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Abstract

Inflammatory bowel diseases (IBD) are characterised by episodic inflammation of the
gastrointestinal tract. Gut microbial dysbiosis characterises the pathoetiology, but its role
remains understudied. We report the first use of constraint-based microbial community
modelling on a single individual with IBD, covering seven dates over 16 months, enabling us
to identify a number of time-correlated microbial species and metabolites. We find that the
individual’s dynamical microbial ecology in the disease state drives time-varying in silico
overproduction, compared to healthy controls, of more than 24 biologically important
metabolites, including oxygen, methane, thiamine, formaldehyde, trimethylamine N-oxide,
folic acid, serotonin, histamine, and tryptamine. A number of these metabolites may vyield
new biomarkers of disease progression. The microbe-metabolite contribution analysis
revealed that some genus Dialister species changed metabolic pathways according to the
disease phases. At the first time point, characterised by the highest levels of blood and faecal
inflammation biomarkers, they produced L-serine or formate. The production of the
compounds, through a cascade effect, was mediated by the interaction with pathogenic
Escherichia coli strains and Desulfovibrio piger. We integrated the microbial community
metabolic models of each time point with a male whole-body, organ-resolved model of
human metabolism to track the metabolic consequences of dysbiosis at different body sites.
The presence of D. piger in the gut microbiome influenced the sulphur metabolism with a
domino effect affecting the liver. These results underline the importance of tracking an
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individual’s gut microbiome along a time course, creating a new analysis framework for self-
guantified medicine.
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Introduction

The human gut microbiome performs essential functions in shaping the host immune system,
host cell proliferation, and is involved in the maintenance of endocrine functions 1. The human
microbiome consists of a large number of archaeal and bacterial, but also of viral and fungal,
species 2. The composition of the microbiome depends on host factors, such as age, sex,
location, ethnicity, and lifestyle (e.g., diet, exercise, and medication). Between healthy
individuals, the relative abundances of taxa are highly variable, while the functional
capabilities are more stable. In contrast, many multifactorial diseases are characterised by a
dysbiotic microbiome 3.

The gut microbiota differs among individuals, has a variable composition in different parts of
the digestive tract, and can undergo extensive modifications throughout life *. This aspect is
regarded as an obstacle to gut microbiome-based medical applications, as it remains difficult
to identify a clear signature of the dysbiotic microbiota. The microbiome of an individual can
change during the outbreak of a disease, and the symptomatology of the patient changes
accordingly °. This is particularly true for patients affected by Inflammatory Bowel Disease
(IBD), a disorder characterised by episodic symptoms driven by time-changing inflammation
of the gastrointestinal tract ©. This time-varying inflammation is the byproduct of the constant
interaction between the human host's immune system and the changing ecological profile of
the host’s gut microbiome ’. The presence or absence of inflammation is strongly associated
with four measurable faecal biomarkers: calprotectin and lactoferrin (shed from white blood
cells), lysozyme (innate immune system), and secretory IgA (adaptive immune system) 8, as
indicators of levels of severity of episodic IBD. Historically, IBD has been considered to have
two main subtypes: ulcerative colitis (UC) and Crohn’s disease (CD). However, a large (30,000
patients) human genotype study in 2016 ° demonstrated that the human genetic
predisposition is best explained by three subtypes: ileal Crohn’s disease (ICD), colonic Crohn’s
disease (CCD), and UC. This same IBD tripartite division is seen when the gut microbiome
ecology is clustered . This separation into three subtypes is even clearer when using the
Kyoto Encyclopaedia of Genes and Genomes (KEGG) database to cluster the gut microbiome
of patients .

Recently, the study of the microbiome has moved from “Who is there?” to “What are they
doing?”. In particular, the constraint-based reconstruction and analysis (COBRA) framework,
which relies on a genome-scale reconstruction of a target organism's metabolism and the
application of condition-specific constraints, e.g., meta-omics data and allowed uptake of
nutrients 12, has moved these questions further to “What do they produce?”, and “How do
they interact?” 11376, Genome-scale reconstructions are assembled using organisms’ genome
sequences and biochemical, genetic, and physiological evidence . COBRA assumes the
biological systems to be at a steady state, i.e., the change in metabolite concentration over
time is zero. Flux balance analysis (FBA) ¢, a frequently used COBRA method, assumes in


https://doi.org/10.1101/2022.12.19.520975
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.19.520975; this version posted December 20, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

addition that the biological system tries to achieve an objective, e.g., maximal biomass yield

18 FBA has been successfully applied to investigate the role of the human gut microbiome in

various complex diseases, including Parkinson’s disease °:2°

1,21~

, and inflammatory bowel disease
23, To facilitate the application of constraint-based modelling to research on the human
gut microbiome, the AGORA (Assembly of Gut Organisms through Reconstruction and
Analysis) collection was established 24, and recently expanded to cover over 7,200 semi-
manually curated microbial genome-scale metabolic reconstructions 2°.

In prior studies, FBA was used on a set of microbiome samples comparing healthy individuals
with IBD patients at a single time per patient. COBRA modelling has been used to link
mechanistically host-microbiome-environment interactions to IBD-related changes 2. The
potential of 818 microbial strains to deconjugate primary bile acids into secondary bile acids
has been investigated with a combined approach based on comparative genomics followed
by FBA 26, In that study, it has been reported that microbial species can complement each
other’s bile acid pathway to achieve the broader bile acid production repertoire observed in
faecal samples 26,

Despite the numerous studies performed on CD, the evolution of the gut microbiome during
disease onset and progression has not been analysed with FBA. Here, we bridge this gap by
investigating how the extreme dysbiosis time variations of the gut microbiome ecology in a
single individual with CCD can cause similar large time variations in a number of key
metabolites. Another unexplored aspect of the disease is the interaction between host
metabolism and the compounds produced by the normal and the dysbiotic gut microbiome.
To tackle this specific aspect, we performed an additional investigation using sex-specific,
organ-resolved, whole-body metabolic models of human metabolism, which account for 28
organs, tissues, and cell types ?’.

The present study used FBA to analyse the metabolic evolution of the gut microbiome
community in a single individual (“LS”) affected by left-sided CCD across seven time points
covering a period of 16 months in 2012/2013 (Fig. 1). The metagenomic data for these seven
time points have been previously compared 1?2 with a set of metagenomic data from healthy
individuals drawn from the NIH Human Microbiome Project 2°, as well as selected
metagenomic data from patients with ICD and with UC. It has been shown 3° that LS’s gut
microbiome taxonomic profile deviated a great deal from the healthy individuals and
furthermore, that his gut microbiome exhibited major taxonomic shifts over time.

In the present study, the metagenomic data for LS’s seven time points, computed at both the
species and strain levels (Supplementary Table S1) were mapped onto the AGORA2 collection
25 The taxonomic composition of the microbiome samples in AGORA2 for each time point
(Supplementary Table S1) was then analysed and diversity indexes were computed. As a
comparison, we used the metagenomic relative abundance of both species and strain data
from the cohort of 34 healthy control subjects (Supplementary Table S1) and also mapped
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them on AGORA2 (Supplementary Table S1). Subsequently, the contribution of each microbial
species within the microbiome-level, time point-specific AGORA2 microbial community
models to the global profile of 740 metabolites (Supplementary Table S2) present in the gut
was predicted (Methods: Simulations section).

We found that LS’s major gut microbiome taxonomic shifts over time led to correspondingly
large FBA metabolic shifts from the personalised microbial community models. In particular,
our model results show that a number of biologically important metabolites were highly (10-
10,000x) overproduced, compared to HeAve, at various time points in LS's samples, including
oxygen, methane, thiamine, formaldehyde, trimethylamine N-oxide, folic acid, serotonin,
histamine, and tryptamine. Furthermore, our results suggest that through the production of
few metabolites, i.e., L-serine and formate, species of the Dialister genus cooperate with
many pathogenic strains, such as adherent invasive Escherichia coli strains, archaeal species,
and Desulfovibrio piger ATCC2. The interactions trigger inflammatory responses and enhance
methane production. Finally, D. piger ATCC2 plays an important role in the production of the
host-toxic SO3%. Additionally, we investigated host-microbiome co-metabolism during these
time points. In conclusion, our study sheds light on metabolites and microbial species
triggering the inflammatory responses, and their impact on host metabolism.

Results and discussion

Characterisation of the time points

% LS Ls2 Ls4 LS5 LS6 Ls7
| o LD <y
S » S
- 4 = q = | - )
Date 28/12/2011 03/04/2012 07/08/2012 06/11/2012 26/01/2013 25/02/2013 29/04/2013
Blood CRP (mg/dL)  27.1 43 4 3.7 7
Lactoferrin (mg/L) 124 20 7 21 Vi 168 65 104 557
Lysozyme (mg/L) 532 621 516 826 650 718 1370
Calprotectin (ug/g) 2500 266 201 67 110 71 360
SeclGA (mcg/q) 56 340 307 1500 175 168 1420
Alpha diversity ® ® ® [ ] ®
77.86 76.85 77.11 80.18 77.46
Microbes 76 125 102 91 87 101 106
Reactions 142,358 253,294 185,468 140,923 115,612 173,610 141,914
Metabolites 126,065 222,120 164,170 126,108 104,972 154,198 129,276

Figure 1: Timeline with metadata of the different samples. In the timeline, generated with
BioRender, the collection date, the measured blood concentration of complex reactive
protein (CRP), as well as faecal lactoferrin, lysozyme, calprotectin, and secretory IgA (SeclGA)
are reported. LS has episodic major increases in all of these inflammatory/immune
biomarkers, as healthy values for each are CRP<1, lactoferrin<7.3, lysozyme<600,
calprotectin<50, and SeclGA (30-275). The medical intervention between LS1 and LS2
consisted of ciprofloxacin, metronidazole, and prednisone. “Microbes” refers to the number
of metabolic models identified in the metagenomic samples according to the threshold
selected (see Methods) and that were included in each time point-specific microbial
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community model. The number of reactions and metabolites refers to the size of the
condition-specific microbial community models at each time point.

The n=1 patient “LS” with CCD was a non-smoker male, 64 years old at baseline. A detailed
description of his medical history is reported in Supplementary Materials. We carried out (see
Methods) deep (~¥100M reads per sample) shotgun metagenomic sequencing, yielding 510
species and 790 strains relative abundance, on frozen faecal samples for seven time points,
deemed LS1 to LS7 (Supplementary Table S1) according to the time of collection.

All time points were characterised by abnormal concentrations of hematic and faecal immune
or inflammatory biomarkers, with LS1 having both the highest hematic complex reactive
protein (CRP) and the highest faecal calprotectin concentration (Fig. 1, Supplementary Table
S1). In contrast, lactoferrin, lysozyme, and secretory IGA had their highest values at LS4 and
LS7. The medical intervention between LS1 and LS2 (Fig. 1) consisted of two antibiotics, being
500 mg ciprofloxacin administered orally twice a day and 250 mg metronidazole administered
orally three times per day for one month starting from 31 of January 2012 3. During this
period, the patient also received daily 40 mg oral prednisone, a drug used to suppress the
immune system and decrease inflammation.

In addition, we obtained shotgun metagenomic data (~100M reads per person) for the gut
microbiome from 34 healthy individuals in the Human Microbiome Project 32 (Methods,
Supplementary Table S1). This control dataset allowed for the comparison of the LS
microbiome with healthy individuals and for the identification of microbial and functional
differences associated with the disease status at each time point.

Analysis of metagenomic data with microbiome-level metabolic models

First, we investigated the changes in the metagenomic phyla abundances in the healthy and
disease microbiomes. We identified major differences over time between the seven LS times
and the healthy microbiomes across the seven most abundant phyla: Actinobacteria,
Bacteroidetes, Euryarchaeota, Firmicutes, Fusobacteria, Proteobacteria and Verrucomicrobia
(Fig. 2A, Supplementary Table S1). Then, we used the strains identified in the shotgun
metagenomic data of LS (Supplementary Table S1) as input to the AGORA2 collection of
microbial metabolic reconstructions 2°> (see Methods). This process creates seven in silico
microbial community models (Supplementary Table S1) accounting for a total of 214 distinct
microbes, covering both bacterial and archaeal species. The simulation (Methods) uses the
seven ecological models to compute the metabolites produced by the microbial communities.
In detail, the maximal production and uptake fluxes of each metabolite from all the microbial
species is computed, following . In the following sections, we will state when we are
referring to the input metagenomic microbial abundances or to the AGORA2 mapped
abundances.
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Figure 2: Graphical representation of the time evolution of the gut microbiome ecology. (A)
Stacked barplot representing the metagenomic phyla abundance of the gut microbiome in
the different LS samples with a comparison to the Healthy Average (HeAve). For a similar
barplot, which also shows the time variation of 10 abundant species superimposed on the
LSphyla bars, see Fig. 2 in Ref 30. (B) 3D principal component analysis computed on the
species abundances mapped onto AGORA2 involved in the metabolic modelling for each time
step and reflecting differential microbial compositions and abundances is shown (more
details in the Method section). For a 2D PCA of the metagenomic species relative abundances
of the 7 LS samples and the 34 HE samples, see Figure 4a of Ref. 11.
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Using the metagenomic relative abundances, we compared LS microbial species composition
at each time point and with those of the 34 healthy controls, including calculating both the
maximum (HeMax) and average (HeAve) abundance of each microbial species across the
healthy individuals (Supplementary Table S1). We observed cases where LSMax>HeAve,
meaning that the disease state associated microbiome fluctuated over time and exceeded the
average relative abundance in the healthy population. Additionally, we identified cases with
LSMax>HeMax, meaning that the relative abundance in the disease state could be greater
than the largest cross-population variation. Using this comparison, the dysbiosis experienced
by LS was characterised by a major decrease in microbe species that were dominant in the
healthy individuals, thereby allowing for the time-dependent bloom of typically less abundant
microbes in LS1-7 (Supplementary Fig. S3-S9).

In more detail, the average healthy control’s gut microbiomes were found to be
predominantly composed of Bacteroidetes (65.6%) and a lower fraction of Firmicutes (30%)
(Fig. 2A). In contrast, the most abundant LS microbiome phylum at all seven time points was
Firmicutes, which ranged from 1.4 to 2.5x the HeAve abundance (Fig. 2A, Supplementary
Table S1). The overabundance of Firmicutes was driven by the blooming of normally rare
Firmicutes species from classes Bacilli and Clostridia, with overabundances ranging from 100-
1,000x HeAve for those species. In particular, the family Lachnospiraceae (in class Clostridia)
was 2.6-3.7x HeAve, mainly represented by Dorea longicatena DSM 13814, normally rare, but
25x HeAve in LS4 (Fig. 3, Supplementary Table S1). In contrast, the other dominant microbial
phylum in healthy individuals, Bacteroidetes, was depleted by more than 10x in all LS time
points except LS6 when it bounced back to half the abundance of HeAve.

The ecological absence of the normally dominant phylum Bacteroidetes allowed other,
normally rare phyla in the healthy individuals, to dynamically bloom. In particular, the phylum
Euryarchaeota was elevated by at least three times in all samples when compared with the
HeAve, with an extreme overabundance in LS1 and LS6, which are 137x HeAve and 57x HeAve,
respectively (Supplementary Table S1). The observed high archaeal relative abundances in all
the phases are typical of CD-associated dysbiosis 3. In particular, the presence of the family
Methanobacteriaceae (dominated by Methanobrevibacter smithii) was strongly influenced by
the disease, varying between 3-170x HeAve (Supplementary Fig. S13), with the highest value
occurring at LS1. The phylum Proteobacteria was also overabundant, compared to healthy
individuals, at all seven time points. For LS1-3, it was approximately seven times higher, and
for LS7, it was ten times higher than HeAve. Within this phylum, the family
Enterobacteriaceae reached a peak of >150x HeAve in LS7 (Supplementary Table S1,
Supplementary Fig. S10). The abundance of family Enterobacteriaceae species E. coli in LS1
was 187x (Supplementary Table S1, Supplementary Fig. S11). Phylum Actinobacteria had a
higher abundance (4-50x HeAve) at all time points and a higher diversity with 58 different
species present at time point LS5 compared to the healthy average (36 species) 3°. Among
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these species, Bifidobacterium longum climaxed to seven times the HeAve. Finally, there were
also isolated blooms of the phyla Fusobacteria (40x and 11x HeAve at LS1 and LS6) and
Verrucomicrobia (seven times the HeAve at LS5).

Table I. Information about the species filtering performed through AGORA2 mapping. The
total number of strains identified, and the strains covered by the AGORA2 mapping are
reported. The abundance based on AGORA2 mapping, using a cutoff threshold abundance of
0.0001 is reported as well, together with the alpha diversity of the samples. For details on the
calculation of the Alpha diversity, please refer to the method section.

Features LS1 LS2 LS3 LS4 LS5 LS6 LS7 HeAve

Total number of

o 1,041 | 1,055 | 1,532 | 1,110 | 1,037 | 1,112 | 1,039 | 939
strains identified

Strains covered in
the in silico

. . 76 125 102 91 87 101 106 198

microbial

community models

Fraction of total

0.923 | 0.937 | 0.902 | 0.904 | 0.926 | 0.925 | 0.923 | 0.98
abundance covered

Alpha diversity 74.86 | 77.86 | 76.85 | 77.11 | 74.5 | 80.18 | 77.46 | 75.56

To assess the diversity within each microbial community model, we calculated the alpha
diversity based on the AGORA2 taxonomic assignments for both LS1-7 and HeAve. The highest
LS alpha diversity was obtained for LS6 (Table 1). Although LS2 was the time point with the
highest number of species, it was not the one with the highest alpha diversity, when the
taxonomic differences of the different samples were weighted with a hierarchical tree based
on the taxonomies 34. Indeed, LS2 was mainly composed of Firmicutes and Actinobacteria,
which covered more than 70% of the relative abundance in the sample (Fig. 1, Table 1,
Supplementary Table S1).
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To assess the changes in diversity between the time points, we calculated the beta diversity
using the Bray-Curtis dissimilarity index 34. The average beta diversity between samples was
58.00. The two most dissimilar samples were LS1 and LS2 (84.1%), likeliest reflecting the effect
of the antibiotic treatment before LS2 collection. The two lowest beta diversities were
between LS3 with LS4, which had a beta diversity of 23.44, and LS5 with LS7 of 35.76. The
diversity between LS1 and LS6 was 79.50 (Supplementary Table S1).

In the Principal Component Analysis (PCA) performed on microbial composition and
abundances (Fig. 2B, Supplementary Fig. S1, S2), the first component accounted for 54.7% of
the total variability, while both the second and the third components each accounted for
approximately 20% of the total variability. The different PCA components were mainly driven
by the differential abundance of two archaeal species, i.e., the already mentioned M. smithii
ATCC 35061, and Methanosphaera stadtmanae DSM 3091 (LSMax = 542x HeAve). Both
archaea were more abundant in LS1 and LS6 in comparison to the other time points (Fig. 2A,
Supplementary Fig. S2, S17). In the PCA cluster plot, LS6 was clearly separated from the other
six time points (Fig. 2B), consistent with the higher alpha diversity of the LS6 microbiome
(Table 1) compared to the other time points.

As aforementioned, the LS1 gut microbiome was severely depleted in almost all the most
abundant HeAve species (Fig.1a, Supplementary Fig. S3-S9). We found 21 microbe species
with relative abundance >1% in HeAve, yet they were very rare (HeAve/LS1>10) in LS1 (Fig.
1B, Supplementary Fig. S3A), including the phylum Bacteroidetes species Prevotella copri
(1436x), Bacteroides stercoris (152x), Bacteroides caccae (43x), Bacteroides ovatus (40x),
Bacteroides vulgatus (28x), Bacteroides dorei (20x), Alistipes putredinis (15x) and the phylum
Firmicutes species Eubacterium rectale (43x) and Ruminococcus bromii (11x). Only three of
the 21 HeAve most abundant species had relative abundances in LS1 that were comparable
(1<HeAve/LS1<5) to HeAve: Faecalibacterium prausnitzii (4.5x), and Alistipes finegoldii (3x),
Dialister invisus (1.5x). We note that F. prausnitzii is a well-known anti-inflammatory
bacterium. Its high level at LS1 may be an indication of the microbiome attempting to counter
the high level of host inflammation at LS1.

A complementary analysis identified microbial species with the highest relative abundance
(>1%) in the gut microbiome of LS1 (Supplementary Fig. S3B). Not only were there fewer
microbe species that had a relative abundance >1% than in HeAve, but also the most
abundant microbes in LS1 were normally extremely rare in the healthy gut microbiome. With
the exception of Dialister invisus (which we will return to later), all of the dominant LS1
microbiome species ranged from 100 to almost 1,000 times more abundant than in the
healthy gut microbiome. A number of these normally rare species (e.g., E. coli, M. smithii, M.
stadtmanae, and P. micra) will have major impacts on key metabolite production, as we will
discuss later in this paper. This illustrates a classic ecological dynamics result: when formerly
dominant species are wiped out, normally rarer species can bloom and become the dominant
ones.
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Taken together, our metagenomic time series demonstrates that the microbial composition
varied substantially between the LS time points, as well as compared to the healthy average.
The strong differences between LS and healthy samples in microbial abundance motivated
the use of metabolic modelling to understand how these metagenomic differences over time
could influence metabolite production as the gut microbiome ecology shifts.

Microbial and metabolic changes over time

To investigate potential changes in metabolic activity associated with the dysbiotic
microbiome composition at each time point, we performed metabolic modelling and FBA ©
assuming a Western diet 3. For each metabolite, we computed the net metabolite production
potential (Methods, Supplementary Table S2). The resulting in silico metabolite production
profiles represent the potential of all microbial community members to uptake dietary
metabolites and secrete metabolic end products. We also predicted microbe-specific
contributions to the overall fluxes in each microbial community model (Methods). To allow
for the comparison between the LS microbiome and the healthy gut microbiome, we
calculated the parameter healthy average of the fluxes (HeAveFluxes) from the healthy
controls metagenomic input to our simulation model, creating 34 healthy controls microbial
community models (Supplementary Table S2). The resulting HeAveFluxes parameter enabled
us to discover that over 20 metabolites had a maximum value over the LS1-7 LS dysbiotic gut
microbiome, which ranged from 10 to 750 times higher than the maximum values across the
healthy controls (Supplementary Table S2).

Next, we examined in detail the strong time variations of a number of key gut microbially
produced metabolites. Specifically, we selected 24 metabolite exchange reactions with
LSMax/LSMin flux ratios >10 [or LSMin=0, so the ratio is large (technically divided by 0)] to
examine in more depth (Supplementary Table in Supplementary Materials). All but five of
these 24 were greatly overproduced by LS, with LSMax from 5x to 750x times the highest
value found across the 34 healthy controls. For each of these 24 metabolites, we then visually
pattern-matched the metabolite time graph to microbial species relative abundance graphs
over time. This approach allowed the identification of several microbe-metabolite
relationship time variation patterns over LS1-7 (Fig. 3, Supplementary Fig. $S15-S21). The
microbe-metabolite relationships were characterised by two distinct microbe/metabolite
classes: Class |, with a peak value at LS1 and dramatically lower values in the other time points
(e.g., the M. smithii/methane, Fig. 3, Supplementary Fig. S17), and Class Il, which were low in
LS1 and higher values in the subsequent time points (e.g., Dorea longicatena DSM
13814/Pyridoxal, Fig. 3). We give archetypal examples of each Class in Figure 3 with subclasses
of Classes | and Il defined with matching metabolite examples in Supplementary Fig. S15-S21.
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Figure 3: Correlations between microbial abundances and secretion fluxes of key
metabolites. Top square: Class | microbe-metabolite relationships. Bottom square: Class Il.
Each pair of graphs represents representative specific gut microbiome species relative
abundance over LS1-7 (top of pair) and a matched metabolite flux over LS1-7 (bottom of pair).
For the species graph, the blue line represents the relative abundance of the microbe over
LS1-7, while the red line represents the relative abundance of that microbe for HEAve.
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Numbers in parentheses next to each metabolite name corresponds to the flux ratio of the
minimum and maximum flux calculated for the LS samples. For insights on subclasses of
Classes | and Il, please refer to Supplementary Fig. S15-521.

These two dozen microbe species-metabolite pairs were all candidates for a deeper
biochemical pathway analysis to determine whether there is a clear causal relationship
between the microbe and the production of its paired metabolite. Because of our discovery
of the extreme overproduction in the disease state compared to the inter-population
variability in healthy individuals, these metabolites are all potential candidates to be
biomarkers for tracking the episodic development of the disease. Below, we take a first look
at this hypothesis.

Methane and Methanobacteriaceae: The average methane production in healthy gut

microbiomes (HeAveFluxes) computed by AGORA2 was 0.26 mmol/gDW/day (Supplementary
Table S2). In contrast, in the LS diseased state, the production of methane was highest in LS1
(40.19 mmol/gDW/day) and decreased in LS2-7 (1 mmol/gDW/day at LS2) closely following
Methanobacteriaceae abundance in the corresponding microbiome samples (Fig. 3, top). This
relationship was also reflected in the microbe-metabolite simulations (Supplementary Table
S3). At its peak, M. smithii was the most abundant species in LS1 (Supplementary Fig. 3B) and
methane production in the disease state was 155x the highest value computed (HeMax) for
methane across the healthy controls. This result agrees with prior results that methanogenic
archaea are the major biological source of methane in humans with a single species, M.
smithii, accounting for up to 94% of methanogenic activity in most colonised individuals 3. In
addition, chorismate followed the same time evolution as methane, peaking at 141x HeMax.

Oxygen and E. coli: The in silico average healthy level (HeAveFluxes) of the oxygen production

fluxes was 0.003 mmol/gDW/day. In contrast, the extreme value of LS1 was over 2,000 times
higher (8.3 mmol/gDW/day) than HeAve and 165x HeMax (we note only two of the 34 healthy
controls had any significant oxygen production). This enormous increase in the dysbiotic
production of free oxygen was found to follow the time variation of E. coli, being highest at
L1-L3 (where E. coli was ~10% of the gut microbiome ecology or 187x HeAve relative
abundance), normal at LS5 and LS7, and an additional increase at LS6. It is remarkable how
large the change in oxygen production was as the dysbiotic evolution progressed. The ratio of
the oxygen production from its high in LS1 (8.3) to its low in LS7 (0.00075 or 0.25x HeAve) was
over 10,000 fold (11,116x).

These large fluctuations suggest an obligate syntrophy with one of the oxygen-producing
bacteria present in the consortium. Many reconstructions of microbial species included in the
simulations (e.g., Eggerthella lenta DSM 2243, Bacteroides vulgatus ATCC 8482, and
Megasphaera elsdenii DSM 20460) have a superoxide dismutase (VMH ID: SPODM)
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converting reactive oxygen species to oxygen and oxygen peroxide (2.0 h[c] + 2.0 o2s|[c] ->
h202[c] + 02[c]), as well as an oxygen exchange (VMH ID: EX_02) reaction. The simulations,
therefore, suggest a novel, unidirectional interaction among these species boosting E. coli
bloom with superoxide dismutase products. Our hypothesis is novel, yet consistent with the
“oxygen hypothesis” that posits that some aspects of IBD symptoms result from an increase
of oxygen and reactive oxygen species into the intestinal lumen competitively favouring
facultative anaerobic species over strictly anaerobic ones *. Indeed, Enterobacteriaceae
bacteria, such as E. coli, can absorb oxygen being facultative aerobic species 2.

In addition to the likely increased anaerobic respiration, which was induced by inflammation
in LS (Fig. 1) %%, the dysbiotic shifts in the microbiome ecology itself produced, according to
our microbial community model, copious amounts of free oxygen, coming from the
detoxification of reactive oxygen species, which E. coli could then utilise to increase its relative
abundance directly via aerobic respiration. In addition to the production of free oxygen, our
microbial community model predicted that the fluxes of trimethylamine N-oxide (TMAQ), for
LS1 was 3082x HeAveFluxes (Supplementary Table S2). In previous studies, TMAO has been
highlighted as a metabolite, which alters systemic homoeostasis and participates in the first
inflammatory states 3°. Furthermore, TMAO production is known to boost anaerobic
respiration, which favours Enterobacteriaceae, i.e., E.coli, over Clostridia and Bacteroides
species “°. Therefore, we conclude that there appear to be two separate mechanisms
(inflammation-induced aerobic respiration and dysbiotic microbiome ecology creating free
oxygen) that both provide E. coli with a selective energy advantage over the otherwise
dominant Firmicutes and Bacteroides, which can do neither anaerobic nor aerobic
respiration.

Thiamine and E. coli: Vitamin synthesis by gut microbes is one of their essential ecological

services to the health of the host. Our microbial community model predicted that, in the
extreme of the disease state (LS1), thiamine (vitamin B1) fluxes (17.1mmol/gDW/day in LS1)
was 18,318x higher than the HeAveFluxes (0.00093 mmol/gDW/day) (Supplementary Table
S2). The thiamine production flux computed by the LS microbial community models was highly
variable, fluctuating across LS1-7 by a factor of 15,000x, while across the population of healthy
patients, each sampled at one time, there was a variation in thiamine production of only 23x.
Furthermore, the maximum value of thiamine (at LS1) was 7,472x greater than HeMax for
thiamine (Supplementary Table S2), meaning that the disease state drove thiamine
production almost four orders of magnitude beyond what was seen in the cross-population
production.

In addition, we also predicted other B vitamins to be overproduced in LS compared to HeAve
(Supplementary Table S2). In particular, our microbial community model predicted
LSMax/HeAve for riboflavin (vitamin B2, 8x), pyridoxal (vitamin B6, 98x), and folic acid
(vitamin B9, 39x). For niacinamide (vitamin B3) and biotin (vitamin B7), the healthy controls
were all zero, but there was substantial production of each in LS1-7. This result highlights the
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value of measuring the dysbiotic time variation within a single patient instead of only
reporting population averages.

Other metabolites that vary with E. coli: Several other metabolite exchange fluxes (Fig. 3,

Supplementary Fig. S18), which closely followed the time variation in E. coli relative
abundance, were also found to have an LSMax value far above cross-population HeMax value.
Specifically, the ratio of LSMax/HeMax for some of these included the polyamine metabolism-
related metabolites ortho-hydroxyphenylacetic acid (164x), 5’'methylthioadenosine (142x),
spermidine (12x), and histamine (13x) consistent with previously reported results %.. In
particular, dysbiosis can predispose overgrowth of E. coli, which in turn leads to increased
production of histamine, thus contributing to the symptomatology of histamine intolerance
42 The LS1-7 variation predicted for histamine was 170x, with a maximum flux of 46.95
mmol/gDW/day in LS1, while the HeAve was 0.32 mmol/gDW/day (Supplementary Table S2).

TMAO and Fusobacterium species: TMAO has been recently hypothesised to be a possible

link mediating between red meat intake and vascular inflammation, leading to poor
cardiometabolic health . Separately, Fusobacteria have been discussed as being involved in
the onset of colon cancer #. Intriguingly, at the height of LS inflammation, as measured by
calprotectin and serum CRP, LS1 had nearly a 1,000x overabundance of the dominant phylum
Fusobacteria species Fusobacterium sp. 12_1B, compared to HeAve. This coincided with our
microbial community model predicting a similar level of overproduction of TMAO
(LS1/HeAve=3082x) and LS1/HeMax=91x.

Serotonin and B. longum: The microbial production of the neurotransmitter serotonin, which

had a variation across LS1-7 of 25x and whose maximum at LS5 was 3x the HeMax, mimicked
the fluctuations of Bifidobacterium longum abundances (Supplementary Fig. S19). It is known
that B. longum supernatants upregulate the serotonin transporter expression in intestinal
epithelial cells **. Deregulation of gut-produced serotonin has also been associated with
diarrhoea or constipation symptoms “. Furthermore, according to Minderhaud and
colleagues ¥, the severity of intestinal inflammation can depend on the availability of gut
serotonin. Another metabolite, which followed the variation of B. longum and is also involved
in the gut-brain axis, was tryptamine, which varied by 103x across LS1-7 and whose peak at
LS1 was 25x HeMax.

Dorea longicatena and Ruminococcus obeum were the 1st and 2nd most abundant Firmicutes

species in the Lachnospiraceae family in LS, respectively. Their time evolution aligned with a
number of metabolites with large ratios of LSMax/HeMax: formaldehyde (3477x), 5-
methyltetrahydrofolic acid (311x), tetrahydrofolic acid (260x), folic acid (12x), pyridoxal (7x),
and riboflavin (3x).

Normally rare Firmicutes species: An unusual aspect of LS dysbiosis was that at LS1 several

normally quite rare Firmicutes species (Peptostreptococcus stomatis, LS’s most abundant
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species in Firmicutes family Peptostreptococcaceae; Solobacterium moorei, LS’s most
abundant species in Firmicutes family Erysipelotrichaceae; and Parvimonas micra, LS’s most
abundant species in Firmicutes family Clostridiales Family XI. Incertae Sedis) were from 250
to 1,000x more abundant than HeAve. Their graph over LS1-7 closely matches metabolites
with high ratios of LSMax/HeMax: acetoin (38x), trimethylamine (13x), and 1,2-diacyl-sn-
glycerol (8x) (Supplementary Fig. S15).

Taken together, we observed that dozens of metabolites were greatly overproduced by LS in
the disease state compared to our healthy controls and we discovered numerous microbe-
metabolite pairs showing similar changes over time. Overall, our analyses at the different time
points as well as longitudinally illustrate that the dysbiotic microbial composition changes
were associated with significant changes in metabolic function.

Metabolic and subsystem signature of each phase

After analysing metabolites strongly diverging between LS and healthy average patients, we
focused on reactions subsystem and metabolites characterising the different phases of the
disease development. The constraint-based modelling approach revealed that the reaction
subsystems strongly changed during the disease progress, which was associated with changes
in metabolic production potential by the microbial communities (Supplementary Table S2). It
has been reported that the prevalence or absence of reaction subsystems in microbial
community models can reflect healthy or dysbiotic microbial communities .
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Fig. 4 Metabolites net flux variation. Line plot of the net flux production (mmol/gDWh) of
metabolites having a marked change over the different time points. For each metabolite, the
respective chemical structure is reported.

First, we investigated which metabolite production potentials followed the observed
proximity of LS3 with LS4, and LS5 with LS7 in the PCA plot (Fig. 2A). The net production of
some metabolites increased or decreased constantly from LS3 to LS5 but were predicted to
be very high (isobutyrate) or very low in LS6 (Fig. 4). The net flux production of L-isoleucine,
ethanol, and L-lactate was low in LS1 and LS6 (HeAveFluxes 130.48 mmol/gDW/day), while it
increased in the other time points (HeAveFluxes 234.93 mmol/gDW/day). In contrast, the
production of isobutyrate followed an opposite trend and had a higher simulated
accumulation in LS1 and LS6 (HeAveFluxes 106.87 mmol/gDW/day) compared to the other
samples (HeAveFluxes 30.14 mmol/gDW/day). With the exception of isobutyrate, each of the
metabolites in Figure 4 has a ratio of their maximum values in LS1-7 (LSMax) that were greater
than the maximum value (HeMax) in any of the 34 healthy individuals: butyrate (2.7x), ethanol
(2.6x), L-isoleucine (7.3x), and L-lactate (3x). These results suggest that monitoring the
fluctuations of key microbial species and key metabolites together with the biological
processes of bioconversion could help to identify transitions of inflammation (Fig. 4).

18


https://doi.org/10.1101/2022.12.19.520975
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.12.19.520975; this version posted December 20, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-ND 4.0 International license.

(a) HF_F LF _
| Net secretions profiles
5 .l 400
300
LS6 | 200
1
LS2 000
LS3 Subsystem
LS4 M Amino acid metabolism
I Carbohydrate metabolism
Central metabolism
LS7 M Cholesterol and bile acid metabolism
Il Fermentation
LSS5 Glycan degradation
Inorganic ion metabolism
LS1 ” I Lipid metabolism
Nucleotide metabolism
subsyster NI INNE) NN (OICONN WO RN | DM 1) SrcAcre |
| lgﬁ H\ f k' | | HH Vitamin and cofactor metabolism
m-—T 006 = L &
255 8823 T g% 85
3E2 o083 - =3 32
o @ 5] Q'{D (1] ) ‘:D ® ]
(B) . )
Vitamin B6 metabolism{ @ & ] & & @ <
Vitamin B2 metabolism{ @ o D & (g L @
Vitamin B2 metabolism{ ® @& @® @ @ ©® @O value
Valine, leucine, and isoleucine metabolism-{ @ & & O & @ L] . 00
Thiamine metabolism @ o ] o @ o O '
Stickland reaction{ @ @ & @ © . . ® 02
Starch and sucrose metabolism{  ® ® & ® @ & L ® 04
Squalene and cholesterol synthesis{ @ ® ® ® @ ® ] . 06
ROS detoxification 1 @ ® L} o @ :
£ Pyrimidine synthesis . . ® @ .
% Phenylalanine metabolism-{ @ & ® ® @ O ® Group
> Lipopolysaccharide biosynthesis|1 @ B O @ @ : L] ) ) )
o Histidine metabolism{ @ ® & & o @] * Amino acid metabolism
3 Glycosphingolipid metabolism ~ # o o ® L § 4 * *  Carbohydrates metabolism
0 Glycine, serine and threonine metabolism 4 hd * * * * . ¢ . Cel . .
Geraniol degradation| ~ ® ® Py - ° 3 . ell wall biosinthesis
Folate metabolism+ @ @ [ 9] @ : & * Compounds degradation
Fatty acid synthesis { @ @ ® ® ® @ * Nucleotides metabolism
Fatty acid biosynthesis|{  ® . . o * ¢ t . )
Carbon fixation pathways in prokaryotes|{  * * . . * ¢ * * Simple molecules metabolism
Biotin metabolism{ @ @ © ® ® L ® *  Vitamine metabolism
Arachidonic acid metabolism 1 L ® @ . . . .
Aminosugar metabolism{ @ @ ] @ @ @ @

LS1 LS2 LS3 LS4 LS5 LS6 LS7
Disease phase

Figure 5: Overview of metabolites produced and reactions subsystems across the different
time points. (A) Heatmap of the net flux production of all metabolites with a summed net flux
higher than ten mmol/gDW/day. Key metabolites commented on in the text have been
highlighted in the heatmap. LF - Low flux; IF - Intermediate flux; HF - High flux (see text for
more information). (B) Geom plot of reaction subsystem prevalence across the different time
points. The colours of the circles refer to the “manually-attributed” group of each subsystem.
The diameter of the circles is proportional to the abundance of the reactions in the modelled
microbial communities.

To identify metabolite signatures at each time point, Euclidean clustering *° was performed
considering all the metabolites predicted with net flux production higher than ten
mmol/gDW/day. The results revealed the existence of three main clusters (Fig. 5A). The
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threshold of ten was selected arbitrarily for graphical purposes. The first cluster, named low
fluxes (LF), grouped together all the metabolites with a very low net production; the second
cluster had the metabolites with intermediate net production (IF); the third included the
metabolites with high net production (HF). The three clusters were heterogeneous in
metabolic subsystem composition. Some metabolites, whose flux rates were variable among
the different phases of the disease, will be discussed more in detail and the roles of the
microbial species mainly involved in their production. The prevalence of subsystems including
reactions related to that metabolite will be discussed as well.

As expected, “Methane metabolism” was strongly increased in LS1 and LS6 compared to the
other phases (Supplementary Table S2) and was due to the higher abundance of
methanogenic Archaea in LS1 and LS6. Accordingly, the predicted production of methane
enhanced in LS1 and LS6 (log fold change (LogFC) 1.42 and 0.84, respectively, Supplementary
Table S2). In contrast, some subsystems were phase-specific (Supplementary Table S2). This
was the case for the “Stickland reaction” (Fig. 5B), which couples oxidation and reduction of
amino acids to organic acids °° and characterised LS1. In a study exploring the subproducts of
common degradation pathways, 80% (8/10) of Stickland reaction products have been

frequently detected in IBD patient stool °!

. Since all microbial community models for the
seven time points received the same in silico diet, the observed differences were a direct
result of the difference in microbial composition. The increase in hydrogen production could
be an additional cause of the bloating event experienced as one of the IBD symptoms. Levitt
and Olsson have already linked hydrogen production to the adverse bloating event >2. LS6 was
characterised by an increased abundance of E. coli strains, e.g., E. coli 042, E. coli B354, and
E. coli FVEC1302, whose genomes encode enzymes belonging to lipopolysaccharide (LPS)
biosynthesis subsystems. LPSs are produced and secreted by gram-negative bacteria (e.g.,
Salmonella typhimurium >3 and E. coli ®*), and can provoke an immune response. LPSs are
generally soluble as monomers but they can aggregate into fibrous and highly insoluble
lipoproteins and lead to inflammation >°. It has been reported that the concentration of LPS

is increased in the acute phases of the disease compared to relapsing ones >®.

Butyrate is a key energy source for the host’s colonic epithelial cells *’. Our microbial
community models predicted that the butyrate secretion rate in LS7 (flux of 152.164
mmol/gDW/day) was more than twice as high as the LS6 butyrate secretion rate (70.58
mmol/gDW/day). This jump was confirmed by the laboratory-measured butyrate
concentration in the LS6 and LS7 faecal samples (Supplementary Table S1, Fig. S14), which
also more than doubled from 0.7 to 1.7 mg/mL. This large increase in butyrate production is
likely driven by the 8-fold increase, from 3.99% (LS6) to 31.5% (LS7) (Fig. 3, Supplementary
Table S1), of the relative abundance of Faecalibacterium prausnitzii, one of the major
butyrate-producing microbes in the human gut.

Furthermore, the production of L-serine was increased in LS6 (Fig. 3) compared to the other
time points (Supplementary Table S2). L-serine has been shown to interact with the gut
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microbiome, in particular, it is known to elicit the secretion of antimicrobial molecules, such
as bacteriocins 2. This amino acid is mainly produced by species of the Dialister genus and its
importance will be discussed in the following paragraph. E. coli pathogenic strains have been
proposed to use L-serine anabolism to enhance their fitness in the inflamed gut *°. In contrast,
this pathway has a minor role in the pathogenic bacterial growth of healthy guts °, suggesting
that the signals or transduction pathways necessary for L-serine catabolism activation could
be responsible for pathogen-specific adaptation to the inflammatory microenvironment.
Intestinal inflammation can result in the generation of a microenvironment that is conducive
to the growth of Enterobacteriaceae, allowing the outcompete of obligate anaerobes ©.
Therefore, enterobacterial blooms, such as those seen in LS (Supplementary Fig. S10), and
more generally in CD, are a hallmark of inflammation-associated dysbiosis 2. Accordingly,
E.coli can catabolize L-serine converting it to pyruvate, a crucial substrate for gluconeogenesis
and tricarboxylic acid cycle pathways . L-serine also plays a role as a signalling molecule
targeting the expression of stress response genes °8. Furthermore, it can be used as a
precursor in the synthesis of gene products involved in stress adaptation *°. In this context, it
is known that L-serine catabolism is increased in E. coli under heat shock conditions and L-

>, L-serine uptake during

serine is used for the generation of heat shock proteins
inflammatory conditions is probably a conserved mechanism utilised by pathogenic bacteria

for their competitive fitness 64.

Taken together, our results revealed that numerous metabolite production fluxes were
altered during the seven time points. However, further validation in other patients or
hypothesis testing in model organisms will be required.

Insight into Dialister spp. metabolism and net of interactions

Next, we aimed at elucidating which microbes were driving the metabolic changes at each
phase, thereby, shedding light onto the potential mechanisms of the disease onset.
Therefore, we calculated the microbe-metabolite contribution using the cooperative trade-
off algorithm 6°. Briefly, this algorithm assumes that the growth rate of an individual microbe
in the community is maximised, while a sub-optimal growth rate of the remaining microbial
community is maintained. The microbe-metabolite contribution identified that in LS6, the
production of L-serine was mediated mainly by two members of the Dialister genus, i.e.,
Dialister succinatiphilus YIT 11850 (Max (LS1-7) = 19x HeAve) and Dialister invisus DSM 15470
(Max (LS1-7) = 0.9x HeAve).
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Figure 6: Map of species interactions. The map shows the most relevant microbial species
and their interconnection in a dependency network. The figure was created with BioRender.

D. invisus DSM 15470 has been shown to be involved in the establishment of dysbiosis typical
for the IBD gut microbiome . Hence, metabolites produced by species of this genus were
inspected in detail. D. invisus DSM 15470 was identified in all time points except LS5, but its
metabolic activity, measured in terms of the number of exchanged compounds, was very
different in these time points. In LS1, D. invisus produced as many as 12 metabolites and
consumed 52, while in the other time points, it consumed an average of ten metabolites.
Notably, D. invisus and D. succinatiphilus YIT 11850 produced L-serine and formate during LS1,
and glycine in the other phases (Fig. 6, Supplementary Table S3). Dietary glycine is known to
prevent chemical-induced colitis by inhibiting the induction of inflammatory cytokines and
chemokines ©7.

Both L-serine and formic acid have been proposed to mediate proinflammatory mechanisms
60 |n LS6, L-serine uptake was mainly mediated by members of the Enterobacteriaceae family
(e.g., E. coli 042, B354, FVEC1302, and H299). Additionally, formate production in LS1 was
assigned a key role in the microbial interaction (Fig. 6). Indeed, formate in LS1 fuelled the
proliferation of E. coli F11, M. smithii ATCC 35061, and D. piger ATCC 29098 (Fig. 6,
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Supplementary Table S3). E. coli F11 is an adherent invasive and pathogenic strain, which
takes advantage of the leaking gut to replace strictly anaerobic bacteria 8. M. smithii ATCC
35061 is a hydrogenotrophic archaeon that can use either CO, and H; or formate alone for
methane production 38. The increase in methane production, and, therefore, constipation and
bloating events, is known to be partially caused by the increase of this archaeal species (Fig.
6, Supplementary Table S3) . The prevalence of D. piger is higher in patients hospitalised for
IBD in comparison to healthy individuals or patients hospitalised for other pathologies 7°.

The multifaceted role of Desulfovibrio piger ATTC2

The microbial composition varies between individuals X, which may not necessarily translate
into functional or metabolic differences 72. However, certain metabolic functions may require
the presence of specific microbial species 73. Hence, we investigated whether there were any
function-specific microbes in the microbial community models at the different time points,
whose presence was required for the production of specific metabolites. The analysis
revealed that the Proteobacteria D. piger ATCC2 was the only microbial species involved in
the production of sulphite (S03%) in the microbial community models (Supplementary Table
S3). We found that D. piger at its peak in LS was nearly four times more abundant than in the
maximum relative abundance found across the healthy controls (LSMax/HeMax=3.7).
Patients affected by IBD, such as ulcerative colitis, are strongly discouraged to consume foods
with high SOs% levels as being harmful and favouring tightening of inflammation 7.
Furthermore, sodium sulfite, a common food additive, inhibits the activity of commensal and
anti-inflammatory bacteria, such as F. prausnitzii 3. A large part of the SO3% present in the gut
comes from dietary intake 74, however, some microbial species are known to produce SOs?".
D. piger ATTC2 was not able to synthesise SO3%" in single-species simulations. However, the
pairwise simulations revealed that this species interacted with the Archaea M. stadtmanae
DSM3091. Only when in synergy with the archaeal partner, D. piger ATTC2 could produce SOs.
This metabolic dependency reflected a cooperative behaviour culminating in the production
of the host-toxic SO3%. To support this hypothesis, it is worth noting that the flux production
of SOs% in the LS time points, strongly reflects the abundance fluctuations of both M.
stadtmanae and M. smithii, the two archaea in the community under investigation
(Supplementary Fig. S17).

The pairwise simulations revealed that D. piger ATCC 29098 absorbed ethanol, converted it
into acetate, and, finally, secreted it. The acetate was then taken up by the acetoclastic
Archaea M. stadtmanae DSM 3091. D. piger ATCC 2909 can metabolise ethanol using two
alternative anaerobic pathways: in one case, the ethanol is oxidised to acetate via
acetaldehyde as an intermediate. In the second case, other intermediates between
acetaldehyde and acetate are generated, namely acetyl-CoA and acetyl-P 7>. In the
simulations, the conversion of ethanol to acetate had a yield of approximately 1 (0.93), as
expected from experimental data 76. The nearly 1:1 ethanol-to-acetate ratio reflected the
release of an excess of reducing equivalents, such as methane, by syntrophic partners 7>. D.
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piger ATCC 29098 ability to synthesise and export SOs may be recovered through the
interaction with other archaeal partners as well. Accordingly, due to the commensalism, when
M. stadtmanae DSM 3091 and D. piger ATCC 29098 were co-occurrent, the net flux
production of methane was higher (Supplementary Table S2). The abundance of D. piger
strains in IBD patients has already been reported 7°.

Taken together, our results indicate that through the production of two metabolites, i.e., L-
serine and formate, species of the Dialister genus cooperate with many pathogenic strains,
such as adherent invasive E. coli strains, archaeal species, and D. piger ATCC2. The interactions
could trigger inflammatory responses and enhance methane production. Furthermore, D.
piger ATCC2 plays an important role in enhancing the production of host-toxic SOs% in
microbial communities.

Whole-body modelling suggests a role of D. piger in the transsulfuration pathway

We then integrated the microbial community metabolic models of each time point with a
male organ-resolved whole-body model of human metabolism 27 to track the metabolic
consequences of gut microbiome dysbiosis on different body sites, organs, and tissues on the
host metabolism. In this simulation, we inspected the microbial metabolic influence on a
range of different organs and tissues of the host as the only variable was the gut microbiome
ecology composition, which changed over time. We found that the dysbiosis resulted in
greater flux changes in some organs or cell types than in others. In fact, red blood cells,
platelets, and the retina showed the most pronounced changes in predicted fluxes (Fig. 7A,
Supplementary Table S4). Interestingly, Episcleritis, a disease involving the eyes, is one of the
most common extraintestinal IBD manifestations ’’. The predicted flux through the
metabolism of the prostaglandin E2 was altered in the pancreas in LS2 and LS7. Prostaglandin
release is one of the first triggering factors of the inflammatory cascade typical of CD 72,
Finally, many drugs, such as mesalazine, are used to inhibit the release of prostaglandins and

79

leukotrienes in different body sites ’° underlying the key role of these molecules in the

establishment of CD.

Notably, the sulphite metabolism in the liver was dependent on the presence of D. piger ATCC
2909 (Fig. 7, Supplementary Table S4) in the gut. In the microbiome-associated whole-body
model, sulphite from the small and large intestine could be either transported directly to the
liver through the portal vein or as cysteine-S-sulphate (VMH ID: slfcys). In the liver, cysteine-
S-sulphate can then be metabolised to cysteine (VMH ID: cys_L) and SOs% #. In our
simulations, SO32" was oxidised to SO4? through sulphite oxidase activity (VMH ID: SULFOX).
This reaction produced hydrogen peroxide in the model and thus could contribute to
oxidative stress, which we do not model as such. At the same time, sulphur metabolism was
linked to the metabolism of bile acids in the simulations in LS2 and LS7. Indeed, cysteine-S-
sulphate is a precursor of hypotaurine and taurine. The flux through the reactions involved in
this pathway (involving the reactions HYPTROX, r0539, and r0381) changed with the time
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points, being increased in LS2 and LS7. Around 85% of bile acid reactions were affected by the
presence of D. piger ATCC 2909 (Fig. 7B, Supplementary Table S4). The increase of these
compounds led to an increase in faecal H,S, which has been reported to be increased in IBD
patients compared to healthy controls #, in LS2 and LS7. Cysteine was converted to L-cystine
(Supplementary Fig. S20) by a state transition reaction named Glutathione:Cystine
Oxidoreductase (VMH ID: CYSGLTH). CYSGLTH enabled the oxidation of glutathione; thus,
acting as a scavenger molecule. Based on our predictions, the presence of D. piger changed
the fluxes in the transsulfuration pathway leading to higher cysteine to glutathione turnover.

In conclusion, the analysis of the microbiome-associated whole-body model has the potential
to shed light on the alteration in the metabolism of different body sites caused by the dynamic
dysbiotic microbiome. The alteration of the sulphur metabolism in the liver and its link with
the presence or absence of D. piger ATCC 2909 in the large intestine reflects the
intercommunication among the different body sites. This network and its influence on the
disease onset has been so far largely overlooked. However, this connection could reveal
understudied pathobiology mechanisms.
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Figure 7: Overview of the alteration of the microbiome-associated whole-body models. (A)
Fraction of reactions changing flux direction due to the dysbiosis divided by body sites. (B)
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Key reactions in the sulphur metabolism in the liver are altered by dysbiosis (Supplementary
Table S4).

Conclusions

The time course analysis performed on a patient affected by IBD enabled the analysis of how
net metabolite production fluxes were induced by the change of the gut microbial community
composition during a time course covering more than one year. To date, this is the first
analysis inspecting the disease evolution in a patient affected by Crohn’s disease with
metabolic modelling. The study revealed that substantial metabolic changes are associated
with the disease evolution as a direct consequence of the patient’s changing gut microbiome
composition, notably involving archaeal species. A number of biologically important
metabolites were found to be highly overproduced over time in the patient, compared to
healthy controls. This list includes oxygen, methane, thiamine, formaldehyde, TMAO, folic
acid, serotonin, histamine, and tryptamine, which may yield new biomarkers of disease
progression. The analyses with microbiome-associated whole-body models revealed that the
presence of D.piger could alter the metabolism of sulphur in the liver. Since the microbial
composition is variable among individuals, to obtain a wide and general representation of the
microbiome the time course inspection of a higher number of patients will be needed.
However, the functional redundancy present in the gut microbiota allows to some extent to
generalise our results to other patients. Taken together, we demonstrated that microbial
community metabolic modelling is a very valuable in silico approach to track correspondence
between metagenomic data and metabolite production and can vyield testable novel
hypotheses to be addressed with additional validation studies. These results underline the
importance of tracking an individual’s gut microbiome composition and metabolic production
along a time course, paving the way to new analyses for self-quantified medicine.

Methods

Ethics statement

The stool samples of the patient were collected by consent under two protocols: HRPP 141853
(American Gut Project) and HRPP 150275 (Evaluating the Human Microbiome). The protocols
include written informed consent concerning dissemination and scientific publication of the
results. Both protocols were approved by the Human Research Protection Program (HRPP) of
the University of California, San Diego.
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Longitudinal sample collection

The samples have been collected from naturally passed faeces and immediately stored
without a buffer at —-80°C. Seven samples were selected. A personal symptom log entry has
been generated at the time that each faecal sample was passed. Additionally, the weight and
body mass index (BMI) of the patient have been determined on the day associated with each
sample. Other metadata were obtained from previous publications 22.

Metagenomics data generation

Metagenomic sequencing of the seven stool samples (LS1-LS7) was performed at the J Craig
Venter Institute using Illumina HiSeq2000 platform. On average, 160 million paired-end reads
at 2x100 base pairs were generated per sample. The raw reads for the healthy controls were
downloaded from National Center for Biotechnology Information (NCBI) Sequence Read
Archives under BioProject ID PRJINA43021. The processing of the raw metagenomic sequence
data for LS and for the healthy controls and the computation of species relative abundance
were described in an earlier publication by Wu et al %2, Briefly, after low-quality reads, reads
from humans and duplicated reads were removed, and the filtered reads were then aligned
to our curated microbial genomic sequences. The reads were assigned to their top matched
genomes and the depth of genome coverage of each species was calculated and then
normalised to relative abundance so that the total relative abundance was 1.0.

Butyrate and biomarkers measurement

The patient LS used the company Doctor's Data Comprehensive Stool Analysis kit
(www.doctorsdata.com/Comprehensive-Stool-Analysis-CSA21) to generate the values of
lysozyme, lactoferrin, and secretory IgA (all ELISA) reported in Figure 1. In addition, total
butyrate (Supplementary Material Figure S14) was measured from the LS stool sample by
Doctor's Data using gas chromatography. The values in Figure 1 of faecal calprotectin,
generated by ARUP Laboratories using Immunoassay, and of serum CRP were from tests with
UC San Diego Health.

Definition of the average European diet

The in silico diet represented the nutrient intake of an average European individual, hence,
representing a typical “Western” diet. Its description, along with the corresponding flux
values, was obtained from the nutrition resource in the Virtual Metabolic Human database 3°.
The diet was supplemented with metabolites that have been previously ?* determined as
necessary for the biomass production of at least one AGORA reconstruction. The dedicated
function (adaptVMHDietToAGORA.m) of the Microbiome Modelling Toolbox 8 was used to
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constrain each microbial community model. The lower bounds on all other dietary exchange
reactions were set to zero to prevent the uptake of other metabolites.

Simulations

Simulations were carried out using the COBRA Toolbox 8 and the Microbiome Modelling
Toolbox &, which is part of the COBRA Toolbox, in MATLAB version 2018b (Mathworks, Inc.)
as a programming environment. Metagenomics reads were mapped onto the AGORA2
collection to create the microbial community models for the simulation. For this purpose, the
function translateMetagenome2AGORA from the COBRA Toolbox was used. Microbial species
with relative abundance higher than 10 were considered in the population analysis (i.e., for
the alpha and beta analysis), while for the AGORA2 collection mapping and all microbial
community models, a threshold of 10* was used. The precise total relative abundance
covered for each time point is reported in Table 1. Abundances were normalised for the
microbial community modelling. For the simulations and the net secretion and uptake fluxes
predictions, the function initMgPipe, contained in the Microbiome Modelling Toolbox &4, was
used. More specifically, the function initMgPipe contains the function
microbiotaModelSimulator, which calculates the net maximal production capability for each
metabolite. This parameter indicates the maximal production of each metabolite and is
computed by summing the maximal secretion flux with the maximal uptake flux for each
metabolite.  Furthermore, the function initMgPipe contains the function
adaptVMHDietToAGORA, which was used to apply the diet constraints to the microbial
community model. Microbe-metabolite contributions were performed following Basile et al
13, In brief, the MICOM software % was used through the cooperative trade-off algorithm
integrating the abundances as input. Subsystems had been assigned following the procedure
proposed by Heirendt et al. 83, and implementing the function calculateSubsystemAbundance
using as input the reaction abundances.

The integration of the whole-body model was performed using the Harvey reconstruction 2.
To create the personalised gut model, the function combineHarveyMicrotiota was used and
the simulations were performed with the minNorm algorithm through the COBRA Toolbox
(optimizeWBmodel).

For all simulations, the optimisation solver used was CPLEX (IBM iLOG, Inc).

Statistical analysis

A cohort of 34 metagenomic samples from 34 healthy individuals from the Human
Microbiome Project 32 was used to create a "healthy average" (HE Ave) value for each microbe
species. Then, we computed the ratio of the relative abundance of the seven time points to
the average health and reported the ratio of the maximum value at any of the seven time
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points, i.e., Max (LS1-7), to the healthy average. Alpha diversity and beta diversity analysis
were calculated with the “vegan” package 34 and using R software v.4.0.3. The taxonomic
differences of the different samples were weighted with a hierarchical tree based on the
taxonomies of AGORA2 2°> with the function taxa2dist. The alpha diversity was calculated with
taxondive #. The score considered for the alpha diversity was A*. For the beta diversity, the
function vegdist was applied. The values of beta diversity were converted to Newick format
and used to generate a tree representing the differences between samples with the function
NJ of the ape package. The PCA was performed with the function princomp with the
parameters “cor=TRUE, scores=TRUE”. The 3D plot of the PCA was realised with the function

III

plot3d of the package “rgl”. The Log2 Fold Change was adopted as a parameter to characterise

metabolite production across samples.

Data availability statement

The authors are in the process of submitting the metagenomic sequences of the specific
sequencing done at JCVI for the LS1-7 samples.

Two later publications resequenced some of the LS1-7 samples, at a lower depth than
reported herein, as part of research on a longer time series of LS faecal samples. The first
publication 2% resequenced LS 1-7 (12/28/2011 to 4/29/2013) as part of a longer time series
of 27 LS samples (dates from 12/28/2011 to 12/07/2014 are listed in their Supplementary
Table S1) analysing the metagenomics of E. coli strain dynamics. The metagenomics sequence
of these 27 samples can be found in EBI under study PRIEB24161. The second publication 3°
sequenced eight LS time series samples (dates from 12/28/2011 to 5/22/2016), including
resequencing LS1-3, and added metaproteomic analysis for these eight time points.
Metagenomic data are available through EBI under the study PRIEB28712 (ERP110957).

Supplementary Material

Supplementary Table S1:

e Metadata of the different time points. The table accounts for the collection date, the
age of the patient, the clinical signs, as well as the bmi and the blood concentrations
of some markers (i.e. CRP, calprotectin, lactoferrin, lysozyme, iga)

e Details of the raw reads used for this manuscript including number of raw reads (pair),
QC filtered reads (pair), reads without human sequences or duplicates (pair), reads
mapped to reference genomes (pair)

® Relative abundances of microbial species mapped on AGORA2 in the different LS
samples, the maximum value found in LS, the Healthy average and their ratio are
reported as well

e Relative abundances of microbial strains in the different LS samples retrieved with
metagenomics, the maximum value found in LS, the Healthy average and their ratio
are reported as well
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e Relative abundances of microbial species in the different LS samples retrieved with
metagenomics, the maximum value found in LS, the Healthy average and their ratio
are reported as well

e Relative abundances of microbial strains mapped on AGORA2 in the healthy samples
Relative abundances of microbial strains in the healthy samples retrieved with
metagenomics

o Relative abundances of microbial species in the healthy samples retrieved with
metagenomics

e Details on taxonomy of the species retrieved from metagenomics accounting for all
the taxonomic levels available and the taxid

e Phyla relative abundances for HE Ave and LS1-7

e Calculation of the alpha diversity of the different microbiomes

e Calculation of the beta diversity between the different time points

Supplementary Table S2:
e Abundance of the reactions presence/absence for each time point considered, HeAve
is reported
® Abundance of the subsystems presence/absence for each time point considered,
HeAve is reported
e Abundance of the subsystems presence/absence for all the healthy patients
considered
o Net secretion of simulated metabolites for each LS time point considered, average net
secreted fluxes from Healthy patients are reported as well
o Net secretion of simulated metabolites for each healthy patient considered
e Logfold change of simulated metabolites for each time point considered
Supplementary Table S3:
o Microbial metabolite contribution simulated for all the different time points
Supplementary Table S4:
® Fluxes simulated for all the time points considered integrating the whole-body model
and the microbiome information
o Information on all the reactions considered including description, formula, and
crosslinks to other databases
Supplementary Material:
® Supplementary Figure S1: Scree plot of the PCA in Figure 2 of the manuscript
e Supplementary Figure S2: Rotating PCA accounting for the three space dimensions
better describing the variance observed in the LS samples
e Medical history of LS
e Supplementary Figure S3A: The 21 microbe species with a relative abundance >1% in
the HeAve microbiome (blue bars). For each species the red bar shows the relative
abundance in sample LS1. Note that almost all normally abundant species in healthy
individuals are severely reduced in LS1. For instance, the two most abundant species
in healthy individuals, Bacteroides vulgatus and B. ovatus have values LS1/HeAve of
0.03x and 0.017x respectively
e Supplementary Figure S3B: The 11 species in LS1 that have relative abundance >1%
compared to their relative abundance in HeAve. Note that LS1 has blooms of HeAve
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rare species, such as M. smithii (165x HeAve), with overabundance ratios for other
species as great as ~1,000x

e Supplementary Figure S4: The 14 species in LS2 that have relative abundance >1%
compared to their relative abundance in HeAve. Note that LS2-4, E. coli is ~180x
HeAve, while Collinsella aerofaciens peaks at 55x HeAve in LS2

e Supplementary Figure S5: The 19 species in LS3 that have relative abundance >1%
compared to their relative abundance in HeAve. Note that Dorea longicatena and
[Ruminococcus] obeum are 10-20x HeAve in LS3 and 4

e Supplementary Figure S6: The 17 species in LS4 that have relative abundance >1%
compared to those species relative abundance in HeAve. Note that Streptococcus
thermophilus [Firmicutes Class Bacilli] peaks at ~150x in LS4

e Supplementary Figure S7: The 12 species in LS5 that have relative abundance >1%
compared to those species relative abundance in HeAve. Note that Bifidobacterium
animalis [Phylum Actinobacteria] peaks at over 1500x HeAve in LS5

e Supplementary Figure S8: The 22 species in LS6 that have relative abundance >1%
compared to those species relative abundance in HeAve. Note that the 2" most
abundant Archaea (Methanosphaera stadtmanae) peaks at ~500x HeAve in LS1 and 6

e Supplementary Figure S9: The 10 species in LS7 that have relative abundance >1%
compared to those species relative abundance in HeAve. Note that LS7 F. prausnitzii,
an anti-inflammatory bacteria has a relative abundance of ~ 1/3 of the microbiome

e Supplementary Figure S10: Abundance fluctuations of the main Enterobacteriaceae
bacteria present in the LS samples

e Supplementary Figure S11: Abundance fluctuations of E. coliin LS samples and healthy
average patients

e Supplementary Figure S12: Abundance fluctuations of microbes of the
Fusobacteriaceae family in LS samples and healthy average patients

e Supplementary Figure S13: Abundance fluctuations of microbes of the
Methanobacteriaceae family in LS samples and healthy average patients, insight on
Methanosphaera sadtmanae

e Supplementary Figure S14: Total butyrate measured in the time points covered by this
analysis

e Supplementary Table in Supplementary Material: an overview of the 24 most
divergent metabolites between LS and Healthy patients. For each of the metabolites,
the HeMax, HeMin, HeAve, LSMax, LSMin and informative ratios are reported

e Supplementary Figure S15: Correlations between microbial abundances and specific
fluxes, Class IA: High on LS1, Low on LS 2-7

e Supplementary Figure S16: Correlations between microbial abundances and specific
fluxes, Class IB: high on LS1, other peak at LS6

e Supplementary Figure S17: Correlations between microbial abundances and specific
fluxes, Class IC: High on LS1/2, LS5, LS7

e Supplementary Figure S18: Correlations between microbial abundances and specific
fluxes, Class ID: High on LS1, 2, and 3, with Another Peak at LS6, Normal on LS 5 and 7

e Supplementary Figure S19: Correlations between microbial abundances and specific
fluxes, Class IE
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e Supplementary Figure S20: Correlations between microbial abundances and specific
fluxes, Class IIA

e Supplementary Figure S21: Correlations between microbial abundances and specific
fluxes, Class 1IB: Low on LS1, 5, and 7, High on LS2-4, and LS6
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