).  

With all the functional annotations above, we have in total 30 functional annotations used as 

predictors in the DeepGWAS model. 

Evaluation using SCZ GWAS results 

With GWAS summary statistics from 64 SCZ studies, we first randomly split them into three sets: 

set A, set B and set C (Fig. S9). Each variant in set A, B and C was annotated for all features listed 

in the <Functional annotations= section above. When splitting, we made efforts to balance the 

three sets considering several aspects including the number of cases, total sample size (i.e., the 

number of cases and controls), and the number of significant variants. To mimic increasingly larger 

GWAS, we assigned 10, 22 and 32 studies to set A, B and C respectively. After splitting, we meta-

analyzed GWAS within each set using METAL50, and obtained three sets of GWAS summary 

statistics (Fig. S9). With these three sets of GWAS summary statistics, we first trained models to 

<enhance set A to set B=. In other words, set A contributed input features (X in Fig. 1) while set B 

contributed outcome labels (Y in Fig. 1). Specifically, the binary indicator of whether the meta-

analysis p-value < 5e-8 from set B was used as Y to train models. We then applied this pre-trained 

model to set B, to obtain enhanced set B results. Finally, significance in set C was served as ground 

truth to evaluate enhanced set B results.  

 

We repeated the splitting procedure, randomly generated a new independent testing data following 

the same evaluation procedure, and applied the pre-trained DeepGWAS, XGBoost, and logistic 
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regression three models to another independent testing dataset. We finally calculated the mean of 

the F1 score, CPR, TPR, ROC metrics, and precision recall curve metrics. The detailed information 

including the sample sizes and loci number used in evaluation were included in the Table S2. 

Comparison with alternative methods 

To evaluate the performance of the DeepGWAS model, we compared DeepGWAS with alternative 

methods including logistic regression and XGBoost. 

Logistic regression model  

We trained a logistic regression model implemented in R v3.6.0. Logistic regression model was 

formulated as below, �
!
 denoted as weights of predictors and �! denoted predictors. The output 

of the logistic regression model was prediction probability �" of whether a given variant be 

significantly associated with a disease. 

�� �"
1 2 �" = 	�0 	+ 	*�!�!

33

!#1

 

XGBoost model  

XGBoost, or eXtreme Gradient Boosting, is a commonly used decision-tree-based ensemble 

machine learning algorithm using a gradient boosting framework. Using the same training 

dataset and testing dataset as applied to the DeepGWAS model, we trained and tested a 

supervised XGBoost model in R v3.6.0. We specified the learning task to be a tree-based logistic 

regression and evaluation metric to be root mean square log error (RMSLE). We set maximum 

boosting iteration as 50 in the model. Due to the extreme unbalanced ratio between the 

significant variants versus insignificant variants in the model, we used the argument of 

scale_pos_weight to control the unbalanced data.  

 

To assess the performance of three models, we first defined the enhanced variants and loci as the 

predicted significant variants and loci that are not considered to be significantly associated with 

the disease in the input study. Then, we considered two metrics: truth positive rate (TPR), and F1 
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score. In addition, receiver operating characteristic curves (ROC) and precision recall curves 

(PRC) were also used to compare three models. 

 

Transfer learning using DeepGWAS 

 
Although DeepGWAS training is supervised with labels from a large-sample-size study of the 

same disease (Fig. 1 and Fig. S9), DeepGWAS can transfer the knowledge learned from one 

disease (SCZ) to other diseases (such as AD and MDD). Specifically, we first trained our 

DeepGWAS model with two largest European SCZ GWAS4,18, fixed all the parameters in the 

neural networks, and applied the SCZ-trained-DeepGWAS model to enhance AD and MDD 

GWAS. Then we summarized the enhanced AD results by first binning them according to the 

probability of significant association with the disease �" and then assessing the proportion of loci 

within each bin that can be validated by independent AD GWAS (Fig. S1d). The rationale 

behind this loci validation approach is that true positives are more likely to be enhanced by 

additional independent studies. 

 

Data availability 
All GWAS data are available through the original publications with PMIDs listed in Table S3. 
 

Code Availability 
This work uses the Plink v1.90.b3 software for LD clumping. Code for training and enhancing 

DeepGWAS model can be found at https://github.com/GangLiTarheel/DeepGWAS. We 

implemented and tested our DeepGWAS model under R 3.6.0 with keras_2.9.0 and 

tensorflow_2.9.0. 
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