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Abstract 

Mitochondrial DNA (mtDNA) has an important, yet often overlooked, role in health and disease. 

Constraint models quantify the removal of deleterious variation from the population by selection, 

representing a powerful tool for identifying genetic variation underlying human phenotypes1-4. 

However, a constraint model for the mtDNA has not been developed, due to its unique features. 
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Here we describe the development of a mitochondrial constraint model and its application to the 

Genome Aggregation Database (gnomAD), a large-scale population dataset reporting mtDNA 

variation across 56,434 humans5. Our results demonstrate strong depletion of expected variation, 

suggesting most deleterious mtDNA variants remain undiscovered. To aid their identification, 

we compute constraint metrics for every mitochondrial protein, tRNA, and rRNA gene, revealing 

a spectrum of intolerance to variation. We characterize the most constrained regions within genes 

via regional constraint, and positions across the entire mtDNA via local constraint, showing their 

enrichment in pathogenic variation and functionally critical sites, including topological 

clustering in 3D protein and RNA structures. Notably, we identify constraint at often overlooked 

sites, such as rRNAs and non-coding regions. Lastly, we demonstrate how these metrics can 

improve the discovery of mtDNA variation underlying rare and common human phenotypes. 

 

Main 

Mitochondria produce the majority of cellular energy supplies and play a key role in many other 

cellular processes including signaling pathways, redox homeostasis, cell fate decisions, immune 

response, and regulation of metabolism6-8. Mitochondria originate from bacteria acquired by 

eukaryotic cells, and their prokaryotic origin is reflected by the circular mitochondrial genome 

(mtDNA), which is maintained and expressed in the mitochondria separately from the nuclear 

genome9. The human mtDNA is ~16.5 kb in length and encodes for 13 proteins, as well as 22 

transfer RNAs (tRNAs) and two ribosomal RNAs (rRNA) required for their translation10,11. 

These proteins encode subunits of complexes I, III, IV and V in the oxidative phosphorylation 

(OXPHOS) pathway, which are enzymes central to energy generation and cellular metabolism. 

The mtDNA has several unique features which differentiate it from the nuclear genome. This 
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includes maternal inheritance, absence of introns, multiple copies per cell (e.g. 100s-1000s), 

germline bottleneck, distinct mutational mechanisms, and a higher rate of mutation and fixation 

relative to the nuclear genome7,12. The percentage of mtDNA molecules with a variant, known as 

the heteroplasmy level, can therefore range from 0-100%. Variants are heteroplasmic when they 

are in a fraction of mtDNA copies, or homoplasmic when found in all. 

 

Variants in the mtDNA can cause mitochondrial and cellular dysfunction, and accordingly have 

been linked to many human phenotypes. This includes causing rare mitochondrial diseases, 

which are clinically heterogeneous disorders causing ‘any symptom, in any organ, at any age’11, 

as well as increasing the risk of common diseases such as autism13, cancer14, Alzheimer’s and 

Parkinson’s diseases15. Mitochondrial variation has also been linked to traits including glucose 

and insulin levels16, height17, and aging18. Despite its importance in health and disease, the effect 

of most mtDNA variants remains unknown. The classification of mtDNA variants is particularly 

challenging owing to the unique features of this genome, but also due to the paucity of tools for 

predicting mtDNA variant effect12. For example, zero in silico pathogenicity predictors exist for 

rRNA or non-coding mtDNA variants, and only one missense predictor is recommended in 

ACMG/AMP mtDNA guidelines12. Another tool that has not been available for mtDNA is a 

constraint model, which has been used to quantify the removal of deleterious nuclear genome 

variation from the population by selection1. This method compares the observed level of 

variation in a population to that expected under neutrality, as calculated by a mutational model. 

Constrained genes and regions are enriched in deleterious variation, and nuclear constraint 

metrics such as those calculated using the Genome Aggregation Database (gnomAD) are widely 
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used for genetic analysis of human phenotypes1-4. Constraint can also identify which genes and 

gene regions are most essential for function, given these are subject to the strongest selection1-4. 

 

We recently led the expansion of the gnomAD population database to include mtDNA variation5. 

The gnomAD v3.1 dataset reports homoplasmic and heteroplasmic variants identified in 56,434 

humans and at >50% of mtDNA positions5, representing one of the largest mitochondrial 

population databases. gnomAD v3.1 therefore provided an opportunity to explore mitochondrial 

constraint. Evidence of mtDNA selection includes pathogenic variation being rare and typically 

only observed at low heteroplasmy levels in the population5, reflecting that pathogenic variants 

cause disease when their heteroplasmy level is high enough to produce cellular dysfunction7,11. 

Negative selection in the human germline has also been demonstrated by reduced transmission of 

deleterious mtDNA variants across mother-child pairs19-23. While ratios of nonsynonymous to 

synonymous variation or variants per base have been historically used to assess mtDNA 

selection24-27, these do not account for differences in mutability between variant types and base 

positions, limiting their utility. Furthermore, these studies often focused on homoplasmies, 

observed variation, and small datasets only19,25-27, providing an incomplete picture. We therefore 

sought to assess mitochondrial constraint in gnomAD; an approach that could overcome 

limitations of previous studies assessing selection and provide tools to aid mtDNA analysis. 

 

Here we describe the development of a mitochondrial constraint model, and its application to 

gnomAD to quantify the strength of selection across the mtDNA and within each gene. We show 

that mtDNA variation is subject to strong negative selection in line with its essential role in 

cellular function. We also demonstrate that our constraint metrics can aid the classification of 
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mtDNA variants that contribute to human phenotypes. This work establishes the first constraint 

model for the human mitochondrial genome, and provides novel insights into which genes, 

regions and positions in the mtDNA are most essential for human health. 

 

Establishing a constraint model for the human mtDNA 

We aimed to analyze constraint in the human mtDNA by comparing the observed level of 

variation in gnomAD to that expected under neutrality. The large size and diversity of the 

gnomAD population database, its inclusion of homoplasmic and heteroplasmic variation, 

depletion of severe pediatric disease, and stringent quality control makes it well-suited for the 

study of constraint5. First, we developed a mitochondrial mutational model to calculate expected 

variation, by using a composite likelihood model and a curated dataset of de novo mutations to 

quantify mutability in trinucleotide contexts. This likelihood model is well suited for possible 

sparsity of counts per context in mtDNA, and since it was developed for quantifying mutability 

in the nuclear exome28 we adapted it for analysis of mtDNA mutability (Methods). The 

mutational signature predicted by our model was consistent with previous reports19,29, showing 

increased likelihood of transitions over transversions, strand bias for transitions, increased 

likelihood of C>T when G is in the +1 position, and a distinct signature in the non-coding OriB-

OriH region (Fig. 1a, Extended Data Fig. 1a). The observed level of neutral variation in each 

locus in gnomAD was highly correlated with their mutation likelihood (Pearson correlation 

coefficient R>0.99, p-value<2.2e-16), which was also a significantly better predictor of observed 

levels than locus length (Supplementary Methods), establishing the predictive value of the 

mutational model (Methods).   
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We used this mutational model to calculate the expected level of mtDNA variation in gnomAD, 

comparing it to the observed to quantify constraint for different functional classes of variation. 

Heteroplasmy is an important consideration for assessment of mitochondrial constraint given 

negative selection can reduce the heteroplasmy level of an observed mtDNA variant below a 

‘disease threshold’. Indeed, most observed pathogenic variants in gnomAD had a maximum 

heteroplasmy value (expressed as a fraction, range 0.0-1.0) of <1.0, consistent with selection 

against high heteroplasmy5. We therefore calculated the observed and expected sum of 

maximum heteroplasmy of mtDNA variants in gnomAD, rather than the number of (unique) 

variants per nuclear models1, to capture selection against heteroplasmy (Methods). Simulation of 

germline mtDNA mutation and heteroplasmy drift across generations supported that 

mitochondrial mutation rates correlate with maximum heteroplasmy under neutrality (Extended 

Data Fig. 2d), in line with published work reporting that the expected number of neutral 

mutations drifting to homoplasmy (i.e. towards a maximum heteroplasmy of 1.0) increases 

linearly with mutation rate in cells29, corroborating the validity of using our mutational model to 

assess maximum heteroplasmy (Supplementary Discussion). We quantified mitochondrial 

constraint in gnomAD as a ratio of observed to expected variation and calculated a 90% 

confidence interval (CI) around these ratios (Methods). These values provide an inference on the 

strength of selection against a group of variants (e.g. all missense within a protein-coding gene).  

 

Evaluation of functional classes of mtDNA variation showed that the predicted severity of each 

class correlated with their ratio of observed:expected variation (Fig. 1b), such that synonymous 

variation had a ratio close to 1 (0.99, CI 0.97-1.01) and stop gain close to 0 (0.008, CI 0.001-

0.015). Other classes of variation in genes lay between these values; partial depletion of expected 
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non-coding variation was also observed. These data show a similar selective pressure against 

missense, tRNA and rRNA variation, notable given the latter is typically overlooked due to the 

absence of in silico tools for predicting their effect12. Selection against disease-associated 

variation in ClinVar and MITOMAP databases, which is mostly missense and tRNA variants 

(Extended Data Fig. 1b-c), also correlated with classification with observed:expected ratios 

ranging from 0.13 for pathogenic variation (CI 0.08-0.18) to 0.995 for benign variation (CI 0.99-

1.0) (Fig. 1c). Missense and tRNA variants predicted as deleterious by in silico algorithms were 

more constrained than those predicted to be tolerated, although some categories of variation 

predicted tolerated also appeared constrained (Extended Data Fig. 1d). Evaluation of functional 

classes in another large mitochondrial population database with heteroplasmy (HelixMTdb30) 

produced comparable results, supporting the robustness of our model (Extended Data Fig. 1e). 

Collectively, these data establish a constraint model for the human mtDNA. 
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Figure 1. Mutability and constraint in the human mtDNA. (a) Trinucleotide mutational 

signature of mtDNA mutations predicted by the composite likelihood model. Mutation 

likelihoods for the six pyrimidine substitution types across 96 trinucleotides are shown, colored 

by whether the reference nucleotide is in the reference ‘light’ or reverse complement ‘heavy’ 

strand. This is computed for the reference sequence, excluding OriB-OriH (which has a distinct 

signature). (b) The observed:expected ratio of each functional class of mtDNA variation in 
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gnomAD (synonymous, n=8219; missense, n=24,021; stop gain, n=1603; tRNA, n=4512; rRNA, 

n=7536 and non-coding, n=3618). Error bars represent the 90% confidence interval. (c) The 

observed:expected ratio of disease-associated mtDNA variation in ClinVar and MITOMAP 

databases in gnomAD, grouped by classification. 2607 ClinVar variants (benign, n=910; likely 

benign, n=491; uncertain significance, n=1000; likely pathogenic, n=57 and pathogenic, n=149) 

and 881 MITOMAP variants (reported, n=791 and confirmed, n=90) are included. Error bars 

represent the 90% confidence interval. (d-f) Observed and expected sum maximum heteroplasmy 

of variants in each protein in gnomAD are plotted for synonymous (d), missense (e) and stop 

gain (f) variants. The Pearson correlation coefficient R is also shown in (d). Values for (d-f) are 

provided in Supplementary Dataset 1. 

 

 

Protein gene and regional constraint identifies functionally critical sites 

We evaluated gene constraint for the three major classes of protein variation; synonymous, 

missense, and stop gain variants. The observed and expected values for synonymous variants in 

each gene were highly correlated (R=0.996), consistent with their minimal selection (Fig. 1d). In 

contrast, stop gain variants were nearly absent in the population (Fig. 1f), as expected. This is in 

line with the paucity of predicted loss of function (pLoF) mtDNA variants in humans5,30,31, and 

indicates most are not compatible with life. Most proteins showed depletion of expected 

missense variation (Fig. 1e), and evaluation of observed:expected ratios revealed a spectrum of 

missense tolerance (Fig. 2a). We adopted the observed:expected ratio 90% CI upper bound 

fraction (OEUF) as a conservative measure of constraint akin to nuclear constraint models 

applied to gnomAD1; an approach which accounts for any uncertainty around the ratio to avoid 

overestimating constraint. Gene missense OEUF values ranged from 0.16 to 0.98 
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(Supplementary Dataset 1) and were correlated with gene function, such that complex V and (to 

a lesser extent) III subunit genes were most tolerant and complex I and IV least tolerant of 

missense (Fig. 2a). This is in line with complex I and IV defects being the most common causes 

of pediatric disease32, and with complex I, III, and IV but not complex V defects decreasing 

mitochondrial membrane potential, which is a trigger of mitochondrial degradation33. These data 

are also supported by studies in mtDNA ‘mutator’ mice, where analysis supported that complex 

V and III genes are subject to the weakest selection24. Comparison with conservation showed 

some similarities, such as MT-ATP8 being the least conserved and least constrained, but was not 

significantly correlated (Extended Data Fig. 3a).  

 

Missense tolerance can vary within proteins, a phenomenon called regional missense constraint, 

whereby specific gene regions can be more constrained than the gene3. Since these regions are 

enriched in pathogenic missense in the nuclear genome3, we developed a method to assess 

regional constraint in the mtDNA (Methods). We also hypothesized that regional constraint 

could have utility for revealing functionally critical regions, since there is a lack of functional 

domain annotations for these genes. Approximately 15% of total protein sequence was regionally 

missense constrained, and all proteins except MT-ATP8 had at least one region identified 

(Extended Data Fig. 4a, 5a, Supplementary Dataset 2). Mapping of regional constraint onto 

protein structures revealed that many were located in close proximity in 3D space, as was the 

case for complex I subunit MT-ND1 where regional constraint topologically clustered in the 

binding pocket for quinone, a molecule essential for complex I function (Fig. 2b). Manual 

inspection revealed other areas of regional constraint likely to be functionally critical, such as 

those clustering at the heme and quinone sites in MT-CYB (Extended Data Fig. 5d-e, 
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Supplementary Discussion). Although functional domain annotations aren’t readily available, 

there are residues of known functional importance (i.e. cofactor binding or proton transfer). 

These residues were highly missense constrained, having an OEUF value (0.06) comparable to 

that for pLoF variants, illustrating their critical role in function. Approximately 60% of these 

functional residues were located in areas of regional constraint or were proximal to it within 3D 

space (Extended Data Fig. 5a), indicating these intervals are enriched in functionally critical 

sites. These data also highlight the utility of regional constraint to identify residues not realized 

as functionally important.  

 

To determine if there was an association between regional constraint and pathogenic variation, 

we calculated the odds ratio (OR) using pathogenic missense variants reported in ClinVar or 

MITOMAP versus benign ClinVar variants. Regional constraint was highly enriched in 

pathogenic versus benign missense (OR=26, 95% CI=12-55); residues in close proximity to 

regional constraint in 3D space (<6 Ångstrom distance) were also enriched in pathogenic to a 

lower extent (OR=2.6, 95% CI=1.4-4.6) (Fig. 2c). This was supported by mtDNA variants 

curated by a clinical genetics service in cases suspected to have mitochondrial disease, where the 

proportion of missense variants within or proximal to regional constraint correlated with 

classification (Fig. 2d). Regional missense constraint performed particularly well at 

discriminating ‘true negatives’, given the lack of benign variants within regional constraint (Fig. 

2d, Extended Data Fig. 5b). Regional constraint therefore provides a tool for variant 

classification, including for utilization of the ACMG pathogenic criterion PM1 “Located in a 

mutational hotspot and/or critical and well-established functional domain without benign 

variation” which was omitted from mitochondrial ACMG/AMP variant classification guidelines 
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due to lack of applicability12. Overall, we demonstrate the utility of mitochondrial regional 

constraint for variant classification, and establish it as a tool for prioritizing variants of uncertain 

significance in individuals with mitochondrial diseases. 

 

 

Figure 2: Assessment of missense constraint identifies gene and regional constraint. (a) The 

missense observed:expected ratio for each protein, ordered by the OXPHOS complex it belongs 

to (I, III, IV and V). Error bars represent the 90% confidence interval. Values are provided in 

Supplementary Dataset 1. (b) Areas of regional missense constraint identified in MT-ND1 are 

shown in red within linear protein sequence (top) and 3D protein structure (bottom). Residues in 

green form the shallow part of the quinone binding pocket and those in yellow are involved in 
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proton pumping per Kampjut and Sazanov34. (c) The odds ratio (OR) enrichment of pathogenic 

(n=79) vs benign (n=625) missense variants (most severe consequence) outside, proximal to (<6 

Ångstrom distance from), and within areas of regional constraint; the y-axis is displayed with 

square root scale. Error bars represent the 95% confidence interval. (d) The proportion of curated 

missense variants from a clinical genetics service that are within (red), proximal to (purple), or 

outside (blue) regional missense constraint, categorized by classification. 171 missense variants 

are included (benign & likely benign, n=34; VUS of low clinical significance, n=77; VUS, n=31; 

VUS of high clinical significance, n=9 and pathogenic & likely pathogenic, n=20). The color 

legend is per (c). VUS are variants of uncertain significance.  

 

 

Revealing constraint across and within mitochondrial RNA genes 

Unlike the nuclear genome, most genes in the mtDNA encode for RNAs; specifically tRNAs and 

rRNAs required for mitochondrial translation. The tRNAs showed a spectrum of intolerance to 

base substitutions, with OEUF values ranging from 0.21 for MT-TM to 0.87 for MT-TT (Fig. 3a, 

Supplementary Dataset 1). These gene constraint values were not significantly correlated with 

each tRNA’s codon usage in the mtDNA (Extended Data Fig. 3c), suggesting other factors are 

driving selection. Indeed, MT-TM is the most constrained tRNA, encoding the initiator (and 

elongator) tRNAMet, while the tRNA with the second lowest OEUF (MT-TL1) is also notable for 

encoding the binding sequence for the mitochondrial transcriptional terminator MTERF135. Gene 

conservation scores only partially correlated with constraint (Extended Data Fig. 3b). The low 

OEUF values observed for the two rRNA genes (OEUF 0.28 and 0.30) are striking given these 

loci are typically overlooked in analyses, due to a lack of in silico tools for predicting rRNA 

variant effect12. However our data is consistent with prior studies reporting reduced transmission 
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or frequency of rRNA variation5,19,20,25, supporting these genes likely harbor undiscovered 

pathogenic variation. 

 

The RNAs form secondary structures with double-stranded stems and single-stranded loops. 

Variants disrupting Watson-Crick (WC) base pairs within stems were highly constrained, at 

similar levels in tRNAs and rRNAs (OEUF 0.18 and 0.17, Fig. 3b). This is in line with nearly 

70% of pathogenic tRNA variants breaking WC pairs (Extended Data Fig. 6a), and supports that 

this variant type may especially harbor deleterious variants in rRNA genes. Non-WC pairs in 

stems and single-stranded loops were more tolerant of variation than WC pairs, especially within 

tRNAs (Fig. 3b). Post-transcriptionally modified bases were also more constrained than non-

modified bases, consistent with their role in RNA stability and function36 (Extended Data Fig. 

6b). The tRNAs share a cloverleaf secondary structure, which has annotated domains (Extended 

Data Fig. 6c). Assessment across domains revealed clear differences in tolerance to variation, 

such that the D-stem was most constrained (OEUF 0.15) and the T-loop the least (OEUF 0.72, 

Fig. 3c). These values correlated with domain enrichment in pathogenic variants (Extended Data 

Fig. 6d), and are consistent with studies noting increased pathogenic burden in some of the most 

constrained domains, especially the anticodon and acceptor25,37. Although the latter have obvious 

functional significance due to binding mRNA or amino acids, these data also highlight a critical 

role for the D-stem which is involved in the formation of the L-shaped tertiary tRNA structure38. 

 

Owing to the shared structure of the tRNAs, each base can be assigned a position number. 

Evaluation across each tRNA position revealed a spectrum of constraint (Fig. 3d, Supplementary 

Dataset 4). For example, the non-wobble anticodon positions (35-36) and position 11 in the D-
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stem were highly intolerant of variation, with values similar to pLoF variants (OEUF <0.05), 

while position 26 between stems was tolerant of variation (observed:expected ratio 1.04 with 

OEUF 1.35). These data affirm the pLoF effect of non-wobble anticodon variants29,39, whilst also 

highlighting positions not widely appreciated as functionally important. This includes the 

position 11-24 pairing in the D-stem, as well as position 46 in the variable region that interacts 

with the D-stem in the tertiary structure (Fig. 3e). Unlike the tRNAs, the rRNAs do not share a 

common structure. Therefore, we assessed regional constraint to characterize tolerance to 

variation across each rRNA (Supplementary Dataset 2). Approximately 15% of rRNA bases 

were regionally constrained (Fig. 3f, Extended Data Fig. 4b, 5c, 5f). Post-transcriptional 

modifications and rRNA:rRNA bridges connecting the mitoribosomal subunits have a critical 

role in rRNA function36,40. Accordingly, 70% of modified or intersubunit bridge bases were 

within regional constraint or in close proximity to it in the tertiary rRNA structure (Extended 

Data Fig. 5c), indicating these intervals are enriched in functionally critical sites. Indeed, the 

most constrained rRNA region encodes a site involved in tRNA binding during translation with 

an OEUF comparable to protein gene pLoF OEUF values (Supplementary Discussion). The two 

well-established rRNA pathogenic variants, that cause deafness41, were also nearby to regional 

constraint (~10 Ångstrom) (Fig. 3f, Extended Data Fig. 5g). Collectively, these data identify 

which RNA sites are most important for function, and thus most likely to harbor deleterious 

variation. 
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Figure 3: Constraint across and within RNA genes. (a) The observed:expected ratio for 

variants in each RNA, ordered by RNA type and value. Values are provided in Supplementary 

Dataset 1. (b) The observed:expected ratio for each base type in tRNA (WC pair, n=2364; non-

WC pair, n=318 and loop or other, n=1842) and rRNA (WC pair, n=3078; non-WC pair, n=354 

and loop or other, n=4104). WC represents Watson-Crick, and loop or other includes all single-

stranded regions. (c) The observed:expected ratio for each tRNA domain (acceptor stem, n=933; 

D-stem, n=468; D-loop, n=411; anticodon stem, n=672; anticodon loop, n=462; variable region, 
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n=270; T-stem, n=606 and T-loop n=459); their secondary structure location is per Extended 

Data Fig. 6c. Error bars in (a-c) represent the 90% confidence interval (CI). (d) The 

observed:expected ratio CI upper bound fraction (OEUF) of variants at each tRNA secondary 

structure position. Darker colors represent lower values, per the legend. Values are provided in 

Supplementary Dataset 4. (e) Each tRNA position OEUF mapped onto tRNA tertiary structure; 

color legend is per (d). Labeled position 46 and D-stem positions are shown in nucleotide style. 

The mRNA molecule is colored green. (f) Areas of regional constraint within MT-RNR1 

secondary structure, indicated by red font. The box highlights an area including regional 

constraint, modified bases (blue font) and disease-associated variants (at m.1494 and m.1555, 

bold purple font); also shown in tertiary structure in Extended Data Fig. 5g. 

 

 

Non-coding elements involved in mtDNA replication and transcription are constrained 

Approximately 10% of the mtDNA is non-coding. Most of this sequence lies within the ‘control’ 

region, which contains annotated elements involved in mtDNA transcription and translation42. 

Since we observed partial depletion of expected non-coding variation (Fig. 1b), we calculated 

constraint metrics for non-coding elements (Supplementary Dataset 5). Several elements in the 

control region were constrained (Fig. 4); this included the promoter for transcription of the light 

strand (LSP, OEUF 0.53) and conserved sequence block 3 (CSB3, OEUF 0.33). CSB3 was 

recently shown to be essential for the function of 7S RNA, a key regulator of transcription 

initiation in the mitochondria43. In contrast, the hypervariable sequences (HVS1-3) within the 

control region showed OEUF values ranging from 0.90-1.09; these regions are known to be 

highly polymorphic, and therefore were expected to be tolerant of variation. The hypervariable 
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sequence with the lowest OEUF value (HVS2) was also the one that encoded the most annotated

elements (Fig. 4).  

 

The non-coding sequence outside of the control region encodes an element of functional

significance, the origin for replication of the light strand (Fig. 4), which was also constrained

(OriL, OEUF 0.38). The OriL overlaps two tRNA genes (MT-TN and MT-TC) but the non-

coding section encoding the initiation site was also markedly depleted of expected variation

(OEUF 0.30), consistent with its essential role in mtDNA maintenance44. These data support that

some non-coding variants are likely deleterious due to effects on mtDNA replication and

transcription.  

 

Figure 4: Measuring constraint across non-coding elements. Top schematic shows annotated

elements within the non-coding control region, which spans the artificial chromosome break

(m.16569-1). The top row includes the three hypervariable sequences (HV1, HV2, HV3), the

second row includes termination-associated sequences (TAS, TAS2), conserved sequence blocks

(CSB1, CSB2, CSB3) and L-strand and H-strand promoters (LSP, HSP1), and the third row
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includes a control element (MT-5) and transcription factor binding sites (TFX, TFY, TFL, TFH). 

The observed:expected ratio 90% confidence interval upper fraction (OEUF) within each 

element is shown per the color gradient legend; darker colors represent lower OEUF. Values are 

provided in Supplementary Dataset 5. The bottom schematic shows the position of the control 

region and origin for replication of the light strand (OriL) within the mtDNA, with encoded loci 

colored by their type (non-coding in yellow, protein blue, rRNA purple and tRNA orange).  

 

 

Characterizing the most constrained sites in the human mtDNA 

To identify the most constrained sites within the entire mtDNA, agnostic of locus annotation, we 

assessed local intolerance to base or amino acid substitution (i.e. missense only in protein genes) 

at and around every position using an overlapping sliding window method (Methods). This 

provided a mean OEUF value for every position, where bases in the closest proximity contribute 

more of the signal, which was percentile ranked to derive a score between 0-1 termed the 

mitochondrial local constraint (MLC) score. The most locally constrained positions with a score 

>0.99 include residues in MT-CO1 and MT-CO2 binding copper, notable given copper 

metalation is required for complex IV function45, as well as residues in the MT-ND4 binding site 

for complex I inhibitor rotenone34 (Fig. 5a). Numerous RNA bases had high scores >0.95, 

including rRNA sites involved in tRNA and mRNA binding during translation46 (Fig. 5a, 

Supplementary Video). Non-coding bases were depleted from the highest score quartile (0.75-

1.00) (Fig. 5b), and those with the highest scores were in the origin for light strand replication or 

focally distributed in the control region (Extended Data Fig. 7a). The latter included a recently 

discovered light strand promoter47 and two regions of unknown function, including one between 
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m.16,400-16,450 previously reported to be depleted of heteroplasmic variation19, and another 

across the artificial chromosome break. These two regions also had a lower population frequency 

of variants (Extended Data Fig. 7b-d), although more work is needed to determine what is 

driving their signals (Supplementary Discussion).  

 

Variants at positions with high MLC scores are predicted to be more deleterious. To investigate 

this, we assessed the odds ratio (OR) enrichment of pathogenic vs benign variants reported in 

ClinVar and MITOMAP databases across score quartiles, for RNA and missense variants. 

Pathogenic variants were 7.5 times more likely to be within the highest score quartile than 

benign variants (95% CI=4.96-11.5, Fig. 5c); they were also enriched across scores between 

0.50-0.75 (OR=1.8, 95% CI=1.2-2.5) and depleted from the lowest quartile (OR=0.21, 95% 

CI=0.14-0.32). Although depleted, some confirmed pathogenic variants were in the lowest score 

quartile (Extended Data Fig. 8a-d). Since this score measures local constraint around each 

position, pathogenic variants can have a low score if their neighboring positions are tolerant of 

variation; conversely benign variants can have a high score if their neighbors are intolerant of 

variation. Therefore, while a higher score increases the likelihood of pathogenicity, it does not 

preclude benign impact (Supplementary Discussion). Base positions with the highest scores were 

highly intolerant of indel variants, supporting that variation at these sites is more likely to impair 

mitochondrial function (Extended Data Fig. 8e); they were also more likely to be conserved 

across vertebrates (Extended Data Fig. 8f). Since the score measures missense tolerance 

specifically in protein genes, we also assigned non-missense protein SNVs scores to extend 

application to all SNVs (Methods). SNVs with higher scores were more likely to be seen only as 

heteroplasmies and ultra-rare homoplasmies in several mtDNA population databases5,30,31 
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(Extended Data Fig. 8g-i), in line with their increased pathogenicity5,12. Overall, these data 

support that MLC scores can serve as a predictor of deleterious impact, across every locus type 

in the mtDNA. 

 

We were interested to use the MLC score to assess the impact of mtDNA variation on 

phenotypes in ~200,000 individuals with genome sequencing data in the UK Biobank. Previous 

studies had demonstrated an association between mtDNA copy number and blood cell counts48, 

and we likewise observed an association between heteroplasmic variant counts and blood cell 

counts in study participants, specifically for neutrophils and platelets (p-values 3.74x10-15 and 

3.27x10-05), using a linear regression model adjusted for age, sex, and smoking status (Fig. 5d). 

We generated a MLC score sum (MSS) for each participant from all of their heteroplasmies, to 

assess their functional impact. When both heteroplasmy count and MSS were included in the 

same model, neutrophil count was only significantly associated with heteroplasmy count (p-

value 3.62x10-09), while platelet count was only significantly associated with MSS (p-value 

3.06x10-04) (Fig. 5d). These results support different roles for mitochondria in neutrophils and 

platelets, with mtDNA likely playing a causal role in platelet count and non-causal role in 

neutrophil count, consistent with the lack of nuclear DNA in platelets and the diminished role of 

mitochondria in neutrophils (Supplementary Discussion). Further analysis revealed significant 

associations between MSS and other phenotypes, including mortality, as described in an 

accompanying manuscript49. These data support the utility of the MLC score, and provide 

examples of how these metrics can provide novel insight into the role of mtDNA variation in 

human phenotypes. 
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Figure 5. Assessment of mitochondrial local constraint (MLC) scores. (a) The MLC score 

across every base position in the human mtDNA. Encoded genes are shown below, colored as 

follows: protein in blue, rRNA purple, tRNA orange, and non-coding yellow. The dashed gray 

line represents a score of 0.95. Per base scores are provided in Supplementary Dataset 6. The top 

panel shows examples of positions with the highest scores, from left to right in MT-RNR2 at the 

tRNA/mRNA interface in the mitoribosome (m.3032-3071), copper binding sites in MT-CO1 

(p.240, p.290-291) and MT-CO2 (p.196, p.200, p.204), and residues in the MT-ND4 rotenone 
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binding site (e.g. p.215). (b) The proportion of bases in each locus type in each MLC score 

quartile. (c) The odds ratio (OR) enrichment of pathogenic (n=205) vs benign (n=884) variants 

within each MLC score quartile, for RNA base and amino acid substitutions only. Error bars 

represent the 95% confidence interval. (d) Table showing β coefficients, standard error (SE), and 

p-values from linear regression models of the association between platelet or neutrophil count 

and heteroplasmy count and or MLC score sum. Regressions were run as separate models 

(‘Single’) or together in the same model (‘Combined’), and adjusted for age, sex and smoking 

status. Significant p-values are bolded. 

 

 

Discussion 

Mitochondrial DNA is an essential, yet often overlooked, part of the human genome. In this 

manuscript, we advance efforts to map constraint across the human genome by expanding 

constraint models to include the mtDNA. Application of our model to gnomAD revealed strong 

depletion of expected variation, supporting that only a fraction of total deleterious variation in 

the mtDNA has been characterized. Our constraint metrics provide tools to help address this gap 

in knowledge, by identifying which genes, gene regions, and positions across the human mtDNA 

are most likely to harbor undiscovered pathogenic variation. We validated the utility of these 

metrics by using disease-associated variants and functional annotations, and provided examples 

of how they can be used to investigate the role of mtDNA variation in rare and common 

phenotypes. Given the mtDNA is emerging as an important contributor to a myriad of 

phenotypes, we anticipate that these data will be a widely useful resource for studies that aim to 

elucidate the contribution of mtDNA variation to disease and other health outcomes.  
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Strikingly, we identified constraint in genes and regions commonly overlooked in disease 

analyses. This includes the rRNA genes, which are critical for translation but often not evaluated 

due to a lack of in silico tools, as well as non-coding elements involved in mtDNA replication or 

transcription where variation is typically assumed benign. Although surprising, these data are 

supported by studies reporting reduced transmission or frequency of variants in these 

loci5,19,20,23,25, indicating they likely harbor undiscovered pathogenic variation. Our exploration of 

constraint within the mitochondrial rRNA and tRNA genes may further offer a framework for the 

assessment of their nuclear-encoded counterparts given constraint within RNA genes has been 

little explored, though recent work establishing a mutational model for these genes will pave the 

way for this50. We also identified strong depletion of expected variation in protein genes with 

few pathogenic variants reported, such as MT-CO1 which harbored some of the most missense 

constrained sites in the mtDNA and yet has no ‘confirmed’ pathogenic missense31. This could 

reflect a bias towards the study of genes that already have well-established pathogenic variants, 

since genes with the most ‘confirmed’ pathogenic variants are enriched with those most frequent 

in the population5,31, and or an increased burden of deleterious variants not compatible with life. 

 

Our work capitalizes on the availability of heteroplasmy data within gnomAD; an inclusion that 

represents a significant advance for the study of mtDNA population genetics. Importantly, this 

enabled us to capture selection against both variant occurrence and heteroplasmy in gnomAD, 

the latter representing a phenomenon unique to the mtDNA. However, there are some important 

considerations with using gnomAD to assess mitochondrial constraint. Most gnomAD samples 

are from blood5, a dividing cell type that can exhibit lower heteroplasmy of pathogenic variants 
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than other (post-mitotic) tissues due to selection across cell divisions51. The depletion of 

expected variation we observed may therefore be greater than in other tissues, although selection 

in the germline and embryos is stronger than in somatic cells22,23. Future studies assessing 

constraint in tissue datasets, as well as for inherited vs somatic mutations, will shed light on 

tissue-specific selective forces shaping mtDNA variation. Furthermore, the European 

overrepresentation in gnomAD may bias our metrics to have the highest predictive value for 

European haplogroups. This is relevant given reports of variants only causing mitochondrial 

dysfunction in specific mtDNA haplogroup backgrounds12,52, and of nuclear genetic background 

impacting heteroplasmy transmission19. Ongoing expansion of gnomAD can address this, as well 

as provide the power to analyze haplogroup and population differences in constraint.  

 

It is important to note that our constraint model is specifically capturing negative selection 

against variants that have functional impacts at heteroplasmy; a criterion the majority of reported 

pathogenic variants meet31. Therefore these metrics are best suited for assessment of 

heteroplasmic variation. Future iterations of our model which address challenges with 

incorporating population frequency data will be needed to improve utility for detecting weaker 

selection against homoplasmic variation. Despite this caveat, our results support that mtDNA 

selection is stronger than previously appreciated. This likely reflects limitations of methods 

previously used to assess selection in human population datasets, including assumptions that the 

expected number of variants across genes should equal the observed, incomplete separation of 

missense and synonymous variants, and assumption of equal mutability per base pair20,21,24-26. 

We observed a spectrum of intolerance to variation across the mitochondrial genome, 

establishing a map of the regions that are likely to be most critical for mitochondrial function. 
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Given the lack of functional domain annotations for most of the coding and non-coding sequence 

in the human mtDNA, our data provides a rich set of candidate sites whose characterization will 

provide novel insights into mitochondrial genome function.   

 

Selection against mtDNA variants is complex, representing a combination of forces at an 

organismal (i.e. reduced survival and reproductive fitness), cellular (i.e. germline or somatic), 

and even organelle level (i.e. mitochondrial)7. While additional research is needed to tease apart 

the contribution of each to mitochondrial constraint in the human population, the near absence of 

expected pLoF variation in gnomAD supports that mtDNA variants with the most severe impact 

are not compatible with life and thus removed by selection in the germline or in utero. This also 

demonstrates the high efficiency of mechanisms for preventing accumulation of deleterious 

mtDNA variants in the population, necessary given its high mutation rate22,23. Accordingly, most 

pathogenic variants characterized to date will have only mild to moderate effects, given they are 

compatible with life but not health53; a point which has implications for in silico predictors 

trained on reported pathogenic variants. Studies which clarify the impact of variants on germ cell 

and in utero development, such as those occurring at the most constrained sites, will be needed to 

characterize both the observed and unobserved deleterious variation in the human population. 

 

The increasing affordability of genome sequencing, coupled with the development of other 

mtDNA tools such as base editors54, are poised to usher in an exciting era of mtDNA research. In 

this spirit, our mitochondrial constraint model provides a tool to complement these advances and 

empower research into the role of mtDNA variation in human health and disease.  
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Figure legends 

Each figure legend is presented underneath its figure in the main text for initial submission. 

 

Methods 

Mitochondrial mutational model 

Mitochondrial composite likelihood model: We adapted a composite likelihood model described 

by Dietlein et al28, and applied it to de novo mutations to quantify mutability in trinucleotide 

contexts in the human mtDNA. The composite model decomposes the mutational likelihood of 

each trinucleotide context into multiplicative factors, namely the effects of the reference 

nucleotide, mutation class, and flanking nucleotides, making it optimal for the possible sparsity 

of counts per context in the smaller mtDNA. We adapted the model for its application to the 

mtDNA; a detailed description is in the Supplementary Information, and summarized here.  

 

We classified 12 base substitution types � ∈ �C � �, � � 	, � � 
, 
 � �, 
 � �, 
 � 	, 	 �

, 	 � �, 	 � �, � � 
, � � 	, � � �� and their reference nucleotides �
�� ∈ ��, �, 	, 
�, and 

categorized them into three mutational classes �
�� ∈ �I, II, III�: transversions type I (class I), 

transversions type II (class II) and transitions (class III). We counted the de novo mutations of 
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each base substitution type � to produce vector �����. The likelihood ratio of each reference 

nucleotide �� where � ∈ ��, �, 	, 
� was calculated as 

�� � ∑ ��
����

������∑ ��

����
� · �
��  where �
�� �  

���
���     � � � � �, � � 	, � � 

     � � T � �, 
 � �, 
 � 		     � � G � 
, 	 � �, 	 � ��     � � A � 
, � � 	, � � �

# 
where the probability of the reference nucleotide is its frequency in the reference sequence. The 

likelihood ratio of each mutation class �	 was calculated as 

�	 � ∑ ��
����

	����	∑ ��

����
� · �
��  where �
�� �  $ %      � � C � �, 
 � �, 	 � 
, � � 
%%     � � C � 	, 
 � 	, 	 � �, � � �%%%    � � C � 
, 
 � �, 	 � �, � � 	# 

where the probability of the mutation class was derived from the relative frequency of 

nucleotides in the reference sequence. The likelihood ratio of each base substitution type � was 

calculated as 

�� �  ����� ·  �	��� 

and the likelihood ratios for sequence context ��,�,� as 

��,�,� � ��,�,�
���

��

���� · &
����,�,��


��
 

For �
�� = III, ��,�,�
���  is the count of nucleotide � at position ' ∈ ()1: 1+\�0� around base 

substitution of type �, and &
����,�,��


��  is the frequency of nucleotide �� at position ' ∈ ()1: 1+\�0� 

around the reference nucleotide �
�� in the reference sequence. While there is replicative strand 

bias for transitions (class III), this has not been established for transversions29,55. Therefore for 

�
�� = I, II the base substitution types � were first classified into their pyrimidine type './
�� 

due to their lower counts, and ���
���

����  was used to count './
��, ���
���,�,�

���  to count of nucleotide 
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� at position ' ∈ ()1: 1+\�0� around './
��, and &
��
������,�,��


��  to represent the frequency of 

nucleotide �� at position ' ∈ ()1: 1+\�0� around the pyrimidine reference nucleotide. We then 

computed the mutability of each mutation class � at every base in the reference sequence, 

excluding the non-coding OriB-OriH region, for 0 ∈ [192:16196] with reference nucleotide �� 

and flanking nucleotide �� at position ' as 

��,	 �  ���
·  �	 · 1 ��,�,��

������ ��� 

  
This produced a composite mutation likelihood for every possible base substitution in the 

mtDNA. Mutability in the non-coding OriB-OriH region 0 ∈ [1-191, 16196-16569] was 

quantified separately to handle its inverted signature for transitions29 (Supplementary Methods).  

 

De novo dataset: We quantified mutability using mitochondrial de novo mutations from the 

literature and an in-house dataset. Published de novo mutation datasets were identified from a 

search of the literature19-22,56,57; these included germline as well as somatic de novo mutations 

which have a highly similar mutational signature in the mtDNA29,56. The in-house dataset of de 

novo mutations was identified from 1690 mother-child pairs with unaffected status in the 

SPARK cohort58, using genome sequencing data obtained from SFARI Base (application 

#12267.2). The GATK Mutect2 pipeline was used to call variants in the SPARK pairs, and 

variants at >1% heteroplasmy level that were present in the child but not in the mother after 

stringent filtering were regarded as de novo, akin to criteria used by others19. Checks were 

performed to confirm that de novo mutations across sources had highly similar mutation 

characteristics, and one outlier group was excluded (see Supplementary Methods). A final 

dataset of 4216 de novo mutation counts was used, extracted from each source using custom 
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scripts run in Python v3.10. Additional details on the de novos and their curation are in the 

Supplementary Information.  

  

Validation: The predictive value of the mutational model was validated by measuring the 

correlation between the mutation likelihoods and observed level of neutral variation in gnomAD. 

Haplogroup variants supplemented with variants at non-conserved sites in the lowest decile of 

PhyloP were used to represent neutral variation. Custom scripts implemented in Python v3.10 

were used to sum the observed maximum heteroplasmy of neutral variants in gnomAD and their 

mutation likelihood scores across each locus. Linear regression models fitting mutation 

likelihoods and observed neutral variation, and their Pearson correlation coefficients and p-

values, were calculated using R v3.6.1. The highly mutable G>A and T>C variants were fit 

separately, akin to how CpG transitions are handled separately in nuclear models1, as was the 

non-coding OriB-OriH region. Additional details on this method are in the Supplementary 

Information. 

 

Assessment of mitochondrial constraint 

We measured mitochondrial constraint in gnomAD as a ratio of observed to expected variation. 

Specifically, we calculated the observed and expected sum maximum heteroplasmy of variation, 

to capture selection that occurs against the number and heteroplasmy level in the mitochondria. 

The observed value for a variant class and or locus in gnomAD v3.15 was determined by 

summing the maximum heteroplasmy value of every possible SNV in the group (e.g. all 

missense within a protein gene). The expected value under neutrality was determined by 

summing the mutation likelihoods of every possible SNV in the group, and applying the linear 
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models fit on the mutation likelihoods and observed neutral variation in gnomAD (described 

above). We also calculated the 90% confidence interval (CI) around each observed:expected 

ratio using a beta distribution, adapting the method used for nuclear constraint models1. Custom 

scripts run in Python v3.10 were used to calculate ratios and their CIs. The observed:expected 

ratio 90% CI upper bound fraction (OEUF) was used as a conservative measure of constraint. 

Additional details on these methods are in the Supplementary Information. 

 

Simulation of germline mtDNA mutation and heteroplasmy 

To validate a correlation between mitochondrial mutation rates and population maximum 

heteroplasmy, we adapted a computational model by Colnaghi et al to simulate mutation and 

heteroplasmy drift for neutral mutations in the human female germline59. Heteroplasmy levels 

were tracked across 10,000 maternal lineages for five generations for 10 mutation rates (between 

10−9-10−7 per base pair), using model parameters drawn from human data by Colnaghi et al59. 

The maximum heteroplasmy distribution for each mutation rate in the simulated population was 

evaluated through bootstrapping. This simulation was implemented using a custom R script (run 

in v.3.6.1); a detailed description of this method is in the Supplementary Information. 

 

Gene, non-coding, and variant in silico annotations 

A ‘synthetic’ VCF with every possible SNV in the human mtDNA reference sequence 

NC_012920.1, and their Ensembl Variant Effect Predictor gene and consequence annotations, 

generated as described5 was used for computing observed and expected variation. Note that each 

human mtDNA gene has only one transcript, thus distinction between canonical and non-

canonical transcripts was not required. Non-coding elements in the human mtDNA and their 
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coordinates were downloaded from MITOMAP31; elements with expected value <10 were 

excluded from analyses. The coordinates for the non-coding ‘OriB-OriH’ region are per Ju et 

al29. Haplogroup variants were extracted from PhyloTree Build 17 as previously described60. The 

phyloP conservation scores derived from 100 vertebrate genomes, and APOGEE, HmtVar and 

MitoTip in silico predictions, were retrieved as described5,60. 

 

Protein and RNA annotations 

Functional sites within the proteins were gleaned from UniProt and the literature as follows. 

UniProt Knowledgebase annotations were downloaded from the UniProt FTP site 

(https://www.uniprot.org/downloads), and binding site annotations for human mtDNA-encoded 

proteins were extracted from available bed files (date of access November-16-2020)61. Residues 

involved in complex I proton transfer were curated based on ovine data reported by Kampjut and 

Sazanov34; the reported residue positions were manually confirmed as equivalent to human 

except for MT-ND6 which was shifted by one residue. For RNA genes, the base type annotation 

(e.g. base pair in stem) was determined using a custom script in Python v3.10 and manually 

curated secondary structure data reported previously60. Modified bases in RNA genes and tRNA 

domain annotations were obtained as described60. The tRNA secondary structure position 

numbers and their corresponding mtDNA position were obtained from Sonney et al62. Codon 

usage of each tRNA was determined by counting the corresponding amino acid within the 

protein-coding sequence using custom scripts in Python v3.10; for Leucine and Serine the codon 

sequence was used to distinguish between the two tRNAs for these amino acids. Bases involved 

in rRNA:rRNA bridges connecting the two mitoribosomal subunits are per Amunts et al40.  
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Population databases 

Data from the Genome Aggregation Database (gnomAD) v3.1 generated from whole genome 

sequences from 56,434 individuals were retrieved from the gnomAD browser 

(https://gnomad.broadinstitute.org/downloads)5. HelixMTdb data generated by proprietary 

exome+ assay of 195,983 individuals were downloaded from the Helix website 

(https://www.helix.com, version dated 03-27-2020)30; observed maximum heteroplasmy of 

homoplasmic variants was not reported and therefore assigned as 1.0. MITOMAP data generated 

from 56,910 GenBank sequences were downloaded from the MITOMAP website 

(https://www.mitomap.org/MITOMAP/resources, polymorphism table, download date 07-14-

2022)31. Note that the MITOMAP database does not include heteroplasmy information.  

 

Disease-associated variation 

Disease-associated mtDNA variants were obtained from ClinVar and MITOMAP databases. For 

ClinVar, all mtDNA SNVs were retrieved (download date 05-25-2022)63. Variants listed only to 

be associated with cancer were excluded to focus on germline conditions, and those with 

conflicting interpretations were also excluded. For MITOMAP, all disease-associated variants 

were retrieved (disease table, download date 05-25-2022)31. A total of 2607 ClinVar variants and 

882 MITOMAP variants were used. For Extended Data Fig. 8d, all variants with a confirmed 

status and plasmy status of ‘-/+’ in MITOMAP (associated with disease at heteroplasmy only) 

were reviewed. Any variants reported to be observed at homoplasmy in an individual in at least 

one publication were shown in the ‘at homoplasmy’ group in Extended Data Fig. 8d, as per 

Supplementary Dataset 8. Curated missense variants identified in cases suspected to have a 

mitochondrial disease (in Fig. 2d) were obtained from the Victorian Clinical Genetics Service. In 
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brief, variants identified from clinical-grade targeted mtDNA sequencing were assessed using 

criteria adapted from the American College of Medical Genetics mitochondrial variant 

classification guidelines12, as described previously64. Variants were curated by medical genomics 

scientists, and variant classifications were reviewed by a multidisciplinary team. Curated 

missense variants are listed in Supplementary Dataset 3. 

 

Replication dataset 

HelixMTdb population data was obtained as described above30. Linear models fitting neutral 

variation observed in HelixMTdb and their mutational likelihoods across loci were used to 

calculate expected values, as above. Variants at bases m.300-316, m.513-525, and m.16182-

16194 were not called in HelixMTdb and therefore were excluded from calculations. Ratios of 

observed:expected variation for each functional class of mtDNA variation in HelixMTdb and 

their CIs were calculated as above. 

 

Regional constraint 

A novel method was developed for assessment of mitochondrial regional constraint, which 

adapts methods described by Samocha et al3 and Davydov et al65 for nuclear constraint analyses. 

This analysis was implemented using custom scripts run in Python v3.10, as follows. For protein 

genes, the missense observed:expected ratio of all possible regions ≥30 bp within each gene was 

calculated, and a beta distribution used to compute the probability of the observed:expected ratio 

of each region being ≤ the gene’s missense observed:expected ratio. Regions with a p-value 

<0.01 were retained, and a greedy algorithm was applied to discard any region overlapping 

another with a lower p-value; for overlapping regions with the same p-value the longest was 
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retained. This produced a list of non-overlapping candidate regions significantly more missense 

constrained than the gene. The false discovery rate (FDR) of each candidate was then estimated 

by applying the same method to 1000 random permutations of each gene, calculated as the 

proportion of permutations that produced a false positive result of the same length and ≤ p-value 

as the candidate region. Areas of regional missense constraint with FDR <0.1 were regarded as 

high-confidence and used for all analyses. Regional constraint in the rRNA genes was evaluated 

using the same process with minor modifications. All high-confidence regions are provided in 

Supplementary Dataset 2. A detailed description of this method is in the Supplementary 

Information.  

 

The distance between residues and bases in 3D protein and rRNA structures was calculated using 

custom scripts implementing the Bio.PDB Biopython module66 in Python v3.10, to identify those 

in close proximity to regional constraint. The electron microscopy structures of human complex I 

(PDB:5XTD)67, complex III (PDB:5XTE)67, complex IV (PDB:5Z62)68, and the mitochondrial 

ribosome (PDB:6ZSE)69 from Protein Data Bank (PDB) were used. For the human complex V 

subunit MT-ATP6, the 3D structure predicted by AlphaFold obtained from UniProt was used 

(AF-P00846-F1)70. A protein residue was regarded to be in close proximity to regional constraint 

when the minimum distance between its alpha carbon atom and the alpha carbon of a residue in 

regional constraint was <6 Ångstrom, a threshold commonly used to define contacting residues71. 

A rRNA base was regarded to be in close proximity to regional constraint when the minimum 

distance between its nitrogen atom involved in base pairing and the equivalent nitrogen of a base 

in regional constraint was <6 Ångstrom, or if its phosphate atom and the phosphate of a base in 

regional constraint was <6 Ångstrom. Nitrogen atoms at position N1 were used for purines and 
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position N3 for pyrimidines to capture base pair interactions, and phosphate atoms to capture 

flanking bases.  

 

Mitochondrial local constraint score 

The mitochondrial local constraint (MLC) score was developed to measure local intolerance to 

base or amino acid substitutions at and around every position in the human mtDNA. This score 

was calculated using an overlapping sliding window method, implemented with custom scripts 

run in Python v3.10. Starting from position m.1, a window of length k was drawn and the 

observed:expected ratio of all of substitutions within the window and its 90% CI calculated. The 

window start position was moved by 1 bp, and the process repeated until all possible windows of 

length k in the mtDNA were evaluated. A window length k of 30 bp was used to enable all to 

have expected value >10. For positions in protein genes only amino acid substitutions (missense) 

were included in calculations, while all base substitutions were included for positions in RNA 

genes and non-coding regions. For each mtDNA position, the mean observed:expected ratio CI 

upper bound fraction (OEUF) of all k overlapping windows was computed and percentile ranked 

to achieve a score between 0.0 and 1.0 (ranging from least to most constrained). The score for 

every base position is provided in Supplementary Dataset 6. A MLC score was then assigned for 

every possible SNV as follows: non-coding, RNA and missense variants were assigned their 

positional score, and non-missense in protein genes were assigned scores based on the variant 

class OEUF with synonymous, stop gain, and start or stop lost assigned scores of 0.0, 1.0, and 

0.70 respectively. A higher score is predicted to be more deleterious; scores for every SNV are in 

Supplementary Dataset 7. A detailed description of this method is in the Supplementary 

Information.  
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Odds ratio enrichment analysis 

Odds ratio (OR) analysis assessing pathogenic versus benign variation across categories of 

regional constraint and MLC score quartiles was calculated as OR = 
�/�

	/�
, as previously 

described2, where a is the number of pathogenic variants in the category/quartile, b is the number 

of benign variants in the category/quartile, c is the number of pathogenic variants not in the 

category/quartile, and d is the number of benign variants not in the category/quartile. The 

standard error was calculated as SE = 23�

�
4 5 3�

�
4 5 3�

	
4 5 3�

�
4. A 95% confidence interval for 

each OR was calculated from the SE, as 6ln[��]±(1.96×SE). Pathogenic variants included those with a 

pathogenic or likely pathogenic classification in ClinVar or a confirmed disease association in 

MITOMAP. Benign variants were those with a benign classification in ClinVar. 

 

Visualization of protein and RNA 3D structures 

Protein and rRNA 3D structures from Protein Data Bank (PDB) were visualized using UCSF 

ChimeraX72 v1.3. The electron microscopy structures of human complex I (PDB:5XTD)67, 

complex III (PDB:5XTE) 67, complex IV (PDB:5Z62)68, and the mitochondrial ribosome 

including A/P-site and P/E-site tRNAs (PDB:6ZSE)69 were used. The ovine complex I electron 

microscopy structure (PDB:6ZKM)34 was also used to show the homologous MT-ND4 region 

binding rotenone in Fig. 5a. Figures and videos displaying constraint data on 3D structures were 

generated using custom ChimeraX command files.  
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Evaluation of heteroplasmy and blood cell counts in UK Biobank 

Mitochondrial heteroplasmy was identified from whole genome sequencing (WGS) data from 

the UK Biobank, a large population study of people from the United Kingdom aged 40-69 

years73, as described previously49. In brief, MitoHPC74 was used to call heteroplasmic SNVs with 

a heteroplasmy level of >5%. Variants were filtered using the following criteria: at poly-C 

homopolymer regions, read depth <300, and or with base quality, strandedness, slippage, weak 

evidence, germline, or position flags. Samples were excluded using the following criteria: 

mitochondrial contamination level >3%, two or more variants from a different mitochondrial 

haplogroup, multiple variants predicted as nuclear-encoded mitochondrial sequences, low 

coverage, mtDNA copy number ≤40, and or heteroplasmy count above five. Samples with cell 

count outliers more than three standard deviations from the mean were also excluded. 193,115 of 

200,000 samples with WGS data were retained for analysis. The association between 

heteroplasmy metrics (count and MLC score sum) and cell counts (platelets and neutrophils) was 

determined using a linear regression model adjusting for age (natural spline, 4 degrees of 

freedom), sex, and smoking status (“current”, “former”, or “never smoker”). Raw neutrophil 

count was transformed using log(neutrophil count + 1) to more closely approximate a normal 

distribution. Regression models were run with each metric separately (‘Single’) or together in the 

same model (‘Combined’) in R v4.0.4.  

 

Statistical analysis 

The statistical tests utilized in this study are described in detail in the relevant Methods and or 

Supplementary Methods sections.  
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Data availability 

Data analyzed or generated during this study are included in this published article and its 

Supplementary files, and or available via https://github.com/leklab/mitochondrial_constraint.  

 

Code availability  

The code used to perform all analyses and generate all figures in this manuscript are available at 

https://github.com/leklab/mitochondrial_constraint.  
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Extended Data Figures 

Extended Data Figure 1: Mutability, disease-associated variation, and constraint across 

classes of human mtDNA variation. (a) Trinucleotide mutational signature of mtDNA 

mutations within the OriB-OriH region (m.16197-191) predicted by the composite likelihood 

model. Mutation likelihoods for the six pyrimidine base substitution types across 96 

trinucleotides are shown, colored by whether the reference nucleotide is in the reference ‘light’ 

or reverse complement ‘heavy’ strand. (b-c) Proportion of total disease-associated variants in 
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ClinVar (n=2607) (b) and MITOMAP (n=882) (c) by consequence. (d) The observed:expected 

ratio of in silico predictions in gnomAD for missense variants by APOGEE (pathogenic, n=7276 

and neutral, n=16,800), and for tRNA variants by MitoTIP (likely pathogenic, n=981; possibly 

pathogenic, n=1171, possibly benign, n=1162 and likely benign, n=1198) and HmtVar 

(pathogenic, n=202; likely pathogenic, n=6, likely polymorphic, n=4139 and polymorphic, 

n=24); all of which are recommended per ACMG/AMP mtDNA guidelines for variant 

interpretation. Note the outlier HmtVar ‘likely pathogenic’ group only includes six variants. (e) 

Assessment of functional classes of mtDNA variation in a replication dataset, HelixMTdb. The n 

per class is per Fig. 1d. Bars in (d-e) represent 90% confidence intervals.  
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Extended Data Figure 2: Simulation of germline mtDNA mutation and heteroplasmy in 

maternal lineages. (a) The simulated heteroplasmy distribution of mutations in 10,000 offspring 

who inherited a mutation with heteroplasmy 0.1, for five different bottleneck sizes; the mean is 

shown in red. This plot reproduces an analysis by Colnaghi et al59, using a mutation rate of 10-8. 

For (b-d) we used their standard bottleneck size of 128. (b) Heteroplasmy changes between 

offspring (generation 5) and mothers (generation 4) across 10,000 lineages, ordered by degree of 

shift. De novo represents variants with heteroplasmy >0.01 in offspring and <0.01 in mothers, 

lost have heteroplasmy <0.01 in offspring and >0.01 in mothers, and transmitted have 

heteroplasmy >0.01 in offspring and mothers, to match criteria used by Wei et al19. A mutation 

rate of 10-8 was used; starting heteroplasmy was 0 for generation 0. (c) Maximum heteroplasmy 

across 10,000 lineages across five generations, colored by mutation rate. (d) Boxplots showing 

maximum heteroplasmy distribution from 1000 bootstrap replicates sampling 100 individuals 

from the population (n=10,000) at generation five; starting heteroplasmy was 0 for generation 0.  
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Extended Data Figure 3: Assessment of conservation and codon usage across genes. Median

phyloP base conservation scores for each protein (a) or RNA (b) gene, derived from 100

vertebrate genomes. Higher phyloP values represent increased conservation. (c) The count of

codons within the protein-coding sequence corresponding to each tRNA. Pearson correlation

coefficient (R) and its p-value (p) is shown in (a-c). OEUF stands for observed:expected ratio

confidence interval upper bound fraction, and OEUF values for (a-c) are provided in

Supplementary Dataset 1.  
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Extended Data Figure 4: Areas of regional constraint within each protein and rRNA gene. 

(a) Intervals of regional missense constraint identified in each protein are colored in red. For 

display purposes each protein is shown at the same length (i.e. are not scaled by their actual 

protein length), and amino acid residue numbering is shown. (b) Intervals of regional constraint 

identified in each rRNA are colored in red. The rRNA sequences are not scaled by their length, 

and mtDNA position coordinates are shown. Coordinates for (a-b) are provided in 

Supplementary Dataset 2. 
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Extended Data Figure 5: Characteristics of regional constraint. (a-b) The proportion of 

bases encoding proteins (n=11,341) or residues of functional significance (n=141) (a) or benign 

(n=625) and pathogenic (n=79) missense variants (most severe consequence) (b) that are within, 

proximal to (<6 Ångstrom distance from), or outside regional missense constraint. (c) The 

proportion of bases encoding rRNA (n=2512), or modified bases and bases in rRNA:rRNA 

intersubunit bridges (n=63) that are within, proximal to (<6 Ångstrom distance from), or outside 

regional constraint. (d) The four areas of regional missense constraint in MT-CYB are shown in 
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red, visualized in its dimeric 3D structure. Heme molecules involved in electron transfer are 

colored green. (e) The two areas of regional missense constraint in MT-ND6 are shown in red in 

the 3D structure. Residues colored in yellow are involved in the transition from the open to 

closed complex state in the π-bulge (p.61-63 and p.67) per Kampjut and Sazanov34. (f) The areas 

of regional constraint within the MT-RNR2 secondary structure, indicated by red font; modified 

bases are in blue font. (g) An area of regional constraint within the MT-RNR1 tertiary structure, 

indicated in red. Modified bases are colored blue, and disease-associated bases (m.1494 and 

m.1555) purple. The mRNA molecule is colored green. 
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Extended Data Figure 6: Characteristics of RNA variants and bases. (a) The proportion of 

pathogenic (n=121) and benign (n=232) tRNA variants for each base type. (b) The 

observed:expected ratio for variants in modified and non-modified bases in tRNA (modified, 

n=411 and non-modified, n=4101) and rRNA (modified, n=30 and non-modified, n=7506). Error 

bars represent the 90% confidence interval. (c) The generic tRNA secondary structure, with 

positions colored by domain. (d) The proportion of pathogenic (n=121) and benign (n=232) 

tRNA variants for each domain, following the color legend in (c).  
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Extended Data Figure 7: Mitochondrial local constraint (MLC) scores and population 

allele frequencies across the non-coding control region. (a) The MLC score of positions 

across the control region are shown; a schematic of annotated non-coding elements is displayed 

above. The five peaks from left to right overlap (1) a recently discovered second light strand 

promoter47, (2-3) regions of unknown function within the D-loop, (4) conserved sequence block 

3, or (5) the light strand promoter. Base scores are provided in Supplementary Dataset 6. (b-c) 

The homoplasmic allele frequency (AF) of variants across the control region in gnomAD (b) or 

HelixMTdb (c). (d) The allele frequency of variants across the control region in the MITOMAP 
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database. (b-d) are displayed with a square root transformed y-axis; note only SNVs are 

included.  
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Extended Data Figure 8: Relationship between the mitochondrial local constraint (MLC) 

score and genomic annotations. (a) The proportion of benign (n=884) and pathogenic (n=205) 

variants in each score quartile. (b) Density plot showing the score distribution of disease-

associated variants; numbers per (a). (c) Density plot showing the score distribution of 184 

pathogenic variants with disease plasmy status in MITOMAP, colored by association with 

disease at heteroplasmy only, or at homoplasmy. (d) Density plot showing the score distribution 

of 88 ‘confirmed’ pathogenic variants from MITOMAP, colored by whether reported in 
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individuals at heteroplasmy only or at homoplasmy, per a manual literature review. Plots (a-d) 

include missense and RNA variants only, and for (c-d) ‘at homplasmy’ includes observed at both 

homoplasmy and heteroplasmy. (e) Boxplot showing the score distribution for base positions 

where indels are observed in gnomAD (n=416), HelixMTdb (n=697), and MITOMAP (n=667) 

databases. (f) The distribution of PhyloP base conservation scores for bases within each score 

quartile. PhyloP scores >0 (dashed horizontal line) indicate conserved sites by PhyloP. (g-i) The 

MLC variant score distribution for SNVs across population frequency categories in gnomAD 

(homoplasmy AF ≥0.002%, n=7363; homoplasmy AF <0.002%, n=1846 and heteroplasmy only, 

n=1641) (g), HelixMTdb (homoplasmy AF ≥0.002%, n=8049; homoplasmy AF <0.002%, 

n=3442 and heteroplasmy only, n=2613) (h) and MITOMAP (AF ≥0.002%, n=8617 and AF 

<0.002%, n=10,343) (i) databases. Note that allele frequency <0.002% is recommended as 

evidence of pathogenicity in ACMG/AMP mtDNA guidelines12, and that heteroplasmy data is 

not available for MITOMAP.  
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