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Abstract

Malaria is a global public health priority causing over 600,000 deaths annually, mostly young children
living in Sub-Saharan Africa. Molecular surveillance can provide key information for malaria control,
such as the prevalence and distribution of antimalarial drug resistance. However, genome sequencing
capacity in endemic countries can be limited. Here, we have implemented an end-to-end workflow
for P. falciparum genomic surveillance in Ghana using Oxford Nanopore Technologies, targeting
antimalarial resistance markers and the leading vaccine antigen circumsporozoite protein (csp). The
workflow was rapid, robust, accurate, affordable and straightforward to implement. We found that P.
falciparum parasites in Ghana had become largely susceptible to chloroquine, with persistent
sulfadoxine-pyrimethamine (SP) resistance, and no evidence of artemisinin resistance. Multiple Single
Nucleotide Polymorphism (SNP) differences from the vaccine csp sequence were identified, though
their significance is uncertain. This study demonstrates the potential utility and feasibility of malaria

genomic surveillance in endemic settings using Nanopore sequencing.
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Introduction

Malaria is a major cause of morbidity and mortality worldwide, particularly for young children living
in Sub-Saharan Africa. The World Health Organization (WHO) estimates that there were 247 million
malaria cases and 619,000 deaths in 2021 [1]. 76% of deaths were among children under 5 years old
and 95% were in Africa [1]. The COVID-19 pandemic disrupted essential malaria control services,
setting back the progress made in the 2000-2019 period [1]. The WHO has identified antimalarial drug
resistance as a key threat to control and elimination efforts [2]. Artemisinin-based Combination
Therapy (ACT) is the current front-line treatment for Plasmodium falciparum malaria — the most
virulent species responsible for the majority of deaths. ACT is highly effective and well tolerated, and
has been a cornerstone of recent progress in reducing the burden of malaria disease worldwide.
Artemisinin partial resistance has been defined as delayed clearance of parasites carrying specific
mutations following treatment with an artemisinin derivative despite adequate dosing and absorption
[2]. In combination with partner drug resistance, artemisinin partial resistance can cause treatment

failure [3]. If such parasites become widespread in Africa, the results would be devastating.

The capacity for parasite populations to undergo evolutionary change requires ongoing surveillance
to monitor for new threats. Having first emerged and spread in Southeast Asia [3—12], artemisinin
partial resistance — caused by mutations in the gene kelch13 [13—-15] — has now been identified in
Rwanda [16—18], Uganda [19,20] and Eritrea [2], and appears to have emerged independently in Africa
and Southeast Asia [16]. Resistance to Sulfadoxine-pyrimethamine (SP), caused by mutations in the
target genes dhfr and dhps [21-25], threatens the efficacy of intermittent preventive therapy in
pregnancy (SP-IPTp) and seasonal malaria chemoprevention (SMC) in young children (used in
combination with amodiaquine, SP+AQ) [26]; these are important public health interventions to
protect vulnerable populations in hyperendemic regions. Parasite genome sequencing, incorporated
into surveillance programmes, can provide key information to guide National Malaria Control
Programme (NMCP) decision-making; for example, describing the geospatial distribution and
longitudinal trends of antimalarial resistance markers [27-30] and P. falciparum population structure

and relatedness [31-35].

An effective vaccine would be a hugely valuable addition to the malaria control armamentarium [36].
In October 2021, RTS,S/ASO1 became the first malaria vaccine to be recommended by WHO for
children living in areas of moderate to high P. falciparum transmission, and implementation is being
piloted in Ghana, Malawi and Kenya, with plans to scale up over the next few years [1,37]. The RTS,S

vaccine targets circumsporozoite protein (csp), expressed on the surface of sporozoites and required
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for hepatocyte invasion [38]. RTS,S/AS01 vaccine efficacy is around 36% after four doses [39]. Another
csp-based vaccine, R21-M Matrix (MM), has been shown to provide up to 75% efficacy in an ongoing
trial in Burkina Faso [40,41]. csp is also the target of long-acting monoclonal antibodies, which are
showing promise as novel methods of protection [42—44]. It is unclear whether genetic diversity in csp
has an impact on csp-based vaccines or therapeutic antibodies, and how this may change as

vaccination is scaled up and parasite exposure to the vaccine increases.

The WHO ‘Strategy to respond to antimalarial drug resistance in Africa’ (November 2022) highlights
the critical need for strengthened surveillance capacity, to increase technical and laboratory capacity
and to expand coverage of data on antimalarial drug efficacy and resistance in Africa [2]. However,
despite its huge potential for pathogen surveillance and global health more broadly [45,46], many
endemic countries in Africa have limited capacity for genomic sequencing due to factors including
prohibitive costs, barriers to procurement, and a lack of sequencing and computing infrastructure [47].
Oxford Nanopore Technologies (ONT) is being increasingly used for rapid sequencing, diagnostics,
antimicrobial susceptibility testing and epidemiological analysis in multiple pathogens, including SARS-
CoV-2 [48-50], Zika virus [51,52], Ebola virus [53], Chikungunya virus [54], Mycobacterium tuberculosis
[55-57], and bacterial antimicrobial resistance (AMR) and clinical metagenomics [58—68]. ONT devices
such as the MinlON are portable, relatively cheap and produce sequence data in ‘real-time’, making
them well-suited to resource-limited settings including in Low- and Middle-Income Countries (LMIC).
The longer sequence reads generated by ONT can provide additional advantages, such as
characterising highly polymorphic or repetitive sequences or complex structural rearrangements that

are challenging to access with short reads [69,70].

Nanopore has previously been applied to P. falciparum amplicon sequencing for drug resistance genes
[71,72] and to whole genome sequencing [73]. Here, we demonstrate that Nanopore can be used
prospectively for real-time genomic analysis from clinical malaria samples in an endemic setting using
the latest ONT chemistry, which reports single read accuracy of >99% [74]. The end-to-end process
was implemented in Ghana using standard molecular biology equipment, a handheld MinlON and a
commercially available laptop computer. A multiplexed PCR approach targeting key antimalarial drug
resistance markers and almost full-length csp could produce actionable data rapidly, accurately and
cheaply, with a turnaround time of a few days. This demonstrates the potential utility and feasibility

of using Nanopore sequencing within endemic countries for targeted malaria molecular surveillance.
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Results

Assay design and laboratory isolate validation

A multiplexed PCR was designed targeting six parasite loci, one amplicon within each of the
antimalarial drug resistance-associated genes chloroquine resistance transporter (crt), dihydrofolate
reductase-thymidylate synthase (dhfr), dihydropteroate synthetase (dhps), multidrug resistance
protein 1 (mdr1), and kelch13; and the vaccine target circumsporozoite protein (csp) (Methods, Table
1). Amplicons were readily distinguished by gel electrophoresis, allowing for a cheap and
straightforward check post-PCR (Figure 1). A separate PCR targeted the full-length sequence of the
polymorphic surface antigen merozoite surface protein 1 (msp1), around 5kb in size, to further assess
the potential for long Nanopore reads to access complex genomic regions. A custom informatics
pipeline built in Nextflow was used for real-time analysis and variant calling, referred to as nano-rave

(the Nanopore Rapid Analysis and Variant Explorer tool) (details in Methods).

Gene name and ID in
the 3D7 parasite clone

Key mutations targeted for
genotyping

Associated antimalarial resistance or
other phenotype

Chloroquine resistance
transporter, crt
(PF3D7_0709000)

K76T*

Chloroquine resistance marker

Dihydrofolate
reductase, dhfr
(PF3D7_0417200)

N511, C59R, S108N*, 1164L

Pyrimethamine resistance markers

Dihydropteroate
synthase, dhps
(PF3D7_0810800)

S436A, A437G*, K540E,
A581G, A613S/T

Sulfadoxine resistance markers

Multidrug resistance
protein 1, mdrl
(PF3D7_0523000)

N86Y, N86F, Y184F

No direct inferences, but associated with
resistance to several antimalarials
including lumefantrine

kelch13
(PF3D7_1343700)

Different mutations in the
propeller domain, e.g.
C580Y

Artemisinin partial resistance markers

Circumsporozoite
protein, csp
(PF3D7_0304600)

SNPs in the C-terminal
Region (CTR); assess full-
length consensus sequence

Leading vaccine and monoclonal
antibody target antigen

Merozoite surface
protein 1, msp1
(PF3D7_0930300)

Assess full-length consensus
sequence

Previously explored as a vaccine
candidate; potential for use as a marker
of complexity of infection

Table 1. P. falciparum genes and variants targeted in amplicon assays. A multiplex PCR targeted the
drug resistance marker genes (crt, dhfr, dhps, mdrl and kelch13) and the vaccine and monoclonal
antibody target, csp, in a single assay. The msp1 PCR was performed in a separate reaction. Mutations
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in bold with asterisk were used as key markers of antimalarial drug susceptibility phenotyping. Details
on primer sequences, amplicons and antimalarial drug susceptibility inference rules are provided in
Supplementary Notes.
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Figure 1. Gel electrophoresis of PCR products from laboratory clones and mock clinical samples. A)
Multiplex drug resistance and csp PCR, for a selection of laboratory clones, run on 2% agarose gel.
Bands are annotated based on expected sizes for each amplicon. Note variable size of csp due to a
deletion in the N-Terminal Domain in 3D7 and variation in the Central Repeat region. Mixtures 1 and
2 contained, respectively: 3D7 + KH2 (80:20) and KH2 + 3D7 (80:20). B) Multiplex drug resistance and
csp PCR, for mock clinical DBS samples, run on 2% agarose gel. Mock clinical DBS were prepared by
combining in vitro cultured P. falciparum RBCs with human whole blood, in ratios expected to produce
final parasitaemias of 10%, 1%, 0.1% and 0.01% infected RBCs, with 50ul blotted onto filter papers to
mimic clinical DBS. The proportions of human and parasite DNA per sample were assessed by
quantitative PCR (Supplementary Figure 1). Samples were extracted and assessed in duplicate.
Although bands stopped being visible in the 0.01% parasitaemia samples on this gel, Nanopore
sequence coverage was still adequate for drug resistance genotyping. C) msp1 PCR, for a selection of
laboratory clones, run on 1% agarose gel. A single fragment of approximately 5Kb is expected. The
same samples were used as template DNA as in gel (A). D) msp1 PCR, for mock clinical DBS samples,
run on 1% agarose gel. The same samples were used as template DNA as in gel (B). All template DNA
was diluted to 5-10ng/ul; 4ul was used as input for the multiplex drug resistance and csp PCR, 2pul was
used as input for the msp1 PCR, both to a final reaction volume of 50ul. 4ul of each PCR reaction was
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run on the gel. DBS = Dried Blood Spots. Neg = Negative control (Nuclease Free Water used as
template).

The workflow was validated on laboratory parasite clones (3D7, Dd2, HB3, 7G8, GB4, KH1, and KH2)
and mock clinical Dried Blood Spot (DBS) samples, referred to collectively as Validation samples
(Methods, Supplementary Figure 1). Nanopore sequencing was performed in multiplexed batches on
an ONT MinION mk1b device using Q20 chemistry (kit 12 with R10.4 flow cells) (Table 2, Methods).
No discrepancies were identified between the key antimalarial resistance markers genotyped in the
assay and the expected genotypes for the laboratory clones tested. The lab isolate Dd2 was noted to
contain both N86Y and N86F variants in mdr1 due to having multiple copies of this gene, as previously
observed (e.g. [75], discussed further in Supplementary Notes). For the two lab isolate mixtures, the
consensus genotype assigned matched the expected majority clone — for example, C580Y in kelch13,
which is associated with artemisinin partial resistance, was correctly genotyped in both the ‘pure’ KH2
isolate (known to possess that marker), and the mixture of KH2 : 3D7 at 80 : 20 ratios, respectively.
However, kelch13 was wild-type with consensus genotyping for the mixture with KH2 : 3D7 at 20 : 80
ratios, as expected. Sequence reads were also mapped to the full 3D7 reference genome and manually
inspected using the Integrative Genomics Viewer (IGV) tool, confirming the mixed sample at expected
positions. In the mock DBS samples, drug resistance calls were concordant with the expected
genotypes for the parasite clone used (Dd2), even at the lowest parasitaemias tested (predicted 0.01%
infected red blood cells (RBCs)), for which bands were no longer appreciated by gel electrophoresis

(Figure 1).

We tested the latest available Nanopore chemistry, Q20+ (kit 14, R10.4.1 flow cells), using the same
Validation samples. (Q20+ was not yet available for the clinical samples, which were all sequenced
with Q20 chemistry). Relative to Q20, we observed improved flow cell performance over the course
of sequencing using Q20+ chemistry (Supplementary Figure 2), with increased total data generated
(52GB vs 36GB), estimated bases (2.76GB vs 1.66GB), reads generated (3.47M vs 1.77M) and base-
called pass bases (real-time super accurate guppy base calling; 2.57M vs 1.27M) (Table 2). These

trends have been consistent for multiple R10.4.1 flow cells.
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Clinical sample collection and study population characteristics

Clinical sample collection took place in two locations in Ghana, one urban (LEKMA Hospital, Accra, on
the coast) with perennial malaria transmission, and one rural (three sites in and around Navrongo, in
the Upper East Region), where malaria transmission is highly seasonal (Supplementary Figure 3).
Samples were collected August — September 2022 during the rainy, high transmission season. 142
patients with a positive P. falciparum Rapid Diagnostic Test (RDT) were recruited into the study; 42
from LEKMA Hospital and 100 from Navrongo (Figure 2). Samples were typically 0.5-2ml venous blood
that underwent leucodepletion by centrifugation and Buffy coat removal (Methods). Samples from 33
patients were excluded from Nanopore sequencing, due to low parasitaemia (<20 parasites per 200
White Blood Cells, WBC), poor DNA yield post-extraction (<1ng/ul) or time constraints. This yielded a
final sample set of 109 samples, 70 from Navrongo and 39 from Accra, which were taken forward for

Nanopore sequencing and analysis.

142 patients with mild malaria
& positive RDT

! !

LEKMA Hospital, Accra: 42 Navrongo & surrounding region: 100

* Biu: 67

* Navrongo Central Health Centre: 17
* War Memorial Hospital: 16

Excluded from sequencing: 33
* Parasitaemia <20 per 200 WBC: 22
l * DNA concentration <1ng/ul: 9

* Time constraints: 2

109 samples taken forward for
Nanopore sequencing

* Accra: 39

* Navrongo: 70

l

All samples pass sequencing QC

Figure 2. Study flow diagram. 142 patients with malaria symptoms and positive RDT were recruited
into the study from LEKMA Hospital in Accra or three clinics in and around Navrongo in the Upper East
Region. Samples were excluded if parasitaemia was <20 per 200 WBC, DNA concentration post-
extraction <1ng/ul, or due to time constraints. (20 parasites/ 200 WBC corresponds approximately to
1,000 parasites per pul blood or 0.03% infected RBCs.) 109 samples were included in the study and
taken forward for Nanopore sequencing. All samples, for all amplicons, produced >50x sequence
coverage and were therefore included in downstream analyses. WBC = White Blood Cells.

For the 109 samples taken forward, median patient age was 12 years old (interquartile range (IQR) 5-

22 years). There were 54 females and 51 males (4 unrecorded). Median parasite count was 864 (IQR:
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243 - 1582) per 200 WBC; corresponding to approximately 43,000 parasites per pl blood (IQR: 12,000
-79,000), or 1.4% infected red blood cells (RBCs) (IQR: 0.4% - 2.6%). The lowest parasitaemia included
was 21 parasites/200 WBC, or approximately 1,000 parasites per pl blood (around 0.03% infected
RBCs). For clinical samples collected in another study from 2015-2018 from mild malaria cases in
Navrongo [22], a parasitaemia cut-off of 20 parasites/200 WBC would have included 72.3% of all

samples (Supplementary Figure 4).

Real-time multiplexed Nanopore sequencing on clinical malaria samples

All of the 109 samples included were used for the multiplex drug resistance and csp PCR amplification
assay, with encouraging gel electrophoresis results (Supplementary Figure 5). Using ONT Q20
chemistry, 6-8 hours of sequencing on the MinlON mk1b in multiplexed batches of around 24 samples
per R10.4 flow cell produced a median of 34GB data, 1.62GB bases, 1.73M reads, and 1.26GB pass
bases called per run (Table 2). Real-time base calling was performed using the Graphics Processing
Unit (GPU) of a commercial gaming laptop and the resulting fastq files were used directly for

downstream analysis.

Sample ONT Amplicon Runtime | Data Estimated | Reads Bases

batch chemistry | samples per produced | bases (GB) | generated | called (real-

name used run (of which (GB) (M) time), pass
clinical (GB)
samples)

A Q20 24 (22) 6 hours 33.04 1.66 1.26 1.25

Q20 24 (22) 6 hours 33.52 1.55 1.71 1.26
40 mins
C Q20 15 (13) 6 hours 37.05 1.62 2.08 1.27
D Q20 24 (22) 8 hours 36.47 1.71 1.77 1.29
Q20 24 (22, with 8 hours 31.96 1.49 1.65 1.19

15 repeats)

F Q20 24 (22) 8 hours 43.31 1.76 2.68 1.34

V12 Q20 17 (0) 6 hours 39.13 1.86 2 1.61

V14 Q20+ 17 (0) 6 hours 52.11 2.76 3.47 2.57

Total Q20 109 - 215.35 9.79 11.15 7.6

clinical

(A-F)

Median Q20 - - 36.47 1.66 1.77 1.27

Q20 (A -

F+V12)
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Table 2. Nanopore data generation. All sequencing was performed using an ONT MinlON mk1b device
with real-time base calling using either High Accuracy (HAC) or Super Accurate (SUP) settings with
guppy. Samples were multiplexed using ONT native barcoding and sequenced in batches. Batches A —
F comprised clinical malaria samples collected in Ghana. Most batches had 22 clinical samples, except
for C which had 15; all batches included 1 positive control (gDNA from one of the Dd2, HB3 or KH2
clones) and 1 negative control. Batch E included 15 samples that were repeats of samples included in
batches A — D, to assess for assay consistency. In total, 109 unique clinical samples were sequenced
(sample flow chart in Figure 2). All clinical samples were sequenced using ONT Q20 chemistry (kit 12,
R10.4 flow cells). In addition, a ‘Validation’ (V) set of samples was sequenced (gel image shown in
Figure 1), comprising laboratory isolates (3D7, Dd2, HB3, 7G8, GB4, KH1 and KH2 clones), 2 clone
mixtures, 8 mock DBS samples in pairs at each parasitaemia of 10%, 1%, 0.1% and 0.01% infected
RBCs, and a negative control. The Validation set was sequenced both using ONT Q20 (‘V12’ batch) and
Q20+ chemistry (‘V14’ batch, with kit 14 and an R10.4.1 flow cell running at 400bps). The V12 and V14
Validation samples were identical. Total data generated from the clinical samples (batches A —F) and
median data generated from Q20 chemistry (batches A — F and V12) are shown. Compared with Q20,
we found that Q20+ chemistry produced more data with improved pore retention during sequencing
(Supplementary Figure 2). DBS = Dried Blood Spots.

The nano-rave pipeline can be run directly from the demultiplexed, base-called fastq files and folder
organisation created in real-time during each ONT flow cell sequencing run, allowing rapid analysis.
Median coverage across the amplicon targets was greater than 1000x per sample for all amplicons
(range: 1552x median coverage for csp to 12141x for dhfr) (Figure 3), suggesting substantial scope for
increased multiplexing to reduce costs. No amplicons from any sample in the 6-8 hour runs had <50x
coverage, and therefore all samples were included in downstream genetic analyses; this suggests that
lower parasitaemias and/or non-leucodepleted lower volume blood samples (such as DBS) could be

used as sample input.

10
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Figure 3. Coverage profile of amplicon targets. y-axis shows median number of reads covering each
amplicon target per sample for each of the six MinlON runs for clinical samples (batches A—F). Median
coverage for the crt, dhfr, dhps, mdrl, kelch13, csp and mspl amplicons were, respectively: 8682,
12141, 2772, 8369, 5727, 1552, 1957. Positive controls and sample duplicates were excluded (N=109
samples). Coverage data were derived from BEDTools produced in the nano-rave pipeline. Note that
the msp1 PCR was only included in the Navrongo samples (70/109), so coverage is only shown for
these samples.

To streamline the workflow and reduce informatic requirements, we aimed to genotype Single
Nucleotide Polymorphisms (SNPs) using majority consensus calls, i.e. for genotypes from samples with
mixed infections (more than one parasite clone present in the sample) to be based on the genotype
of the most abundant clone. Three variant calling tools are currently available through the nano-rave
pipeline: medaka variant, medaka haploid [76] and freebayes [77] (further information in
Supplementary Notes). Medaka haploid was the fastest of these variant callers and felt to be the best
suited for a haploid genome with Nanopore reads. For 14 samples, the workflow from PCR through to
sequencing and variant calling was repeated to assess for assay consistency. No discrepancies were
observed between the repeated samples using medaka haploid variant calling from guppy high

accuracy base called reads, enabling these genotypes to be used for downstream analysis.

11
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Drug resistance marker frequencies

Antimalarial susceptibility was inferred from SNP genotypes using previously described inference rules
[11] (Table 3, Figure 4, Supplementary Notes). The vast majority (99%) of samples were chloroquine
susceptible, with only a single sample genotyped as the resistant crt-76T allele. There were high
frequencies of resistant alleles to pyrimethamine (94% dhfr-108N) and sulfadoxine (100% dhps-437G).
The majority genotype combination (for simplicity referred to as haplotype — caveats in Discussion) in
dhfr was IRNI (83%) — the ‘triple mutant’, referring to amino acid positions 51, 59, 108 and 164 (wild-
type = NCSI, mutant positions in bold and underlined). 10% of samples were NRNI — the ‘double
mutant’ — or others (7%). dhps was dominated by two haplotypes: AGKAA (54%) and SGKAA (42%),
i.e. (A/S)GKAA accounted for 96% of samples; this refers to dhps amino acid positions 436, 437, 540,
581 and 613 (fully susceptible = SAKAA; note that the 3D7 reference clone carries the resistant allele
SGKAA). Most dhfr and dhps haplotype combinations were therefore dhfr-IRNI + dhps-AGKAA (45%)
or dhfr-IRNI + dhps-SGKAA (36%). No ‘high-level’ SP resistance markers were identified (e.g. dhps-
540E, dhps-581G). In mdr1, the frequency of the 86Y mutation was very low (2/109), while the 184F
allele frequency was 70% (76/109).

No mutations in kelch13 were identified that have previously been associated with artemisinin
resistance. Five kelch13 mutations were identified, three synonymous changes (A627A and S649S
(both in Navrongo), and a sample from Accra with C469C), and two non-synonymous mutations:
Q613H (in Accra) and N629Y (in Navrongo), which have previously been reported in West Africa

[78,79] and are not considered to be associated with artemisinin resistance (Supplementary Notes).

Accra Navrongo Total
Gene SNP (n=39, %) (n=70, %) (n=109, %)
CRT K76T 1(2.6%) 0| 1(0.9%)
DHFR N51I 36 (92.3%) 54 (77.1%) 90 (82.6%)
DHFR C59R 37 (94.9%) 62 (88.6%) 99 (90.8%)
DHFR S108N | 38 (97.4%) 64 (91.4%) 102 (93.6%)
DHFR S108T
DHFR 1164L
DHFR 1164M 0 0 0
DHPS S436A | 19 (48.7%) 42 (60.0%) 61 (56.0%)
DHPS S436F | 1(2.6%) 0| 1(0.9%)
DHPS A437G 0 0 0
DHPS K540E 0 0 0
DHPS K540K 0 0 0
DHPS K540N 0 0 0

12


https://doi.org/10.1101/2022.12.20.521122
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.20.521122; this version posted December 20, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

DHPS A581G | 2 (5.1%) 2 (2.9%) 4 (3.7%)
DHPS A613S 0 0 0
DHPS A613T | 6(15.4%) 8 (11.4%) 14 (12.8%)
MDR1 N86Y 0| 2(2.9%) 2 (1.8%)
MDR1 Y184F | 27(69.2%) | 49 (70.0%) 76 (69.7%)
KELCH13 - 0 0 0

Table 3. Antimalarial drug resistance genetic marker frequencies. Table shows sample counts for the
non-reference allele for each SNP, and non-reference allele frequency in brackets. Denominators are
39 samples from Accra, 70 from Navrongo, and 109 in total. For kelch13, all mutations were
investigated and although five SNPs were identified, three were synonymous and the two non-
synonymous changes were not known to be associated with artemisinin partial resistance — details in
main text. SNP = Single Nucleotide Polymorphism; CRT = Chloroquine resistance transporter; DHFR =
Dihydrofolate reductase; DHPS = Dihydropteroate synthase; MDR1 = Multidrug resistant protein 1.

1.00 1.00

Genotype

0.75 0.75

Status

. Sensitive

Resistant

o
o
s}

0.50

Proportion

0.25
0.25

0.00

¢ ©© ©
o o8 0\@9*\ ®© ok LR

0.00

S

<
£ o

Figure 4. DHFR and DHPS haplotypes and inferred antimalarial resistance frequencies. DHFR =
Dihydrofolate reductase; DHPS = Dihydropteroate synthase; CQ = Chloroquine; SX = Sulfadoxine; PYR
= Pyrimethamine; SP.Rx = Combination Sulfadoxine-Pyrimethamine (SP) as treatment for symptomatic
malaria; SP.IPTp = Combination SP for intermittent preventive therapy in pregnancy; ART =
Artemisinin. DHFR haplotypes refer to amino acid positions 51, 59, 108 and 164 (wild-type = NCSI).
DHPS haplotypes refer to amino acid positions 436, 437, 540, 581 and 613 (fully susceptible = SAKAA).
Inference rules for (B) are shown in Supplementary Notes. Note that for artemisinin, ‘resistance’
refers to artemisinin partial resistance (defined in main text).
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Antigens and vaccine targets

We investigated SNP diversity in the C-Terminal Region (CTR) of csp, which is included in both the
RTS,S/AS01 and R21-MM vaccines. Multiple SNP differences from the vaccine reference sequence
were identified at high frequencies (>50% samples), resulting in amino acid changes such as S301N,
K317E, E318(K/Q), N321K, and E357Q (Figure 5, Supplementary Table 1). The 301N mutation was
present in 92% of samples. These SNP frequencies agreed very closely with whole genome sequence
data using lllumina for P. falciparum in Ghana from the MalariaGEN Pf7 data resource (manuscript in
preparation) (Supplementary Figures 6 — 7). There was no evidence of population structure between
the csp-CTR haplotypes present in Accra and Navrongo (Figure 5B). Overall, just 8 (7%) samples did
not have any SNP mutations identified in the csp-CTR relative to the vaccine sequence. Parasites
carrying an exact match to the RTS,S/AS01 or R21-MM csp haplotype were therefore a minority of the
parasite population in Ghana. However, our study did not assess whether the variants identified have

any effect on vaccine efficacy.
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Figure 5. SNP frequencies in the csp C-Terminal Region. (A) Frequencies of SNPs along the C-Terminal
Region (CTR) of csp identified from the Nanopore data, relative to the 3D7 reference sequence
(currently included in both the RTS,S/AS01 and R21-MM vaccines). (B) Genotypes for the csp CTR for
each sample in the study (N=109, rows), where dark blue = non-reference allele for that sample at
that position and pale blue = the 3D7 reference sequence. Both plots depict the amino acid changes
for each SNP along the x-axis, based on the 3D7 reference sequence positions. Samples in (B) are
grouped by haplotype similarity as represented by the dendrogram (left), with the colour bar
indicating whether the sampling location was Accra (orange) or Navrongo (sky blue).

Lastly, we assessed Nanopore performance at producing accurate consensus full-length amplicon
sequences, focusing on csp and mspl in the Validation samples. The Amplicon_sorter tool [80] was
used to produce consensus sequences with a similarity threshold of 96% (details in Methods).
Consensus sequences produced from reads in the expected ~5Kb size range of the msp1 amplicon
(covering almost the entire mspl gene) had 100% base perfect mapping back to the reference
sequences for all of the laboratory clones tested. For csp, base perfect consensus sequences were
generated for the clones 3D7, Dd2, HB3, GB4, and KH2. Discrepancies were observed in the number
of repeats in the Central Repeat region for two clones: in 7G8 there was a 12-bp deletion relative to
the reference sequence (ATGCAAACCCAA). In KH1 there was a 24-bp insertion relative to the
reference (GCAAACCCAAATGCAAACCCAAAT). It is possible that the reference sequences for these
isolates are incorrect, or that the clones used for this experiment have altered during in vitro division

relative to those used to produce the reference sequences.
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Discussion

We have performed multiplexed Nanopore sequencing and a rapid data analysis workflow from
clinical P. falciparum malaria samples in two contrasting sites in Ghana. Genes of high clinical and
public health importance were targeted for multiplexed PCR amplification, including drug resistance
markers and the leading malaria vaccine and monoclonal antibody target, csp. The end-to-end
workflow - including sample collection, DNA extraction, PCR, Nanopore sequencing and analysis of
SNP markers - was performed at the field sites using standard molecular biology equipment and a
handheld MinlON. Real-time base calling and an informatics pipeline to call SNP variants were
implemented on site using a commercially available gaming laptop. High bandwidth internet
connectivity and high-performance computing clusters were not required. The key equipment could
be transported between sites, located over 700km apart, including into a rural area around 200km
from the nearest airport. End-to-end time from sample collection to analysis output for a multiplexed
batch of 24 samples was around 2 days; the workflow could potentially be further streamlined by
using ONT rapid barcoding kits. Given the high depth of sequence coverage achieved, increased
sample multiplexing per MinlON flow cell would very likely be successful. After relatively modest up-
front hardware expenses (for example, a MinlON mk1b is USS1,000 and a high-specification laptop
may be around US$3,000), we estimate running costs of around USS35 per sample using this workflow
with multiplexed batches of 96 samples. Higher levels of multiplexing and/or washing and re-using

flow cells could reduce costs further.

Chloroquine resistance was highly prevalent (>80%) in Ghana in the early 2000s [81]. The data
generated here indicate a trend towards increased chloroquine susceptibility, with nearly all samples
genotyped as the wild-type crt-76K allele. This most likely reflects shifts in national treatment policy,
as chloroquine was phased out due to resistance and replaced with alternative agents; ACT became
the front-line antimalarial treatment in Ghana in 2005. Increasing chloroquine susceptibility has also
been observed in Malawi [82]. In West Africa, the pattern is variable with very different chloroquine
resistance rates observed even in nearby countries [MalariaGEN Pf7 dataset; manuscript in
preparation]. The high prevalence of dhfr-IRNI triple mutant (83%) and dhfr-NRNI double mutant
(10%) parasites are broadly consistent with previous results from northern Ghana using short reads
on a larger longitudinal sample set [22], in which the dhfr-IRNI triple mutant and dhfr-NRNI double
mutant frequencies were 67.9% and 24.6% in 2018, respectively. We observed a high prevalence
(96%) of dhps-(S/A)GKAA. In [22], the frequency of dhps-(S/C/A)GKAA increased from 2.5% in 2009 to
78.2% in 2018; the ‘quintuple’ combination (dhfr-IRNI + dhps-AGKAA) was the dominant haplotype in

2018 at 76.6%. Thus, our data indicate a continued rise in frequency of dhps-(S/A)GKAA genotypes
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over the last 10-15 years. Although SP is no longer used as malaria treatment in Ghana, SP+AQ was
introduced in 2016 as SMC targeting young children aged 3-59 months during the high transmission
season in northern Ghana, and SP is also used as a prophylaxis in pregnancy (IPTp). Thus, there is
continued parasite exposure to SP, which may be contributing to sustained and/or increasing resistant
alleles in dhfr and dhps. While these mutations are associated with SP treatment failure for
symptomatic malaria, there was no evidence of the high-level SP resistance markers such as dhps-
540E that have been associated with reducing IPTp efficacy [25]. Given the use of SP for SMC and IPTp
in northern Ghana, ongoing monitoring of dhfr and dhps will be an important component of malaria
surveillance here. No kelch13 mutations associated with artemisinin partial resistance were identified.
Given the evolving situation with artemisinin partial resistance in East Africa, and the potentially
devastating consequences of ACT treatment failure, molecular surveillance of markers for artemisinin
and partner drug resistance remains critical in Africa. Thus, the successful end-to-end implementation
of Nanopore sequencing in Ghana by a local team that works closely with the National Malaria
Elimination Programme (NMEP) could compliment other platforms for malaria molecular surveillance,
and enhance the rapid generation of data that is essential for monitoring antimalarial drug resistance

to support NMEP decision-making.

The csp CTR harbours multiple SNPs relative to the reference sequence used in the RTS,S vaccine [83—
89], and the more polymorphic regions correspond to T-cell epitopes [90]. The relationship between
genetic diversity in csp and the efficacy of csp-based vaccines and monoclonal antibody therapies is
incompletely understood, with conflicting findings for RTS,S (eg. [87] and [91,92]). While our study
does not address this question, it demonstrates that Nanopore is an effective method for genotyping
SNPs in the csp CTR as part of a multiplex surveillance panel, and identifies several high-frequency
non-synonymous SNPs present in Ghana relative to the vaccine reference sequence. The SNP
frequencies identified using ONT are very consistent with whole genome sequence data generated
using lllumina in Ghana and West Africa more broadly [MalariaGEN Pf7 dataset; manuscript in
preparation]. Of note, Navrongo is one of the RTS,S/AS01 implementation sites and geographically
relatively close to the R21-MM vaccine trial site in Burkina Faso. Nanopore could therefore potentially
be used for csp surveillance alongside monitoring drug resistance markers at little extra cost; future
work could assess whether specific csp genetic variants — including any newly emerging variants as the

RTS,S vaccine is rolled out — have an effect on vaccine efficacy.

Experience with SARS-CoV-2 has shown that prompt turnaround time is a key factor for genomic

epidemiology to be useful in clinical and public health applications [48-50,93]. Results are available
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faster if sequencing can be performed in-country, without requiring the ethical, legal and logistical
framework to transport samples outside of national borders. Sequencing workflows that can be
implemented in endemic settings are essential to drive the decentralisation of genomics, to support
its integration into clinical and public health applications, and to push for a more equitable distribution
of global genomics capacity. Amplicon sequencing can be a pragmatic approach to malaria molecular
surveillance and generate actionable data on parasite populations, including workflows based in
endemic LMICs [11,12,94-106]. Moreover, by developing and investing in sequencing capacity, the
technical skills, experience and technology can potentially be applied to multiple high priority
pathogens and emerging infection threats, maximising the impact of genomics in public health and
strengthening global pathogen surveillance and health security [107]. The potential for an end-to-end
turnaround time of 1-2 days also makes real-time P. falciparum sequencing a possible tool in clinical
diagnostics, for example, to assess for kelch13 mutations in patients with delayed parasite clearance

or relapse following ACT.

This study has several limitations. The nano-rave informatics workflow was designed to be streamlined
and rapid, without requiring high performance computing clusters, based on majority SNP genotyping
in amplicon targets. The workflow does not attempt to deconvolute mixed infections, making it
unreliable to infer haplotypes (ie. genotypes shared within each clone). Future work could use full-
length Nanopore reads to separate distinct haplotypes from mixed infections within samples. For
calling SNP markers of drug resistance and SNP variation in csp for population-level surveillance,
majority genotype calls will nonetheless provide useful information quickly. Copy number variation
(CNV) was not assessed in this assay, such as amplifications in the drug resistance markers mdr1 or
plasmepsin-2/3. Calling CNV from PCR amplified products is inherently challenging with any
sequencing platform, particularly for mdr1, which can have many break points causing multiple
possible amplifications spanning large genomic regions [27]. Multiple extensions and/or modifications
could be made to the PCR panel used in this study, depending on the specific use cases. For example,
more of the crt gene could be included in the multiplex assay, given that variation along this gene has
been associated with emerging partner drug resistance in Southeast Asia [10,108]; or adding hrp2/3
targets to monitor for deletions. Future work can also aim to increase the throughput of the assay, as
our results demonstrate that higher levels of multiplexing are possible, particularly using the latest
Nanopore Q20+ chemistry. This could include using non-leucodepleted DBS clinical samples and lower

parasitaemia cases.
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Finally, while the decentralisation of genome sequencing offers many advantages, one potential
downside could be a lack of standardisation, which may cause discrepancies between data from
different studies and locations, making pooled analyses more challenging. One potential solution
could be to establish a technical working group of scientists and public health experts active in malaria
genomic surveillance using Nanopore, to agree on suggested best practices and processes for
laboratory quality assurance. A commitment to open-access data sharing will be essential to ensure
that locally produced data can be acted on quickly by the international community and integrated into
larger analyses [109]. This would increase the breadth and depth of global malaria surveillance in the

drive towards elimination.
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Methods

Study setting

The study was based at two sites in Ghana with contrasting epidemiology: Ledzokuku Krowor
Municipal Assembly (LEKMA) Hospital in Accra, and two satellite clinics in and around Navrongo and
the War Memorial Hospital (WMH), in the Upper East Region near the northern border with Burkina
Faso. LEKMA Hospital is in an urban setting near the coast where malaria is perennial, and represents
a substantial burden of both inpatient and outpatient visits. Navrongo is a more rural setting, situated
in a scrub-savannah ecological setting where malaria is strongly seasonal, with a high-transmission
rainy season occurring around July — November. Sample collection for this study took place in August
— September 2022 at both sites, so during the Navrongo high season. Sample collection in Navrongo
was based at three sites: The Navrongo WMH and Navrongo Central Clinic (NCC), within Navrongo
town, and Biu Health Centre (BHC), around 30 km southwest of Navrongo. The NCC and BHC are

community clinics, while WMH is the Municipal hospital with facilities for inpatient care.

Clinical sample collection and processing

This study incorporates samples collected under the governance of two separate studies. Samples
from LEKMA Hospital were collected via the Emerging Genomic Selection and Antimalarial Drug
Tolerance (EGSAT) study. Samples from Navrongo were collected via the Pan-African Malaria Genetic
Epidemiology Network (PAMGEN) study. Both studies had approval from ethical review boards (ERB)
for malaria parasite genomic sequencing research. In both sites, patients presenting with symptoms
compatible with malaria were tested using OnSite Rapid Diagnostic Tests (RDTs). People positive for
at least one of the Pf-specific antigen band (hrp2/3) and/or the pan-Plasmodium antigen band (LDH)
were recruited with informed consent from the patient or their guardian. Around 2-5ml venous blood

samples were collected, of which 0.5-4ml was typically available to use in this study.

Samples were transported daily, Monday — Friday, from LEKMA Hospital to the West African Centre
for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, and from the three Navrongo
sites to the Navrongo Health Research Centre (NHRC) Research lab in Navrongo. Leucodepletion was
performed by removing the Buffy coat layer following centrifugation, using the following steps:
centrifuge blood sample in the EDTA tubes they were collected in at 500g for 5 minutes with no break,
carefully remove the plasma and any visible Buffy layer, add approximately equal volume of PBS,
repeat spin with same conditions, repeat PBS aspiration and any further visible Buffy coat plus the

thinnest top layer of Red Blood Cells (RBCs, to maximise white blood cell removal). PBS was added to
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a final volume of 1-2ml, samples were transferred to 15ml falcon tubes and frozen in the -80 freezer

until DNA extraction.

Mock clinical samples

Mock Dried Blood Spot (DBS) samples were produced by combining human whole blood ordered from
Cambridge Bioscience Ltd with red blood cells (RBCs) infected with P. falciparum (Dd2 clone) cultured
in vitro, and blotting 50ul onto Whatman 3M cards. P. falciparum in vitro culture was performed at
the Wellcome Sanger Institute as described in [110]. Final haematocrit of the cultured parasite —whole
blood mixtures was 35%. The volume of parasitised RBCs added to human whole blood was varied to
produce an approximate final parasitaemia of 10%, 1%, 0.1% and 0.01% infected RBCs. The expected
linear relationship between parasitaemia and the ratio of parasite to human DNA present in the mock
DBS samples following DNA extraction was confirmed by quantitative PCR (gqPCR) using probes

targeting conserved regions of the P. falciparum and human genomes (Supplementary Notes).

DNA extraction and quantification

Two methods for DNA extraction were used. For 87/109 clinical samples, DNA extraction was
performed using the New England Labs Monarch® High Molecular Weight (HMW) DNA Extraction Kit for
Cells & Blood (T3050) according to the manufacture’s protocol. Part 1: erythrocyte lysis was conducted on frozen
samples (-80°C) in 15 ml falcons with ~2 ml sample volume. After centrifugation, ~4-5 ml of supernatant was
discarded. The pellet was dislodged, vortexed and transferred to a 2 ml Lo-Bind Eppendorf tube. A minimum of
two 1xPBS washes were required and subsequent washes were carried out until the supernatant was clear. Part
2: leukocyte lysis: standard input volumes were required for all steps. Part 3: HMW gDNA binding and elution:
isopropanol standard input volume; DNA was generally eluted in 110ul Elution Buffer (EB), though for a
small number of samples where a large DNA pellet was visible, 210ul EB was used. Minor modifications
were made to the protocol due to equipment availability; 1) samples were not kept on ice 2) all centrifuge steps
were conducted at room temperature 3) samples underwent manual rotation as opposed to using a vertical

rotating mixer 4) a heat-block replaced the incubator.

22/109 of the clinical samples were extracted using the QIAmp® DNA Blood Mini Kit (51106) according to
manufactures instructions with the following modifications: 1) 200 pl of frozen washed RBCs were
thawed, and Protease was substituted with proteinase K. 2) Samples were incubated for 56°C for 30
minutes. 3) Samples were transferred into spin columns and centrifuged at 8000 rpm for 1 minute and
30 seconds. 4) Buffer AW1 was added and centrifuged at 8000 rpm for 1 minute and 30 seconds. 5)

Buffer AW2 was added and centrifuged for at 13000 rpm for 3 minutes. 6) An elution volume of 100pl
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was added to the spin columns and incubated at room temperature for 15 minutes. Extracted DNA

was stored at -20°C.

For the mock DBS samples, DNA extraction was performed using the QlAmp DNA Investigator Kit (56504),
and the protocol was adapted from the ‘Isolation of Total DNA from FTA and Guthrie Cards’.
Modifications to the protocol included adjusted quantities and an overnight incubation step: 1) 6 (1/8
inch) diameter punches placed into a 15 ml falcon tube, 2) 600 pl of Buffer ATL, 3) 60 ul of proteinase
K, 4) Incubation at 56°C with shaking at ~600rpm for ~17 hours, 5) 600 pl of Buffer AL. Final steps were
also modified to increase DNA concentration; 1) adjusted elution volume of 50 pl 2) spin column
incubated for 5 minutes at room temperature 3) once centrifuged, eluate placed back into the spin

column followed by a 5 minute room temperature incubation.

DNA was quantified using ThermoFisher Scientific Qubit 2.0 Fluorometer with Qubit™ dsDNA high sensitivity
(Q32854) and Qubit™ dsDNA broad range kits (Q32853), as per manufacturer’s instructions.

Primer design and PCR amplification

Primers were designed using the primer3 software [111-113]. Primer regions were selected based on
sequence conservation after aligning target genes in P. falciparum from the reference genomes
produced in [114]. Primer compatibility for multiplexing was assessed in silico using the Thermo Fisher

Multiple Primer Analyzer (https://www.thermofisher.com/de/de/home/brands/thermo-

scientific/molecular-biology/molecular-biology-learning-center/molecular-biology-resource-

library/thermo-scientific-web-tools/multiple-primer-analyzer.html). Multiple iterations of primer

combinations were tested and assessed by gel electrophoresis to identify the most robust
combinations (producing the brightest bands down to the lowest parasitaemias with mock clinical
DBS, and with minimal non-specific bands). Multiple iterations of PCR optimisation were undertaken

to yield the final reaction conditions used.

All of the samples described in this study underwent multiplex drug resistance and csp amplification
using the Thermo Fisher Platinum™ Pfx DNA Polymerase (11708039), with reaction conditions shown
in Supplementary Notes. The Platinum™ Pfx DNA Polymerase enzyme has been discontinued by the
manufacturer. We have found that the Kapa HiFi polymerase produces comparable results using the
same primers. The msp1 PCR was performed using Promega long-range GoTaq® Polymerase (M4021),

reaction conditions in Supplementary Notes.
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After PCR, a subset of samples from each 96-well plate, always including the positive and negative
controls for that plate, were inspected by gel electrophoresis to ensure the PCRs had been successful
(with blank negative controls) before proceeding to Nanopore sequencing. 2-4ul of the drug resistance
and csp multiplex PCR was run for 45-90 minutes on a 2% agarose gel at 100V. 2-4ul msp1 PCR was
run for 45-90 minutes on a 1% agarose gel at 100V. PCRs were extracted and purified using the Qiagen
MinElute PCR Purification kit (28004). The full volume of both the multiplex and msp1 PCRs for each
sample were combined at this stage, each being added to the same extraction column such that each
sample yielded a single eluted solution including both PCR reactions. Samples were eluted in 100l

Elution Buffer. Post-extraction DNA quantification was performed using Qubit as described above.

Nanopore library preparation and sequencing

For most samples, library preparation was carried out using ONT kit SQK-NBD112.24 following the
‘ligation sequencing amplicons — native barcoding’ protocol. Manufacturer instructions were followed,
except: Blunt/TA ligase Master Mix was substituted with NEB Quick T4 DNA Ligase and NEBNext Quick
Ligation Reaction Buffer (5X) in the ‘native barcoding ligation’ (step 5) for three of the clinical sample
libraries (‘D’, ‘E* and ‘F’), due to running out of the Blunt/TA ligase Master Mix during field work
without ready access to replacements. We did not observe any drop in yield for the libraries that used
NEB Quick T4 DNA Ligase compared with Blunt/TA ligase Master Mix. Additional nuclease-free water
was added to ensure a final volume of 20ul. For the negative controls, Nuclease Free Water was added
to the same PCR reaction mixes and were taken through the full workflow including PCR, extraction

and Nanopore library prep.

Five batches of 24 and one of 15 samples were sequenced in six MinlON runs, each with a fresh R10.4
flow cell; this included technical replicates for internal quality assessment. The MinlON runs with
clinical samples are referred to by the letters A to F in the main text. Every run included 1 positive and
1 negative control. The ‘Validation’ sample set of laboratory isolates and mock DBS samples was
sequenced both with Q20 chemistry (same kit as above, SQK-NBD112.24) and with Q20+ chemistry
(kit SQK-NBD114.24 on R10.4.1 flow cells) at 400bps.

Hardware and workstation set-up

Sequencing, base calling and the real-time bioinformatic analysis were run from a commercial Dell
gaming laptop with the following specifications: 11th Gen Intel Core Processor i7 (8 Core); 32GB (2x
16GB) DDR4, 3200MHz; GPU: NVIDIA GeForce RTX 3080 with 16GB GDDR6; 1TB M.2 Solid State Drive
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(SSD). During Nanopore sequencing, the laptop was connected to an Uninterruptible Power Supply

(UPS) with surge protection. Additional fans were used to reduce laptop overheating.

Bioinformatics

Real-time base calling and analysis using the nano-rave Nextflow pipeline
Base calling was done in real-time alongside sequencing using the MinKNOW software. We tested

both High Accuracy (HAC) and Super Accurate (SUP) guppy base calling run via the laptop’s
GPU. Analyses included in this study for the clinical samples were performed on HAC base-called
reads. The resulting fastq files were processed through a custom Nextflow pipeline: nano-rave
(Nanopore Rapid Analysis and Variant Explorer), run on the laptop using Debian as a Linux operating

system for Windows. The nano-rave pipeline is available via GitHub at: https://github.com/sanger-

pathogens/nano-rave. Briefly, following quality control (QC) metrics, sequence reads are mapped

against 3D7 reference sequences for each of the amplicon target genes using minimap2 [115].
Mapping to individual reference sequences for target genes, rather than to the whole genome,
substantially reduces computational requirements for the workflow, allowing it to run at speed
directly on a commercial laptop. .sam files are converted to .bam files using samtools [116]. Amplicon
coverage data is generated using BEDTools [117]. There are three parametrised options available for
variant calling: medaka variant, medaka haploid [76] and freebayes [77]. All three generate Variant
Call Format (VCF) file outputs for each amplicon for each sample (ONT barcode). We tested medaka
variant and medaka haploid on all clinical samples and used medaka haploid genotypes for
downstream analyses described in the main text. VCF files were processed using custom R scripts to
calculate SNP allele frequencies at key drug resistance loci. A cut-off of >50x coverage was applied for
an amplicon to be included in the analysis; however, all amplicons for all samples in the study
exceeded this cut-off. None of the negative controls included in this study generated directories that
were >10MB in size, which was used as a parameterized cut-off in the nano-rave workflow; therefore,

no negative controls were taken forward for real-time analysis.

Whole genome mapping and manual inspection
In addition to the real-time analysis performed on the laptop in Ghana outlined above, SUP base called

reads were mapped genome-wide to the 3D7 reference genome using minimap2 on the Wellcome
Sanger Institute (WSI) High Performance Computing cluster (HPC). Read pile-ups for each amplicon

locus were manually inspected using the Integrative Genomics Viewer (IGV) tool [118].
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Consensus sequence generation for csp and msp1
Consensus sequences for csp and mspl were produced for the laboratory clones using

Amplicon_sorter [80], a tool for building reference-free consensus sequences using ONT sequenced
amplicons based on read similarity and length. Reads mapping to the 3D7 csp reference sequence
were extracted and used as input for Amplicon_sorter using a similarity cut-off of 96% (the threshold
for merging sequences to generate consensus). Because of high divergence from the 3D7 reference
genome, the same approach could not be used for msp1; instead, reads in the expected size range
(~4700-5300bp) were pulled directly from the fastq files for consensus sequence building. For single
laboratory clones, a threshold of 96% was used for consensus merging. For mixed isolates, this was
increased to 98% to distinguish between the reference isolates used. The resulting consensus
sequences were trimmed to include only the sequences within the primer sites and reverse
complemented if needed. Consensus sequences were then mapped against the expected reference

sequence using the Clustal Omega online tool.

Ethics

The Navrongo samples were collected as part of the PAMGEN study, ethics approval ID: NHRC343,
obtained from the Navrongo Health Research Centre (NHRC) Institutional Review Board. The LEKMA
Hospital samples were collected as part of the EGSAT study, ethics ID: ECBAS030/21-22, approved by
the College of Basic and Applied Sciences Ethics Review Committee, University of Ghana. All study

participants or their guardians gave informed consent.
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