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Graphical abstract 

 

Abstract 

Inflammatory bowel diseases (IBD) are characterised by episodic inflammation of the 

gastrointestinal tract. Gut microbial dysbiosis characterises the pathoetiology, but its role 

remains understudied. We report the first use of constraint-based microbial community 

modelling on a single individual with IBD, covering seven dates over 16 months, enabling us 

to identify a number of time-correlated microbial species and metabolites. We find that the 

individual9s dynamical microbial ecology in the disease state drives time-varying in silico 

overproduction, compared to healthy controls, of more than 24 biologically important 

metabolites, including oxygen, methane, thiamine, formaldehyde, trimethylamine N-oxide, 

folic acid, serotonin, histamine, and tryptamine. A number of these metabolites may yield 

new biomarkers of disease progression. The microbe-metabolite contribution analysis 

revealed that some genus Dialister species changed metabolic pathways according to the 

disease phases. At the first time point, characterised by the highest levels of blood and faecal 

inflammation biomarkers, they produced L-serine or formate. The production of the 

compounds, through a cascade effect, was mediated by the interaction with pathogenic 

Escherichia coli strains and Desulfovibrio piger. We integrated the microbial community 

metabolic models of each time point with a male whole-body, organ-resolved model of 

human metabolism to track the metabolic consequences of dysbiosis at different body sites. 

The presence of D. piger in the gut microbiome influenced the sulphur metabolism with a 

domino effect affecting the liver. These results underline the importance of tracking an 
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individual9s gut microbiome along a time course, creating a new analysis framework for self-

quantified medicine. 

Keywords 

Flux balance analysis, longitudinal data, inflammatory bowel disease, metagenomics, 

microbiota, metabolic modelling, bioinformatics, Crohn9s disease, constraint-based modelling, 

whole-body metabolic modelling, personalised modelling.  
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Introduction 

The human gut microbiome performs essential functions in shaping the host immune system, 

host cell proliferation, and is involved in the maintenance of endocrine functions 1. The human 

microbiome consists of a large number of archaeal and bacterial, but also of viral and fungal, 

species 2. The composition of the microbiome depends on host factors, such as age, sex, 

location, ethnicity, and lifestyle (e.g., diet, exercise, and medication). Between healthy 

individuals, the relative abundances of taxa are highly variable, while the functional 

capabilities are more stable. In contrast, many multifactorial diseases are characterised by a 

dysbiotic microbiome 3.  

The gut microbiota differs among individuals, has a variable composition in different parts of 

the digestive tract, and can undergo extensive modifications throughout life 4. This aspect is 

regarded as an obstacle to gut microbiome-based medical applications, as it remains difficult 

to identify a clear signature of the dysbiotic microbiota. The microbiome of an individual can 

change during the outbreak of a disease, and the symptomatology of the patient changes 

accordingly 5. This is particularly true for patients affected by Inflammatory Bowel Disease 

(IBD), a disorder characterised by episodic symptoms driven by time-changing inflammation 

of the gastrointestinal tract 6. This time-varying inflammation is the byproduct of the constant 

interaction between the human host's immune system and the changing ecological profile of 

the host9s gut microbiome 7. The presence or absence of inflammation is strongly associated 

with four measurable faecal biomarkers: calprotectin and lactoferrin (shed from white blood 

cells), lysozyme (innate immune system), and secretory IgA (adaptive immune system) 8, as 

indicators of levels of severity of episodic IBD. Historically, IBD has been considered to have 

two main subtypes: ulcerative colitis (UC) and Crohn9s disease (CD). However, a large (30,000 

patients) human genotype study in 2016 9 demonstrated that the human genetic 

predisposition is best explained by three subtypes: ileal Crohn9s disease (ICD), colonic Crohn9s 

disease (CCD), and UC. This same IBD tripartite division is seen when the gut microbiome 

ecology is clustered 10. This separation into three subtypes is even clearer when using the 

Kyoto Encyclopaedia of Genes and Genomes (KEGG) database to cluster the gut microbiome 

of patients 11. 

Recently, the study of the microbiome has moved from <Who is there?= to <What are they 

doing?=. In particular, the constraint-based reconstruction and analysis (COBRA) framework, 

which relies on a genome-scale reconstruction of a target organism's metabolism and the 

application of condition-specific constraints, e.g., meta-omics data and allowed uptake of 

nutrients 12, has moved these questions further to <What do they produce?=, and <How do 

they interact?= 1,13316. Genome-scale reconstructions are assembled using organisms9 genome 

sequences and biochemical, genetic, and physiological evidence 17. COBRA assumes the 

biological systems to be at a steady state, i.e., the change in metabolite concentration over 

time is zero. Flux balance analysis (FBA) 16, a frequently used COBRA method, assumes in 
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addition that the biological system tries to achieve an objective, e.g., maximal biomass yield 
18. FBA has been successfully applied to investigate the role of the human gut microbiome in 

various complex diseases, including Parkinson9s disease 19,20, and inflammatory bowel disease 
1,21323. To facilitate the application of constraint-based modelling to research on the human 

gut microbiome, the AGORA (Assembly of Gut Organisms through Reconstruction and 

Analysis) collection was established 24, and recently expanded to cover over 7,200 semi-

manually curated microbial genome-scale metabolic reconstructions 25.  

In prior studies, FBA was used on a set of microbiome samples comparing healthy individuals 

with IBD patients at a single time per patient. COBRA modelling has been used to link 

mechanistically host-microbiome-environment interactions to IBD-related changes 12. The 

potential of 818 microbial strains to deconjugate primary bile acids into secondary bile acids 

has been investigated with a combined approach based on comparative genomics followed 

by FBA 26. In that study, it has been reported that microbial species can complement each 

other9s bile acid pathway to achieve the broader bile acid production repertoire observed in 

faecal samples 26.  

Despite the numerous studies performed on CD, the evolution of the gut microbiome during 

disease onset and progression has not been analysed with FBA. Here, we bridge this gap by 

investigating how the extreme dysbiosis time variations of the gut microbiome ecology in a 

single individual with CCD can cause similar large time variations in a number of key 

metabolites. Another unexplored aspect of the disease is the interaction between host 

metabolism and the compounds produced by the normal and the dysbiotic gut microbiome. 

To tackle this specific aspect, we performed an additional investigation using sex-specific, 

organ-resolved, whole-body metabolic models of human metabolism, which account for 28 

organs, tissues, and cell types 27.  

The present study used FBA to analyse the metabolic evolution of the gut microbiome 

community in a single individual (<LS=) affected by left-sided CCD across seven time points 

covering a period of 16 months in 2012/2013 (Fig. 1). The metagenomic data for these seven 

time points have been previously compared 11,28 with a set of metagenomic data from healthy 

individuals drawn from the NIH Human Microbiome Project 29, as well as selected 

metagenomic data from patients with ICD and with UC. It has been shown 30 that LS9s gut 

microbiome taxonomic profile deviated a great deal from the healthy individuals and 

furthermore, that his gut microbiome exhibited major taxonomic shifts over time.  

In the present study, the metagenomic data for LS9s seven time points, computed at both the 

species and strain levels (Supplementary Table S1) were mapped onto the AGORA2 collection 
25. The taxonomic composition of the microbiome samples in AGORA2 for each time point 

(Supplementary Table S1) was then analysed and diversity indexes were computed. As a 

comparison, we used the metagenomic relative abundance of both species and strain data 

from the cohort of 34 healthy control subjects (Supplementary Table S1) and also mapped 
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them on AGORA2 (Supplementary Table S1). Subsequently, the contribution of each microbial 

species within the microbiome-level, time point-specific AGORA2 microbial community 

models to the global profile of 740 metabolites (Supplementary Table S2) present in the gut 

was predicted (Methods: Simulations section).  

We found that LS9s major gut microbiome taxonomic shifts over time led to correspondingly 

large FBA metabolic shifts from the personalised microbial community models. In particular, 

our model results show that a number of biologically important metabolites were highly (10-

10,000x) overproduced, compared to HeAve, at various time points in LS's samples, including 

oxygen, methane, thiamine, formaldehyde, trimethylamine N-oxide, folic acid, serotonin, 

histamine, and tryptamine. Furthermore, our results suggest that through the production of 

few metabolites, i.e., L-serine and formate, species of the Dialister genus cooperate with 

many pathogenic strains, such as adherent invasive Escherichia coli strains, archaeal species, 

and Desulfovibrio piger ATCC2. The interactions trigger inflammatory responses and enhance 

methane production. Finally, D. piger ATCC2 plays an important role in the production of the 

host-toxic SO3
2-. Additionally, we investigated host-microbiome co-metabolism during these 

time points. In conclusion, our study sheds light on metabolites and microbial species 

triggering the inflammatory responses, and their impact on host metabolism.  

Results and discussion 

Characterisation of the time points 

 

Figure 1: Timeline with metadata of the different samples. In the timeline, generated with 

BioRender, the collection date, the measured blood concentration of complex reactive 

protein (CRP), as well as faecal lactoferrin, lysozyme, calprotectin, and secretory IgA (SecIGA) 

are reported. LS has episodic major increases in all of these inflammatory/immune 

biomarkers, as healthy values for each are CRP<1, lactoferrin<7.3, lysozyme<600, 

calprotectin<50, and SecIGA (30-275). The medical intervention between LS1 and LS2 

consisted of ciprofloxacin, metronidazole, and prednisone. <Microbes= refers to the number 

of metabolic models identified in the metagenomic samples according to the threshold 

selected (see Methods) and that were included in each time point-specific microbial 
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community model. The number of reactions and metabolites refers to the size of the 

condition-specific microbial community models at each time point.  

 

The n=1 patient <LS= with CCD was a non-smoker male, 64 years old at baseline. A detailed 

description of his medical history is reported in Supplementary Materials. We carried out (see 

Methods) deep (~100M reads per sample) shotgun metagenomic sequencing, yielding 510 

species and 790 strains relative abundance, on frozen faecal samples for seven time points, 

deemed LS1 to LS7 (Supplementary Table S1) according to the time of collection. 

All time points were characterised by abnormal concentrations of hematic and faecal immune 

or inflammatory biomarkers, with LS1 having both the highest hematic complex reactive 

protein (CRP) and the highest faecal calprotectin concentration (Fig. 1, Supplementary Table 

S1). In contrast, lactoferrin, lysozyme, and secretory IGA had their highest values at LS4 and 

LS7. The medical intervention between LS1 and LS2 (Fig. 1) consisted of two antibiotics, being 

500 mg ciprofloxacin administered orally twice a day and 250 mg metronidazole administered 

orally three times per day for one month starting from 31st of January 2012 31. During this 

period, the patient also received daily 40 mg oral prednisone, a drug used to suppress the 

immune system and decrease inflammation.  

In addition, we obtained shotgun metagenomic data (~100M reads per person) for the gut 

microbiome from 34 healthy individuals in the Human Microbiome Project 32 (Methods, 

Supplementary Table S1). This control dataset allowed for the comparison of the LS 

microbiome with healthy individuals and for the identification of microbial and functional 

differences associated with the disease status at each time point.  

Analysis of metagenomic data with microbiome-level metabolic models 

First, we investigated the changes in the metagenomic phyla abundances in the healthy and 

disease microbiomes. We identified major differences over time between the seven LS times 

and the healthy microbiomes across the seven most abundant phyla: Actinobacteria, 

Bacteroidetes, Euryarchaeota, Firmicutes, Fusobacteria, Proteobacteria and Verrucomicrobia 

(Fig. 2A, Supplementary Table S1). Then, we used the strains identified in the shotgun 

metagenomic data of LS (Supplementary Table S1) as input to the AGORA2 collection of 

microbial metabolic reconstructions 25 (see Methods). This process creates seven in silico 

microbial community models (Supplementary Table S1) accounting for a total of 214 distinct 

microbes, covering both bacterial and archaeal species. The simulation (Methods) uses the 

seven ecological models to compute the metabolites produced by the microbial communities. 

In detail, the maximal production and uptake fluxes of each metabolite from all the microbial 

species is computed, following 16. In the following sections, we will state when we are 

referring to the input metagenomic microbial abundances or to the AGORA2 mapped 

abundances. 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2022. ; https://doi.org/10.1101/2022.12.19.520975doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.19.520975
http://creativecommons.org/licenses/by-nd/4.0/


8 

 

 

Figure 2: Graphical representation of the time evolution of the gut microbiome ecology. (A) 

Stacked barplot representing the metagenomic phyla abundance of the gut microbiome in 

the different LS samples with a comparison to the Healthy Average (HeAve). For a similar 

barplot, which also shows the time variation of 10 abundant species superimposed on the 

LSphyla bars, see Fig. 2 in Ref 30. (B) 3D principal component analysis computed on the 

species abundances mapped onto AGORA2 involved in the metabolic modelling for each time 

step and reflecting differential microbial compositions and abundances is shown (more 

details in the Method section). For a 2D PCA of the metagenomic species relative abundances 

of the 7 LS samples and the 34 HE samples, see Figure 4a of Ref. 11. 
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Using the metagenomic relative abundances, we compared LS microbial species composition 

at each time point and with those of the 34 healthy controls, including calculating both the 

maximum (HeMax) and average (HeAve) abundance of each microbial species across the 

healthy individuals (Supplementary Table S1). We observed cases where LSMax>HeAve, 

meaning that the disease state associated microbiome fluctuated over time and exceeded the 

average relative abundance in the healthy population. Additionally, we identified cases with 

LSMax>HeMax, meaning that the relative abundance in the disease state could be greater 

than the largest cross-population variation. Using this comparison, the dysbiosis experienced 

by LS was characterised by a major decrease in microbe species that were dominant in the 

healthy individuals, thereby allowing for the time-dependent bloom of typically less abundant 

microbes in LS1-7 (Supplementary Fig. S3-S9).  

In more detail, the average healthy control9s gut microbiomes were found to be 

predominantly composed of Bacteroidetes (65.6%) and a lower fraction of Firmicutes (30%) 

(Fig. 2A). In contrast, the most abundant LS microbiome phylum at all seven time points was 

Firmicutes, which ranged from 1.4 to 2.5x the HeAve abundance (Fig. 2A, Supplementary 

Table S1). The overabundance of Firmicutes was driven by the blooming of normally rare 

Firmicutes species from classes Bacilli and Clostridia, with overabundances ranging from 100-

1,000x HeAve for those species. In particular, the family Lachnospiraceae (in class Clostridia) 

was 2.6-3.7x HeAve, mainly represented by Dorea longicatena DSM 13814, normally rare, but 

25x HeAve in LS4 (Fig. 3, Supplementary Table S1). In contrast, the other dominant microbial 

phylum in healthy individuals, Bacteroidetes, was depleted by more than 10x in all LS time 

points except LS6 when it bounced back to half the abundance of HeAve.  

The ecological absence of the normally dominant phylum Bacteroidetes allowed other, 

normally rare phyla in the healthy individuals, to dynamically bloom. In particular, the phylum 

Euryarchaeota was elevated by at least three times in all samples when compared with the 

HeAve, with an extreme overabundance in LS1 and LS6, which are 137x HeAve and 57x HeAve, 

respectively (Supplementary Table S1). The observed high archaeal relative abundances in all 

the phases are typical of CD-associated dysbiosis 33. In particular, the presence of the family 

Methanobacteriaceae (dominated by Methanobrevibacter smithii) was strongly influenced by 

the disease, varying between 3-170x HeAve (Supplementary Fig. S13), with the highest value 

occurring at LS1. The phylum Proteobacteria was also overabundant, compared to healthy 

individuals, at all seven time points. For LS1-3, it was approximately seven times higher, and 

for LS7, it was ten times higher than HeAve. Within this phylum, the family 

Enterobacteriaceae reached a peak of >150x HeAve in LS7 (Supplementary Table S1, 

Supplementary Fig. S10). The abundance of family Enterobacteriaceae species E. coli in LS1 

was 187x (Supplementary Table S1, Supplementary Fig. S11). Phylum Actinobacteria had a 

higher abundance (4-50x HeAve) at all time points and a higher diversity with 58 different 

species present at time point LS5 compared to the healthy average (36 species) 30. Among 
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these species, Bifidobacterium longum climaxed to seven times the HeAve. Finally, there were 

also isolated blooms of the phyla Fusobacteria (40x and 11x HeAve at LS1 and LS6) and 

Verrucomicrobia (seven times the HeAve at LS5). 

 

Table I. Information about the species filtering performed through AGORA2 mapping. The 

total number of strains identified, and the strains covered by the AGORA2 mapping are 

reported. The abundance based on AGORA2 mapping, using a cutoff threshold abundance of 

0.0001 is reported as well, together with the alpha diversity of the samples. For details on the 

calculation of the Alpha diversity, please refer to the method section. 

Features  LS1 LS2 LS3 LS4 LS5 LS6 LS7 HeAve 

Total number of 

strains identified 
1,041 1,055 1,532 1,110 1,037 1,112 1,039 939 

Strains covered in 

the in silico 

microbial 

community models 

76 125 102 91 87 101 106 198 

Fraction of total 

abundance covered 
0.923 0.937 0.902 0.904 0.926 0.925 0.923 0.98 

Alpha diversity 74.86 77.86 76.85 77.11 74.5 80.18 77.46 75.56 

 

To assess the diversity within each microbial community model, we calculated the alpha 

diversity based on the AGORA2 taxonomic assignments for both LS1-7 and HeAve. The highest 

LS alpha diversity was obtained for LS6 (Table 1). Although LS2 was the time point with the 

highest number of species, it was not the one with the highest alpha diversity, when the 

taxonomic differences of the different samples were weighted with a hierarchical tree based 

on the taxonomies 34. Indeed, LS2 was mainly composed of Firmicutes and Actinobacteria, 

which covered more than 70% of the relative abundance in the sample (Fig. 1, Table 1, 

Supplementary Table S1). 
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To assess the changes in diversity between the time points, we calculated the beta diversity 

using the Bray-Curtis dissimilarity index 34. The average beta diversity between samples was 

58.00. The two most dissimilar samples were LS1 and LS2 (84.1%), likeliest reflecting the effect 

of the antibiotic treatment before LS2 collection. The two lowest beta diversities were 

between LS3 with LS4, which had a beta diversity of 23.44, and LS5 with LS7 of 35.76. The 

diversity between LS1 and LS6 was 79.50 (Supplementary Table S1).  

In the Principal Component Analysis (PCA) performed on microbial composition and 

abundances (Fig. 2B, Supplementary Fig. S1, S2), the first component accounted for 54.7% of 

the total variability, while both the second and the third components each accounted for 

approximately 20% of the total variability. The different PCA components were mainly driven 

by the differential abundance of two archaeal species, i.e., the already mentioned M. smithii 

ATCC 35061, and Methanosphaera stadtmanae DSM 3091 (LSMax = 542x HeAve). Both 

archaea were more abundant in LS1 and LS6 in comparison to the other time points (Fig. 2A, 

Supplementary Fig. S2, S17). In the PCA cluster plot, LS6 was clearly separated from the other 

six time points (Fig. 2B), consistent with the higher alpha diversity of the LS6 microbiome 

(Table 1) compared to the other time points.  

As aforementioned, the LS1 gut microbiome was severely depleted in almost all the most 

abundant HeAve species (Fig.1a, Supplementary Fig. S3-S9). We found 21 microbe species 

with relative abundance >1% in HeAve, yet they were very rare (HeAve/LS1>10) in LS1 (Fig. 

1B, Supplementary Fig. S3A), including the phylum Bacteroidetes species Prevotella copri 

(1436x), Bacteroides stercoris (152x), Bacteroides caccae (43x), Bacteroides ovatus (40x), 

Bacteroides vulgatus (28x), Bacteroides dorei (20x), Alistipes putredinis (15x) and the phylum 

Firmicutes species Eubacterium rectale (43x) and Ruminococcus bromii (11x). Only three of 

the 21 HeAve most abundant species had relative abundances in LS1 that were comparable 

(1<HeAve/LS1<5) to HeAve: Faecalibacterium prausnitzii (4.5x), and Alistipes finegoldii (3x), 

Dialister invisus (1.5x). We note that F. prausnitzii is a well-known anti-inflammatory 

bacterium. Its high level at LS1 may be an indication of the microbiome attempting to counter 

the high level of host inflammation at LS1. 

A complementary analysis identified microbial species with the highest relative abundance 

(>1%) in the gut microbiome of LS1 (Supplementary Fig. S3B). Not only were there fewer 

microbe species that had a relative abundance >1% than in HeAve, but also the most 

abundant microbes in LS1 were normally extremely rare in the healthy gut microbiome. With 

the exception of Dialister invisus (which we will return to later), all of the dominant LS1 

microbiome species ranged from 100 to almost 1,000 times more abundant than in the 

healthy gut microbiome. A number of these normally rare species (e.g., E. coli, M. smithii, M. 

stadtmanae, and P. micra) will have major impacts on key metabolite production, as we will 

discuss later in this paper. This illustrates a classic ecological dynamics result: when formerly 

dominant species are wiped out, normally rarer species can bloom and become the dominant 

ones.  
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Taken together, our metagenomic time series demonstrates that the microbial composition 

varied substantially between the LS time points, as well as compared to the healthy average. 

The strong differences between LS and healthy samples in microbial abundance motivated 

the use of metabolic modelling to understand how these metagenomic differences over time 

could influence metabolite production as the gut microbiome ecology shifts. 

Microbial and metabolic changes over time 

To investigate potential changes in metabolic activity associated with the dysbiotic 

microbiome composition at each time point, we performed metabolic modelling and FBA 16 

assuming a Western diet 35. For each metabolite, we computed the net metabolite production 

potential (Methods, Supplementary Table S2). The resulting in silico metabolite production 

profiles represent the potential of all microbial community members to uptake dietary 

metabolites and secrete metabolic end products. We also predicted microbe-specific 

contributions to the overall fluxes in each microbial community model (Methods). To allow 

for the comparison between the LS microbiome and the healthy gut microbiome, we 

calculated the parameter healthy average of the fluxes (HeAveFluxes) from the healthy 

controls metagenomic input to our simulation model, creating 34 healthy controls microbial 

community models (Supplementary Table S2). The resulting HeAveFluxes parameter enabled 

us to discover that over 20 metabolites had a maximum value over the LS1-7 LS dysbiotic gut 

microbiome, which ranged from 10 to 750 times higher than the maximum values across the 

healthy controls (Supplementary Table S2).  

Next, we examined in detail the strong time variations of a number of key gut microbially 

produced metabolites. Specifically, we selected 24 metabolite exchange reactions with 

LSMax/LSMin flux ratios >10 [or LSMin=0, so the ratio is large (technically divided by 0)] to 

examine in more depth (Supplementary Table in Supplementary Materials). All but five of 

these 24 were greatly overproduced by LS, with LSMax from 5x to 750x times the highest 

value found across the 34 healthy controls. For each of these 24 metabolites, we then visually 

pattern-matched the metabolite time graph to microbial species relative abundance graphs 

over time. This approach allowed the identification of several microbe-metabolite 

relationship time variation patterns over LS1-7 (Fig. 3, Supplementary Fig. S15-S21). The 

microbe-metabolite relationships were characterised by two distinct microbe/metabolite 

classes: Class I, with a peak value at LS1 and dramatically lower values in the other time points 

(e.g., the M. smithii/methane, Fig. 3, Supplementary Fig. S17), and Class II, which were low in 

LS1 and higher values in the subsequent time points (e.g., Dorea longicatena DSM 

13814/Pyridoxal, Fig. 3). We give archetypal examples of each Class in Figure 3 with subclasses 

of Classes I and II defined with matching metabolite examples in Supplementary Fig. S15-S21.  
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Figure 3: Correlations between microbial abundances and secretion fluxes of key 

metabolites. Top square: Class I microbe-metabolite relationships. Bottom square: Class II. 

Each pair of graphs represents representative specific gut microbiome species relative 

abundance over LS1-7 (top of pair) and a matched metabolite flux over LS1-7 (bottom of pair). 

For the species graph, the blue line represents the relative abundance of the microbe over 

LS1-7, while the red line represents the relative abundance of that microbe for HEAve. 
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Numbers in parentheses next to each metabolite name corresponds to the flux ratio of the 

minimum and maximum flux calculated for the LS samples. For insights on subclasses of 

Classes I and II, please refer to Supplementary Fig. S15-S21.  

 

These two dozen microbe species-metabolite pairs were all candidates for a deeper 

biochemical pathway analysis to determine whether there is a clear causal relationship 

between the microbe and the production of its paired metabolite. Because of our discovery 

of the extreme overproduction in the disease state compared to the inter-population 

variability in healthy individuals, these metabolites are all potential candidates to be 

biomarkers for tracking the episodic development of the disease. Below, we take a first look 

at this hypothesis. 

Methane and Methanobacteriaceae: The average methane production in healthy gut 

microbiomes (HeAveFluxes) computed by AGORA2 was 0.26 mmol/gDW/day (Supplementary 

Table S2). In contrast, in the LS diseased state, the production of methane was highest in LS1 

(40.19 mmol/gDW/day) and decreased in LS2-7 (1 mmol/gDW/day at LS2) closely following 

Methanobacteriaceae abundance in the corresponding microbiome samples (Fig. 3, top). This 

relationship was also reflected in the microbe-metabolite simulations (Supplementary Table 

S3). At its peak, M. smithii was the most abundant species in LS1 (Supplementary Fig. 3B) and 

methane production in the disease state was 155x the highest value computed (HeMax) for 

methane across the healthy controls. This result agrees with prior results that methanogenic 

archaea are the major biological source of methane in humans with a single species, M. 

smithii, accounting for up to 94% of methanogenic activity in most colonised individuals 36. In 

addition, chorismate followed the same time evolution as methane, peaking at 141x HeMax. 

Oxygen and E. coli: The in silico average healthy level (HeAveFluxes) of the oxygen production 

fluxes was 0.003 mmol/gDW/day. In contrast, the extreme value of LS1 was over 2,000 times 

higher (8.3 mmol/gDW/day) than HeAve and 165x HeMax (we note only two of the 34 healthy 

controls had any significant oxygen production). This enormous increase in the dysbiotic 

production of free oxygen was found to follow the time variation of E. coli, being highest at 

L1-L3 (where E. coli was ~10% of the gut microbiome ecology or 187x HeAve relative 

abundance), normal at LS5 and LS7, and an additional increase at LS6. It is remarkable how 

large the change in oxygen production was as the dysbiotic evolution progressed. The ratio of 

the oxygen production from its high in LS1 (8.3) to its low in LS7 (0.00075 or 0.25x HeAve) was 

over 10,000 fold (11,116x).  

These large fluctuations suggest an obligate syntrophy with one of the oxygen-producing 

bacteria present in the consortium. Many reconstructions of microbial species included in the 

simulations (e.g., Eggerthella lenta DSM 2243, Bacteroides vulgatus ATCC 8482, and 

Megasphaera elsdenii DSM 20460) have a superoxide dismutase (VMH ID: SPODM) 
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converting reactive oxygen species to oxygen and oxygen peroxide (2.0 h[c] + 2.0 o2s[c] -> 

h2o2[c] + o2[c]), as well as an oxygen exchange (VMH ID: EX_o2) reaction. The simulations, 

therefore, suggest a novel, unidirectional interaction among these species boosting E. coli 

bloom with superoxide dismutase products. Our hypothesis is novel, yet consistent with the 

<oxygen hypothesis= that posits that some aspects of IBD symptoms result from an increase 

of oxygen and reactive oxygen species into the intestinal lumen competitively favouring 

facultative anaerobic species over strictly anaerobic ones 37. Indeed, Enterobacteriaceae 

bacteria, such as E. coli, can absorb oxygen being facultative aerobic species 38.  

In addition to the likely increased anaerobic respiration, which was induced by inflammation 

in LS (Fig. 1) 38, the dysbiotic shifts in the microbiome ecology itself produced, according to 

our microbial community model, copious amounts of free oxygen, coming from the 

detoxification of reactive oxygen species, which E. coli could then utilise to increase its relative 

abundance directly via aerobic respiration. In addition to the production of free oxygen, our 

microbial community model predicted that the fluxes of trimethylamine N-oxide (TMAO), for 

LS1 was 3082x HeAveFluxes (Supplementary Table S2). In previous studies, TMAO has been 

highlighted as a metabolite, which alters systemic homoeostasis and participates in the first 

inflammatory states 39. Furthermore, TMAO production is known to boost anaerobic 

respiration, which favours Enterobacteriaceae, i.e., E.coli, over Clostridia and Bacteroides 

species 40. Therefore, we conclude that there appear to be two separate mechanisms 

(inflammation-induced aerobic respiration and dysbiotic microbiome ecology creating free 

oxygen) that both provide E. coli with a selective energy advantage over the otherwise 

dominant Firmicutes and Bacteroides, which can do neither anaerobic nor aerobic 

respiration.  

Thiamine and E. coli: Vitamin synthesis by gut microbes is one of their essential ecological 

services to the health of the host. Our microbial community model predicted that, in the 

extreme of the disease state (LS1), thiamine (vitamin B1) fluxes (17.1mmol/gDW/day in LS1) 

was 18,318x higher than the HeAveFluxes (0.00093 mmol/gDW/day) (Supplementary Table 

S2). The thiamine production flux computed by the LS microbial community models was highly 

variable, fluctuating across LS1-7 by a factor of 15,000x, while across the population of healthy 

patients, each sampled at one time, there was a variation in thiamine production of only 23x. 

Furthermore, the maximum value of thiamine (at LS1) was 7,472x greater than HeMax for 

thiamine (Supplementary Table S2), meaning that the disease state drove thiamine 

production almost four orders of magnitude beyond what was seen in the cross-population 

production.  

In addition, we also predicted other B vitamins to be overproduced in LS compared to HeAve 

(Supplementary Table S2). In particular, our microbial community model predicted 

LSMax/HeAve for riboflavin (vitamin B2, 8x), pyridoxal (vitamin B6, 98x), and folic acid 

(vitamin B9, 39x). For niacinamide (vitamin B3) and biotin (vitamin B7), the healthy controls 

were all zero, but there was substantial production of each in LS1-7. This result highlights the 
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value of measuring the dysbiotic time variation within a single patient instead of only 

reporting population averages. 

Other metabolites that vary with E. coli: Several other metabolite exchange fluxes (Fig. 3, 

Supplementary Fig. S18), which closely followed the time variation in E. coli relative 

abundance, were also found to have an LSMax value far above cross-population HeMax value. 

Specifically, the ratio of LSMax/HeMax for some of these included the polyamine metabolism-

related metabolites ortho-hydroxyphenylacetic acid (164x), 59methylthioadenosine (142x), 

spermidine (12x), and histamine (13x) consistent with previously reported results 41. In 

particular, dysbiosis can predispose overgrowth of E. coli, which in turn leads to increased 

production of histamine, thus contributing to the symptomatology of histamine intolerance 
42. The LS1-7 variation predicted for histamine was 170x, with a maximum flux of 46.95 

mmol/gDW/day in LS1, while the HeAve was 0.32 mmol/gDW/day (Supplementary Table S2).  

TMAO and Fusobacterium species: TMAO has been recently hypothesised to be a possible 

link mediating between red meat intake and vascular inflammation, leading to poor 

cardiometabolic health 43. Separately, Fusobacteria have been discussed as being involved in 

the onset of colon cancer 44. Intriguingly, at the height of LS inflammation, as measured by 

calprotectin and serum CRP, LS1 had nearly a 1,000x overabundance of the dominant phylum 

Fusobacteria species Fusobacterium sp. 12_1B, compared to HeAve. This coincided with our 

microbial community model predicting a similar level of overproduction of TMAO 

(LS1/HeAve=3082x) and LS1/HeMax=91x. 

Serotonin and B. longum: The microbial production of the neurotransmitter serotonin, which 

had a variation across LS1-7 of 25x and whose maximum at LS5 was 3x the HeMax, mimicked 

the fluctuations of Bifidobacterium longum abundances (Supplementary Fig. S19). It is known 

that B. longum supernatants upregulate the serotonin transporter expression in intestinal 

epithelial cells 45. Deregulation of gut-produced serotonin has also been associated with 

diarrhoea or constipation symptoms 46. Furthermore, according to Minderhaud and 

colleagues 47, the severity of intestinal inflammation can depend on the availability of gut 

serotonin. Another metabolite, which followed the variation of B. longum and is also involved 

in the gut-brain axis, was tryptamine, which varied by 103x across LS1-7 and whose peak at 

LS1 was 25x HeMax.  

Dorea longicatena and Ruminococcus obeum were the 1st and 2nd most abundant Firmicutes 

species in the Lachnospiraceae family in LS, respectively. Their time evolution aligned with a 

number of metabolites with large ratios of LSMax/HeMax: formaldehyde (3477x), 5-

methyltetrahydrofolic acid (311x), tetrahydrofolic acid (260x), folic acid (12x), pyridoxal (7x), 

and riboflavin (3x). 

Normally rare Firmicutes species: An unusual aspect of LS dysbiosis was that at LS1 several 

normally quite rare Firmicutes species (Peptostreptococcus stomatis, LS9s most abundant 
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species in Firmicutes family Peptostreptococcaceae; Solobacterium moorei, LS9s most 

abundant species in Firmicutes family Erysipelotrichaceae; and Parvimonas micra, LS9s most 

abundant species in Firmicutes family Clostridiales Family XI. Incertae Sedis) were from 250 

to 1,000x more abundant than HeAve. Their graph over LS1-7 closely matches metabolites 

with high ratios of LSMax/HeMax: acetoin (38x), trimethylamine (13x), and 1,2-diacyl-sn-

glycerol (8x) (Supplementary Fig. S15). 

Taken together, we observed that dozens of metabolites were greatly overproduced by LS in 

the disease state compared to our healthy controls and we discovered numerous microbe-

metabolite pairs showing similar changes over time. Overall, our analyses at the different time 

points as well as longitudinally illustrate that the dysbiotic microbial composition changes 

were associated with significant changes in metabolic function.  

Metabolic and subsystem signature of each phase 

After analysing metabolites strongly diverging between LS and healthy average patients, we 

focused on reactions subsystem and metabolites characterising the different phases of the 

disease development. The constraint-based modelling approach revealed that the reaction 

subsystems strongly changed during the disease progress, which was associated with changes 

in metabolic production potential by the microbial communities (Supplementary Table S2). It 

has been reported that the prevalence or absence of reaction subsystems in microbial 

community models can reflect healthy or dysbiotic microbial communities 48.  
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Fig. 4 Metabolites net flux variation. Line plot of the net flux production (mmol/gDWh) of 

metabolites having a marked change over the different time points. For each metabolite, the 

respective chemical structure is reported.  

 

First, we investigated which metabolite production potentials followed the observed 

proximity of LS3 with LS4, and LS5 with LS7 in the PCA plot (Fig. 2A). The net production of 

some metabolites increased or decreased constantly from LS3 to LS5 but were predicted to 

be very high (isobutyrate) or very low in LS6 (Fig. 4). The net flux production of L-isoleucine, 

ethanol, and L-lactate was low in LS1 and LS6 (HeAveFluxes 130.48 mmol/gDW/day), while it 

increased in the other time points (HeAveFluxes 234.93 mmol/gDW/day). In contrast, the 

production of isobutyrate followed an opposite trend and had a higher simulated 

accumulation in LS1 and LS6 (HeAveFluxes 106.87 mmol/gDW/day) compared to the other 

samples (HeAveFluxes 30.14 mmol/gDW/day). With the exception of isobutyrate, each of the 

metabolites in Figure 4 has a ratio of their maximum values in LS1-7 (LSMax) that were greater 

than the maximum value (HeMax) in any of the 34 healthy individuals: butyrate (2.7x), ethanol 

(2.6x), L-isoleucine (7.3x), and L-lactate (3x). These results suggest that monitoring the 

fluctuations of key microbial species and key metabolites together with the biological 

processes of bioconversion could help to identify transitions of inflammation (Fig. 4). 
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Figure 5: Overview of metabolites produced and reactions subsystems across the different 

time points. (A) Heatmap of the net flux production of all metabolites with a summed net flux 

higher than ten mmol/gDW/day. Key metabolites commented on in the text have been 

highlighted in the heatmap. LF - Low flux; IF - Intermediate flux; HF - High flux (see text for 

more information). (B) Geom plot of reaction subsystem prevalence across the different time 

points. The colours of the circles refer to the <manually-attributed= group of each subsystem. 

The diameter of the circles is proportional to the abundance of the reactions in the modelled 

microbial communities. 

  

To identify metabolite signatures at each time point, Euclidean clustering 49 was performed 

considering all the metabolites predicted with net flux production higher than ten 

mmol/gDW/day. The results revealed the existence of three main clusters (Fig. 5A). The 
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threshold of ten was selected arbitrarily for graphical purposes. The first cluster, named low 

fluxes (LF), grouped together all the metabolites with a very low net production; the second 

cluster had the metabolites with intermediate net production (IF); the third included the 

metabolites with high net production (HF). The three clusters were heterogeneous in 

metabolic subsystem composition. Some metabolites, whose flux rates were variable among 

the different phases of the disease, will be discussed more in detail and the roles of the 

microbial species mainly involved in their production. The prevalence of subsystems including 

reactions related to that metabolite will be discussed as well.  

As expected, <Methane metabolism= was strongly increased in LS1 and LS6 compared to the 

other phases (Supplementary Table S2) and was due to the higher abundance of 

methanogenic Archaea in LS1 and LS6. Accordingly, the predicted production of methane 

enhanced in LS1 and LS6 (log fold change (LogFC) 1.42 and 0.84, respectively, Supplementary 

Table S2). In contrast, some subsystems were phase-specific (Supplementary Table S2). This 

was the case for the <Stickland reaction= (Fig. 5B), which couples oxidation and reduction of 

amino acids to organic acids 50 and characterised LS1. In a study exploring the subproducts of 

common degradation pathways, 80% (8/10) of Stickland reaction products have been 

frequently detected in IBD patient stool 51. Since all microbial community models for the 

seven time points received the same in silico diet, the observed differences were a direct 

result of the difference in microbial composition. The increase in hydrogen production could 

be an additional cause of the bloating event experienced as one of the IBD symptoms. Levitt 

and Olsson have already linked hydrogen production to the adverse bloating event 52. LS6 was 

characterised by an increased abundance of E. coli strains, e.g., E. coli 042, E. coli B354, and 

E. coli FVEC1302, whose genomes encode enzymes belonging to lipopolysaccharide (LPS) 

biosynthesis subsystems. LPSs are produced and secreted by gram-negative bacteria (e.g., 

Salmonella typhimurium 53 and E. coli 54), and can provoke an immune response. LPSs are 

generally soluble as monomers but they can aggregate into fibrous and highly insoluble 

lipoproteins and lead to inflammation 55. It has been reported that the concentration of LPS 

is increased in the acute phases of the disease compared to relapsing ones 56.  

Butyrate is a key energy source for the host9s colonic epithelial cells 57. Our microbial 

community models predicted that the butyrate secretion rate in LS7 (flux of 152.164 

mmol/gDW/day) was more than twice as high as the LS6 butyrate secretion rate (70.58 

mmol/gDW/day). This jump was confirmed by the laboratory-measured butyrate 

concentration in the LS6 and LS7 faecal samples (Supplementary Table S1, Fig. S14), which 

also more than doubled from 0.7 to 1.7 mg/mL. This large increase in butyrate production is 

likely driven by the 8-fold increase, from 3.99% (LS6) to 31.5% (LS7) (Fig. 3, Supplementary 

Table S1), of the relative abundance of Faecalibacterium prausnitzii, one of the major 

butyrate-producing microbes in the human gut. 

Furthermore, the production of L-serine was increased in LS6 (Fig. 3) compared to the other 

time points (Supplementary Table S2). L-serine has been shown to interact with the gut 
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microbiome, in particular, it is known to elicit the secretion of antimicrobial molecules, such 

as bacteriocins 58. This amino acid is mainly produced by species of the Dialister genus and its 

importance will be discussed in the following paragraph. E. coli pathogenic strains have been 

proposed to use L-serine anabolism to enhance their fitness in the inflamed gut 59. In contrast, 

this pathway has a minor role in the pathogenic bacterial growth of healthy guts 60, suggesting 

that the signals or transduction pathways necessary for L-serine catabolism activation could 

be responsible for pathogen-specific adaptation to the inflammatory microenvironment. 

Intestinal inflammation can result in the generation of a microenvironment that is conducive 

to the growth of Enterobacteriaceae, allowing the outcompete of obligate anaerobes 61. 

Therefore, enterobacterial blooms, such as those seen in LS (Supplementary Fig. S10), and 

more generally in CD, are a hallmark of inflammation-associated dysbiosis 62. Accordingly, 

E.coli can catabolize L-serine converting it to pyruvate, a crucial substrate for gluconeogenesis 

and tricarboxylic acid cycle pathways 63. L-serine also plays a role as a signalling molecule 

targeting the expression of stress response genes 58. Furthermore, it can be used as a 

precursor in the synthesis of gene products involved in stress adaptation 59. In this context, it 

is known that L-serine catabolism is increased in E. coli under heat shock conditions and L-

serine is used for the generation of heat shock proteins 59. L-serine uptake during 

inflammatory conditions is probably a conserved mechanism utilised by pathogenic bacteria 

for their competitive fitness 64.  

Taken together, our results revealed that numerous metabolite production fluxes were 

altered during the seven time points. However, further validation in other patients or 

hypothesis testing in model organisms will be required.  

Insight into Dialister spp. metabolism and net of interactions 

Next, we aimed at elucidating which microbes were driving the metabolic changes at each 

phase, thereby, shedding light onto the potential mechanisms of the disease onset. 

Therefore, we calculated the microbe-metabolite contribution using the cooperative trade-

off algorithm 65. Briefly, this algorithm assumes that the growth rate of an individual microbe 

in the community is maximised, while a sub-optimal growth rate of the remaining microbial 

community is maintained. The microbe-metabolite contribution identified that in LS6, the 

production of L-serine was mediated mainly by two members of the Dialister genus, i.e., 

Dialister succinatiphilus YIT 11850 (Max (LS1-7) = 19x HeAve) and Dialister invisus DSM 15470 

(Max (LS1-7) = 0.9x HeAve). 
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Figure 6: Map of species interactions. The map shows the most relevant microbial species 

and their interconnection in a dependency network. The figure was created with BioRender.  

 

D. invisus DSM 15470 has been shown to be involved in the establishment of dysbiosis typical 

for the IBD gut microbiome 66. Hence, metabolites produced by species of this genus were 

inspected in detail. D. invisus DSM 15470 was identified in all time points except LS5, but its 

metabolic activity, measured in terms of the number of exchanged compounds, was very 

different in these time points. In LS1, D. invisus produced as many as 12 metabolites and 

consumed 52, while in the other time points, it consumed an average of ten metabolites. 

Notably, D. invisus and D. succinatiphilus YIT 11850 produced L-serine and formate during LS1, 

and glycine in the other phases (Fig. 6, Supplementary Table S3). Dietary glycine is known to 

prevent chemical-induced colitis by inhibiting the induction of inflammatory cytokines and 

chemokines 67.  

Both L-serine and formic acid have been proposed to mediate proinflammatory mechanisms 
60. In LS6, L-serine uptake was mainly mediated by members of the Enterobacteriaceae family 

(e.g., E. coli 042, B354, FVEC1302, and H299). Additionally, formate production in LS1 was 

assigned a key role in the microbial interaction (Fig. 6). Indeed, formate in LS1 fuelled the 

proliferation of E. coli F11, M. smithii ATCC 35061, and D. piger ATCC 29098 (Fig. 6, 
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Supplementary Table S3). E. coli F11 is an adherent invasive and pathogenic strain, which 

takes advantage of the leaking gut to replace strictly anaerobic bacteria 68. M. smithii ATCC 

35061 is a hydrogenotrophic archaeon that can use either CO2 and H2 or formate alone for 

methane production 36. The increase in methane production, and, therefore, constipation and 

bloating events, is known to be partially caused by the increase of this archaeal species (Fig. 

6, Supplementary Table S3) 69. The prevalence of D. piger is higher in patients hospitalised for 

IBD in comparison to healthy individuals or patients hospitalised for other pathologies 70.  

The multifaceted role of Desulfovibrio piger ATTC2 

The microbial composition varies between individuals 71, which may not necessarily translate 

into functional or metabolic differences 72. However, certain metabolic functions may require 

the presence of specific microbial species 73. Hence, we investigated whether there were any 

function-specific microbes in the microbial community models at the different time points, 

whose presence was required for the production of specific metabolites. The analysis 

revealed that the Proteobacteria D. piger ATCC2 was the only microbial species involved in 

the production of sulphite (SO3
2-) in the microbial community models (Supplementary Table 

S3). We found that D. piger at its peak in LS was nearly four times more abundant than in the 

maximum relative abundance found across the healthy controls (LSMax/HeMax=3.7). 

Patients affected by IBD, such as ulcerative colitis, are strongly discouraged to consume foods 

with high SO3
2- levels as being harmful and favouring tightening of inflammation 71. 

Furthermore, sodium sulfite, a common food additive, inhibits the activity of commensal and 

anti-inflammatory bacteria, such as F. prausnitzii 73. A large part of the SO3
2-

 present in the gut 

comes from dietary intake 74, however, some microbial species are known to produce SO3
2-. 

D. piger ATTC2 was not able to synthesise SO3
2- in single-species simulations. However, the 

pairwise simulations revealed that this species interacted with the Archaea M. stadtmanae 

DSM3091. Only when in synergy with the archaeal partner, D. piger ATTC2 could produce SO3. 

This metabolic dependency reflected a cooperative behaviour culminating in the production 

of the host-toxic SO3
2-. To support this hypothesis, it is worth noting that the flux production 

of SO3
2- in the LS time points, strongly reflects the abundance fluctuations of both M. 

stadtmanae and M. smithii, the two archaea in the community under investigation 

(Supplementary Fig. S17). 

The pairwise simulations revealed that D. piger ATCC 29098 absorbed ethanol, converted it 

into acetate, and, finally, secreted it. The acetate was then taken up by the acetoclastic 

Archaea M. stadtmanae DSM 3091. D. piger ATCC 2909 can metabolise ethanol using two 

alternative anaerobic pathways: in one case, the ethanol is oxidised to acetate via 

acetaldehyde as an intermediate. In the second case, other intermediates between 

acetaldehyde and acetate are generated, namely acetyl-CoA and acetyl-P 75. In the 

simulations, the conversion of ethanol to acetate had a yield of approximately 1 (0.93), as 

expected from experimental data 76. The nearly 1:1 ethanol-to-acetate ratio reflected the 

release of an excess of reducing equivalents, such as methane, by syntrophic partners 75. D. 
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piger ATCC 29098 ability to synthesise and export SO3 may be recovered through the 

interaction with other archaeal partners as well. Accordingly, due to the commensalism, when 

M. stadtmanae DSM 3091 and D. piger ATCC 29098 were co-occurrent, the net flux 

production of methane was higher (Supplementary Table S2). The abundance of D. piger 

strains in IBD patients has already been reported 70.  

Taken together, our results indicate that through the production of two metabolites, i.e., L-

serine and formate, species of the Dialister genus cooperate with many pathogenic strains, 

such as adherent invasive E. coli strains, archaeal species, and D. piger ATCC2. The interactions 

could trigger inflammatory responses and enhance methane production. Furthermore, D. 

piger ATCC2 plays an important role in enhancing the production of host-toxic SO3
2- in 

microbial communities. 

Whole-body modelling suggests a role of D. piger in the transsulfuration pathway 

We then integrated the microbial community metabolic models of each time point with a 

male organ-resolved whole-body model of human metabolism 27 to track the metabolic 

consequences of gut microbiome dysbiosis on different body sites, organs, and tissues on the 

host metabolism. In this simulation, we inspected the microbial metabolic influence on a 

range of different organs and tissues of the host as the only variable was the gut microbiome 

ecology composition, which changed over time. We found that the dysbiosis resulted in 

greater flux changes in some organs or cell types than in others. In fact, red blood cells, 

platelets, and the retina showed the most pronounced changes in predicted fluxes (Fig. 7A, 

Supplementary Table S4). Interestingly, Episcleritis, a disease involving the eyes, is one of the 

most common extraintestinal IBD manifestations 77. The predicted flux through the 

metabolism of the prostaglandin E2 was altered in the pancreas in LS2 and LS7. Prostaglandin 

release is one of the first triggering factors of the inflammatory cascade typical of CD 78. 

Finally, many drugs, such as mesalazine, are used to inhibit the release of prostaglandins and 

leukotrienes in different body sites 79 underlying the key role of these molecules in the 

establishment of CD. 

Notably, the sulphite metabolism in the liver was dependent on the presence of D. piger ATCC 

2909 (Fig. 7, Supplementary Table S4) in the gut. In the microbiome-associated whole-body 

model, sulphite from the small and large intestine could be either transported directly to the 

liver through the portal vein or as cysteine-S-sulphate (VMH ID: slfcys). In the liver, cysteine-

S-sulphate can then be metabolised to cysteine (VMH ID: cys_L) and SO3
2- 80. In our 

simulations, SO3
2- was oxidised to SO4

2- through sulphite oxidase activity (VMH ID: SULFOX). 

This reaction produced hydrogen peroxide in the model and thus could contribute to 

oxidative stress, which we do not model as such. At the same time, sulphur metabolism was 

linked to the metabolism of bile acids in the simulations in LS2 and LS7. Indeed, cysteine-S-

sulphate is a precursor of hypotaurine and taurine. The flux through the reactions involved in 

this pathway (involving the reactions HYPTROX, r0539, and r0381) changed with the time 
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points, being increased in LS2 and LS7. Around 85% of bile acid reactions were affected by the 

presence of D. piger ATCC 2909 (Fig. 7B, Supplementary Table S4). The increase of these 

compounds led to an increase in faecal H2S, which has been reported to be increased in IBD 

patients compared to healthy controls 81, in LS2 and LS7. Cysteine was converted to L-cystine 

(Supplementary Fig. S20) by a state transition reaction named Glutathione:Cystine 

Oxidoreductase (VMH ID: CYSGLTH). CYSGLTH enabled the oxidation of glutathione; thus, 

acting as a scavenger molecule. Based on our predictions, the presence of D. piger changed 

the fluxes in the transsulfuration pathway leading to higher cysteine to glutathione turnover. 

In conclusion, the analysis of the microbiome-associated whole-body model has the potential 

to shed light on the alteration in the metabolism of different body sites caused by the dynamic 

dysbiotic microbiome. The alteration of the sulphur metabolism in the liver and its link with 

the presence or absence of D. piger ATCC 2909 in the large intestine reflects the 

intercommunication among the different body sites. This network and its influence on the 

disease onset has been so far largely overlooked. However, this connection could reveal 

understudied pathobiology mechanisms. 

 

Figure 7: Overview of the alteration of the microbiome-associated whole-body models. (A) 

Fraction of reactions changing flux direction due to the dysbiosis divided by body sites. (B) 
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Key reactions in the sulphur metabolism in the liver are altered by dysbiosis (Supplementary 

Table S4).  

 

Conclusions 

The time course analysis performed on a patient affected by IBD enabled the analysis of how 

net metabolite production fluxes were induced by the change of the gut microbial community 

composition during a time course covering more than one year. To date, this is the first 

analysis inspecting the disease evolution in a patient affected by Crohn9s disease with 

metabolic modelling. The study revealed that substantial metabolic changes are associated 

with the disease evolution as a direct consequence of the patient9s changing gut microbiome 

composition, notably involving archaeal species. A number of biologically important 

metabolites were found to be highly overproduced over time in the patient, compared to 

healthy controls. This list includes oxygen, methane, thiamine, formaldehyde, TMAO, folic 

acid, serotonin, histamine, and tryptamine, which may yield new biomarkers of disease 

progression. The analyses with microbiome-associated whole-body models revealed that the 

presence of D.piger could alter the metabolism of sulphur in the liver. Since the microbial 

composition is variable among individuals, to obtain a wide and general representation of the 

microbiome the time course inspection of a higher number of patients will be needed. 

However, the functional redundancy present in the gut microbiota allows to some extent to 

generalise our results to other patients. Taken together, we demonstrated that microbial 

community metabolic modelling is a very valuable in silico approach to track correspondence 

between metagenomic data and metabolite production and can yield testable novel 

hypotheses to be addressed with additional validation studies. These results underline the 

importance of tracking an individual9s gut microbiome composition and metabolic production 

along a time course, paving the way to new analyses for self-quantified medicine. 

 

Methods 

Ethics statement 

The stool samples of the patient were collected by consent under two protocols: HRPP 141853 

(American Gut Project) and HRPP 150275 (Evaluating the Human Microbiome). The protocols 

include written informed consent concerning dissemination and scientific publication of the 

results. Both protocols were approved by the Human Research Protection Program (HRPP) of 

the University of California, San Diego.  
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Longitudinal sample collection 

The samples have been collected from naturally passed faeces and immediately stored 

without a buffer at 280°C. Seven samples were selected. A personal symptom log entry has 

been generated at the time that each faecal sample was passed. Additionally, the weight and 

body mass index (BMI) of the patient have been determined on the day associated with each 

sample. Other metadata were obtained from previous publications 22. 

 

Metagenomics data generation 

Metagenomic sequencing of the seven stool samples (LS1-LS7) was performed at the J Craig 

Venter Institute using Illumina HiSeq2000 platform. On average, 160 million paired-end reads 

at 2x100 base pairs were generated per sample. The raw reads for the healthy controls were 

downloaded from National Center for Biotechnology Information (NCBI) Sequence Read 

Archives under BioProject ID PRJNA43021. The processing of the raw metagenomic sequence 

data for LS and for the healthy controls and the computation of species relative abundance 

were described in an earlier publication by Wu et al 28. Briefly, after low-quality reads, reads 

from humans and duplicated reads were removed, and the filtered reads were then aligned 

to our curated microbial genomic sequences. The reads were assigned to their top matched 

genomes and the depth of genome coverage of each species was calculated and then 

normalised to relative abundance so that the total relative abundance was 1.0.  

Butyrate and biomarkers measurement 

The patient LS used the company Doctor's Data Comprehensive Stool Analysis kit 

(www.doctorsdata.com/Comprehensive-Stool-Analysis-CSA21) to generate the values of 

lysozyme, lactoferrin, and secretory IgA (all ELISA) reported in Figure 1. In addition, total 

butyrate (Supplementary Material Figure S14) was measured from the LS stool sample by 

Doctor's Data using gas chromatography. The values in Figure 1 of faecal calprotectin, 

generated by  ARUP Laboratories using Immunoassay, and of serum CRP were from tests with 

UC San Diego Health. 

Definition of the average European diet 

The in silico diet represented the nutrient intake of an average European individual, hence, 

representing a typical <Western= diet. Its description, along with the corresponding flux 

values, was obtained from the nutrition resource in the Virtual Metabolic Human database 35. 

The diet was supplemented with metabolites that have been previously 24 determined as 

necessary for the biomass production of at least one AGORA reconstruction. The dedicated 

function (adaptVMHDietToAGORA.m) of the Microbiome Modelling Toolbox 82 was used to 
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constrain each microbial community model. The lower bounds on all other dietary exchange 

reactions were set to zero to prevent the uptake of other metabolites.  

Simulations 

Simulations were carried out using the COBRA Toolbox 82 and the Microbiome Modelling 

Toolbox 83, which is part of the COBRA Toolbox, in MATLAB version 2018b (Mathworks, Inc.) 

as a programming environment. Metagenomics reads were mapped onto the AGORA2 

collection to create the microbial community models for the simulation. For this purpose, the 

function translateMetagenome2AGORA from the COBRA Toolbox was used. Microbial species 

with relative abundance higher than 10-5 were considered in the population analysis (i.e., for 

the alpha and beta analysis), while for the AGORA2 collection mapping and all microbial 

community models, a threshold of 10-4 was used. The precise total relative abundance 

covered for each time point is reported in Table 1. Abundances were normalised for the 

microbial community modelling. For the simulations and the net secretion and uptake fluxes 

predictions, the function initMgPipe, contained in the Microbiome Modelling Toolbox 84, was 

used. More specifically, the function initMgPipe contains the function 

microbiotaModelSimulator, which calculates the net maximal production capability for each 

metabolite. This parameter indicates the maximal production of each metabolite and is 

computed by summing the maximal secretion flux with the maximal uptake flux for each 

metabolite. Furthermore, the function initMgPipe contains the function 

adaptVMHDietToAGORA, which was used to apply the diet constraints to the microbial 

community model. Microbe-metabolite contributions were performed following Basile et al 
13. In brief, the MICOM software 65 was used through the cooperative trade-off algorithm 

integrating the abundances as input. Subsystems had been assigned following the procedure 

proposed by Heirendt et al. 83, and implementing the function calculateSubsystemAbundance 

using as input the reaction abundances.  

 

The integration of the whole-body model was performed using the Harvey reconstruction 27. 

To create the personalised gut model, the function combineHarveyMicrotiota was used and 

the simulations were performed with the minNorm algorithm through the COBRA Toolbox 

(optimizeWBmodel).  

 

For all simulations, the optimisation solver used was CPLEX (IBM iLOG, Inc). 

Statistical analysis 

A cohort of 34 metagenomic samples from 34 healthy individuals from the Human 

Microbiome Project 32 was used to create a "healthy average" (HE Ave) value for each microbe 

species. Then, we computed the ratio of the relative abundance of the seven time points to 

the average health and reported the ratio of the maximum value at any of the seven time 
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points, i.e., Max (LS1-7), to the healthy average. Alpha diversity and beta diversity analysis 

were calculated with the <vegan= package 34 and using R software v.4.0.3. The taxonomic 

differences of the different samples were weighted with a hierarchical tree based on the 

taxonomies of AGORA2 25 with the function taxa2dist. The alpha diversity was calculated with 

taxondive 85. The score considered for the alpha diversity was &7. For the beta diversity, the 

function vegdist was applied. The values of beta diversity were converted to Newick format 

and used to generate a tree representing the differences between samples with the function 

NJ of the ape package. The PCA was performed with the function princomp with the 

parameters <cor=TRUE, scores=TRUE=. The 3D plot of the PCA was realised with the function 

plot3d of the package <rgl=. The Log2 Fold Change was adopted as a parameter to characterise 

metabolite production across samples. 

Data availability statement 

The authors are in the process of submitting the metagenomic sequences of the specific 

sequencing done at JCVI for the LS1-7 samples.  

Two later publications resequenced some of the LS1-7 samples, at a lower depth than 

reported herein, as part of research on a longer time series of LS faecal samples. The first 

publication 22 resequenced LS 1-7 (12/28/2011 to 4/29/2013) as part of a longer time series 

of 27 LS samples (dates from 12/28/2011 to 12/07/2014 are listed in their Supplementary 

Table S1) analysing the metagenomics of E. coli strain dynamics. The metagenomics sequence 

of these 27 samples can be found in EBI under study PRJEB24161. The second publication 30 

sequenced eight LS time series samples (dates from 12/28/2011 to 5/22/2016), including 

resequencing LS1-3, and added metaproteomic analysis for these eight time points. 

Metagenomic data are available through EBI under the study PRJEB28712 (ERP110957). 

Supplementary Material 

Supplementary Table S1:  

ï Metadata of the different time points. The table accounts for the collection date, the 

age of the patient, the clinical signs, as well as the bmi and the blood concentrations 

of some markers (i.e. CRP, calprotectin, lactoferrin, lysozyme, iga) 

ï Details of the raw reads used for this manuscript including number of raw reads (pair), 

QC filtered reads (pair), reads without human sequences or duplicates (pair), reads 

mapped to reference genomes (pair) 

ï Relative abundances of microbial species mapped on AGORA2 in the different LS 

samples, the maximum value found in LS, the Healthy average and their ratio are 

reported as well 

ï Relative abundances of microbial strains in the different LS samples retrieved with 

metagenomics, the maximum value found in LS, the Healthy average and their ratio 

are reported as well 
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ï Relative abundances of microbial species in the different LS samples retrieved with 

metagenomics, the maximum value found in LS, the Healthy average and their ratio 

are reported as well 

ï Relative abundances of microbial strains mapped on AGORA2 in the healthy samples 

ï Relative abundances of microbial strains in the healthy samples retrieved with 

metagenomics 

ï Relative abundances of microbial species in the healthy samples retrieved with 

metagenomics 

ï Details on taxonomy of the species retrieved from metagenomics accounting for all 

the taxonomic levels available and the taxid 

ï Phyla relative abundances for HE Ave and LS1-7 

ï Calculation of the alpha diversity of the different microbiomes 

ï Calculation of the beta diversity between the different time points 

 

Supplementary Table S2: 

ï Abundance of the reactions presence/absence for each time point considered, HeAve 

is reported 

ï Abundance of the subsystems presence/absence for each time point considered, 

HeAve is reported 

ï Abundance of the subsystems presence/absence for all the healthy patients 

considered 

ï Net secretion of simulated metabolites for each LS time point considered, average net 

secreted fluxes from Healthy patients are reported as well 

ï Net secretion of simulated metabolites for each healthy patient considered 

ï Log fold change of simulated metabolites for each time point considered 

Supplementary Table S3: 

ï Microbial metabolite contribution simulated for all the different time points 

Supplementary Table S4: 

ï Fluxes simulated for all the time points considered integrating the whole-body model 

and the microbiome information 

ï Information on all the reactions considered including description, formula, and 

crosslinks to other databases 

Supplementary Material: 

ï Supplementary Figure S1: Scree plot of the PCA in Figure 2 of the manuscript 

ï Supplementary Figure S2: Rotating PCA accounting for the three space dimensions 

better describing the variance observed in the LS samples 

ï Medical history of LS 

ï Supplementary Figure S3A: The 21 microbe species with a relative abundance >1% in 

the HeAve microbiome (blue bars). For each species the red bar shows the relative 

abundance in sample LS1. Note that almost all normally abundant species in healthy 

individuals are severely reduced in LS1. For instance, the two most abundant species 

in healthy individuals, Bacteroides vulgatus and B. ovatus have values LS1/HeAve of 

0.03x and 0.017x respectively 

ï Supplementary Figure S3B: The 11 species in LS1 that have relative abundance >1% 

compared to their relative abundance in HeAve. Note that LS1 has blooms of HeAve 
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rare species, such as M. smithii (165x HeAve), with overabundance ratios for other 

species as great as ~1,000x 

ï Supplementary Figure S4: The 14 species in LS2 that have relative abundance >1% 

compared to their relative abundance in HeAve. Note that LS2-4, E. coli is ~180x 

HeAve, while Collinsella aerofaciens peaks at 55x HeAve in LS2 

ï Supplementary Figure S5: The 19 species in LS3 that have relative abundance >1% 

compared to their relative abundance in HeAve. Note that Dorea longicatena and 

[Ruminococcus] obeum are 10-20x HeAve in LS3 and 4 

ï Supplementary Figure S6: The 17 species in LS4 that have relative abundance >1% 

compared to those species relative abundance in HeAve. Note that Streptococcus 

thermophilus [Firmicutes Class Bacilli] peaks at ~150x in LS4 

ï Supplementary Figure S7: The 12 species in LS5 that have relative abundance >1% 

compared to those species relative abundance in HeAve. Note that Bifidobacterium 

animalis [Phylum Actinobacteria] peaks at over 1500x HeAve in LS5 

ï Supplementary Figure S8: The 22 species in LS6 that have relative abundance >1% 

compared to those species relative abundance in HeAve. Note that the 2nd most 

abundant Archaea (Methanosphaera stadtmanae) peaks at ~500x HeAve in LS1 and 6 

ï Supplementary Figure S9: The 10 species in LS7 that have relative abundance >1% 

compared to those species relative abundance in HeAve. Note that LS7 F. prausnitzii, 

an anti-inflammatory bacteria has a relative abundance of ~ 1/3 of the microbiome 

ï Supplementary Figure S10: Abundance fluctuations of the main Enterobacteriaceae 

bacteria present in the LS samples 

ï Supplementary Figure S11: Abundance fluctuations of E. coli in LS samples and healthy 

average patients 

ï Supplementary Figure S12: Abundance fluctuations of microbes of the 

Fusobacteriaceae family in LS samples and healthy average patients 

ï Supplementary Figure S13: Abundance fluctuations of microbes of the 

Methanobacteriaceae family in LS samples and healthy average patients, insight on 

Methanosphaera sadtmanae 

ï Supplementary Figure S14: Total butyrate measured in the time points covered by this 

analysis 

ï Supplementary Table in Supplementary Material: an overview of the 24 most 

divergent metabolites between LS and Healthy patients. For each of the metabolites, 

the HeMax, HeMin, HeAve, LSMax, LSMin and informative ratios are reported 

ï Supplementary Figure S15: Correlations between microbial abundances and specific 

fluxes, Class IA: High on LS1, Low on LS 2-7 

ï Supplementary Figure S16: Correlations between microbial abundances and specific 

fluxes, Class IB: high on LS1, other peak at LS6 

ï Supplementary Figure S17: Correlations between microbial abundances and specific 

fluxes, Class IC: High on LS1/2, LS5, LS7 

ï Supplementary Figure S18: Correlations between microbial abundances and specific 

fluxes, Class ID: High on LS1, 2, and 3, with Another Peak at LS6, Normal on LS 5 and 7 

ï Supplementary Figure S19: Correlations between microbial abundances and specific 

fluxes, Class IE 
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ï Supplementary Figure S20: Correlations between microbial abundances and specific 

fluxes, Class IIA 

ï Supplementary Figure S21: Correlations between microbial abundances and specific 

fluxes, Class IIB: Low on LS1, 5, and 7, High on LS2-4, and LS6 
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