

1 Purgling due to self-fertilization does not prevent accumulation of 2 expansion load

3 Leo Zeitler*, Christian Parisod, Kimberly J. Gilbert*

4 January 17, 2023

5 Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland

6

7 * Corresponding authors; e-mail: kimberly.gilbert@unifr.ch, leo.zeitler@unifr.ch

8

9 Keywords: range expansion, *Arabis alpina*, demographic history, mating system, distribution of fitness
10 effects

11 **Abstract**

12 Species range expansions are a common demographic history presenting populations with multiple evo-
13 lutionary challenges. It is not yet fully understood if self-fertilization, which is often observed at species
14 range edges, may create an evolutionary advantage against these challenges. Selfing provides reproduc-
15 tive reassurance to counter Allee effects and selfing may purge accumulated mutational burden due to
16 founder events (expansion load) by further increasing homozygosity. We study how selfing impacts the
17 accumulation of genetic load during range expansion via purging and/or speed of colonization. Using
18 simulations, we disentangle inbreeding effects due to demography versus due to selfing and find that
19 selfers expand faster, but still accumulate load, regardless of mating system. The severity of variants
20 contributing to this load, however, differs across mating system: higher selfing rates purge large-effect
21 recessive variants leaving a burden of smaller-effect alleles. We compare these predictions to the mixed-
22 mating plant *Arabis alpina*, using whole-genome sequences from refugial outcrossing populations versus
23 expanded selfing populations. Empirical results indicate accumulation of expansion load along with ev-
24 idence of purging in selfing populations, concordant with our simulations, and suggesting that while
25 purging is a benefit of selfing evolving during range expansions, it is not sufficient to prevent load accu-
26 mulation due to range expansion.

27 **Author Summary**

28 The geographic space that species occupy, i.e. the species range, is known to fluctuate over time due
29 to changing environmental conditions. Since the most recent glaciation, many species have recolonized
30 available habitat as the ice sheets melted, expanding their range. When populations at species range
31 margins expand into newly available space, they suffer from an accumulation of deleterious alleles due to
32 repeated founder effects. We study whether self-fertilization, which is considered an evolutionary dead-
33 end, can be favored under these expanding edge conditions. Selfing has two important effects: allowing
34 for faster expansion due to reproductive assurance and purging recessive deleterious alleles by exposing
35 them to selection as homozygotes. We use simulations to identify the impact of selfing on expanded
36 populations and then compare these results to an empirical dataset to assess whether our predictions are
37 met. We use the mixed-mating plant alpine rock-cress (*Arabis alpina*) since it has both expanded since
38 the last glaciation and undergone a mating shift to selfing. We find that selfing does not prevent the
39 accumulation of deleterious load, however purging does still act to remove the most severe variants,
40 indicating that selfing provides this benefit during range expansions.

41 Introduction

42 Many species across the globe have expanded or shifted their species ranges in response to changing
43 climates (Davis and Shaw 2001; Parmesan 2006), creating unique evolutionary and demographic conditions.
44 The repeated bottlenecks and founder events that characterize populations at expanding range
45 edges increase the strength of genetic drift, reducing genetic variation, and reduce the efficacy of selection
46 (Caballero 1994; Wright 1931). The study of species range expansions thus provides interesting insight
47 into evolutionary questions of if and how populations manage to adapt and continue spreading despite
48 reduced genetic diversity as well as other difficulties faced at range fronts. Individuals colonizing previously
49 unoccupied environments face limited mate or pollinator availability, resulting in slower expansion
50 as a result of these Allee effects (Moeller *et al.* 2012; Dennis 1989; Courchamp *et al.* 1999; Stephens and
51 Sutherland 1999; Hallatschek and Nelson 2008). Gene surfing, whereby variants increase in frequency
52 at expanding edges due to serial founder events (Burton and Travis 2008; Hallatschek and Nelson 2010;
53 Edmonds *et al.* 2004; Klopstein *et al.* 2006), can also affect selected variants due to the reduced efficiency
54 of selection. The surfing of deleterious variants at an expanding edge is thus possible, and this process has
55 been shown to lead to the accumulation of deleterious variants in expanded populations, causing what
56 is termed expansion load (Peischl *et al.* 2013, 2015; Peischl and Excoffier 2015). Expansion load has the
57 potential to temporarily halt population growth or cause local extinction at the boundaries of the species
58 range (Peischl *et al.* 2013, 2015; Gilbert *et al.* 2017, 2018). Evidence of elevated load due to expansion
59 is well-documented empirically, including in humans (Henn *et al.* 2015, 2016; Peischl *et al.* 2018), plants
60 (González-Martínez *et al.* 2017; Willi *et al.* 2018), and experimental bacterial populations (Hallatschek and
61 Nelson 2010; Bosshard *et al.* 2017). Whether some organisms are able to overcome the burden of expansion
62 load through adaptive measures during expansion is, however, unclear.

63 Numerous plant species are known to have expanded their ranges after the last glacial maximum,
64 and it is widely observed that many of these species exhibit a transition to self-fertilization ('selfing') at
65 range edges (Barrett 2002). Selfing can reduce fitness through the expression of inbreeding depression
66 (Charlesworth and Charlesworth 1987; Reusch 2001; Barrett 2013), and is often considered to be an evo-
67 lutionary dead end, as it can lead to mutational meltdown (Lynch *et al.* 1995; Goodwillie *et al.* 2005; Igic
68 and Busch 2013). Yet the observation of enrichment for selfing at species range edges suggests that there
69 is some advantage gained with this mating system under the demographic and evolutionary conditions
70 that range expansions impose. Simulations have likewise predicted that selfing should evolve at species
71 range edges during expansion (Encinas-Viso *et al.* 2020).

72 Selfing has three major evolutionary impacts on populations: reducing effective population size, re-
73 ducing the effective recombination rate, and removing or reducing Allee effects. Selfing can remove Allee
74 effects by assuring reproductive success in low density populations (Baker 1967; Lloyd and Schoen 1992),
75 and therefore lead to faster expansion speeds, already evidenced by some studies of organisms with uni-
76 parental reproduction (Pannell and Barrett 1998; Eriksson and Rafajlović 2021). This is a clear and expected
77 advantage during species range expansion, as colonization can be faster. However, the reduction in N_e
78 along with reduced effective recombination rate due to selfing should be disadvantageous and exacer-
79 bated when compounded with the already reduced genetic diversity due to founder effects during range
80 expansion. Some evidence suggests that range expansions may instead facilitate a transition to selfing
81 by depleting the genetic load at the edge and reducing inbreeding depression (Pujol *et al.* 2009). Because
82 selfing greatly increases homozygosity, it creates the potential for exposing recessive deleterious alleles
83 to selection and thus purging them from the population (Ohta and Cockerham 1974; Charlesworth 1992;
84 Glémén 2007; Pujol *et al.* 2009). Purging therefore has the potential to counteract the accumulation of ex-
85 pansion load. Though, Glémén (2007) concluded that purging might only be a short term effect of selfing,
86 and over long evolutionary time scales fixation would be the dominant effect in selfers. Evidence suggests
87 that in small populations purging by self-fertilization is less feasible, and small-effect deleterious variants
88 can still contribute to an increase in genetic load (Wang *et al.* 1999). The distribution of selection coeffi-
89 cients compared to population size is thus a major factor for the evolution of mating systems (Bataillon
90 and Kirkpatrick 2000; Glémén 2003). As a consequence, one important change in the population genetic
91 signature of a transition from outcrossing to selfing is a shift in the observed distribution of fitness effects
92 (DFE) for variants segregating in the population to reflect less efficient selection against weakly deleteri-
93 ous, additive variants and purging of strongly deleterious, recessive variants (Barrett *et al.* 2014; Laenen

94 *et al.* 2018; Arunkumar *et al.* 2015). Whether this prediction holds when a species range expansion occurs
95 concurrently with a mating system shift has, to our knowledge, not been fully explored.

96 In combination with simulations of a range expansion and mating system shift, we additionally investigate
97 an empirical system matched to this demographic and evolutionary history. The perennial arctic-
98 alpine plant *Arabis alpina* L., is a species known to have been subject to range expansions and contractions
99 in response to the repeated quaternary climate oscillations (Ansoll *et al.* 2008). The Italian peninsula is a
100 known refugium for outcrossing populations during the last glacial maximum (Ansoll *et al.* 2008), after
101 which the species recolonized alpine habitats across Europe and concurrently with this expansion evolved
102 a mating system of predominant self-fertilization (Tedder *et al.* 2015). In Italy, populations of *A. alpina* are
103 predominantly outcrossing with high genetic diversity (Ansoll *et al.* 2008; Laenen *et al.* 2018), while in the
104 French and Swiss Alps, populations are more homozygous with lower nucleotide diversity, and mainly
105 selfing (Ansoll *et al.* 2008; Buehler *et al.* 2012). Given its demographic history of range expansion and the
106 variation in outcrossing rates, we study the combined effect of a range expansion and an evolutionary
107 transition in mating system from natural populations across Italy and the western Alps.

108 In this study, we test the hypothesis that selfing may be evolutionary favored during range expansions
109 due to the ability to purge otherwise accumulating deleterious expansion load. We investigate how selfing
110 at the range edge affects genetic diversity, mutation load, the observed DFE, and the speed of colonization
111 during a range expansion. Using individual-based simulations, we model a range expansion where different
112 degrees of self-fertilization are introduced mid-expansion and compare to a null model of obligately
113 outcrossing expanding populations. We focus in particular on the dynamics of load accumulation with
114 evolved selfing rates and include lethal, mildly deleterious, and beneficial mutations with different dom-
115 inance coefficients. By characterizing the distribution of selection coefficients of expanded populations,
116 we highlight differences in the efficacy of selection across mutation severity. We also compare the buildup
117 of genetic load across selfing rate scenarios and estimate load under different assumptions of dominance.
118 We then test if our predictions from simulations are equivalently detectable in empirical data from natural
119 populations of *A. alpina* in the Italian-Alpine expansion zone. We find that rapid purging due to self-
120 fertilization is common for highly deleterious recessive variants but does not prevent the accumulation of
121 genetic load in expanded populations. Our results mark a vital step towards deciphering the interplay of
122 complex population demography and mating system on the fate of genetic diversity and mutation load,
123 helping us to better understand how populations react to changing environmental conditions.

124 Results

125 Selfing leads to faster expansion

126 Using individual-based, forward-time simulations in SLiM v3.7.1 (Haller and Messer 2019), we modelled
127 a range expansion across a one-dimensional linear landscape. We simulated obligate outcrossing from the
128 first deme ('core') followed by a shift to self-fertilization in the 25th deme of the landscape (out of 50 total
129 demes), with selfing rates σ of 0.5, 0.95, or 1, or for a null comparison, simulations with continued obligate
130 outcrossing across the entire landscape during expansion and colonization (Figure 1A).

131 One expected benefit of selfing during range expansion is increased expansion speed, which we ob-
132 served in our simulation results. We compared the number of generations required to cross the landscape
133 among selfing rates and found that mixed mating and obligate selfing populations had a faster expansion
134 speed compared to obligate outcrossing populations (see Figure 1B). The differences in generation time
135 among different selfing rates was minor (mean generation times for $\sigma = 0.5, 0.95$, and 1, respectively:
136 792 ($SD = 78.5$), 800 ($SD = 51.4$), 777 ($SD = 70.7$)) compared to the notable difference in expansion time
137 of obligate outcrossers (990 generations ($SD = 69.8$)).

138 Range expansion increases genetic load and decreases diversity in simulations

139 To test if and how selfing modifies the outcomes of a range expansion in our simulations, we examined
140 genetic diversity in expanded populations and across selfing rates. Both outcrossing and selfing edge
141 populations showed large reductions in diversity due to the expansion. Outcrossers retained the highest
142 nucleotide diversity for neutral sites ($\pi_{edge, \sigma=0} = 3.646 \times 10^{-5}$), while with increasing self-fertilization

143 rates, populations showed further reductions in nucleotide diversity ($\pi_{edge,\sigma=1} = 3.410 \times 10^{-6}$, Figure 1C).
 144 Core populations which never experienced expansion and always outcrossed had the highest nucleotide
 145 diversity ($\pi_{core} = 9.235 \times 10^{-5}$).

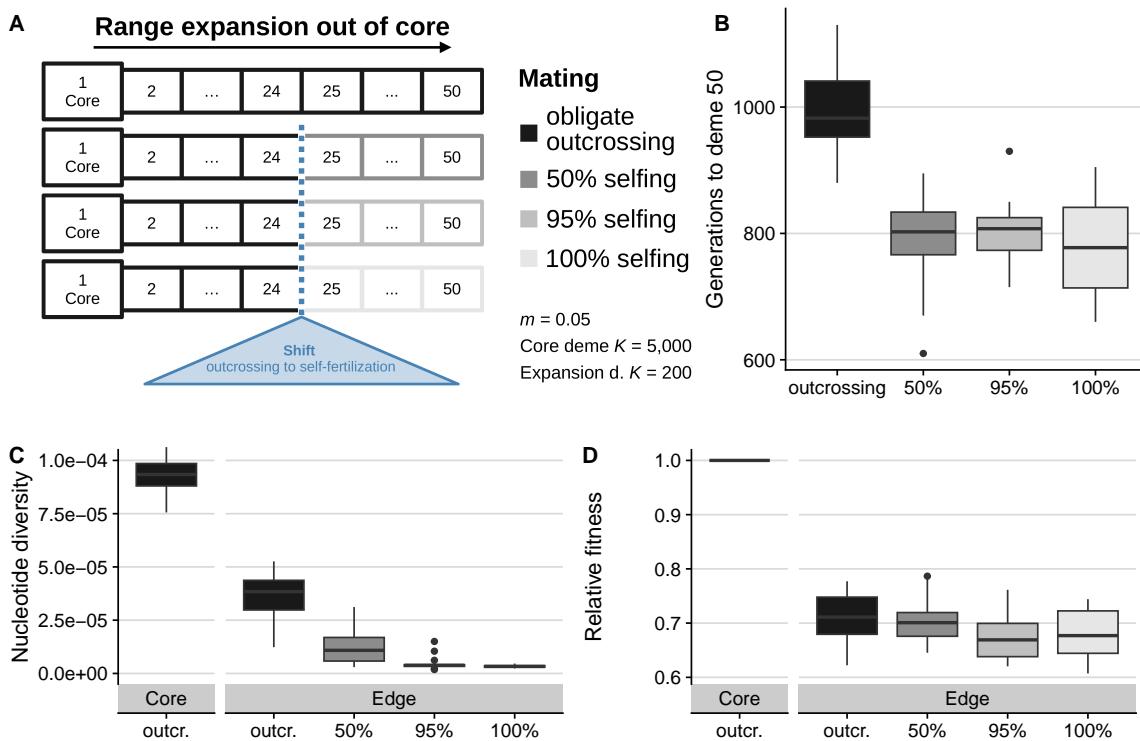


Figure 1: Simulation schematic for 1-D landscapes with stepping-stone migration (A). A shift in the rate of self-fertilization occurs in the center of the landscape (blue triangle). The number of generations needed to cross the landscape from the core to deme 50 (B). Expansion time was lower for all selfing rates but higher for obligate outcrossing. Mean nucleotide diversity (C) was reduced outside of the core, with a greater reduction for higher selfing: $\pi_{core} = 9.235 \times 10^{-5}$, $\pi_{\sigma=0} = 3.646 \times 10^{-5}$, $\pi_{\sigma=0.5} = 1.274 \times 10^{-5}$, $\pi_{\sigma=0.95} = 4.608 \times 10^{-6}$, $\pi_{\sigma=1} = 3.410 \times 10^{-6}$. Relative fitness (D) decreased from core to edge with similar values across outcrossers and selfers: $\bar{\omega}_{\sigma=0} = 0.709$, $\bar{\omega}_{\sigma=0.5} = 0.702$, $\bar{\omega}_{\sigma=0.95} = 0.676$, $\bar{\omega}_{\sigma=1} = 0.683$, reflecting a relative loss of fitness as compared to the core of 29.1%, 29.8%, 32.4%, and 31.7% respectively for $\sigma = 0, 0.5, 0.95$, and 1.

146 Genetic load is predicted to be higher in expanded populations, so we next examined how selfing
 147 modulates this outcome of a range expansion. With simulations we could accurately distinguish inbreeding
 148 effects due to mating of related individuals in small populations at the range edge versus inbreeding
 149 effects resulting from uni-parental inheritance, *i.e.* selfing, by contrasting obligate outcrossing scenarios to
 150 those with various rates of selfing. Fitness of every individual is also known, as this is defined in SLiM as
 151 the target number of offspring to be generated by an individual and is calculated multiplicatively across
 152 the effects of all derived mutations (see Methods for a full description). We calculated mean fitness of
 153 all individuals within a deme per replicate ($\bar{\omega}$) and compared these values between core and edge pop-
 154 ulations after the simulated expansion was complete. In all cases, the range expansion reduced fitness
 155 at the edge due to expansion load (Figure 1D). In the obligate outcrossing case ($\sigma = 0$), we observed
 156 a reduction of fitness from core to edge of 29.1%. Interestingly, selfers showed negligible differences in
 157 load accumulation relative to outcrossers, with at most a mean reduction in fitness of 31.7% for obligate
 158 selfers. We observed an increase in the proportion of loci fixed for deleterious alleles in all expanded pop-
 159 ulations, with these proportions increasing for higher selfing rates (Figure S1A). Similarly, we found that
 160 mean counts of deleterious loci increased from core to edge as well as from lower to higher rates of selfing
 161 (Figure S1B), whereas counts of deleterious alleles showed less to no clear pattern from core to edge and
 162 among selfing rates (Figure S1C).

163 To understand why and how self-fertilization seemingly had no impact on removing genetic load dur-
 164 ing a range expansion, we examined demes over time and space to disentangle the effects of inbreeding

165 due to demography versus inbreeding due to increased self-fertilization (Figure 2). Outcrossing deme 24
166 exhibited a mean observed heterozygosity level of $\bar{H}_{24} = 1.47 \times 10^{-4}$ when it was first colonized during
167 the expansion, i.e., when it was the edge of the species range. Beyond deme 24 the mating system
168 shifts to selfing and we observed a continual loss of heterozygosity at the expanding front. When the
169 expansion front reached deme 35, \bar{H}_{35} for 95% selfers rapidly decreased to 7.05×10^{-7} . For outcrossers,
170 however, heterozygosity exhibited a more gradual rate of reduction across the course of expansion, reaching
171 $\bar{H}_{35} = 1.19 \times 10^{-4}$ by the time deme 35 was colonized (Figure 2A, S2). We examined how diversity
172 recovered in deme 35 over time since its colonization until the end of the simulation and found that out-
173 crossers recovered to higher levels (\bar{H}_{35} at the end of the simulation 2.27×10^{-4}) than selfers (for 95%
174 selfing $\bar{H}_{35} = 7.72 \times 10^{-6}$).

175 **Fitness loss despite genetic purging**

176 We counted the number of lethal alleles per individual and observed a reduction in the count of lethals
177 that corresponds with the reduction in heterozygosity (Figure 2A-B). Lethal alleles were only reduced
178 when the shift to selfing occurred, and we observed the same pattern at every simulated selfing rate.
179 Obligate outcrossers did not exhibit a reduction in lethal alleles, showing no evidence of purging. The
180 largest reduction in lethal alleles occurred for the shift to the highest selfing rate ($\sigma = 1$) with a 91.69%
181 drop in lethal alleles, while our lowest simulated selfing rate ($\sigma = 0.5$) still showed a strong effect of
182 purging lethal alleles with an 83.74% reduction (Figure S3).

183 The rate of change of fitness in a given deme, measured at a focal generation (t) compared to 100
184 generations prior ($t - 100$), showed a consistent loss of fitness over time due to range expansion as well
185 as some fitness recovery in populations behind the expanding front (Figure 2C, D). Edge demes which
186 recently underwent the shift to selfing exhibited a drastic reduction in fitness relative to equivalent out-
187 crossers. This high rate of fitness loss exhibited by selfers is temporary and only lasts for between 45-235
188 generations, after which the rate of fitness loss recovers to the same rate as that observed in expanding
189 obligate outcrossers: still below one on average and accumulating expansion load.

190 We also investigated the impact the range expansion and mating shift had on the realized distribution
191 of selection coefficients. Overall, we found the greatest proportion of deleterious mutations in the weak
192 to intermediate bin of selection coefficients ($-0.0001 \leq s < -0.001$), with just below 60% of all sites
193 falling into this class (Figure 3). The next most deleterious bin ($-0.001 \leq s < -0.01$) contained about
194 30% of sites, while about 10% of sites are in the weakest selection coefficient bin. Lethal alleles made up
195 a small proportion of segregating sites, as expected given the small proportion defined in the simulation
196 parameters. Within these small numbers of severely deleterious variants, there was a consistent trend for a
197 reduction of lethals from core to edge of nearly 50% for outcrossers and significantly further reduction for
198 all rates of selfing, increasing from a nearly 75% reduction from core to edge for 50% selfers to more than
199 75% for 100% selfers (Figure 3 inset). The pattern of reduced proportions of deleterious sites as selfing
200 rate increases holds in both the lethal category as well as the second-most deleterious allele class. We
201 consistently observed the reverse pattern in the remaining weaker effect bins, with proportions of weakly
202 deleterious sites slightly increasing at range edges and more so with higher selfing rates. This observation
203 is consistent with more efficient removal of highly deleterious alleles and mutation accumulation at sites
204 with smaller absolute selection coefficients.

205 **Reduced genetic diversity and elevated load in expanded selfing *A. alpina* populations**

206 To test if our observations for genetic diversity and load accumulation from simulations are matched in
207 natural populations, we used the mixed mating plant *Arabis alpina*, which underwent a range expansion
208 concurrently with a shift to higher self-fertilization rates from Italy (outcrossing, Tedder *et al.* (2015)) into
209 the Alps (selfing, see Figure 4A). Using 191 newly sampled and sequenced short-read genomes from Italy
210 and France combined with publicly available data from Switzerland and across Europe (Laenen *et al.* 2018;
211 Rogivue *et al.* 2019), we examined differences across the species range in 527 individuals at high resolution.

212 Population structure results showed expected clustering by regions (Figure S4), matching the geography of sampled populations from Abruzzo in southern Italy, the Apuan Alps in northern Italy, the French
213 Alps, and the Swiss Alps (Figure 4A). Previously sampled individuals from Italy, France, and Switzer-
214

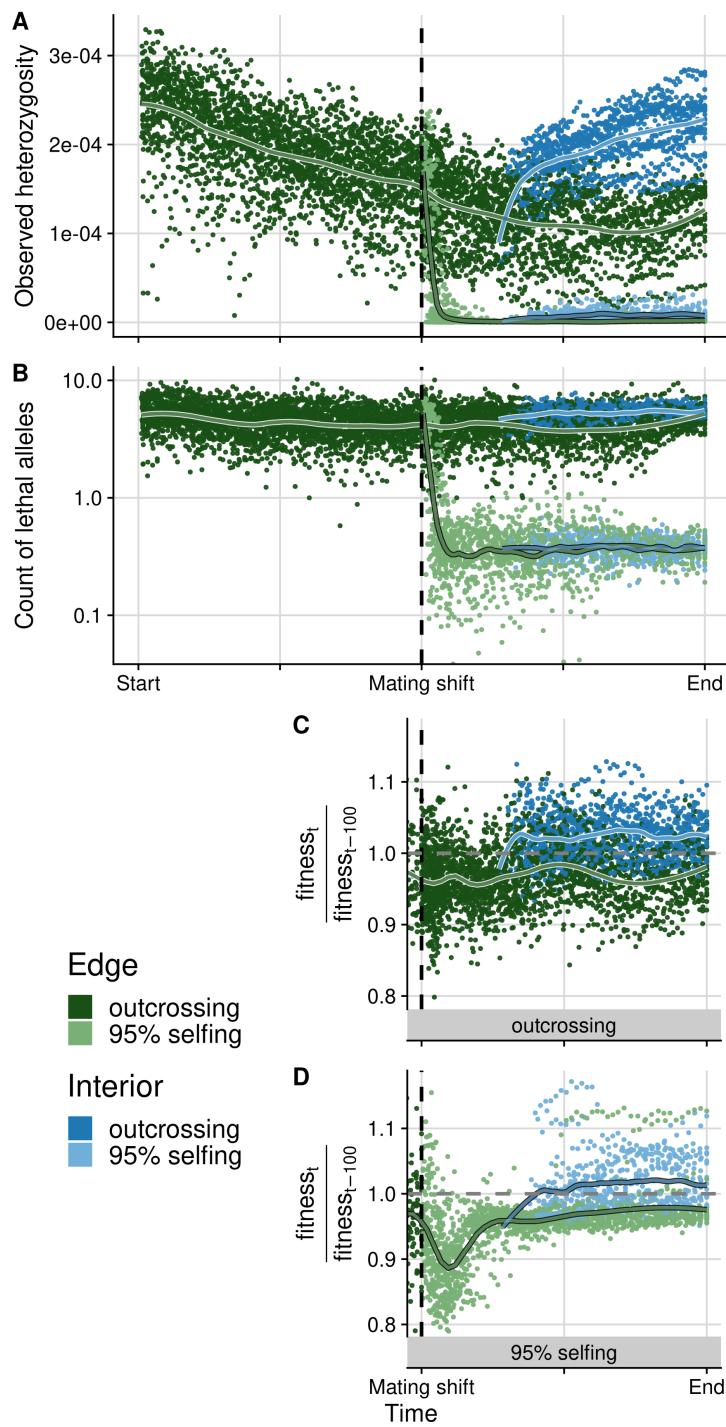


Figure 2: Observed heterozygosity (A), count of lethal alleles (B), and the rate of fitness change (C-D) are shown through time for the expanding range edge (green) as compared to change over time within one interior deme, stationary on the landscape (blue, deme 35). For selfing rates 50% and 100%, see Figures S2 and S3. Panels (C) and (D) show the rate of fitness change as measured over 100-generation intervals, separately for outcrossers and selfers. A value of 1 indicates no change in fitness over 100 generations while values above 1 indicate increasing fitness and values below 1 indicate fitness loss. The vertical dashed line indicates the point in time where the mating system shifts to selfing. This shift occurs at deme 25 on the landscape, and since there is variation across simulation replicates in the generation time taken to expand to deme 25, we plotted all values relative to this time point for each replicate shown ($n = 20$ replicates per selfing rate scenario). Each point is the value from a single simulation replicate and lines are loess (span=0.2) fitted curves across all replicates.

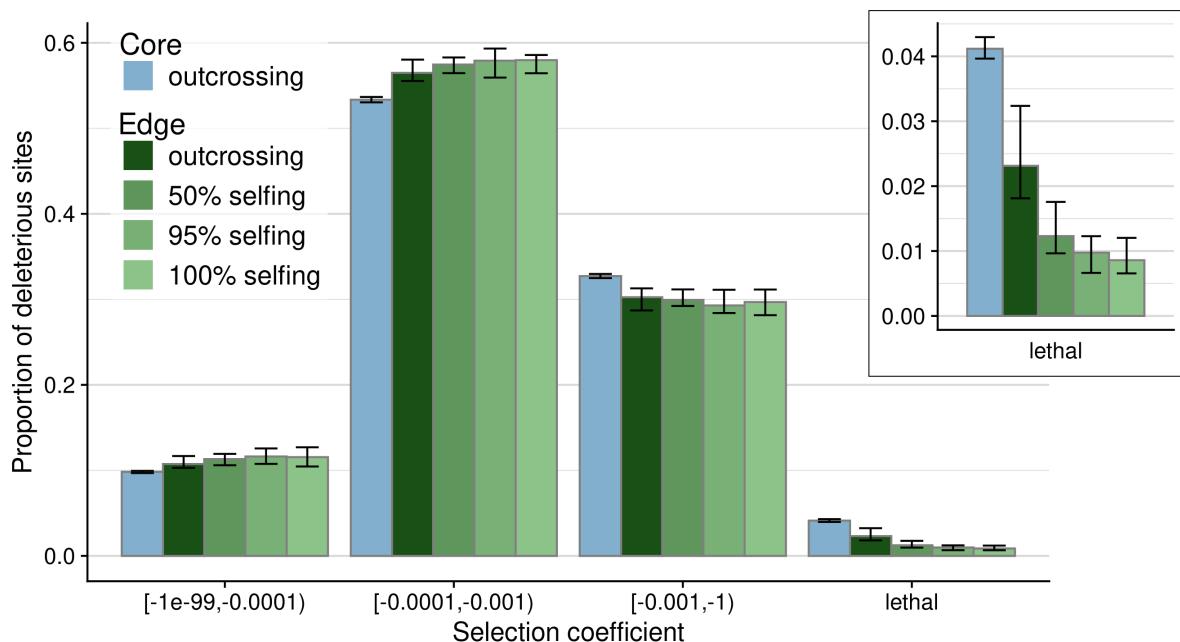


Figure 3: The observed distribution of selection coefficients from simulations at the end of expansion. The core deme (blue) is compared to edge demes (green) for obligate outcrossing (darkest color) versus higher selfing rates (lighter colors). Error bars indicate 0.05 and 0.95-quantiles across the 20 simulation replicates. The inset panel emphasizes the degree to which the proportion of sites in the lethal category changes over mating system scenario from core to edge.

land that we combined with our newly sampled individuals also consistently clustered within the same geographic regions. Samples of fewer individuals from more widely across Europe showed reasonable structuring among Greek, Spanish, and Scandinavian populations. Inference of the demographic history of the Italian and alpine populations populations showed a history of population bottlenecks and recovery consistent with the northward expansion following the last glacial maximum and the shift to selfing in France and Switzerland (see Figure S5).

To reveal how the expansion and self-fertilization impacts key diversity parameters, we calculated individual inbreeding coefficients (F) and nucleotide diversity (π). We found the highest inbreeding coefficients in mixed mating and highly selfing populations outside of Italy, and reduced inbreeding in the Apuan Alps and Abruzzo (means for Swiss, French, Apuan Alps and Abruzzo, respectively: $\bar{F} = 0.51, 0.75, 0.43, 0.37$). The highest overall inbreeding coefficients were estimated in populations from Spain ($\bar{F} = 0.96$) and France (Br, $\bar{F} = 0.89$, Figure 4B). Swiss populations had the greatest standard deviation ($\text{Pa}, SD(F) = 0.26$), and Italian populations had the lowest mean value (Am, $\bar{F} = 0.34$). For nucleotide diversity, we found high values in the Abruzzo region of Italy ($\bar{\pi}_s = 0.00767$). Genetic diversity reduced when moving north to the French Alps ($\bar{\pi}_s = 0.00333$) and Switzerland ($\bar{\pi}_s = 0.00357$, Figure 4C).

We calculated R'_{xy} to assess the accumulation of derived deleterious alleles, using 270,889 SNPs annotated as deleterious and 2380 as loss of function (LoF) variants, classified by SNPeff (Cingolani *et al.* 2012). R'_{xy} is a pairwise statistic that compares the count of derived alleles found in one population relative to another, and avoids reference bias introduced by branch shortening (Do *et al.* 2015). $R'_{xy} > 1$ indicates that population X has more derived alleles of a given class than population Y relative to the neutral expectation, while $R'_{xy} < 1$ would indicate fewer derived alleles in population X. For deleterious sites we found that alpine populations had more derived alleles compared to Italian populations (Figure 4D), indicating an increase in genetic load from south to north. Within the Alps, all Swiss populations had reduced derived allele frequencies compared to France, while relative to the Apuan Alps in northern Italy, only few Swiss populations exhibited reduced derived allele counts, potentially suggesting that the shift to selfing has begun to alleviate the accumulation of expansion load. For LoF loci, signals of both purging and accumulation were detectable. Some pairwise population comparisons showed an increase in number of LoF alleles from south to north (e.g., nearly all Apuan \times Abruzzo comparisons), while oth-

243 ers showed mixed results, depending on the focal populations (e.g., French \times Apuan, Swiss \times French).
244 All population comparisons of Swiss Alps \times Apuan Alps showed reduced LoF allele counts.

245 We next used the SNPs with variants annotated as putatively deleterious to examine the accumulation
246 of genetic load in our expanded populations. We assessed the predictability of genetic load estimation
247 under two different assumptions of dominance: first we calculated an additive model which counted
248 individual deleterious alleles and compared to a second recessive model which counted individual ho-
249 mozygous deleterious loci. In our simulations, the correlation between per-population mean fitness and
250 load prediction was stronger for the recessive model ($R^2 = 0.82, P < 0.001$) than the additive model
251 ($R^2 = 0.10, P < 0.001$, Figure S6), supporting the appropriateness of the recessive load model even in the
252 presence of selfing. The additive model also predicted load more poorly in a supplemental set of sim-
253 ulations using only fully additive mutations (see Figure S7). Estimating load from these models in the
254 empirical dataset indicated higher load in expanded, selfing populations from France and Switzerland
255 compared to core Italian populations, using the recessive model (Figure 5A). The additive model found
256 slightly reduced load for alpine populations compared to Italian ones (Figure 5B).

257 To further understand the mutational burden within our *A. alpina* populations, we estimated the dis-
258 tribution of fitness effects of new mutations (DFE) using `fitdadi` (Kim *et al.* 2017), which corrects for
259 demographic history by first fitting a best demographic model to the data (Figure S5). `fitdadi` surpris-
260 ingly estimated a similar DFE across all of our sampled populations (Figure S8), with a large proportion
261 of strongly deleterious sites at or above 60%, around 20% of sites in the weakest selection class, and ap-
262 proximately 5% in each of the two intermediate selection classes. The proportions varied only marginally
263 across core Italian populations as well as across expanded French and Swiss populations. We additionally
264 examined the fixation of deleterious alleles across our populations, within classes of neutral, deleterious,
265 or LoF sites (Figure S9). Fixation of all sites increased from Italy in the south to France in the north, but
266 then decreased from France to Switzerland, reminiscent of our R'_{xy} results suggesting more purging in
267 Swiss populations.

268 Discussion

269 In this study, we investigated the impact of selfing on the accumulation of genetic load during a species
270 range expansion. We used simulations to disentangle the reduction in effective population size at expand-
271 ing fronts due to self-fertilization versus serial founder events. We then compared our expectations for the
272 impact of selfing to empirical data from natural populations having undergone both a range expansion
273 and a mating system shift. Because selfing reduces the effective recombination rate within populations as
274 well as genetic diversity, it is expected to be generally maladaptive for evolution and adaptation. How-
275 ever, conditions at the expanding edge of a species range may particularly favor the evolution of selfing
276 mating systems. And the compounded effects of reduced diversity due to selfing at range edges may even
277 provide an additional benefit of purging homozygous recessive deleterious mutations.

278 One clear advantage that we confirm is that selfing provides reproductive assurance (Igic and Busch
279 2013) and leads to faster spread over geographic space. Despite similar losses in fitness from core to range
280 edge for both outcrossers and all selfing rate scenarios, selfers still colonized the landscape faster than
281 outcrossers. This result adds to the general prediction of Baker's Law, that selfing may be advantageous
282 in mate-limited environments (Baker 1967). Since we do not have equivalently expanded outcrossing
283 populations in our *A. alpina* dataset nor a generation time measurable in contemporary time, we cannot
284 empirically investigate this question. To fully understand the benefits of reproductive assurance from
285 selfing, it may be fruitful for future empirical studies to focus on organisms with well-documented ex-
286 pansion times and mating system shifts, or potentially take advantage of laboratory experiments with
287 expansions of outcrossers versus selfers under controlled conditions, for example using mixed mating
288 species of *Caenorhabditis*.

289 Our main interest in comparing simulation and empirical results is to understand the dynamics of
290 load accumulation during range expansion when selfing evolves. A potential major benefit of selfing is
291 the opportunity for purging due to increased homozygosity. Theory predicts that increased homozygosity
292 should lead to efficient removal or reduction of lethal mutations (Kirkpatrick and Jarne 2000; Hedrick
293 2002), but our simulation results show that expansion load always accumulates at similar levels at range

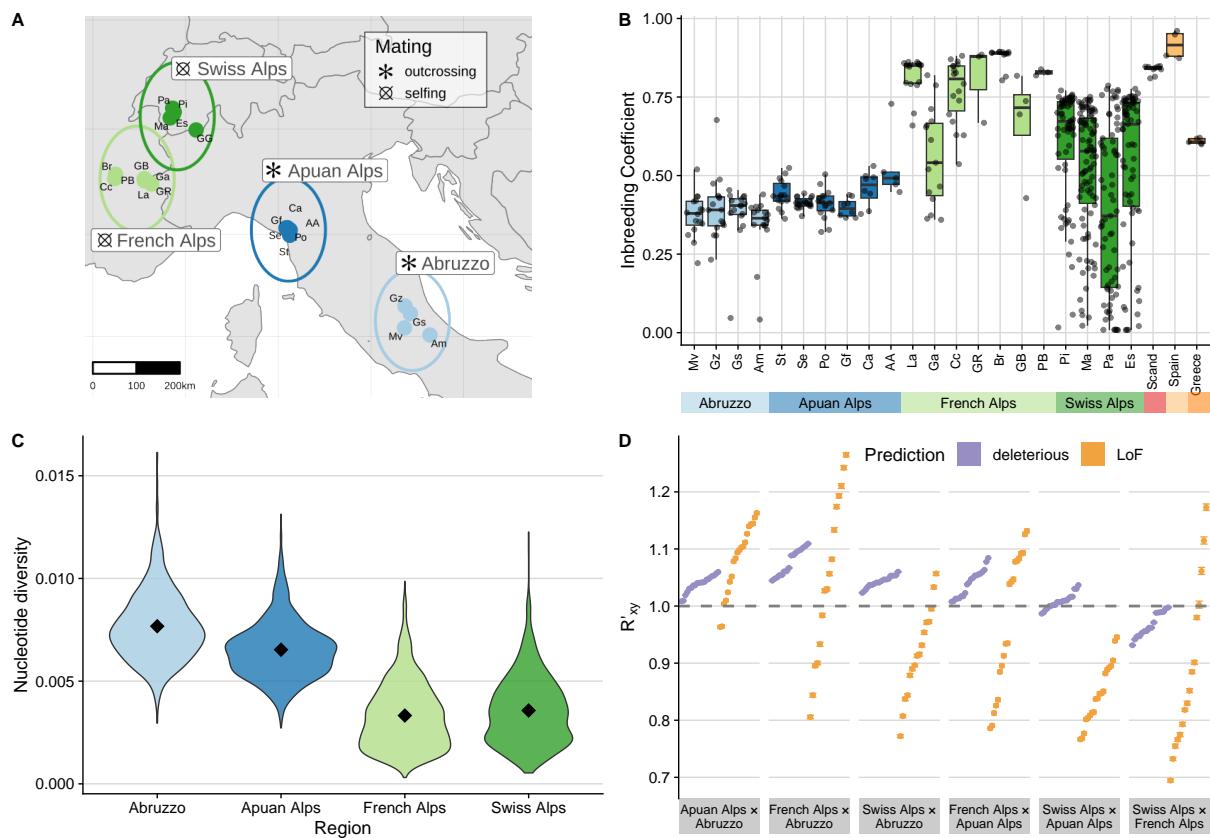


Figure 4: Sampling sites of *A. alpina* in the Italian-Alpine expansion zone (with mating types as published in Buehler *et al.* 2012; Tedder *et al.* 2015) (A). Inbreeding coefficients for individuals across sampled populations, including Spain (selfing), Scandinavia (selfing), and Greece (outcrossing, Laenen *et al.* 2018) (B). The distribution of nucleotide diversity estimated for Italian and alpine populations (C), with diamonds indicating group means. R'_{xy} values for deleterious (purple) and LoF (orange) loci (D). $R'_{xy} > 1$ indicates an accumulation of derived alleles at deleterious or LoF sites relative to neutral ones, while $R'_{xy} < 1$ indicates the opposite.

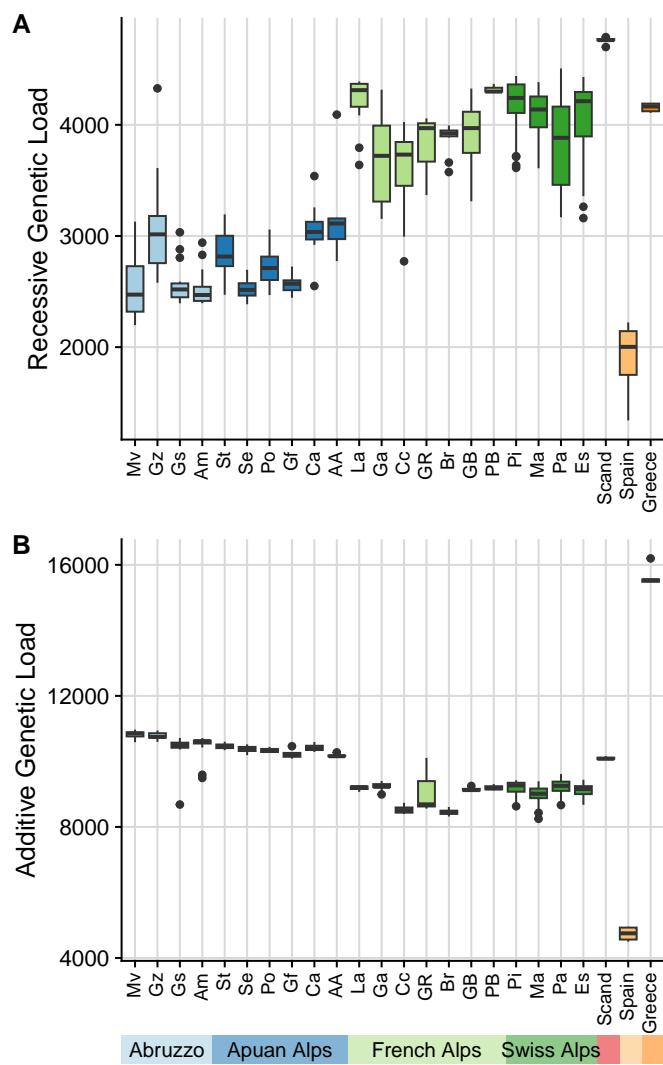


Figure 5: Genetic load in *A. alpina* populations as inferred from counts of deleterious loci using a recessive model (A) versus counts of deleterious alleles using an additive model (B). Loci are classified as putatively deleterious by SNPeff (see Methods).

294 edges, regardless of selfing rate and with equivalent severity to outcrossers. This seems to suggest that
295 purging due to selfing offers no additional benefit during species range expansion. However, when looking
296 at the distribution of effect sizes for variants segregating within populations, we detect significant
297 effects of purging unique to selfers whereby lethal-effect alleles are successfully and rapidly removed
298 from the population. Purging was most pronounced in obligate selfers, where within only 30-150 generations
299 lethal alleles are removed from the population and remain at low levels for the remainder of the
300 simulations (Figure 2B). Examining the distribution of mutational effect sizes at the end of the simulations
301 also shows that selfers exhibited major reductions in lethal alleles (Figure 3), to a much greater degree
302 than the reduction of lethals obtained by outcrossers.

303 Purging does not, however, allow these populations to escape the burden inflicted by expansion load
304 and their demographic past. Load still accumulates in all population expansions regardless of mating
305 system, but how this load is expressed in terms of number and effect size of variants differs among mating
306 systems. The overall burden experienced by selfing populations consists of more small-effect deleterious
307 variants, which accumulate to a greater extent as compared to obligate outcrossing populations. Previous
308 simulation studies have also highlighted how small effect variants are much more difficult to purge (Wang
309 *et al.* 1999; Willis 1999), and therefore can still result in an accumulation of expansion load. How this
310 genetic architecture underlying expressed load differs may have important impacts on how selection and
311 recombination interact as populations adapt in the future. This burden represented by many small effect
312 loci should also indicate that inbreeding depression is minimized or removed if populations continue to
313 self, as previously described by (Pujol *et al.* 2009).

314 In our empirical *A. alpina* results we found similar signatures of both load accumulation and genetic
315 purging in expanded populations. The recessive load model indicates that French and Swiss expanded
316 populations have accumulated genetic load, through higher counts of putatively deleterious sites. More-
317 over, the additive model shows a small decrease in deleterious counts for our expanded populations. This
318 suggests that negative selection has purged some diversity from these populations, since otherwise allele
319 counts should remain at constant levels across all populations if only genetic drift is acting and not se-
320 lection (Peischl and Excoffier 2015). However, our empirical DFE inferences only detected minor trends
321 of reduced proportions of sites in the most deleterious class for expanded Swiss and French populations
322 and equivalently support a bimodal-shaped DFE reported in Laenen *et al.* (2018). Whether this reflects
323 true minor differences in the DFEs among these populations, or a lack of proper inferential ability is dif-
324 ficult to know. Comparing genetic load in populations with complex population demographic histories
325 is still challenging (Simons and Sella 2016; Brandvain and Wright 2016), largely because dominance co-
326 efficients are unknown and different DFEs may respond differently to estimation accuracy (Gilbert *et al.*
327 2022) or simply differently to demographic change (Glémén 2003; Balick *et al.* 2015). Other approaches
328 which attempt to directly infer mutational effects require intensive and in-depth analyses, emphasizing
329 the need for improved inference methods or further in-depth investigation to accurately and efficiently
330 identify effect sizes of variants in natural populations and therefore gain a complete picture of the genetic
331 architecture of mutation load. Still, our R'_{xy} analyses provide additional support for our load estimates
332 across populations, showing an accumulation of derived deleterious alleles relative to neutral alleles in
333 all expanded populations relative to Italian populations. Only further along our expansion axis, in Swiss
334 populations, is there some evidence that further accumulation of load is purged due to selfing.

335 The concurrence between our simulated and empirical results gives striking insights into the inter-
336 actions of demographic change due to range expansion with recombination and diversity changes due
337 to self-fertilization. We observe that during the process of range expansion, newly colonized demes are
338 highly subject to drift and founder events, as extensively discussed in previous studies on range expansions
339 (Excoffier *et al.* 2009; Slatkin and Excoffier 2012; Peischl *et al.* 2013, 2015). Furthermore, the added
340 impact of self-fertilization exacerbates losses of heterozygosity at expanding range edges. This benefi-
341 cially allows for the removal of recessive lethal alleles, but such large losses of diversity should otherwise
342 hinder future adaptation. Though our simulations indicate that this loss of diversity can be recovered af-
343 ter the expansion front has passed, when migration and population growth allow for increased efficiency
344 of selection in larger and more diverse populations, as previously described in Gilbert *et al.* (2018). A
345 novel insight from our results is that this recovery is much slower for selfing populations, supporting
346 the widely-held idea that selfing should only be favored at range edges and that outcrossing may replace
347 selfing after a range expansion has occurred. Given the result that our empirical populations still exhibit

348 signatures of genetic load is then equally interesting, since these populations are expected to have had
349 many generations for recovery since they were directly on an expanding edge. The dynamics of when
350 selfing evolves and can be favored across a species range is examined *in silico* by Encinas-Viso *et al.* (2020),
351 showing that unless recombination rates are high enough, outcrossing individuals will outcompete selfing
352 populations once the expansion edge has passed. Whether our sampled alpine populations populations
353 have also began shifting back towards increased outcrossing is currently unknown and an avenue of in-
354 vestigation which will be interesting to pursue in the future.

355 Studying range expansions in plant species offers unique insights into the combination of mating
356 system evolution combined with the evolutionary processes occurring during species range expansions.
357 Previous work in *A. alpina* has also evidenced increased load with high selfing and bottlenecks in Scan-
358 dinavian populations (Laenen *et al.* 2018), however we highlight previously unidentified evidence for
359 purging of strongly deleterious alleles in intermediate to highly selfing continental populations within
360 the French and Swiss Alps, in addition to expansion load still incurred. Our results are also similar to
361 those found in other plant range expansions where selfing is observed at the range edge. Notably, this
362 is the case in *A. alpina*'s close relative *Arabidopsis lyrata* (Willi *et al.* 2018) as well as in *Mercurialis annua*
363 (González-Martínez *et al.* 2017) where expansion load has been indicated. Our study has uniquely also
364 identified signature of purging due to selfing, which is a known expectation from theoretical predictions
365 (Glémén 2003, 2007), but to our knowledge not thoroughly investigated in empirical systems. Future
366 studies could likewise benefit from direct estimates of fitness across the species range, through crosses
367 and common garden studies.

368 Population genetic simulations help us to better understand interactions of effects that are difficult
369 to assess or disentangle in empirical populations. Here, we have only explored a finite parameter space
370 and constrained our simulations to simplified demographic models. Since we were only interested in
371 the eventual signatures resulting from selfing evolution during a range expansion, we modeled the loss
372 of self-incompatibility as a sudden shift in the probability of selfing at one location on the landscape.
373 However, in nature, the shift to self-fertilization is expected to occur gradually over time, e.g. due to a
374 reduction in S-allele diversity (Charlesworth and Charlesworth 1979; Vallejo-Marín and Uyenoyama 2004;
375 Porcher and Lande 2005; Encinas-Viso *et al.* 2020). Even with our sudden evolution of selfing imposed in
376 the middle of the landscape, we expect that the same observed qualitative results of purging strong-effect
377 recessive deleterious alleles and loss of heterozygosity would still occur, just more gradually through
378 time. The intermediate rate of selfing we tested could also be considered an earlier transitional state of
379 a species range expansion on its way to evolving higher selfing rates. In a gradual shift to selfing, initial
380 S-allele diversity would be reduced but outcrossing still frequent, and intermediate selfing rates would
381 be a transient state as populations shift to higher selfing and faster expansion. While we focused on the
382 speed and purging benefits of selfing during a range expansion, we did not address a potential third factor
383 impacting expansions: the necessity to locally adapt to unfamiliar environments. Populations must often
384 adapt to novel or fluctuating environments during expansion, e.g., during glacial cycles (Hewitt 2004)
385 or as soil conditions change over altitude or photoperiod conditions change over latitude. Adaptation
386 requires sufficient genetic variation to match the local environment sufficiently for population growth to
387 be sustainable (Kirkpatrick and Barton 1997; Polechová and Barton 2015). For populations that expand to
388 follow an environment they are already adapted to, this difficulty is less relevant. For example, species
389 expanding post-glaciation are believed to have followed the receding ice sheets as suitable habitat that
390 they were pre-adapted to was slowly revealed. However, it is still likely that some aspect of environmental
391 conditions are always novel as organisms move over space, necessitating some level of adaptation. Our
392 results importantly highlight how the DFE is expected to differ among outcrossed versus selfed expanding
393 populations, creating contrasting genetic architectures within the genome. Such differences in genetic
394 architectures, i.e., few large-effect or many small-effect loci, for adaptive and maladaptive sites along
395 with differing effective recombination rates across selfing rates are likely to interact with adaptation over
396 changing landscapes and result in different adaptive potentials among populations. And in the future, as
397 anthropogenically-induced climate change causes more rapid changes across the landscape, the likelihood
398 of being able to track moving environmental optima is expected to become more difficult, necessitating
399 more rapid adaptation and emphasizing the importance of studying range expansions and shifts and the
400 evolutionary processes involved.

401 Conclusions

402 Range expansions are known to increase genetic drift and fixation of deleterious alleles, reducing fitness
403 as a consequence. Self-fertilization further reduces N_e , which allows for a higher rate of fixation of weaker
404 deleterious mutations compared to outcrossers. However, as predicted by Glémén (2007) this process can
405 also allow for short-term purging. We investigated whether this purging is realized during species range
406 expansions and if selfing can thus be beneficial in this evolutionary context. We described two significant
407 factors in our simulations: first, the purging of lethal alleles is indeed observed in selfing populations, and
408 second, this purging is not sufficient to prevent the fitness loss incurred by expansion load. Weak effect
409 mutations accumulate to a larger extent due to the range expansion, leaving a visible signature in the
410 DFE. Furthermore, in natural populations of *A. alpina*, we see consistent effects of purging as well as load
411 accumulation despite the evolution of selfing. Together, this demonstrates that self-fertilization can alter
412 the signature of genetic load in expanded populations, and identifies purging as an additional benefit of
413 selfing along with reproductive assurance. Future studies in empirical systems will hopefully be able to
414 distinguish expanded outcrossing versus expanded selfing populations to further validate our results, as
415 much remains to be learned of the interaction between mating system evolution and demographic history
416 of populations. Improved understanding of these important processes will be vital for further insight
417 into how natural populations will (or will not) be able to disperse and adapt in the face of global climate
418 change and anthropogenic forces experienced in natural habitats.

419 Material and Methods

420 We conduct simulations of a species range expansion and compare to an empirical dataset from the plant
421 *Arabis alpina* to understand the dynamics of purging and mutation load accumulation in a system where
422 self-fertilization has evolved. To understand whether selfing acts as an evolutionary advantage during
423 expansion by purging deleterious alleles that otherwise accumulate, we focus on tracking genetic load in
424 both simulated and empirical data. Though simplified from reality, our simulations have the important
425 advantage of knowing true fitness and mutational effects within every individual to best understand the
426 dynamics of load accumulation and purging during range expansion.

427 Simulations

428 To simulate a range expansion with a shift in mating system we conducted individual-based, forward time
429 simulations, using a non-Wright-Fisher model in SLiM v3.7.1 (Haller and Messer 2019). We modeled the
430 range expansion across a one-dimensional, linear landscape of 50 demes with a stepping-stone migration
431 model (Figure 1A). Each simulation started with a single initial core deme populated with individuals
432 that then underwent repeated bottlenecks and founder events as they colonized the remaining empty 49
433 demes. The core population was initiated at carrying capacity $K = 5000$, and prior to expanding we ran
434 a burn-in for $4N$ generations. Generations were discrete and non-overlapping, and after the burn-in was
435 complete we opened the landscape for expansion, introducing migration that allowed individuals to move
436 into either adjacent deme. We defined a forward migration rate of $m = 0.05$ per generation and reflecting
437 boundaries at the ends of the landscape in the core and deme 50. All subsequent demes outside the core
438 had a carrying capacity of $K = 200$. Once the last deme reached carrying capacity and 100 additional
439 generations passed, we stopped the simulation.

440 To test the effect of increased self-fertilization during the expansion we conducted a set of obligately
441 outcrossing simulations to serve as a null model for range expansion without the additional impact of uni-
442 parental inbreeding arising from selfing. We then compared to three different simulated scenarios where
443 selfing begins halfway through the expansion, in deme 25. In demes 25 – 50 of these selfing simulations,
444 we set the self-fertilization rate σ to either 0.5, 0.95, or 1. We replicated every parameter combination 20
445 times for a total of 80 simulations across all three selfing rates and the obligate outcrossers. In a given
446 deme, individuals to be selfed were chosen with probability σ each generation. We modeled logistic
447 population growth with a Beverton-Holt model, where the expected number of total offspring per deme
448 for the next generation is given by $N_{t+1} = \frac{RN_t}{1+N_t/M}$, where $M = \frac{K}{R-1}$, growth rate $R = 1.2$, N_t is the deme's
449 census size in the current generation t , and K is the carrying capacity of the focal deme. For each parent,

450 we expected less fit individuals to produce fewer offspring and thus implemented a fecundity selection
451 model, where the expected number of offspring for individual i is approximately Poisson distributed
452 (Peischl *et al.* 2015).

453 Each individual was modeled as a diploid genome consisting of 1×10^7 base pairs (bp) with a recom-
454 bination rate of 1×10^{-8} per bp per generation. We simulated neutral, beneficial, deleterious, and lethal
455 mutations at a per base pair mutation rate of 7×10^{-8} per generation occurring at relative proportions
456 of 0.25, 0.001, 0.649 and 0.1, respectively. For deleterious and beneficial mutations, selection coefficients
457 were drawn from an exponential function with mean -0.001 or 0.01, respectively, and lethal alleles had a
458 selection coefficient of -1. Dominance coefficients were set to $h = 0.3$ for beneficial and deleterious alleles,
459 and 0.02 for lethal mutations. Individual fitness in SLiM is calculated multiplicatively across all mutations
460 an individual possesses, as drawn from these distributions for effect size and dominance coefficient. In
461 a supplementary set of simulations we tested for the effect of full additivity using $h = 0.5$ for non-lethal
462 mutations. These simulated parameters for the distribution of selection and dominance coefficients reflect
463 partial dominance of deleterious alleles and more recessive lethal alleles, as described in the literature
464 for the current best knowledge of mutational distributions in nature (Keightley 1994; Eyre-Walker and
465 Keightley 2007; Halligan and Keightley 2009; Agrawal and Whitlock 2011).

466 We recorded fitness and calculated summary statistics during the expansion to track the impact of de-
467 mographic change in combination with selfing rates. In every deme we measured nucleotide diversity for
468 neutral variants, π , mean observed heterozygosity along the genome, H , counts of lethal and deleterious
469 alleles and recorded mean fitness, \bar{w} , every five generations. This allowed us to compare changes in fitness
470 and allele counts over time, contrasting them with the same statistic 100 generation in the past. We also
471 examined changes in these summary statistics in specific locations across the landscape during and after
472 the expansion had completed: the core (deme 1), the deme prior to the mating shift (deme 24), the deme
473 ten demes past the facultative mating shift (deme 35, to avoid effects of migration from outcrossers), and
474 the end of the landscape (deme 50). We characterized the composition of load in core and edge popula-
475 tions after the expansion by examining the realized distribution of selection coefficients. To do this, we
476 categorized selection coefficients in four discrete bins ($s \in \{(0.0001, 0), (0.001, 0.0001], (1, 0.001], -1\}$). To
477 further characterize load, we calculated the proportion of fixed deleterious alleles, and applied models
478 often used to compare approximated genetic load in empirical populations (Simons and Sella 2016) to our
479 simulated data: we estimated additive load by counting the total number of deleterious alleles per indi-
480 vidual, assuming $h = 0.5$, and recessive load by counting the total number of homozygous deleterious
481 loci per individual, assuming $h = 0$. We then compared these values with realized fitness, all of which are
482 known for the simulations.

483 *Arabis alpina* dataset

484 We compared our theoretical results to an empirical dataset of *Arabis alpina* by combining publicly avail-
485 able data (Laenen *et al.* 2018; Rogivue *et al.* 2019) with newly sampled and sequenced genomes. Our
486 dataset focused on sampling four regions with four populations each, consisting of 15-18 individuals. One
487 exception is northern Italy where two nearby populations (Ca & Gf) of 8 individuals each contributed to
488 five total populations from the region. Sampling spans the range expansion from southern Italy north
489 into the French and Swiss Alps and capturing the transition in mating system from outcrossing to self-
490 ing. We collected leaf tissue on silica gel from 198 wild *A. alpina* plants in the Apennine Mountains in
491 central Italy, the Apuan Alps in northern Italy, and the western Alps in France during the summer of
492 June 2021. We extracted DNA with the Qiagen DNeasy Plant Mini Kit (Qiagen, Inc., Valencia, CA, USA)
493 and constructed libraries using Illumina TruSeq DNA PCR-Free (Illumina, San Diego, CA, USA) or Il-
494 lumina DNA Prep, and sequenced on a Illumina NovaSeq 6000 (paired-end). All sampled individuals
495 are described in more detail in Supplementary Table 1 and are available publicly at NCBI SRA acces-
496 sion PRJNA773763. We combined this dataset with previously published *A. alpina* short-read genomes
497 of 306 individuals sampled from Switzerland (Rogivue *et al.* 2019) and 36 sampled widely across Europe
498 (Laenen *et al.* 2018). For quality control of the reads, we used FastQC (<http://www.bioinformatics.babraham.ac.uk/projects/fastqc>) and MultiQC (Ewels *et al.* 2016). We trimmed reads using trimmo-
500 tatic 0.39 (Bolger *et al.* 2014) and aligned them to the *A. alpina* reference genome (Jiao *et al.* (2017), version
501 5.1, <http://www.arabis-alpina.org/refseq.html>) using bwa mem 0.7.17 (Li and Durbin 2009). We cal-

502 culated coverage for the whole dataset with mosdepth (Pedersen and Quinlan 2018), averaging at 13.98
503 (18.61 for new samples, Supplementary Table 1). We called variant and invariant sites using freebayes
504 1.3.2 (Garrison and Marth 2012). Additional filters were applied in bcftools (Danecek *et al.* 2021), retaining
505 only sites with a maximum missing fraction of 0.2, and removing any variant sites with estimated proba-
506 bility of not being polymorphic less than phred 20 (QUAL>=20). Finally, we removed 13 individuals with
507 greater than 30% missing calls or low coverage (Br22, Br06, Cc05, St15, Am01, Br18, Br24, Ma28, Pa9, Pi9,
508 Pi95, Pi40, Ma97). The final dataset combined had 3,179,432 SNPs, with 43,268,666 invariant sites for 527
509 individuals from 31 populations, which includes 191 individuals of the 17 newly sampled populations in
510 the Italy-Alps expansion zone.

511 Population genetic analyses

512 We inferred the ancestral state of alleles using the close relative of *A. alpina*, *Arabis montbretiana*, by align-
513 ing the reference sequences of *A. alpina* with *A. montbretiana* (Madrid *et al.* 2021) using last (Kiełbasa
514 *et al.* 2011). To confirm that our samples from across Europe matched the expected population structuring
515 based on known demographic history, we ran admixture v1.3.0 (Alexander *et al.* 2009) from $K = 2$ to
516 $K = 15$ on the full sample set but with SNPs pruned for LD using bcftools +prune (Danecek *et al.* 2021,
517 R^2 cutoff 0.3 in a window of 1000 sites). We calculated nucleotide diversity per population in 1Mbp win-
518 dows using pixy (Korunes and Samuk 2021, version 1.2.6.beta1, 10.5281/zenodo.6032358) and inbreeding
519 coefficients for each individual with ngsF (6 iterations, Vieira *et al.* 2013). To format the input file for ngsF,
520 we randomly sampled 100,000 biallelic SNPs and extracted genotype likelihoods using bcftools (Danecek
521 *et al.* 2021).

522 To calculate putative genetic load, we first predicted derived, deleterious alleles with SNPeff (Cin-
523 golani *et al.* 2012). SNPeff estimates how deleterious a variant may be based on whether its mutation
524 causes an amino acid change, at varying levels of importance (Cingolani *et al.* 2012). We used the cat-
525 egories "nonsense" and "missense" as the definition for deleterious mutations from SNPeff, "none" and
526 "silent" annotations were used as neutral predictions and "LOF" annotations as loss-of-function mutations
527 ("LoF") after running the program with the -formatEff option. Using these annotations, we calculated
528 R'_{xy} as described in Do *et al.* (2015) with R_{xy} for derived allele counts of LoF or deleterious sites over
529 $R'_{xy}^{\text{normalization}}$ for neutral sites to avoid reference bias. Further, we estimated jackknife confidence inter-
530 vals using pseudo values from 100 contiguous blocks and assuming normal distributed values. We also
531 estimated genetic load from SNPeff predictions, using the same recessive and additive models as in the
532 simulations, by counting either the total number of deleterious loci or derived alleles at deleterious sites.
533 Finally, we estimated the empirical DFE for every population using fitdadi (Kim *et al.* 2017) in 100 repli-
534 cated runs (see Figures S5, S8 for supplementary methods and results).

535 Data and code availability

536 Statistical analyses were conducted in R v.4.1.3 (R Core Team 2018), unless otherwise specified. Genetic
537 data is archived at NCBI SRA (accession PRJNA773763). Code and simulation output is available on
538 GitHub (https://github.com/LZeitler/selfing_expansion).

539 Acknowledgments

540 We thank Drs. Marco Andrello, Michele Di Musciano, Marta Binaghi, Paola Morini, Marco Caccianiga,
541 Alessandro Alessandrini, Rodolfo Gentili, and Enzo Bona for essential help in finding wild populations
542 of *A. alpina* to sample in Italy and France. We thank Dr. Pamela Nicholson and the team at the Bern NGS
543 Platform for sequencing and troubleshooting help as well as Ryan Gutenkunst for help troubleshooting
544 the dadi analyses. We thank Stephan Peischl for useful feedback on the manuscript and Xuejing Wang
545 for statistical advice. This research was funded by Swiss National Science Foundation Ambizione grant
546 #PZ00P3_185952 to KJG.

547 Author Contributions

548 LZ contributed to further developing the study's idea, designed, wrote, and ran the simulations, led the
549 empirical analyses, participated in sample collection and DNA extractions, and wrote the manuscript.
550 CP contributed to further developing the study's idea and to editing the manuscript. KJG conceived the
551 original idea for the study, coordinated the study, contributed to designing the simulations, participated
552 in sample collection and DNA extractions, and contributed to writing and editing the manuscript.

553 References

554 Agrawal, A. F. and M. C. Whitlock, 2011 Inferences About the Distribution of Dominance Drawn From
555 Yeast Gene Knockout Data. *Genetics* **187**: 553–566.

556 Alexander, D. H., J. Novembre, and K. Lange, 2009 Fast model-based estimation of ancestry in unrelated
557 individuals. *Genome Research* **19**: 1655–1664.

558 Ansell, S. W., M. Grundmann, S. J. Russell, H. Schneider, and J. C. Vogel, 2008 Genetic discontinuity,
559 breeding-system change and population history of *Arabis alpina* in the Italian Peninsula and adjacent
560 Alps. *Molecular Ecology* **17**: 2245–2257.

561 Arunkumar, R., R. W. Ness, S. I. Wright, and S. C. H. Barrett, 2015 The Evolution of Selfing Is Accompanied
562 by Reduced Efficacy of Selection and Purging of Deleterious Mutations. *Genetics* **199**: 817–829.

563 Baker, H. G., 1967 Support for Baker's Law-As a Rule. *Evolution* **21**: 853–856.

564 Balick, D. J., R. Do, C. A. Cassa, D. Reich, and S. R. Sunyaev, 2015 Dominance of Deleterious Alleles
565 Controls the Response to a Population Bottleneck. *PLOS Genetics* **11**: e1005436.

566 Barrett, S. C. H., 2002 The evolution of plant sexual diversity. *Nature Reviews Genetics* **3**: 274–284.

567 Barrett, S. C. H., 2013 IV.8. Evolution of Mating Systems: Outcrossing versus Selfing. In *IV.8. Evolution of
568 Mating Systems: Outcrossing versus Selfing*, pp. 356–362, Princeton University Press.

569 Barrett, S. C. H., R. Arunkumar, and S. I. Wright, 2014 The demography and population genomics of
570 evolutionary transitions to self-fertilization in plants. *Philosophical Transactions of the Royal Society B:
571 Biological Sciences* **369**: 20130344.

572 Bataillon, T. and M. Kirkpatrick, 2000 Inbreeding depression due to mildly deleterious mutations in finite
573 populations: Size does matter. *Genetics Research* **75**: 75–81.

574 Bolger, A. M., M. Lohse, and B. Usadel, 2014 Trimmomatic: A flexible trimmer for Illumina sequence data.
575 *Bioinformatics* **30**: 2114–2120.

576 Bosshard, L., I. Dupanloup, O. Tenaillon, R. Bruggmann, M. Ackermann, *et al.*, 2017 Accumulation of
577 Deleterious Mutations During Bacterial Range Expansions. *Genetics* **207**: 669–684.

578 Brandvain, Y. and S. I. Wright, 2016 The Limits of Natural Selection in a Nonequilibrium World. *Trends in
579 Genetics* **32**: 201–210.

580 Buehler, D., R. Graf, R. Holderegger, and F. Gugerli, 2012 Contemporary gene flow and mating system of
581 *Arabis alpina* in a Central European alpine landscape. *Annals of Botany* **109**: 1359–1367.

582 Burton, O. J. and J. M. J. Travis, 2008 The frequency of fitness peak shifts is increased at expanding range
583 margins due to mutation surfing. *Genetics* **179**: 941–950.

584 Caballero, A., 1994 Developments in the prediction of effective population size. *Heredity* **73**: 657–679.

585 Charlesworth, B., 1992 Evolutionary rates in partially self-fertilizing species. *The American Naturalist* **140**:
586 126–148.

587 Charlesworth, D. and B. Charlesworth, 1979 The evolution and breakdown of S-allele systems. *Heredity* **43**: 41–55.

588 Charlesworth, D. and B. Charlesworth, 1987 Inbreeding Depression and its Evolutionary Consequences.
589 *Annual Review of Ecology and Systematics* **18**: 237–268.

590 Cingolani, P., A. Platts, L. L. Wang, M. Coon, T. Nguyen, *et al.*, 2012 A program for annotating and pre-
591 dicting the effects of single nucleotide polymorphisms, SnpEff. *Fly* **6**: 80–92.

592 Courchamp, F., T. Clutton-Brock, and B. Grenfell, 1999 Inverse density dependence and the Allee effect.
593 *Trends in Ecology & Evolution* **14**: 405–410.

594 Danecek, P., J. K. Bonfield, J. Liddle, J. Marshall, V. Ohan, *et al.*, 2021 Twelve years of SAMtools and
595 BCFtools. *GigaScience* **10**: giab008.

597 Davis, M. B. and R. G. Shaw, 2001 Range Shifts and Adaptive Responses to Quaternary Climate Change. Science **292**: 673–679.

598 Dennis, B., 1989 Allee effects: Population growth, critical density, and the chance of extinction. Natural Resource Modeling **3**: 481–538.

601 Do, R., D. Balick, H. Li, I. Adzhubei, S. Sunyaev, *et al.*, 2015 No evidence that selection has been less effective at removing deleterious mutations in Europeans than in Africans. Nature Genetics **47**: 126–131.

604 Edmonds, C. A., A. S. Lillie, and L. L. Cavalli-Sforza, 2004 Mutations arising in the wave front of an expanding population. Proceedings of the National Academy of Sciences **101**: 975–979.

606 Encinas-Viso, F., A. G. Young, and J. R. Pannell, 2020 The loss of self-incompatibility in a range expansion. Journal of Evolutionary Biology **33**: 1235–1244.

608 Eriksson, M. and M. Rafajlović, 2021 The Effect of the Recombination Rate between Adaptive Loci on the Capacity of a Population to Expand Its Range. The American Naturalist **197**: 526–542.

610 Ewels, P., M. Magnusson, S. Lundin, and M. Käller, 2016 MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics **32**: 3047–3048.

612 Excoffier, L., M. Foll, and R. J. Petit, 2009 Genetic Consequences of Range Expansions. Annual Review of Ecology, Evolution, and Systematics **40**: 481–501.

614 Eyre-Walker, A. and P. D. Keightley, 2007 The distribution of fitness effects of new mutations. Nature Reviews Genetics **8**: 610–618.

616 Garrison, E. and G. Marth, 2012 Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907 [q-bio].

618 Gilbert, K. J., S. Peischl, and L. Excoffier, 2018 Mutation load dynamics during environmentally-driven range shifts. PLOS Genetics **14**: e1007450.

620 Gilbert, K. J., N. P. Sharp, A. L. Angert, G. L. Conte, J. A. Draghi, *et al.*, 2017 Local Adaptation Interacts with Expansion Load during Range Expansion: Maladaptation Reduces Expansion Load. The American Naturalist **189**: 368–380.

622 Gilbert, K. J., S. Zdraljevic, D. E. Cook, A. D. Cutter, E. C. Andersen, *et al.*, 2022 The distribution of mutational effects on fitness in *Caenorhabditis elegans* inferred from standing genetic variation. Genetics **220**: iyab166.

624 Glémin, S., 2003 How Are Deleterious Mutations Purged? Drift Versus Nonrandom Mating. Evolution **57**: 2678–2687.

626 Glémin, S., 2007 Mating Systems and the Efficacy of Selection at the Molecular Level. Genetics **177**: 905–916.

630 González-Martínez, S. C., K. Ridout, and J. R. Pannell, 2017 Range Expansion Compromises Adaptive Evolution in an Outcrossing Plant. Current Biology **27**: 2544–2551.e4.

632 Goodwillie, C., S. Kalisz, and C. G. Eckert, 2005 The Evolutionary Enigma of Mixed Mating Systems in Plants: Occurrence, Theoretical Explanations, and Empirical Evidence. Annual Review of Ecology, Evolution, and Systematics **36**: 47–79.

635 Hallatschek, O. and D. R. Nelson, 2008 Gene surfing in expanding populations. Theoretical Population Biology **73**: 158–170.

637 Hallatschek, O. and D. R. Nelson, 2010 Life at the Front of an Expanding Population. Evolution **64**: 193–206.

639 Haller, B. C. and P. W. Messer, 2019 SLiM 3: Forward Genetic Simulations Beyond the Wright–Fisher Model. Molecular Biology and Evolution **36**: 632–637.

641 Halligan, D. L. and P. D. Keightley, 2009 Spontaneous Mutation Accumulation Studies in Evolutionary Genetics. Annual Review of Ecology, Evolution, and Systematics **40**: 151–172.

643 Hedrick, P. W., 2002 Lethals in Finite Populations. Evolution **56**: 654–657.

644 Henn, B. M., L. R. Botigué, C. D. Bustamante, A. G. Clark, and S. Gravel, 2015 Estimating the mutation load in human genomes. Nature Reviews Genetics **16**: 333–343.

646 Henn, B. M., L. R. Botigué, S. Peischl, I. Dupanloup, M. Lipatov, *et al.*, 2016 Distance from sub-Saharan Africa predicts mutational load in diverse human genomes. Proceedings of the National Academy of Sciences **113**: E440–E449.

649 Hewitt, G. M., 2004 Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences **359**: 183–195.

651 Igic, B. and J. W. Busch, 2013 Is self-fertilization an evolutionary dead end? *New Phytologist* **198**: 386–397.
652 Jiao, W.-B., G. G. Accinelli, B. Hartwig, C. Kiefer, D. Baker, *et al.*, 2017 Improving and correcting the con-
653 tinuity of long-read genome assemblies of three plant species using optical mapping and chromosome
654 conformation capture data. *Genome Research* **27**: 778–786.
655 Keightley, P. D., 1994 The distribution of mutation effects on viability in *Drosophila melanogaster*. *Genetics*
656 **138**: 1315–1322.
657 Kiełbasa, S. M., R. Wan, K. Sato, P. Horton, and M. C. Frith, 2011 Adaptive seeds tame genomic sequence
658 comparison. *Genome Research* **21**: 487–493.
659 Kim, B. Y., C. D. Huber, and K. E. Lohmueller, 2017 Inference of the Distribution of Selection Coefficients
660 for New Nonsynonymous Mutations Using Large Samples. *Genetics* **206**: 345–361.
661 Kirkpatrick, M. and N. H. Barton, 1997 Evolution of a Species' Range. *The American Naturalist* **150**: 1–23.
662 Kirkpatrick, M. and P. Jarne, 2000 The Effects of a Bottleneck on Inbreeding Depression and the Genetic
663 Load. *The American Naturalist* **155**: 154–167.
664 Klopstein, S., M. Currat, and L. Excoffier, 2006 The Fate of Mutations Surfing on the Wave of a Range
665 Expansion. *Molecular Biology and Evolution* **23**: 482–490.
666 Korunes, K. L. and K. Samuk, 2021 Pixy: Unbiased estimation of nucleotide diversity and divergence in
667 the presence of missing data. *Molecular Ecology Resources* **21**: 1359–1368.
668 Laenen, B., A. Tedder, M. D. Nowak, P. Toräng, J. Wunder, *et al.*, 2018 Demography and mating sys-
669 tem shape the genome-wide impact of purifying selection in *Arabis alpina*. *Proceedings of the National
670 Academy of Sciences* **115**: 816–821.
671 Li, H. and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler transform.
672 *Bioinformatics* (Oxford, England) **25**: 1754–1760.
673 Lloyd, D. G. and D. J. Schoen, 1992 Self- and Cross-Fertilization in Plants. I. Functional Dimensions. *Inter-
674 national Journal of Plant Sciences* **153**: 358–369.
675 Lynch, M., J. Conery, and R. Bürger, 1995 Mutational Meltdowns in Sexual Populations. *Evolution* **49**:
676 1067–1080.
677 Madrid, E., E. Severing, E. de Ansorena, C. Kiefer, L. Brand, *et al.*, 2021 Transposition and duplication of
678 MADS-domain transcription factor genes in annual and perennial *Arabis* species modulates flowering.
679 *Proceedings of the National Academy of Sciences* **118**: e2109204118.
680 Moeller, D. A., M. A. Geber, V. M. Eckhart, and P. Tiffin, 2012 Reduced pollinator service and elevated
681 pollen limitation at the geographic range limit of an annual plant. *Ecology* **93**: 1036–1048.
682 Ohta, T. and C. C. Cockerham, 1974 Detrimental genes with partial selfing and effects on a neutral locus*.
683 *Genetics Research* **23**: 191–200.
684 Pannell, J. R. and S. C. H. Barrett, 1998 Baker's Law Revisited: Reproductive Assurance in a Metapopula-
685 tion. *Evolution* **52**: 657–668.
686 Parmesan, C., 2006 Ecological and Evolutionary Responses to Recent Climate Change. *Annual Review of
687 Ecology, Evolution, and Systematics* **37**: 637–669.
688 Pedersen, B. S. and A. R. Quinlan, 2018 Mosdepth: Quick coverage calculation for genomes and exomes.
689 *Bioinformatics* **34**: 867–868.
690 Peischl, S., I. Dupanloup, A. Foucal, M. Jomphe, V. Bruat, *et al.*, 2018 Relaxed Selection During a Recent
691 Human Expansion. *Genetics* **208**: 763–777.
692 Peischl, S., I. Dupanloup, M. Kirkpatrick, and L. Excoffier, 2013 On the accumulation of deleterious muta-
693 tions during range expansions. *Molecular Ecology* **22**: 5972–5982.
694 Peischl, S. and L. Excoffier, 2015 Expansion load: Recessive mutations and the role of standing genetic
695 variation. *Molecular Ecology* **24**: 2084–2094.
696 Peischl, S., M. Kirkpatrick, and L. Excoffier, 2015 Expansion Load and the Evolutionary Dynamics of a
697 Species Range. *The American Naturalist* **185**: E81–E93.
698 Polechová, J. and N. H. Barton, 2015 Limits to adaptation along environmental gradients. *Proceedings of
699 the National Academy of Sciences* **112**: 6401–6406.
700 Porcher, E. and R. Lande, 2005 Loss of Gametophytic Self-Incompatibility with Evolution of Inbreeding
701 Depression. *Evolution* **59**: 46–60.
702 Pujol, B., S.-R. Zhou, J. Sanchez Vilas, and J. R. Pannell, 2009 Reduced inbreeding depression after species
703 range expansion. *Proceedings of the National Academy of Sciences* **106**: 15379–15383.
704 R Core Team, 2018 R: A Language and Environment for Statistical Computing. R Foundation for Statistical

705 Computing.

706 Reusch, T. B. H., 2001 Fitness-consequences of geitonogamous selfing in a clonal marine angiosperm
(Zostera marina). *Journal of Evolutionary Biology* **14**: 129–138.

707 Rogivue, A., R. R. Choudhury, S. Zoller, S. Joost, F. Felber, *et al.*, 2019 Genome-wide variation in nucleotides
708 and retrotransposons in alpine populations of *Arabis alpina* (Brassicaceae). *Molecular Ecology Resources*
709 **19**: 773–787.

710 Simons, Y. B. and G. Sella, 2016 The impact of recent population history on the deleterious mutation load
711 in humans and close evolutionary relatives. *Current Opinion in Genetics & Development* **41**: 150–158.

712 Slatkin, M. and L. Excoffier, 2012 Serial Founder Effects During Range Expansion: A Spatial Analog of
713 Genetic Drift. *Genetics* **191**: 171–181.

714 Stephens, P. A. and W. J. Sutherland, 1999 Consequences of the Allee effect for behaviour, ecology and
715 conservation. *Trends in Ecology & Evolution* **14**: 401–405.

716 Tedder, A., S. Carleial, M. Gołębiewska, C. Kappel, K. K. Shimizu, *et al.*, 2015 Evolution of the selfing
717 syndrome in *Arabis alpina* (Brassicaceae). *PLOS ONE* **10**: e0126618.

718 Vallejo-Marín, M. and M. K. Uyenoyama, 2004 On the Evolutionary Costs of Self-Incompatibility: Incom-
719 plete Reproductive Compensation Due to Pollen Limitation. *Evolution* **58**: 1924–1935.

720 Vieira, F. G., M. Fumagalli, A. Albrechtsen, and R. Nielsen, 2013 Estimating inbreeding coefficients from
721 NGS data: Impact on genotype calling and allele frequency estimation. *Genome Research* **23**: 1852–1861.

722 Wang, J., W. G. Hill, D. Charlesworth, and B. Charlesworth, 1999 Dynamics of inbreeding depression
723 due to deleterious mutations in small populations: Mutation parameters and inbreeding rate. *Genetical
724 Research* **74**: 165–178.

725 Willi, Y., M. Fracassetti, S. Zoller, and J. Van Buskirk, 2018 Accumulation of Mutational Load at the Edges
726 of a Species Range. *Molecular Biology and Evolution* **35**: 781–791.

727 Willis, J. H., 1999 The Role of Genes of Large Effect on Inbreeding Depression in *Mimulus guttatus*. *Evolu-
728 tion* **53**: 1678–1691.

729 Wright, S., 1931 Evolution in mendelian populations. *Genetics* **16**: 97.

730

731

Supplementary

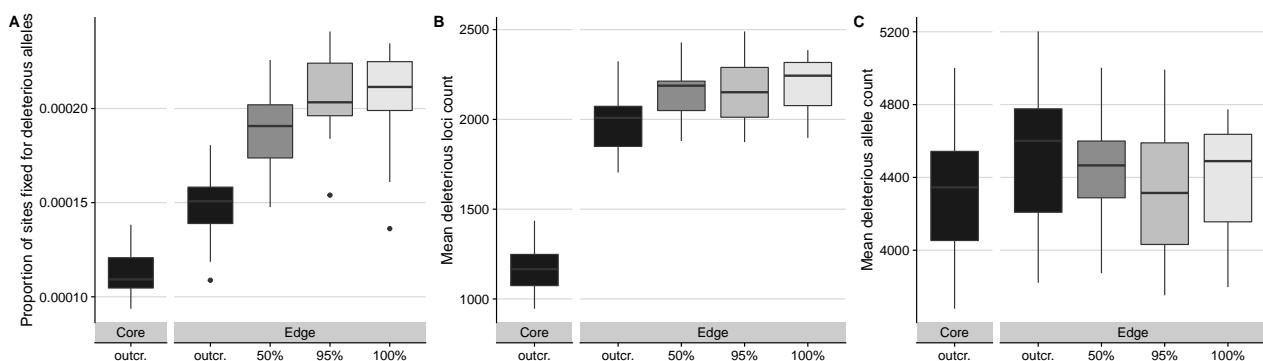


Figure S1: The proportion of sites fixed for deleterious alleles (A), the mean counts of deleterious loci (B), and the mean counts of deleterious alleles (C), all assessed at the end of the simulations for core and edge populations across selfing rates. Whiskers indicate the 1.5 interquartile range.

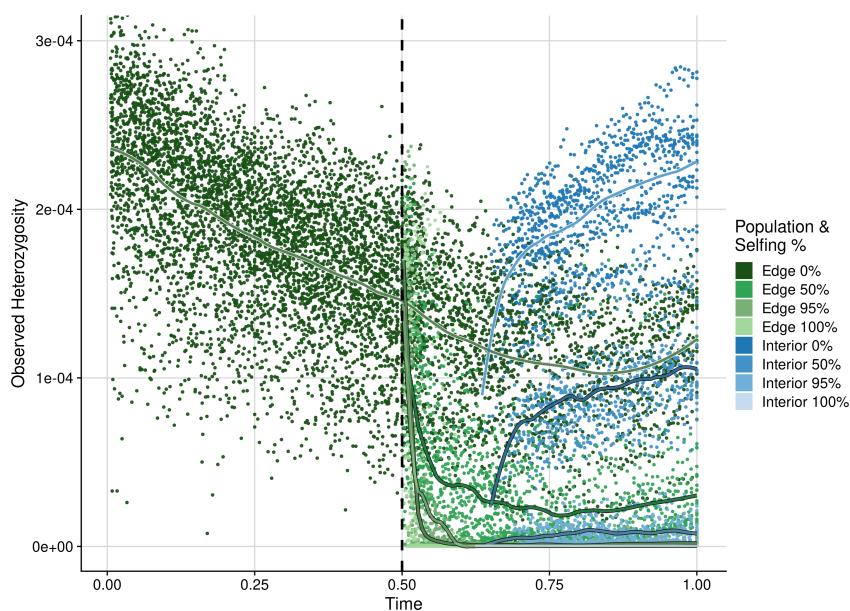


Figure S2: Trajectories for the mean observed heterozygosity over relative time, as described in Figure 2A, but now including all simulated selfing rates.

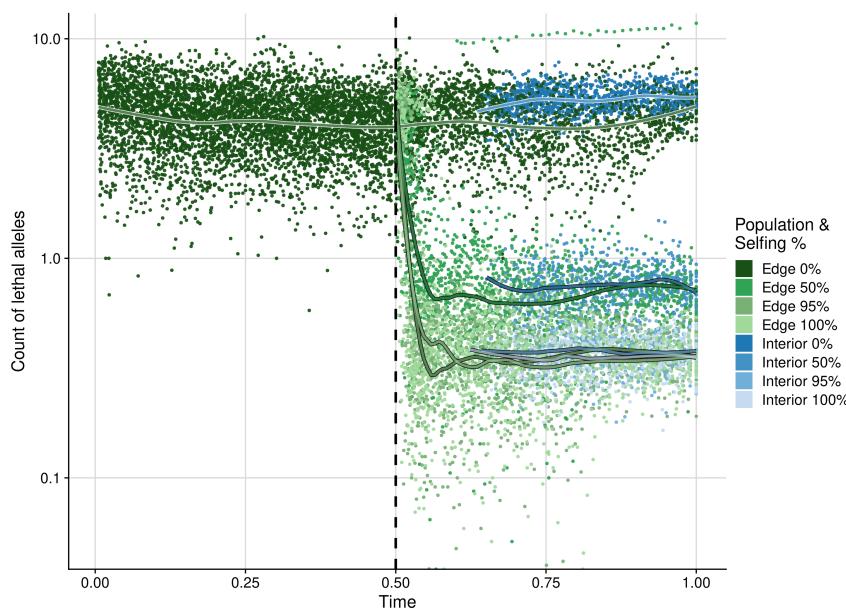


Figure S3: Trajectories for the mean count of lethal alleles over relative time, as described in Figure 2B, but now including all simulated selfing rates.

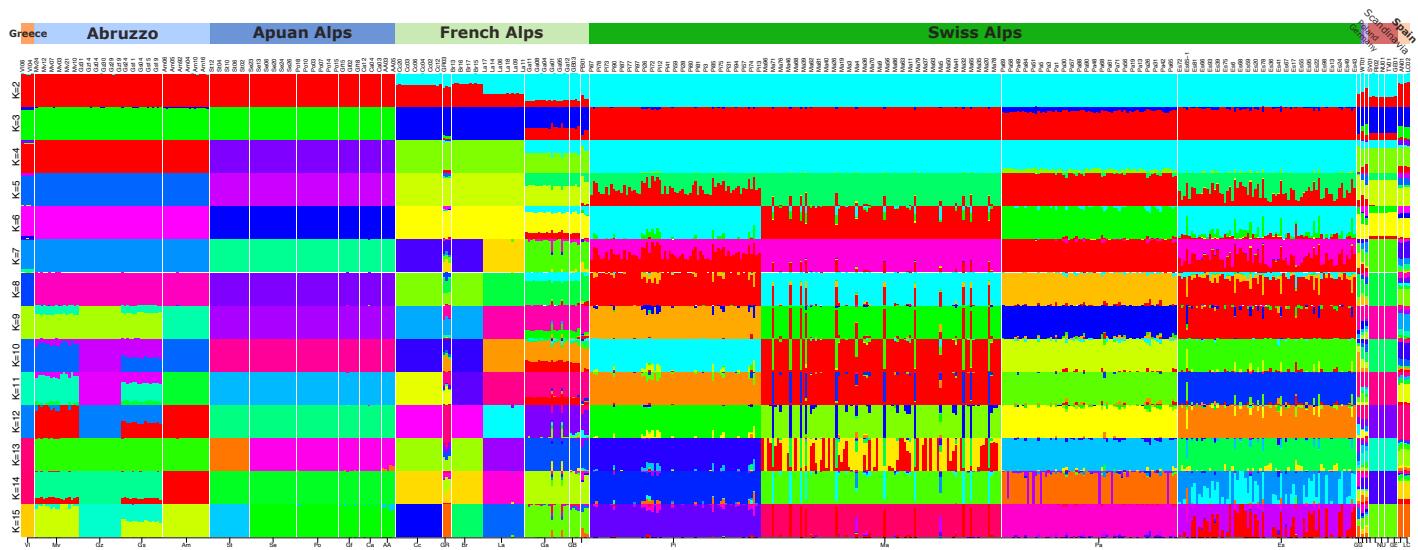


Figure S4: Results from $K = 2$ to $K = 15$ from admixture analyses run on the combined empirical dataset across Europe. The lowest CV error is for $K = 14$, however it is most useful to compare the populations structure across values of K to see how well this matches known geography and demographic history of the populations. We observe clean distinctions among our geographic regions sampled (indicated above the bar plots), with evidence for some gene flow across geographic space as one observes higher K values.

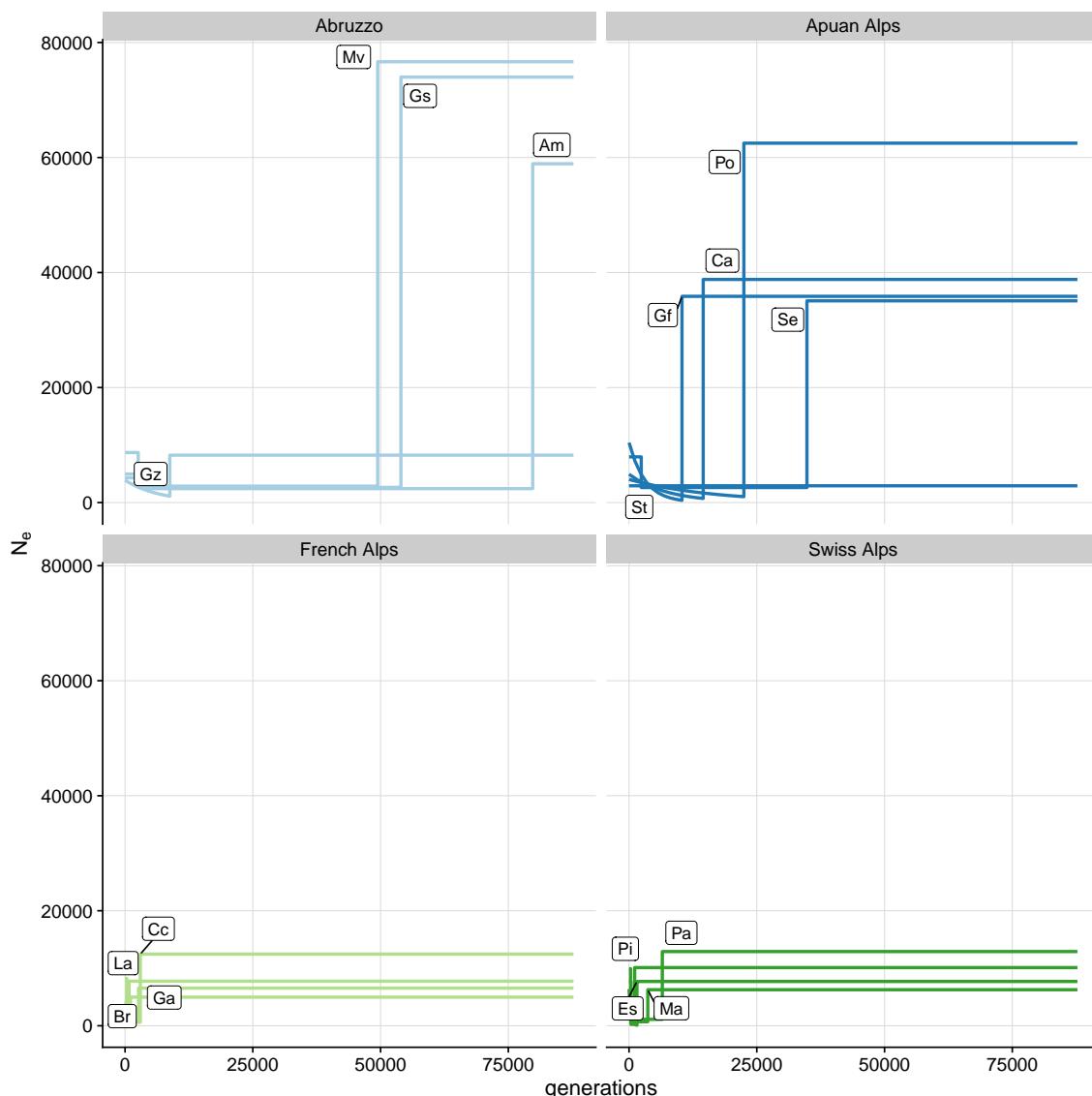


Figure S5: We inferred the demographic history of each of our newly sampled populations of *A. alpina* along with the densely sampled Swiss populations using *dadi*. This is a necessary step to account for the demography when inferring the DFE with *fitdadi*. This also allowed us to confirm if this newly inferred demographic history is consistent with past studies in *A. alpina*. The best-fitting models for our populations, based on AIC, were "bottlegrowth" models, indicating a past bottleneck followed by exponential growth (Es, Ca, Gf, Gz, Po), three epoch models, indicating a bottleneck followed by a sudden size change (Pa, Pi, Ma, Am, Br, Cc, Ga, Gs, La, Mv, Se), and the standard neutral model (St). Populations St and Gz were the only instances where competing models fitted approximately equally well (see Supplementary Table 2), therefore results for these populations should be interpreted with caution. With the exception of Es, all Alpine populations best fit to three epoch models. Central Italian populations (light blue) show the most historic bottlenecks and the largest ancestral population sizes. This is consistent with this region of highly outcrossing plants being subject to the last glacial maximum. Northern Italian populations (dark blue) show more recent bottlenecks and reduced ancestral sizes relative to central Italy, potentially reflecting their expansion northward. French and Swiss Alpine populations both showed the most recent bottlenecks and the smallest historic population sizes, consistent with both their shift to selfing and their more recent range expansion. Depleted genetic diversity along the axis of an expanding species range is expected (Pujol *et al.* 2009; Peischl *et al.* 2013, 2015), as is decreased N_e due to inbreeding and thus loss of diversity (Keller and Waller 2002; Charlesworth and Willis 2009). These demographic inferences thus match our understanding of both the mating system shift and the range expansion that these populations experienced.

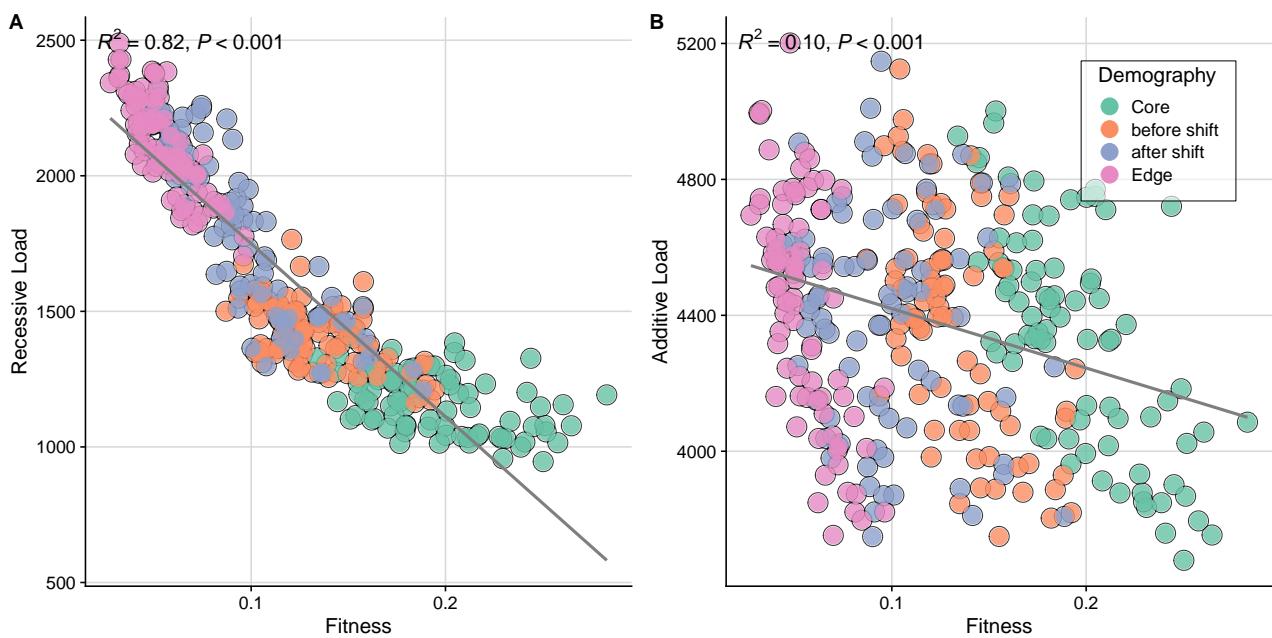


Figure S6: Observed (known) mean fitness from simulations for core (green), interior (orange, purple) and edge (pink) demes compared to the inverse of the count of deleterious loci (A), both after the range expansion is complete. The count of deleterious loci serves as a model for recessive load, which we find best correlates to fitness, compared to the additive model (B), where load is predicted by counting alleles. Results are for simulations with $h = 0.3$ for non-lethal deleterious mutations.

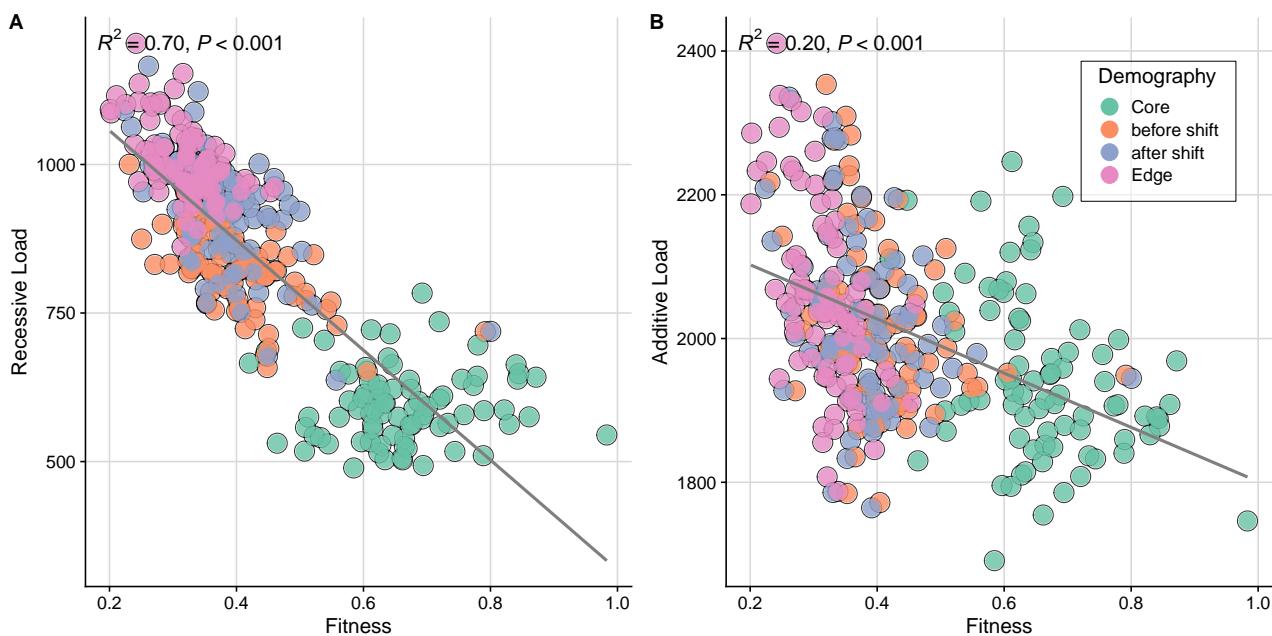


Figure S7: Recessive (A) and additive (B) genetic load compared with known simulated fitness to infer load when all non-lethal deleterious mutations are perfectly additive ($h = 0.5$). Data is from a supplementary set of simulations with these dominance parameters. This repeats the same analyses as Figure S6, except now for simulations with additive mutations. This result again finds that the recessive model predicts load better ($R^2 = 0.70, P < 0.001$) than the additive model ($R^2 = 0.20, P < 0.001$).

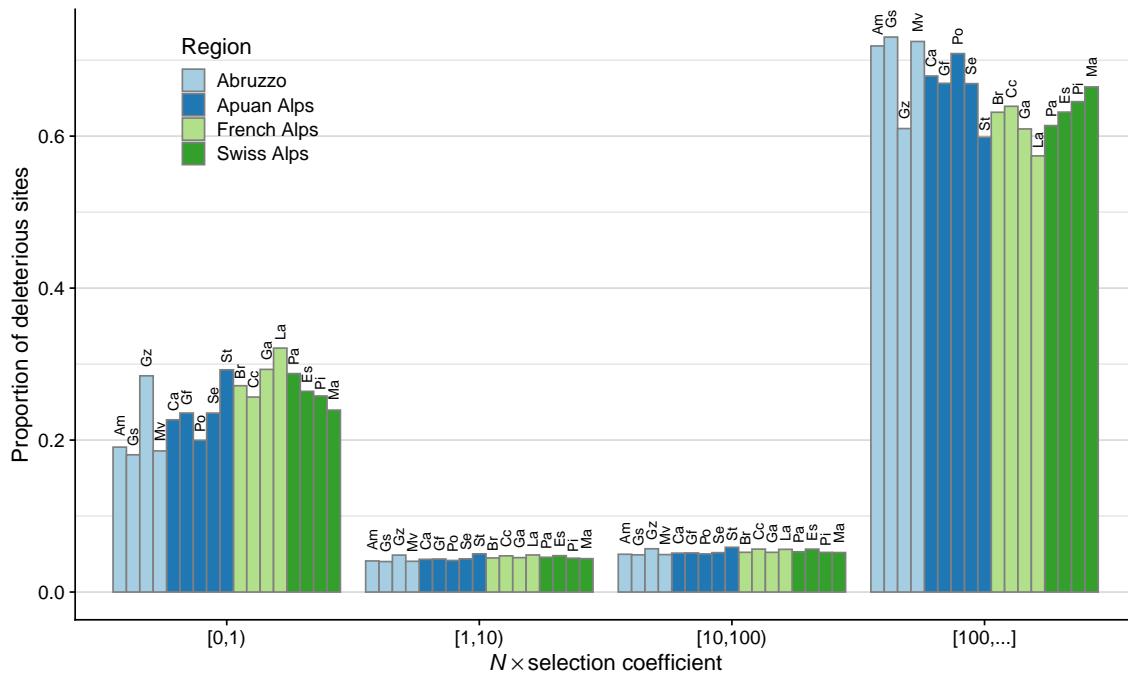


Figure S8: We inferred the DFE of each *A. alpina* population in the Italy-Alps expansion zone using `fitdadi` (Kim *et al.* 2017) from `dadi` (Gutenkunst *et al.* (2009) in python 3.8.12. We used the SNPeff annotation to construct polarized site-frequency spectra for neutral and deleterious sites after subsampling to a maximum population size of 20 individuals. To estimate demographic parameters, we tested the default single population demographic models (standard neutral model, two-epoch, growth, bottleneck, three-epoch) and two models accounting for inbreeding (standard neutral with inbreeding, two-epoch with inbreeding). We assumed a per base pair mutation rate of $\mu = 7 \times 10^{-9}$ per generation, ran the default optimization for 100 replicates, and selected the best fit parameters within each demographic model based on likelihood and the best fit demographic model based on AIC. For `fitdadi`, we additionally assumed $L_{ns}/L_s = 2.85$, dominance coefficient $h = 0.3$ and estimated the DFE for each model in 100 optimizations. We then chose the best-fit DFE optimization based on likelihood for each population for the previously chosen demographic model.

DFE results from *A. alpina* populations across the Italian-Alpine range expansion for outcrossing populations from Abruzzo (light blue) and the Apuan Alps (dark blue) are compared to the selfing populations that have undergone range expansions into the French Alps (light green) and the Swiss Alps (dark green). We found mean proportions across all populations of 65.4% and 24.8% in the weakest and strongest selection classes, respectively. Less than 5% of sites segregated in the two intermediate selection classes. These proportions varied only marginally between core Italian populations (mean proportions 22.6% and 67.9% for weakest and strongest classes, respectively) and between expanded French and Swiss populations (means proportions 27.4% and 62.6% for weakest and strongest class).

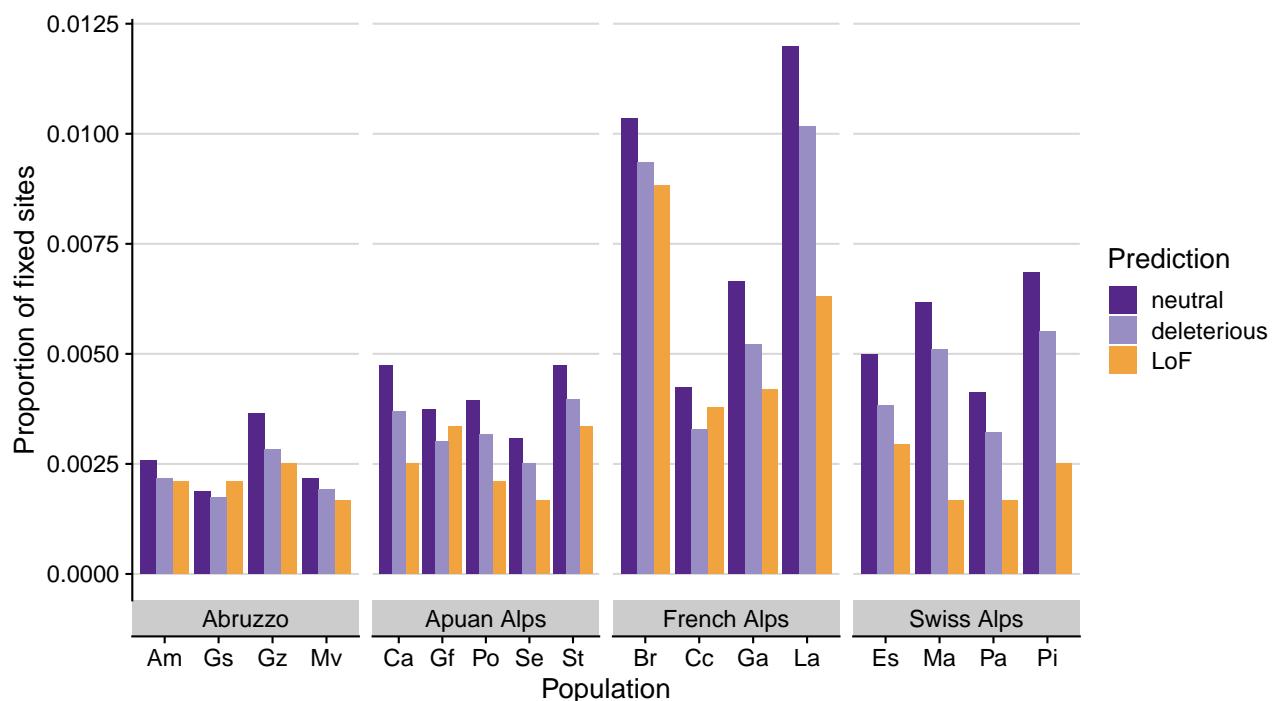


Figure S9: Fixation of predicted neutral (dark purple), deleterious (light purple) and loss of function (LoF, orange) sites per population. Y-axis shows the proportion of fixes sites in focal population and allele category. We found that neutral sites fixed at the highest proportions (mean 0.505%), while LoF sites were at the smallest proportions fixed (mean 0.314%), indicative of their highly deleterious effect. French populations Br and La had the highest overall fixation proportions of any class (0.948%), while samples from the Abruzzo region had the lowest (0.228%). Swiss population showed intermediate neutral fixation but LoF proportions similar to Italian populations.

732 References

733 Charlesworth, D. and J. H. Willis, 2009 The genetics of inbreeding depression. *Nature Reviews Genetics*
734 **10**: 783–796.

735 Gutenkunst, R. N., R. D. Hernandez, S. H. Williamson, and C. D. Bustamante, 2009 Inferring the Joint
736 Demographic History of Multiple Populations from Multidimensional SNP Frequency Data. *PLOS Ge-
737 netics* **5**: e1000695.

738 Keller, L. F. and D. M. Waller, 2002 Inbreeding effects in wild populations. *Trends in Ecology & Evolution*
739 **17**: 230–241.

740 Kim, B. Y., C. D. Huber, and K. E. Lohmueller, 2017 Inference of the Distribution of Selection Coefficients
741 for New Nonsynonymous Mutations Using Large Samples. *Genetics* **206**: 345–361.

742 Peischl, S., I. Dupanloup, M. Kirkpatrick, and L. Excoffier, 2013 On the accumulation of deleterious muta-
743 tions during range expansions. *Molecular Ecology* **22**: 5972–5982.

744 Peischl, S., M. Kirkpatrick, and L. Excoffier, 2015 Expansion Load and the Evolutionary Dynamics of a
745 Species Range. *The American Naturalist* **185**: E81–E93.

746 Pujol, B., S.-R. Zhou, J. Sanchez Vilas, and J. R. Pannell, 2009 Reduced inbreeding depression after species
747 range expansion. *Proceedings of the National Academy of Sciences* **106**: 15379–15383.