

1 A hormone-activated mobile RNAi pathway defends plant stem 2 cells from virus infection

3

4 Marco Incarbone*^{#1}, Gabriele Bradamante^{#1}, Florian Pruckner¹, Tobias Wegscheider¹, Wilfried
5 Rozhon², Vu Nguyen¹, Ruben Gutzat¹, Thomas Lendl³, Stuart MacFarlane⁴, Michael Nodine⁵ and
6 Ortrun Mittelsten Scheid¹

7

8 Affiliations:

9 ¹Gregor Mendel Institute of Molecular Plant Biology (GMI), Austrian Academy of Sciences, Vienna
10 BioCenter (VBC), Vienna, Austria

11 ²Department of Agriculture, Ecotrophology, and Landscape Development, Anhalt University of
12 Applied Sciences, Bernburg, Saxony-Anhalt, Germany

13 ³Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria

14 ⁴The James Hutton Institute, Invergowrie, Scotland, UK

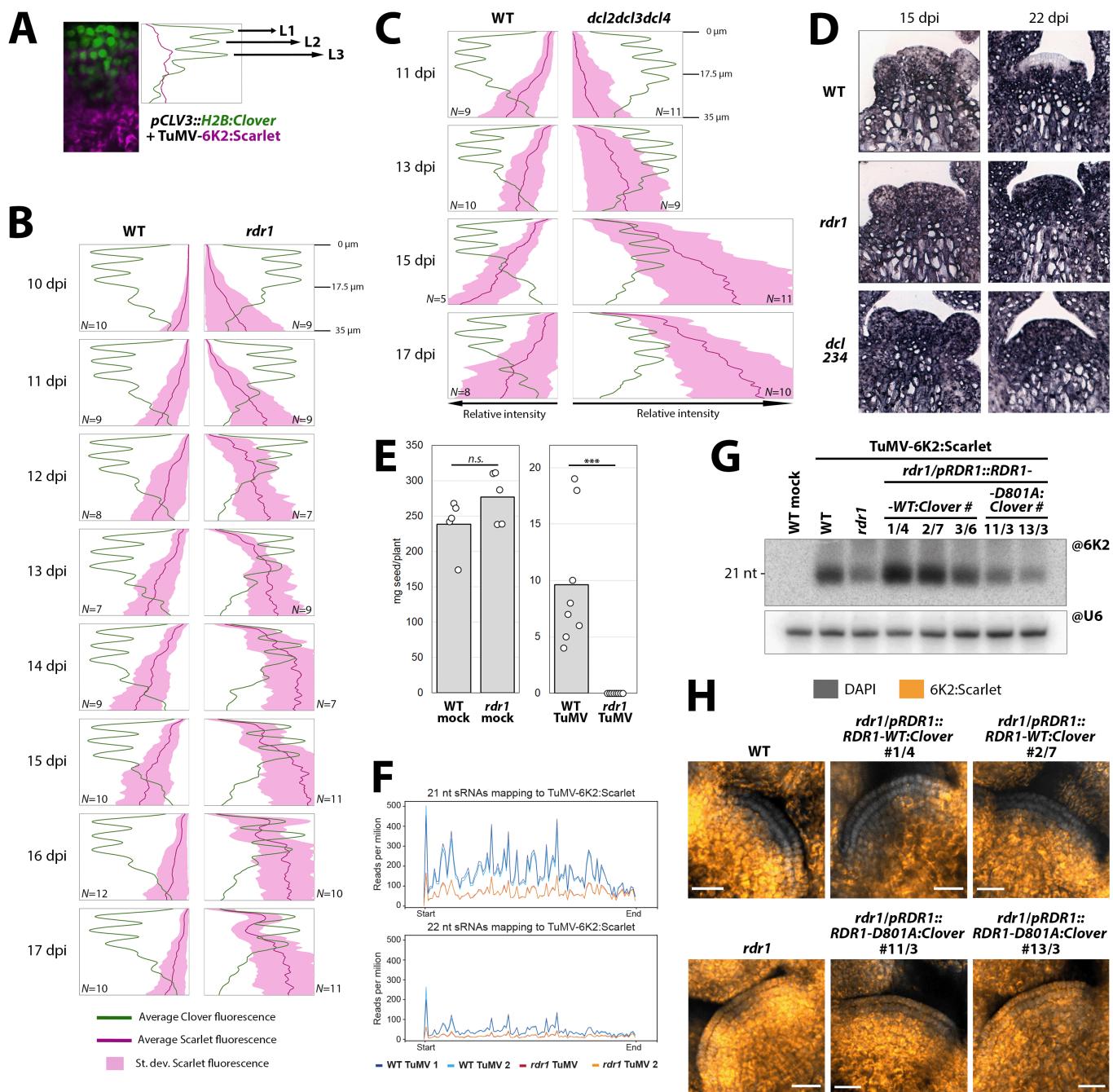
15 ⁵Laboratory of Molecular Biology, Wageningen University and Research, 6700 AP Wageningen, The
16 Netherlands

17

18 # These authors contributed equally to this work

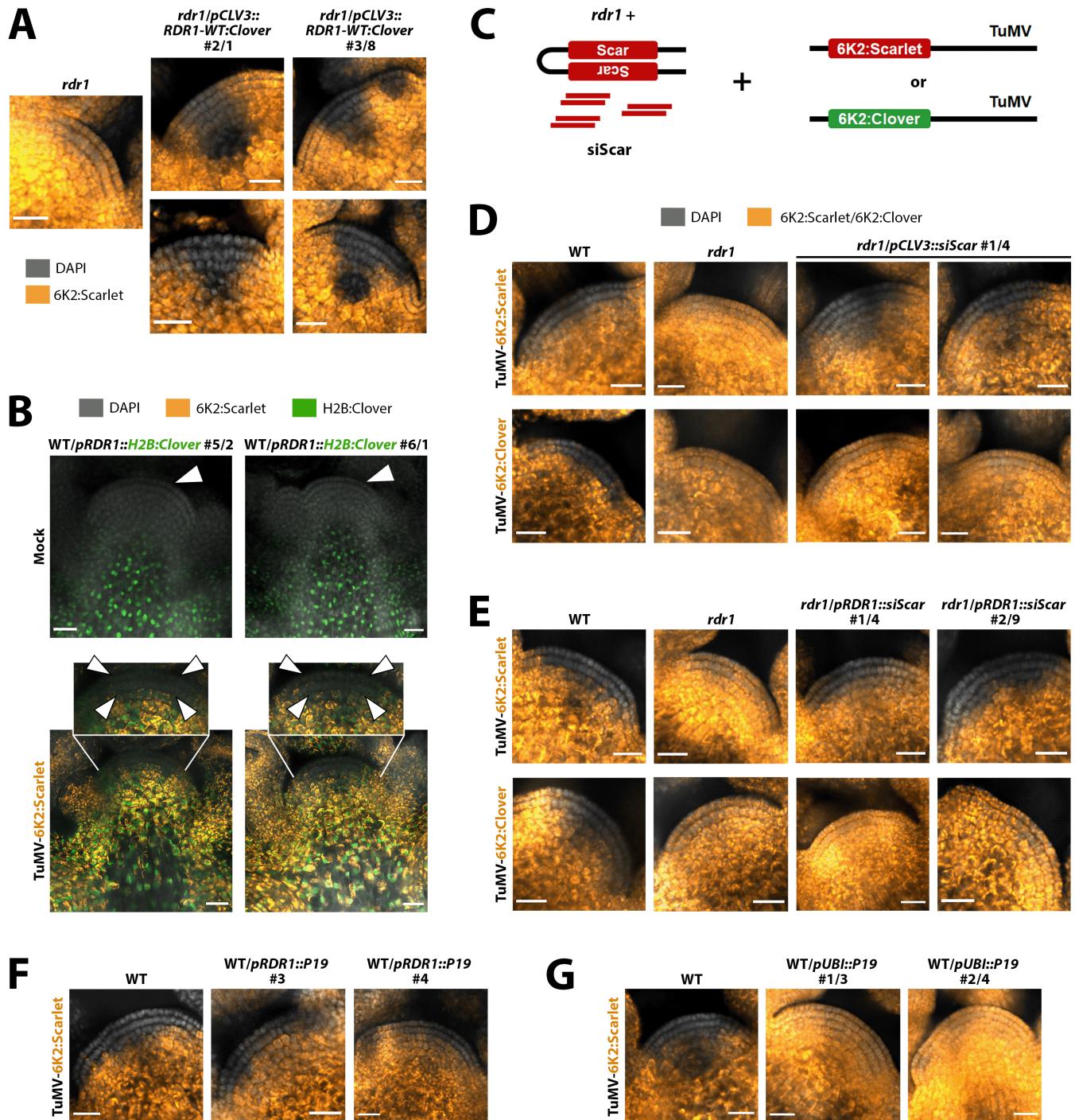
19 * Corresponding author. Email: marco.incarbone@gmi.oeaw.ac.at

20


21 ABSTRACT

22 Stem cells are essential for the development and organ regeneration of multicellular organisms, so their
23 infection by pathogenic viruses must be prevented. Accordingly, mammalian stem cells are highly
24 resistant to viral infection due to dedicated antiviral pathways including RNA interference (RNAi) (1,
25 2). In plants, a small group of stem cells harbored within the shoot apical meristem (SAM) generates
26 all postembryonic above-ground tissues, including the germline cells. Many viruses do not proliferate
27 in these cells, yet the molecular bases of this exclusion remain only partially understood (3, 4). Here we
28 show that a plant-encoded RNA-dependent RNA polymerase, after activation by the plant hormone
29 salicylic acid, amplifies antiviral RNAi in infected tissues. This provides stem cells with RNA-based
30 virus sequence information, which prevents virus proliferation. Furthermore, we find RNAi to be
31 necessary for stem cell exclusion of several unrelated RNA viruses, despite their ability to efficiently
32 suppress RNAi in the rest of the plant. This work elucidates a molecular pathway of great biological
33 and economic relevance and lays the foundations for our future understanding of the unique systems
34 underlying stem cell immunity.

35 **MAIN TEXT**


36 Diseases caused by plant viruses are a constant threat to food and economic security worldwide, a
37 reason for the extensive scientific investigation of plant-virus interactions. It remains poorly understood
38 how viruses are excluded from stem cells in the SAM (3), even though this was first observed almost a
39 century ago (5) and is common to many viral infections that efficiently spread throughout the rest of
40 the plant. This particular antiviral capability of stem cells has been used to generate virus-free plants by
41 tissue culture of meristems (6). After transition to flowering, SAM stem cells also generate floral organs
42 containing the germline, so absence of virus in these cells is thought to play a key role in restricting
43 vertical transmission of infection to the host progeny (3). Although the meristematic transcription factor
44 WUSCHEL is involved in RNA virus exclusion from stem cells in *A. thaliana* (4) and RNAi and its
45 suppression by viruses have also been implicated (3, 7, 8), the molecular mechanisms and dynamics of
46 virus exclusion remain to be resolved.

47 To understand the events maintaining a virus-free niche in SAM stem cells, we challenged *A. thaliana*
48 mutants lacking components of the RNAi pathway with Turnip mosaic virus expressing a fluorescent
49 protein located at viral replication complexes (TuMV-6K2:Scarlet). Loss of RNA-Dependent RNA
50 polymerase 1 (*RDR1*) caused TuMV to invade stem cells (**Fig. S1**). To document the dynamics of
51 infection in wild type (WT) and *rdr1* we performed time-course experiments to assess virus propagation
52 in the stem cell layers expressing a nuclear reporter expressed through the *pCLV3* promoter (**Fig. 1A**).
53 This allowed a semi-quantitative approach and revealed temporary entry of TuMV in the top L1-L2
54 stem cell layers at 13-15 days post-inoculation (dpi), followed by subsequent exclusion (**Fig. 1B**). By
55 contrast, *rdr1* mutants showed consistent virus infection of stem cells through time (**Fig. 1B**). This
56 occurred even earlier in a double mutant with *rdr6* (**Fig. S2**), while in a *dcl2/dcl3/dcl4* (*dcl234*) mutant
57 unable to generate small interfering (si)RNA we observed the highest levels of viral fluorescence in
58 stem cells (**Fig. 1C**). These results, confirmed by *in situ* hybridization (**Fig. 1D**), portray a dynamic and
59 layered RNAi antiviral network specifically protecting stem cells from infection. Moreover, RNAi did
60 not exclude TuMV at the earliest time points, in accordance with observations with Cucumber mosaic
61 virus (4). TuMV infection always caused loss of apical dominance, but while WT plants ultimately
62 generated fertile flowers, *rdr1* mutants did not (**Fig. S3**), leading to sterility (**Fig. 1E**). *RDR1* contributes
63 to antiviral RNAi by increasing production of 21-22 nt-long virus-derived siRNA (vsiRNA) (9),
64 presumably by generating double-stranded RNA (dsRNA) substrate for dicer enzymes. *RDR1*
65 significantly contributes to siRNA production from the whole TuMV genome (**Fig. 1F; S4A,C,D**) but,
66 surprisingly, it does not affect overall TuMV accumulation (**Fig. 1F; S4B**). Finally, complementing
67 *rdr1* with WT or RNA polymerization-deficient alleles of *RDR1* provides evidence that dsRNA
68 synthesis by this protein determines vsiRNA amplification (**Fig. 1G**), exclusion from stem cells (**Fig.**
69 **1H**) and fertility (**Fig. S3**).

Figure 1: Arabidopsis RDR1 protects meristematic stem cells from TuMV infection through dsRNA synthesis and small RNA amplification. (A) Determination of virus entry into the stem cell area by quantification of fluorescence in plants expressing H2B:Clover (green) in SAM stem cell nuclei and infected with TuMV-6K2:Scarlet (magenta). (B) Fluorescence values as in (A) from the top 35 μ m of wild-type (WT) and *rdr1* SAMs between 10 and 17 days post-inoculation (dpi). Color legend at bottom, for simplicity Clover standard deviation not shown. N : number of meristems analyzed. (C) As in (B), fluorescence values in WT and *dcl234* triple mutants. (D) *In situ* hybridizations in vertical sections of WT, *rdr1* and *dcl234* meristems to detect TuMV RNA (purple) in infected plants at 15 and 22 dpi. (E) Seed production by mock and TuMV-infected WT and *rdr1* plants. Each data point represents progeny of one plant. n.s.: $p>0.05$; ***: $p<0.001$. (F) Distribution of vsiRNA along the TuMV-6K2:Scarlet genome, assessed by sRNA sequencing on duplicates of mock- and TuMV-infected apices (meristem and small flower buds). (G) Northern blot detection of TuMV-derived sRNA in *rdr1* expressing WT (*RDR1-WT:Clover*) or catalytically inactive (*RDR1-D801A:Clover*) alleles of *RDR1*. RNA was extracted from systemically infected leaves, snoRNA U6 is used as loading control. (H) Laser confocal microscopy of meristems from the lines in (G), 18 dpi. DAPI fluorescence in grayscale, Scarlet in orange-to-yellow, scale bar 20 μ m.

70 RNAi in plants has both local and remote, mobile silencing capabilities (10), the latter being well-
 71 documented for gene and transgene silencing but postulated indirectly for antiviral activity (11, 12). To
 72 assess whether RDR1 can act locally in stem cells, we generated *rdr1* lines expressing *pCLV3:RDR1*.
 73 These were able to restore TuMV exclusion (Fig. 2A). Interestingly, the exclusion zone was expanded

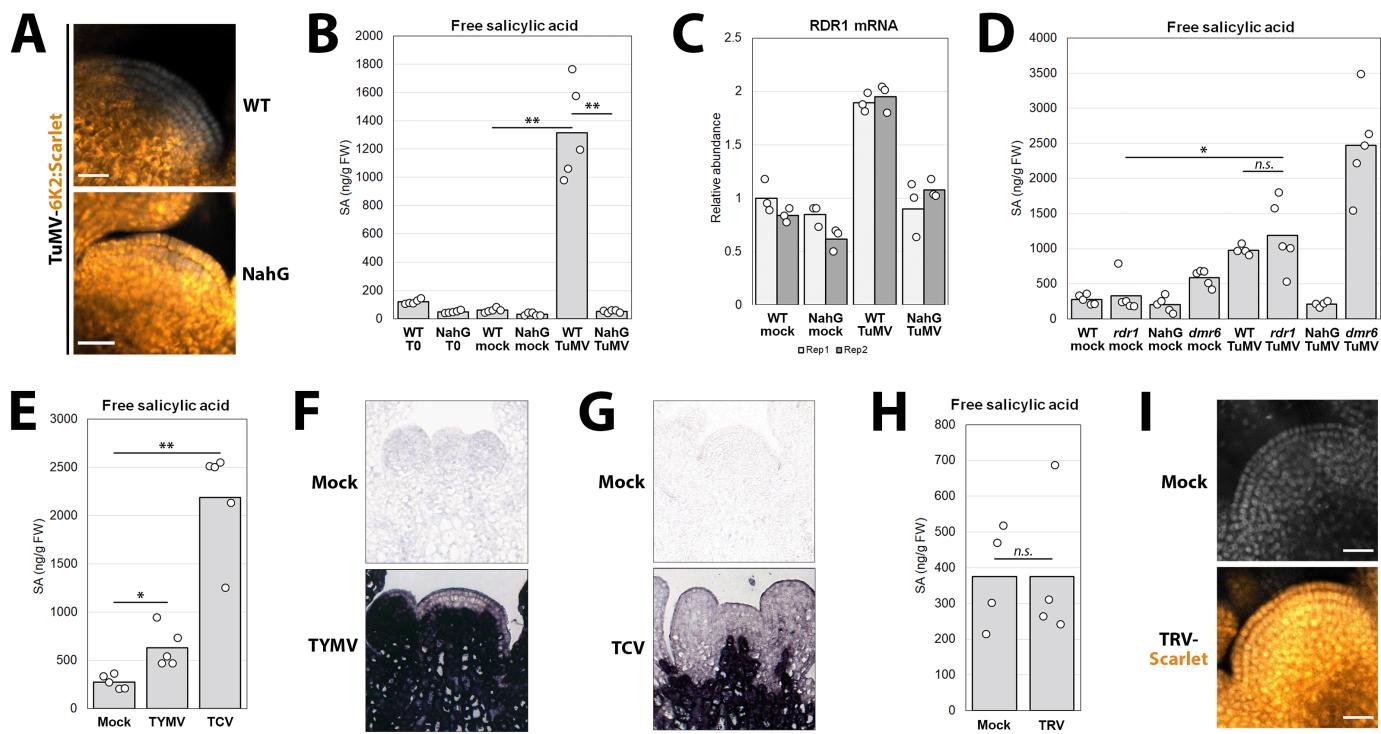
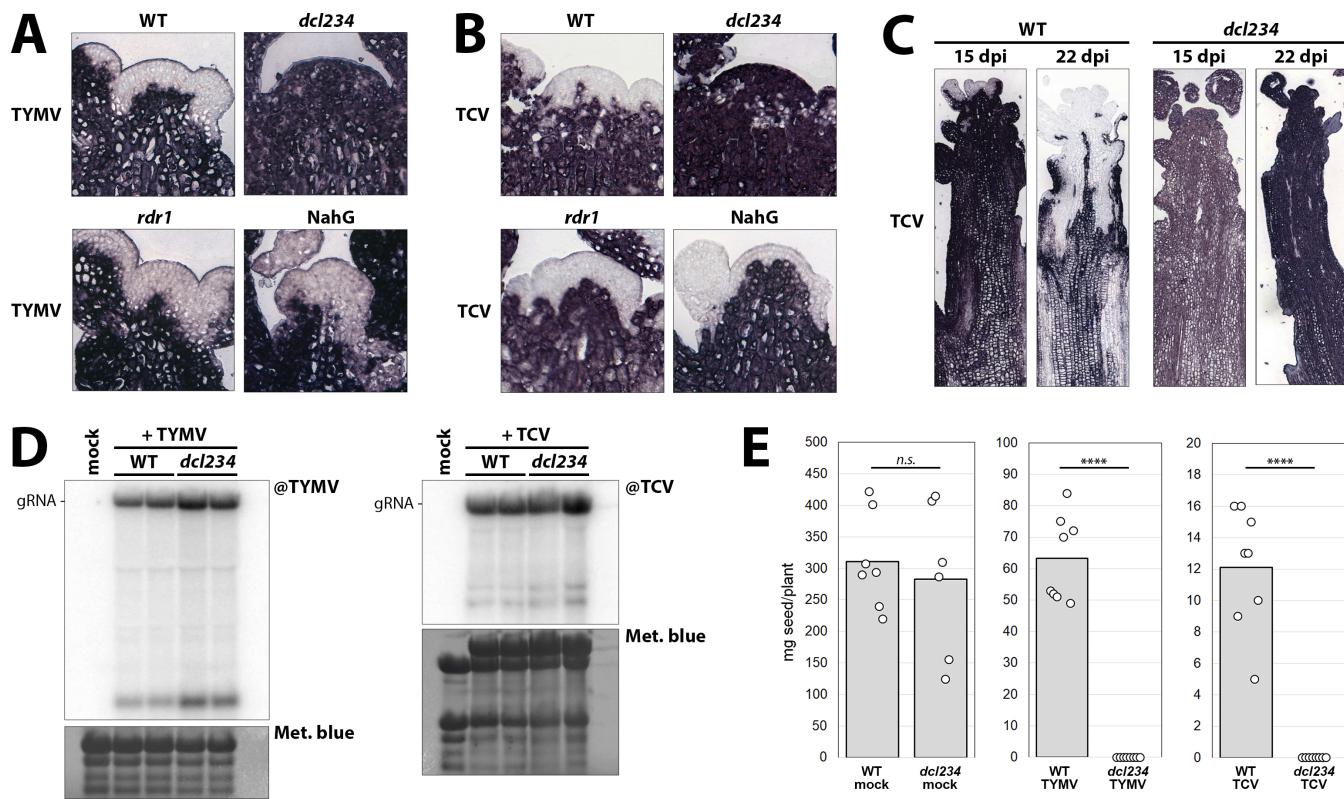


Figure 2: RDR1 immunizes the SAM stem cells at a distance by providing TuMV-specific small RNA. (A) Laser confocal microscopy of meristems from *rdr1* lines expressing *RDR1* through the stem cell-specific *pCLV3* promoter, infected with TuMV-6K2:Scarlet. (B) As in (A), of two independent transgenic lines expressing H2B:Clover (green) through the *pRDR1* promoter after mock or TuMV-6K2:Scarlet inoculation. Insets and white arrowheads: L1+L2 core virus exclusion zone. (C) Schematic representation of the *siScar* experiments: *rdr1* mutants generating Scarlet-specific siRNA (*siScar*) through a hairpin transgene are infected with TuMV containing the siRNA target sequence (TuMV-6K2:Scarlet) or not (TuMV-6K2:Clover). (D) Meristems of an *rdr1* mutant line expressing *siScar* in stem cells through the *pCLV3* promoter, infected with TuMV-6K2:Scarlet or TuMV-6K2:Clover. (E) As in (D), but lines expressing *siScar* through the *pRDR1* promoter. (F) Meristems of lines expressing P19 through the *pRDR1* promoter, after infection with TuMV-6K2:Scarlet. (G) As in (F), but of lines expressing P19 under the *pUBI* promoter. (A), (D), (E), (F), (G): DAPI fluorescence in grayscale, Scarlet or Clover in orange-to-yellow, scale bar 20 μ m.

74 to the whole *CLV3* promoter expression domain, establishing that RDR1 can prevent TuMV
 75 proliferation very efficiently and locally in stem cells. Yet, transcriptional reporters for the *RDR1*
 76 promoter showed that both in non- and TuMV-infected plants it drove expression in the lower meristem
 77 dome and the tissues below, but never in the core domain of stem cell virus exclusion (L1+L2 layers)


78 (Fig. 2B). Along with reported expression in vasculature (13), this suggests that RDR1 is not produced
79 in stem cells but prevents TuMV proliferation there through remote activity. Next, we asked whether
80 RDR1 excludes TuMV from stem cells through *sensu stricto* antiviral RNAi or by regulation of gene
81 expression through previously reported (14) and here confirmed host gene-derived siRNA (Fig. S5).
82 To this end, we generated transgenic *rdr1* lines producing RDR1-independent antiviral siRNA (*siScar*)
83 through a hairpin (Fig. 2C, S6). Production of *siScar* in stem cells of *rdr1* restored TuMV exclusion in
84 a sequence-specific manner (Fig. 2D). Equally, production of *siScar* in subjacent non-stem cell tissues
85 through the *RDR1* promoter yielded the same result (Fig. 2E), allowing to conclude that RDR1 excludes
86 TuMV from stem cells by remotely providing viral RNA sequence information to the RNAi machinery,
87 without the need for host gene-derived siRNA. As siRNAs are the mobile signal in RNAi (12, 15), we
88 tested whether blocking 21-22 nt-long siRNA in cells expressing *RDR1* with the viral RNAi suppressor
89 protein P19 (15) would stop the mobile signal and suppress the stem cell antiviral pathway.
90 Surprisingly, this was not the case (Fig. 2F), in contrast to suppression of the pathway by P19 over-
91 expression in all tissues - including stem cells (Fig. 2G; Fig. S7). This suggests that the mobile RDR1-
92 dependent antiviral signal is either not 21-22 nt siRNA or a high load of 21-22 nt vsiRNA that requires
93 a large amount of P19 to be blocked. Both possibilities explain why TuMV, which encodes a strong
94 siRNA-sequestering RNAi suppressor (HC-Pro) (16, 17), cannot block this RNAi-based stem cell
95 defense mechanism.

96 *RDR1* expression is increased by salicylic acid (SA) in several crop species (18–21). SA is a key
97 hormone in the activation of plant defenses against pathogens (22), including viruses (23), so we asked
98 whether SA plays a role in TuMV exclusion from SAM stem cells. Indeed, TuMV completely invades
99 stem cells of NahG plants (Fig. 3A) expressing a bacterial enzyme degrading SA (24). TuMV infection
100 greatly increases SA accumulation in WT plants but not in NahG plants (Fig. 3B), and SA induction is
101 required for *RDR1* upregulation upon infection (Fig. 3C). Increasing the steady-state amount of SA in
102 plants lacking the SA-degrading *DMR6* gene (25) also leads to *RDR1* upregulation (Fig. 3D, S8). The
103 TuMV-dependent SA response does not change in *rdr1* mutants (Fig. 3D), confirming that *RDR1*
104 activation depends on SA and not vice-versa. As artificial overexpression of *RDR1* in NahG plants does
105 not restore TuMV exclusion from stem cells (Fig. S9), transcriptional upregulation of RDR1 alone is
106 not sufficient for SA-dependent virus exclusion. Therefore, either SA positively influences the RDR1
107 pathway by additional means such as protein activity/stabilization, or ubiquitous *RDR1* over-expression
108 does not recapitulate SA-dependent induction. Our results do not exclude the possibility that SA acts
109 through other molecular antiviral pathways. Nevertheless, *RDR1* is required for activation of SA to
110 result in TuMV exclusion from stem cells, since *rdr1* mutants show an active SA pathway yet virus
111 meristem invasion (Figs. 1B, 3D). Next, we asked whether SA activation is linked to stem cell exclusion
112 of other virus species. We found that Turnip crinkle virus (TCV, family Tombusviridae) and Turnip
113 yellow mosaic virus (TYMV, family Tymoviridae), species taxonomically distant from each other and

Figure 3: Increased salicylic acid (SA) production upon infection determines TuMV stem cell exclusion, increases *RDR1* expression and correlates with the exclusion of other virus species from stem cells. (A) Laser confocal microscopy of meristems from WT and SA-suppressing NahG plants infected with TuMV-6K2:Scarlet. (B) SA accumulation in WT and NahG plants before infection (T0) and after mock or TuMV-6K2:Scarlet inoculation. Each dot is a biological replicate: pool of tissues from 5–6 plants. (C) RT-qPCR on RNA from samples in (B) to assess *RDR1* mRNA accumulation. Each bar is a biological replicate, each dot is a technical replicate. (D) As in (B) on WT, NahG, *rdr1* and *dmr6* plants. (E) As in (B), but on WT plants infected with TYMV or TCV. Mock values are the same as in (D). (F) *In situ* hybridization to detect TYMV RNA (purple) in meristems of mock- or TYMV-inoculated WT plants, 15 dpi. (G) As in (F), to detect TCV RNA in meristems of mock- or TCV-inoculated WT plants, 15 dpi. (H) As in (B), but on WT plants infected with TRV-Scarlet. (I) As in (A), on WT plants after mock or TRV-Scarlet infection. (A), (I): DAPI fluorescence in grayscale, Scarlet in orange-to-yellow, scale bar 20 μ m. (B), (D), (E), (H): n.s.: $p>0.05$; *: $p<0.05$; **: $p<0.01$.

114 TuMV (family Potyviridae), both elicit an SA response in WT *Arabidopsis*, albeit to different extents
 115 (Fig. 3E). TCV, the stronger inducer of SA, also upregulates *RDR1* expression (Fig. S9). *In situ*
 116 hybridizations revealed that both TYMV and TCV were excluded from SAM stem cells (Fig. 3F,G).
 117 Conversely, Tobacco rattle virus (TRV, family Virgaviridae), which infects meristems in *N.*
 118 *benthamiana* (8), did not elicit an SA response (Fig. 3H) and was not excluded from stem cells in *A.*
 119 *thaliana* (Fig. 3I). These results on four unrelated virus species therefore suggest that SA activation is
 120 correlated to the maintenance of virus-free SAM stem cells.
 121 Next, we investigated whether RNAi and SA are necessary for stem cell exclusion of TCV and TYMV.
 122 TYMV and TCV can completely invade stem cells of *dcl234* mutants (Fig. 4A,B), indicating that small
 123 RNAs are required for exclusion. Furthermore, the expansion of the TCV exclusion zone over time is
 124 also dependent on small RNAs (Fig. 4C). Interestingly, neither *rdr1* nor NahG plants showed stem cell
 125 invasion, indicating that the SA/RDR1 pathway is not necessary for exclusion of these two viruses.
 126 TCV strongly induced SA/RDR1 production (Fig. 3E, S9), suggesting that this pathway is involved in
 127 – but not strictly necessary for – TCV exclusion from stem cells. These results suggest that for TCV
 128 and TYMV, either primary dicer products are sufficient and RDR1-dependent amplification of vsiRNA
 129 production is not required, or other RDR enzymes are involved and necessary here. Taken together, our
 130 observations establish that RNAi is essential in maintaining a virus-free SAM stem cell niche. This is

Figure 4: Small RNAs determine exclusion from stem cells of viral species unrelated to TuMV and are required for fertility of infected plants. (A) In situ hybridization to detect TYMV RNA in meristems of TYMV-inoculated WT, *dcl234*, *rdr1* and NahG plants, 15 dpi. Viral RNA results in blue-purple color. (B) As in (A) to detect TCV RNA in meristems of the same genotypes after TCV inoculation, 15 dpi. (C) As in (B), showing whole floral apices from WT and *dcl234* infected with TCV, 15 and 22 dpi. (D) Northern blot analysis of viral RNA accumulation in TYMV- and TCV-infected WT and *dcl234* plants, each in duplicate, from systemically infected leaves at 9 dpi. Methylene blue staining is used as loading control. (E) Seed production by mock-, TYMV- and TCV-infected WT and *dcl234* plants. Each data point is progeny of one plant. n.s.: $p>0.05$; **: $p<0.0001$.**

131 remarkable, since as TuMV also TCV and TYMV encode for potent suppressors of RNAi (26, 27).
 132 Accordingly, *dcl234* mutants showed a modest increase in viral RNA accumulation, if any (Fig. 4D),
 133 indicating that host RNAi has little effect on virus replication/propagation in *Arabidopsis* plants at large.
 134 Strikingly however, in addition to ensuring stem cell exclusion, RNAi is required for TYMV- and TCV-
 135 infected plants to produce seeds (Fig. 4E). Whether virus stem cell exclusion and fertility are connected
 136 remains to be determined, but artificial exclusion of TuMV through *RDR1* or *siScar* expression in stem
 137 cells alone (Fig. 2A, D) does not rescue seed production in *rdr1* (Fig. S10), suggesting that virus
 138 exclusion *per se* is not sufficient to ensure fertility.
 139 In summary, our study describes a broad-range antiviral RNAi pathway, which in the case of TuMV is
 140 non-cell autonomous and activated by salicylic acid, that maintains the vital plant SAM stem cells free
 141 of pathogenic viruses. Crucially, unlike RNAi in the rest of the plant, this pathway can successfully
 142 evade viral suppression, pointing to vital aspects of small RNA biology that remain to be elucidated.
 143 This work provides a robust molecular framework for a plant stem cell-specific defensive system of
 144 great biological and economic relevance.
 145
 146

147 REFERENCES

- 148 1. X. Wu, V. L. Dao Thi, Y. Huang, E. Billerbeck, D. Saha, H.-H. Hoffmann, Y. Wang, L. A. V.
149 Silva, S. Sarbanes, T. Sun, L. Andrus, Y. Yu, C. Quirk, M. Li, M. R. MacDonald, W. M.
150 Schneider, X. An, B. R. Rosenberg, C. M. Rice, Intrinsic Immunity Shapes Viral Resistance of
151 Stem Cells. *Cell*. **172**, 423-438.e25 (2018).
- 152 2. E. Z. Poirier, M. D. Buck, P. Chakravarty, J. Carvalho, B. Frederico, A. Cardoso, L. Healy, R.
153 Ulferts, R. Beale, C. Reis e Sousa, An isoform of Dicer protects mammalian stem cells against
154 multiple RNA viruses. *Science* **373**, 231–236 (2021).
- 155 3. G. Bradamante, O. Mittelsten Scheid, M. Incarbone, Under siege: virus control in plant
156 meristems and progeny. *Plant Cell*. **33**, 2523–2537 (2021).
- 157 4. H. Wu, X. Qu, Z. Dong, L. Luo, C. Shao, J. Forner, J. U. Lohmann, M. Su, M. Xu, X. Liu, L.
158 Zhu, J. Zeng, S. Liu, Z. Tian, Z. Zhao, WUSCHEL triggers innate antiviral immunity in plant
159 stem cells. *Science* **370**, 227–231 (2020).
- 160 5. C. W. Bennett, The relation of viruses to plant tissues. *Bot. Rev.* **6**, 427–473 (1940).
- 161 6. A. Panattoni, A. Luvisi, E. Triolo, Elimination of viruses in plants: twenty years of progress.
Spanish J. Agric. Res. **11**, 173 (2013).
- 163 7. F. Schwach, F. E. Vaistij, L. Jones, D. C. Baulcombe, An RNA-Dependent RNA Polymerase
164 Prevents Meristem Invasion by Potato Virus X and Is Required for the Activity But Not the
165 Production of a Systemic Silencing Signal. *Plant Physiol.* **138**, 1842–1852 (2005).
- 166 8. A. M. Martin-Hernandez, D. C. Baulcombe, Tobacco Rattle Virus 16-Kilodalton Protein
167 Encodes a Suppressor of RNA Silencing That Allows Transient Viral Entry in Meristems. *J.
168 Virol.* **82**, 4064–4071 (2008).
- 169 9. X.-B. Wang, J. Jovel, P. Udomporn, Y. Wang, Q. Wu, W.-X. Li, V. Gascioli, H. Vaucheret, S.-
170 W. Ding, The 21-nucleotide, but not 22-nucleotide, viral secondary small interfering RNAs
171 direct potent antiviral defense by two cooperative argonautes in *Arabidopsis thaliana*. *Plant Cell*.
172 **23**, 1625–38 (2011).
- 173 10. X. Chen, O. Rechavi, Plant and animal small RNA communications between cells and
174 organisms. *Nat. Rev. Mol. Cell Biol.* **23**, 185–203 (2022).
- 175 11. Z. Havelda, C. Hornyik, A. Crescenzi, J. Burgýán, J. Burgyan, In Situ Characterization of
176 Cymbidium Ringspot Tombusvirus Infection-Induced Posttranscriptional Gene Silencing in
177 *Nicotiana benthamiana*. *J Virol.* **77**, 6082–6. (2003).
- 178 12. M. Incarbone, A. Zimmermann, P. Hammann, M. Erhardt, F. Michel, P. Dunoyer, Neutralization
179 of mobile antiviral small RNA through peroxisomal import. *Nat. Plants*. **3**, 17094 (2017).
- 180 13. T. Xu, L. Zhang, J. Zhen, Y. Fan, C. Zhang, L. Wang, Expressional and regulatory
181 characterization of *Arabidopsis* RNA-dependent RNA polymerase 1. *Planta*. **237**, 1561–1569
182 (2013).
- 183 14. M. Cao, P. Du, X. Wang, Y.-Q. Yu, Y.-H. Qiu, W. Li, A. Gal-On, C. Zhou, Y. Li, S.-W. Ding,
184 Virus infection triggers widespread silencing of host genes by a distinct class of endogenous
185 siRNAs in *Arabidopsis*. *Proc. Natl. Acad. Sci.* **111**, 14613–14618 (2014).
- 186 15. E. A. Devers, C. A. Brosnan, A. Sarazin, D. Albertini, A. C. Amsler, F. Brioudes, P. E. Jullien,
187 P. Lim, G. Schott, O. Voinnet, Movement and differential consumption of short interfering RNA
188 duplexes underlie mobile RNA interference. *Nat. Plants*. **6**, 789–799 (2020).
- 189 16. H. Garcia-Ruiz, A. Takeda, E. J. Chapman, C. M. Sullivan, N. Fahlgren, K. J. Bremelis, J. C.
190 Carrington, *Arabidopsis* RNA-Dependent RNA Polymerases and Dicer-Like Proteins in
191 Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection.
192 *Plant Cell*. **22**, 481–496 (2010).
- 193 17. H. Garcia-Ruiz, A. Carbonell, J. S. Hoyer, N. Fahlgren, K. B. Gilbert, A. Takeda, A.

194 Giampetrucci, M. T. Garcia Ruiz, M. G. McGinn, N. Lowery, M. T. Martinez Baladejo, J. C.
195 Carrington, Roles and Programming of Arabidopsis ARGONAUTE Proteins during Turnip
196 Mosaic Virus Infection. *PLoS Pathog.* **11**, 1–27 (2015).

197 18. S. Li, Z. Zhang, C. Zhou, S. Li, RNA-dependent RNA polymerase 1 delays the accumulation of
198 viroids in infected plants. *Mol. Plant Pathol.* **22**, 1195–1208 (2021).

199 19. L. Qin, N. Mo, Y. Zhang, T. Muhammad, G. Zhao, Y. Zhang, Y. Liang, CaRDR1, an RNA-
200 Dependent RNA Polymerase Plays a Positive Role in Pepper Resistance against TMV. *Front.
201 Plant Sci.* **8**, 1–13 (2017).

202 20. L. J. R. Hunter, S. F. Brockington, A. M. Murphy, A. E. Pate, K. Gruden, S. A. MacFarlane, P.
203 Palukaitis, J. P. Carr, RNA-dependent RNA polymerase 1 in potato (*Solanum tuberosum*) and
204 its relationship to other plant RNA-dependent RNA polymerases. *Sci. Rep.* **6**, 23082 (2016).

205 21. C. T. Madsen, J. Stephens, C. Hornyik, J. Shaw, D. B. Collinge, C. Lacomm, M. Albrechtsen,
206 Identification and characterization of barley RNA-directed RNA polymerases. *Biochim.
207 Biophys. Acta - Gene Regul. Mech.* **1789**, 375–385 (2009).

208 22. Y. Peng, J. Yang, X. Li, Y. Zhang, Salicylic Acid: Biosynthesis and Signaling. *Annu. Rev. Plant
209 Biol.* **72**, 761–791 (2021).

210 23. A. M. Murphy, T. Zhou, J. P. Carr, An update on salicylic acid biosynthesis, its induction and
211 potential exploitation by plant viruses. *Curr. Opin. Virol.* **42**, 8–17 (2020).

212 24. T. P. Delaney, S. Uknas, B. Vernooij, L. Friedrich, K. Weymann, D. Negrotto, T. Gaffney, M.
213 Gut-Rella, H. Kessmann, E. Ward, J. Ryals, A central role of salicylic acid in plant disease
214 resistance. *Science* **266**, 1247–1250 (1994).

215 25. M. van Damme, R. P. Huibers, J. Elberse, G. Van den Ackerveken, Arabidopsis DMR6 encodes
216 a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to
217 downy mildew. *Plant J.* **54**, 785–793 (2008).

218 26. J. Chen, W. X. Li, D. Xie, J. R. Peng, S. W. Ding, Viral Virulence Protein Suppresses RNA
219 Silencing–Mediated Defense but Upregulates the Role of MicroRNA in Host Gene Expression.
220 *Plant Cell.* **16**, 1302–1313 (2004).

221 27. F. Qu, T. Ren, T. J. Morris, The Coat Protein of Turnip Crinkle Virus Suppresses
222 Posttranscriptional Gene Silencing at an Early Initiation Step. *J. Virol.* **77**, 511–522 (2003).

223

224 DATA AVAILABILITY

225 Additional and source data has been deposited on Zenodo at the following DOI:
226 10.5281/zenodo.7454454. This includes panels with complete confocal and *in situ* microscopy
227 experiments, raw data from time course fluorescence quantifications, blotting, RT-qPCRs, SA
228 measurements, complete sequences of virus and transgene plasmids.

229 ACKNOWLEDGEMENTS

230 M.I. acknowledges funding from a Lise Meitner postdoctoral grant from the Austrian Science Fund
231 (FWF M2921). O.M.S. is grateful for support by the Vienna Science and Technology Fund WWTF
232 LS13-057, G.B. was supported by the Doctoral Program “Chromosome Dynamics” of the Austrian
233 Science Fund (FWF W1238). M.I. and M.N. were supported by funding from the European Research
234 Council under the European Union’s Horizon 2020 research and innovation program (Grant 637888 to
235 M.N.). R.G. acknowledges support by the Austrian Science Fund (FWF I3687), S.M.F. is funded by

236 the Scottish Government Rural and Environment Science and Analytical Services Strategic Research
237 Programme. We would like to thank Paweł Pasierbek and Alberto Moreno Cencerrado at VBC
238 BioOptics for assistance with microscopy, VBCF PlantS for assistance with plant work, VBC
239 Histopathology and Magdalena Mosiolek for assistance with *in situ* hybridizations, VBCF NGS for
240 small RNA library generation and sequencing, VBCF Protech for providing the pGGF-YFP seed
241 selection plasmid, Eduardo Bejarano for the NahG and *sid2* seed stocks. We are grateful to lab members
242 and GMI colleagues for ideas, feedback and discussions. Finally, we would like to thank the Vienna
243 BioCenter in-house COVID-19 testing services for allowing us to safely carry out this research project
244 during the coronavirus pandemic.

245 **AUTHOR CONTRIBUTIONS**

246 M.I., G.B. and O.M.S. conceived the study and designed the experiments. M.I. cloned transgene and
247 virus plasmids, generated and selected transgenic lines/mutants. M.I., G.B. and F.P. performed
248 infections and confocal microscopy, G.B. and T.W. performed *in situ* hybridizations, T.L. and F.P.
249 performed time-course fluorescence quantification and analysis. W.R. performed SA measurements
250 and analyses. M.I. performed RNA extractions, RT-qPCRs and northern blotting, while V.N. and R.G.
251 analyzed sRNA sequencing data. S.M.F. cloned the TRV1 plasmid. M.N. provided assistance and
252 financial support in cloning and transgene generation. M.I. assembled the figures and wrote the
253 manuscript, with the assistance of G.B. and O.M.S.

1 MATERIALS AND METHODS

2 Molecular cloning

3 All the binary plasmids used in this study were generated through Golden Gate assembly. Refer to Data
4 Availability for the complete plasmid sequences. All transgenes for *Arabidopsis* transformation were
5 assembled using the GreenGate system (1), by BsaI digestion (BsaI-HF-v2, New England Biolabs
6 #R3733S) and T4 Ligase ligation (Thermo Scientific #EL0014) of entry vectors into binary plasmids.
7 The entry vectors were made by amplifying the sequences of interest by PCR using Q5 HiFi DNA
8 polymerase (NEB #M0491L) with primers containing the BsaI cut site in the appropriate orientation
9 and the standard “sticky ends” corresponding to GreenGate A-F units (1), then ligating them into the
10 pGGA-F GreenGate vectors or into the Golden Gate-ready pMiniTTM2.0 (NEB #E1203S). Sequences
11 containing BsaI cut sites (such as *AtRDR1*) were divided into several entry vectors, where final
12 assembly would introduce silent mutations, preventing further digestion of the assembled products.
13 Transgenes were assembled into the GreenGate pGreen-based pGGZ003 destination vector
14 (*pCLV3::H2B:Clover*; *pUBI::H2B:Clover* and *pUBI::P19*) or pGGSun, a version of pSUN (2) we
15 adapted for GreenGate cloning (*pCLV3::RDR1-WT:Clo*; *pCLV3::siScar*; *pRDR1::RDR1-WT:Clo*;
16 *pRDR1::RDR1-D801A:Clo*; *pRDR1::siScar*; *pRDR1::P19*; *pUBI::RDR1-WT:Clo*; *pUBI::siScar*) (see
17 **Table S1** for entry vectors used). The Golden Gate assembly-ready pSun, pGGSun, was obtained by
18 amplifying (i) the pSun backbone adding BsaI sites and (ii) a ccdB selection cassette to insert between
19 the BsaI sites. The two PCR products were then assembled with Gibson Assembly Mastermix (NEB
20 #E2611). All RDR1 constructs contain the genomic sequence of *RDR1* (AT1G14790). The catalytically
21 inactive *RDR1-D801A* allele was generated by mutating aspartic acid 801 in the *RDR1* protein to
22 alanine. A corresponding mutation of the last aspartic acid in the conserved DxDxD triplet was shown
23 to abrogate RNA polymerization capability in *A. thaliana* RDR2 and RDR6 (3, 4). The constructs using
24 the *pRDR1* promoter do not only include the sequence upstream of *RDR1*, but also the sequence
25 downstream of the *RDR1* gene, inserted downstream of the sequence of interest
26 (*RDR1/H2B:Clover/siScar/P19*). The same is valid for constructs with the *pCLV3* promoter.

27 TuMV and TRV2 virus clones were generated by cloning segments of the viral genomes into pMini
28 entry vectors, as described above, then seamlessly assembling them into pGGSun downstream of a 35S
29 promoter and followed by a NosT terminator. In the case of TRV2-Scarlet (sequence of the PPK20
30 isolate), an HDV ribozyme was placed after the viral sequence to ensure cleavage for correct 3' ending
31 of the RNA. The mScarlet sequence, preceded by the PEBV CP subgenomic promoter, was inserted
32 after the TRV CP-coding sequence. In the case of TuMV-6K2:Scarlet and TuMV-6K2:Clover, a
33 sequence coding for the viral 6K2 protein (5) fused to Scarlet or Clover, respectively, and flanked by
34 amino acid sequences cut by the viral proteases, was inserted into the polycistronic TuMV sequence
35 (UK1 isolate) between the P1- and HC-Pro-coding sequences. The TRV1 plasmid (p1586 - pCB-TRV1)
36 was generated by cloning the cDNA from TRV1 isolate PPK20 into binary vector pDIVA (6), between
37 the 35S promoter and the HDV ribozyme, by blunt ligation into the PCR-amplified backbone.

38

39 Plant material

40 For ease of interpretation, in this manuscript wild-type (WT) is used to refer to *Arabidopsis thaliana*
41 Col-0 ecotype plants, which is also the genetic background of all mutants. *Arabidopsis* mutant lines
42 *rdr1-1* (7), *rdr6-15*, *rdr1-1/rdr6-15* (8), *dcl2-1/dcl3-1/dcl4-2* (9), *NahG* (10) and *dmr6-2* (11) were
43 previously described (See **Table S2** for stock and genotyping information). Genotyping was performed
44 by standard PCR of leaf DNA extracts. Transgenic *Arabidopsis* lines were generated by transforming
45 *A. tumefaciens* GV3101 with the plasmid of interest and using the resulting cultures to perform floral
46 dip. The transformants were selected in the appropriate manner (antibiotic resistance or seed coat
47 fluorescence) and propagated to the third generation after transformation, when seed stocks
48 homozygous for the transgene were selected and further used for infection experiments. The lines used
49 for time-course experiments (*pCLV3::H2B:Clover* in Col-0, *rdr1*, *rdr6*, *rdr1/rdr6* and *dcl2/dcl3/dcl4*
50 backgrounds) were obtained by crossing a Col-0/*pCLV3::H2B:Clover* line with *rdr1-1/rdr6-15* or *dcl2-1/dcl3-1/dcl4-2* and selecting the various mutant combinations by genotyping. All other transgenics
51 were obtained by directly transforming the genotypes in question. In all infection experiments, plants
52 were grown on soil at 12 h/12 h day/night cycles until infection, when they were moved to 16 h/8 h
53

54 long day conditions to induce flowering. Plants were infected 3.5/4 weeks after germination (TuMV,
55 TCV, TYMV) or 2 weeks after germination (TRV).

56
57 **Virus infection, tissue sampling and meristem preparation**
58 Inoculum of TuMV-6K2:Scarlet and TuMV-6K2:Clover was obtained by inoculating *N. benthamiana*
59 plants with *A. tumefaciens* cultures containing the respective plasmids as previously described (12)
60 followed by harvesting and freezing the systemically infected leaves. Inoculum of TCV and TYMV
61 was obtained by harvesting and freezing Arabidopsis leaves systemically infected after rub inoculation.
62 Inoculum of TRV-Scarlet was obtained by harvesting and freezing Arabidopsis leaves systemically
63 infected after inoculation of *A. tumefaciens* cultures containing TRV1 and TRV2-Scarlet plasmids as
64 previously described (12). During infection experiments, inoculum was prepared by grinding frozen
65 plant tissue in liquid nitrogen with mortar and pestle, then resuspending the powder in 50 mM sodium
66 phosphate buffer pH 7.2, 0.2% sodium sulfite. After incubating on a wheel at 4°C for 10 min, the
67 homogenate was centrifuged at 1000 g for 2 min, the supernatant kept on ice and used as inoculum.
68 Plants were sprinkled with Celite 545 (Merck), a cotton swab was dipped in the inoculum and used to
69 gently rub the leaves, 5-6 leaves per plant. For molecular analysis, tissues were harvested at 8-9 dpi
70 (systemic leaves) or 15-16 dpi (inflorescence apices), frozen and stored at -70°C. Each sample is a pool
71 of tissues from 4-5 plants. For meristem preparations, the main inflorescence of each plant was removed
72 and dissected under a light microscope until only the smallest flower buds and shoot apical meristem
73 remained along with 1-2 mm of stem. Unless indicated otherwise in figures or figure legends, meristems
74 were generally sampled at 15-18 dpi, depending on the experiment, with the exception of the
75 *pRDR1::H2B:Clover* experiments at 12-13 dpi. Precise time points are indicated in the additional
76 microscopy data (see Data Availability). If meristems were to be observed by confocal microscopy,
77 the dissected meristems were incubated 40 min in fixing solution (13) (1x MTSB, 2%
78 paraformaldehyde, 0.1% Triton-X) at 37°C, then stored in MTSB at 4°C for a maximum of 10 days. 3-
79 4 days before observation, the meristems were incubated in ClearSee (10% w/v xylitol, 15% w/v sodium
80 deoxycholate, 25% w/v urea) at 4°C, with the addition of 10 mg/L DAPI the day before observation. If
81 the meristems were to be used for *in situ* hybridizations, they were incubated after dissection over-night
82 at 4°C in fixing solution (4% formaldehyde, 50% ethanol, 5% glacial acetic acid, 1x PBS) and
83 dehydrated by changing the buffer to 50% then 70% ethanol in 1x PBS.

84
85 **Confocal microscopy and image analysis**
86 Meristems were mounted on glass slides in ClearSee and imaged with a Zeiss LSM880 laser confocal
87 microscope. The following laser wavelengths were used: 405 nm for DAPI, 488 nm for Clover, 561 nm
88 for Scarlet. Further image processing was carried out with FIJI/ImageJ. For single meristem image
89 assembly, images were cropped, rotated if necessary, split into single channels, LUTs were assigned
90 (grayscale for DAPI, green for Clover, OrangeHot for Scarlet or Clover in **Fig. 2D,E**) and
91 brightness/contrast were adjusted. For Scarlet fluorescence signal, brightness was regulated, until the
92 high-signal zones were in yellow color, with the same settings for all genotypes. The single channel
93 images were then merged and a 20 µm scale bar was added (**Fig. S1**). For time course quantification
94 experiments (**Fig. 1B,C; Fig S2**), 7-12 meristems were imaged per genotype/time-point without
95 changing laser intensities within an experiment. Images were then analyzed with FIJI (14) using a macro
96 developed for this task (**Supplementary File 1**): with meristems oriented vertically, an equally wide
97 vertical section of each was selected for Clover and Scarlet fluorescence quantification, one
98 measurement every 149 nm. The data were then imported into Microsoft Excel spreadsheets. Since
99 differences in sample depth and degree of clearing caused differences in absolute fluorescence between
100 meristems, the Clover fluorescence values in each meristem were converted to values on a 0-100 scale.
101 The corresponding Scarlet values were normalized for each data point. These normalized values were
102 then used to calculate the plotted average and standard deviation.

103
104 ***In situ* hybridization**
105 Meristems, after being prepared as described above, were stained in 1% w/v eosin in 70% ethanol then
106 infiltrated with xylene substitute and paraffin in a Diapath Donatello I tissue processor, after which they
107 were cast into paraffin blocks using a Sakura Tissue Tek TEC5 (approximately 20 meristems/block).
108 The blocks were then cut into 2 µm-thick sections that were transferred onto glass microscopy slides,

109 which were screened for ones containing central sections of meristems. DIG-labelled RNA probes were
110 generated with DIG RNA Labeling Kit T7/SP6 (Roche #11175025910), see **Table S3** for the primers
111 used to generate the DNA templates. *In situ* hybridization was then performed as previously described
112 (15, 16), with minor variations, all solutions being prepared with DEPC-treated water. Slides were twice
113 incubated 10 min in Histo-Clear II (National Diagnostics #HS-202), 5 min in 100% ethanol twice and
114 rehydrated through serial passages in 90%, 70%, 50% and 30% ethanol, then in Tris-EDTA pH 7.5.
115 Sections were then treated with Proteinase K (Roche #3115836001), washed in 1x PBS, incubated 10
116 min in 4% paraformaldehyde, dehydrated through serial ethanol washes and air-dried. After probe
117 denaturation for 3 min at 80°C, hybridization with 50-100 ng DIG-labelled probes per slide was carried
118 out O/N at 50°C in 150 µl hybridization solution: 50% formamide, 10 mM Tris base, 300 mM NaCl, 5
119 mM EDTA, 10 mM Na₂HPO₄, 1x Denhardt's solution (Sigma Aldrich #D2532-5ML), 10% dextran
120 sulphate, 0.5 µg/µl tRNA (Roche #10109517001). Slides were briefly washed in 2x SSC, then incubated
121 in 0.2x SSC for 2 h at 55°C and treated with RNase A (Thermo Scientific #EN0531) at 37°C for 30
122 min, then 1 h in 0.2x SSC at 55°C. Slides were washed 10 min in washing buffer and incubated 1 h in
123 blocking buffer (both Roche #11585762001). Anti-DIG antibody was added (Roche #11093274910 -
124 1:1500 dilution) and incubated for 1 h 45 min at room temperature, washed for 1 h, incubated in TNM5
125 (100 mM Tris pH 9.5, 100 mM NaCl, 5 mM MgCl₂) three times for 2 min, then O/N in TNM5 with
126 10% w/v polyvinyl alcohol, 10 µl/ml NBT/BCIP (Roche #11697471001). Slides were mounted with
127 Aqua-Poly/Mount (Polysciences #18606-20) and scanned with a Pannoramic 250 slide scanner at 40 x
128 magnification.

129

130 **Salicylic acid quantification**

131 For SA quantification, 4-5 replicates of each genotype/virus were collected, each replicate being a pool
132 of systemically infected tissue from five plants. Tissues were frozen, pulverized and stored at -70°C.
133 Aliquots of tissue were weighed, ground with glass beads and 1 ml of 80% acetonitrile (Sigma-Aldrich
134 #34881) and 50 µl internal standard (5-fluorosalicylic acid, 1 mg/l) were added per sample. The
135 resulting solution was then vortexed and placed in a shaker at room temperature for 1 h at 1400 rpm
136 shaking speed. Samples were centrifuged 5 min at 13000 rpm and supernatant was transferred to new
137 tubes. After drying most of the liquid with a vacuum pump, quantification was performed by HPLC as
138 previously described (17), with the difference that a Nucleodur 100-5 NH₂ 125x4 mm column
139 (Macherey-Nagel, #760730.40) and an eluent consisting of 8.5% acetonitrile and 25mM formic acid
140 pH 4 were used (18). Data was analyzed and plotted with Microsoft Excel, significance was assessed
141 through standard pairwise t-student tests, two-tailed, assuming unequal variance.

142

143 **Northern blotting and RT-qPCR**

144 RNA extraction was performed with TRI Reagent (Zymo Research #R2050-1-200). Briefly, flash-
145 frozen plant tissues were pulverized with glass beads, 1 ml TRI Reagent and after clearing 300µl
146 chloroform were added. After shaking and centrifugation, one volume isopropanol was added to the
147 aqueous phase and incubated at least 1 h on ice. After centrifugation, the pellet was washed with 80%
148 ethanol, dried, resuspended in RNase-free water and the RNA concentration measured. RNA was stored
149 at -20°C. Small RNA northern blotting was performed as previously described (19) on 10-50 µg RNA,
150 using standard BioRad PAGE system for electrophoresis and EDC chemical cross-linking (Sigma
151 Aldrich #E7750) onto Hybond NX nylon (GE Healthcare #RPN203T). Membranes were probed with
152 α -³²P-CTP-labelled (Agilent #300385) PCR products (@6K2, @Scarlet) or γ -³²P-ATP-labelled
153 (Thermo Scientific #EK0031) DNA oligonucleotides (@U6), hybridizing overnight at 42°C in 1 mM
154 EDTA, 7% SDS, 500 mM sodium phosphate pH 7.2. After three washes of 15 min at 45°C in 2% SDS,
155 2x SSC, membranes were exposed to phosphor screen and signals revealed by an Amersham Typhoon.
156 For high molecular weight northern blotting to detect viral RNA, 5 µg RNA was initially denatured by
157 incubating with 15% v/v deionized glyoxal at 50°C for 1 h. Samples were then run in a 1% agarose gel
158 in 20 mM sodium phosphate pH 7.2, capillary transfer to nylon membrane was performed overnight
159 followed by UV cross-linking. After staining with methylene blue, membranes were probed with γ -³²P-
160 ATP-labelled DNA oligonucleotides (@TCV, @TYMV) as described above. For RT-qPCR
161 quantification, 5 µg RNA was treated with TURBO™ DNase (Invitrogen #AM2238) and 500 ng of this
162 was used for cDNA synthesis with oligo-dT primer using RevertAid H Minus First Strand cDNA

163 Synthesis (Thermo Scientific #K1632). qPCR on cDNA was performed with FastStart Essential DNA
164 Green Master kit (Roche #06402712001) using a Roche LightCycler 96 and corresponding proprietary
165 software. Expression levels of *RDR1* and *PRI* were normalized to housekeeping gene *AtSAND*
166 (AT2G28390), while levels of TuMV were normalized to *AtGAPDH* (AT1G13440). Data were
167 analyzed and plotted with Microsoft Excel. See **Table S3** for primer sequences.
168

169 **Small RNA sequencing and analysis**

170 sRNA libraries were generated with QIAgen miRNA library kit (QIAgen #331502) according to
171 manufacturer's instructions. Following quality control they were sequenced on an Illumina HiSeq2500
172 with HiSeq V4 reagents, single-read 50 read-mode, all steps performed by the VBCF Next Generation
173 Sequencing Facility. Prior to analyzing the sequencing data, adapters were removed from sRNA library
174 data by using cutadapt v1.18, selecting read length from 18 to 26 nt. Processed reads were aligned to
175 the Arabidopsis genome (TAIR10) and TuMV-Scarlet sequence using bowtie2 v2.3.5 (20), (i) allowing
176 unique mapping to the TuMV-6K2:Scarlet sequence to assess the proportion of viral sRNAs and (ii)
177 allowing 1000 times multi-mapping for gene-derived sRNA enrichment analysis. The aligned reads
178 from multi-mapping were sorted by size (21 nt, 22 nt and 24 nt) for further analysis. The small RNA
179 metaplots were generated by using Deetools v.3.3.1 (21) with "bamCoverage" adding "CPM"
180 parameter. The annotation of small RNAs to genes was done by using featureCounts (22) with Araport
181 11 annotation. DESeq2 (23) was used to analyze small RNA enrichment on genes with a cutoff of p.adj.
182 < 0.05, log2 fold change > |1| and > 10 reads in both replicates. Visualization of the data was done by
183 using the packages tidyverse (24) and ggplot2 (25).
184

185 **REFERENCES**

1. A. Lampropoulos, Z. Sutikovic, C. Wenzl, I. Maegele, J. U. Lohmann, J. Forner, GreenGate -
187 A Novel, Versatile, and Efficient Cloning System for Plant Transgenesis. *PLoS One*. **8**, e83043
188 (2013).
2. J. G. Thomson, M. Cook, M. Guttman, J. Smith, R. Thilmony, Novel sul I binary vectors enable
189 an inexpensive foliar selection method in Arabidopsis. *BMC Res. Notes*. **4**, 44 (2011).
3. J. Curaba, X. Chen, Biochemical Activities of Arabidopsis RNA-dependent RNA Polymerase
191 6. *J. Biol. Chem.* **283**, 3059–3066 (2008).
4. A. Devert, N. Fabre, M. Floris, B. Canard, C. Robaglia, P. Crété, Primer-Dependent and Primer-
194 Independent Initiation of Double Stranded RNA Synthesis by Purified Arabidopsis RNA-
195 Dependent RNA Polymerases RDR2 and RDR6. *PLoS One*. **10**, e0120100 (2015).
5. J. Jiang, C. Patarroyo, D. Garcia Cabanillas, H. Zheng, J.-F. Laliberté, The Vesicle-Forming 6K
197 2 Protein of Turnip Mosaic Virus Interacts with the COPII Coatomer Sec24a for Viral Systemic
198 Infection. *J. Virol.* **89**, 6695–6710 (2015).
6. M. Laufer, H. Mohammad, E. Maiss, K. Richert-Pöggeler, M. Dall'Ara, C. Ratti, D. Gilmer, S.
199 Liebe, M. Varrelmann, Biological properties of Beet soil-borne mosaic virus and Beet necrotic
200 yellow vein virus cDNA clones produced by isothermal in vitro recombination: Insights for
201 reassortant appearance. *Virology*. **518**, 25–33 (2018).
7. Z. Xie, L. K. Johansen, A. M. Gustafson, K. D. Kasschau, A. D. Lellis, D. Zilberman, S. E.
204 Jacobsen, J. C. Carrington, Genetic and Functional Diversification of Small RNA Pathways in
205 Plants. *PLoS Biol.* **2**, 642–652 (2004).
8. H. Garcia-Ruiz, A. Takeda, E. J. Chapman, C. M. Sullivan, N. Fahlgren, K. J. Brempelis, J. C.
207 Carrington, Arabidopsis RNA-Dependent RNA Polymerases and Dicer-Like Proteins in
208 Antiviral Defense and Small Interfering RNA Biogenesis during Turnip Mosaic Virus Infection.
209 *Plant Cell*. **22**, 481–496 (2010).
9. A. Deleris, J. Gallego-Bartolome, J. Bao, K. D. Kasschau, J. C. Carrington, O. Voinnet,
211 Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. *Science* **313**,
212 68–71 (2006).

213 10. T. P. Delaney, S. Uknnes, B. Vernooij, L. Friedrich, K. Weymann, D. Negrotto, T. Gaffney, M.
214 Gut-Rella, H. Kessmann, E. Ward, J. Ryals, A central role of salicylic acid in plant disease
215 resistance. *Science* **266**, 1247–1250 (1994).

216 11. M. van Damme, R. P. Huibers, J. Elberse, G. Van den Ackerveken, *Arabidopsis DMR6* encodes
217 a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to
218 downy mildew. *Plant J.* **54**, 785–793 (2008).

219 12. M. Incarbone, M. Clavel, B. Monsion, L. Kuhn, H. Scheer, É. Vantard, V. Poignavent, P.
220 Dunoyer, P. Genschik, C. Ritzenthaler, Immunocapture of dsRNA-bound proteins provides
221 insight into Tobacco rattle virus replication complexes and reveals *Arabidopsis DRB2* to be a
222 wide-spectrum antiviral effector. *Plant Cell.* **33**, 3402–3420 (2021).

223 13. T. Pasternak, O. Tietz, K. Rapp, M. Begheldo, R. Nitschke, B. Ruperti, K. Palme, Protocol: an
224 improved and universal procedure for whole-mount immunolocalization in plants. *Plant
225 Methods.* **11**, 50 (2015).

226 14. J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch,
227 C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P.
228 Tomancak, A. Cardona, Fiji: an open-source platform for biological-image analysis. *Nat.
229 Methods.* **9**, 676–682 (2012).

230 15. Y. Matsushita, T. Usugi, S. Tsuda, Distribution of tomato chlorotic dwarf viroid in floral organs
231 of tomato. *Eur. J. Plant Pathol.* **130**, 441–447 (2011).

232 16. M. D. Nodine, R. Yadegari, F. E. Tax, RPK1 and TOAD2 Are Two Receptor-like Kinases
233 Redundantly Required for *Arabidopsis* Embryonic Pattern Formation. *Dev. Cell.* **12**, 943–956
234 (2007).

235 17. W. Rozhon, E. Petutschnig, M. Wrzaczek, C. Jonak, Quantification of free and total salicylic
236 acid in plants by solid-phase extraction and isocratic high-performance anion-exchange
237 chromatography. *Anal. Bioanal. Chem.* **382**, 1620–1627 (2005).

238 18. E. K. Petutschnig, M. Stolze, U. Lipka, M. Kopischke, J. Horlacher, O. Valerius, W. Rozhon,
239 A. A. Gust, B. Kemmerling, B. Poppenberger, G. H. Braus, T. Nürnberg, V. Lipka, A novel
240 *Arabidopsis CHITIN ELICITOR RECEPTOR KINASE 1* (CERK1) mutant with enhanced
241 pathogen-induced cell death and altered receptor processing. *New Phytol.* **204**, 955–967 (2014).

242 19. M. Incarbone, C. Ritzenthaler, P. Dunoyer, Peroxisomal Targeting as a Sensitive Tool to Detect
243 Protein-Small RNA Interactions through in Vivo Piggybacking. *Front. Plant Sci.* **9**, 135 (2018).

244 20. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. *Nat. Methods.* **9**, 357–
245 359 (2012).

246 21. F. Ramírez, D. P. Ryan, B. Grüning, V. Bhardwaj, F. Kilpert, A. S. Richter, S. Heyne, F. Dündar,
247 T. Manke, deepTools2: a next generation web server for deep-sequencing data analysis. *Nucleic
248 Acids Res.* **44**, W160–W165 (2016).

249 22. Y. Liao, G. K. Smyth, W. Shi, featureCounts: an efficient general purpose program for assigning
250 sequence reads to genomic features. *Bioinformatics.* **30**, 923–930 (2014).

251 23. M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-
252 seq data with DESeq2. *Genome Biol.* **15**, 550 (2014).

253 24. H. Wickham, M. Averick, J. Bryan, W. Chang, L. McGowan, R. François, G. Grolemund, A.
254 Hayes, L. Henry, J. Hester, M. Kuhn, T. Pedersen, E. Miller, S. Bache, K. Müller, J. Ooms, D.
255 Robinson, D. Seidel, V. Spinu, K. Takahashi, D. Vaughan, C. Wilke, K. Woo, H. Yutani,
256 Welcome to the Tidyverse. *J. Open Source Softw.* **4**, 1686 (2019).

257 25. H. Wickham, *ggplot2: Elegant Graphics for Data Analysis* (Springer-Verlag New York, 2016;
258 <https://ggplot2.tidyverse.org>).

259